1
0
mirror of https://github.com/ggerganov/llama.cpp.git synced 2025-01-20 00:31:15 +01:00
llama.cpp/examples/json-schema-pydantic-example.py
Olivier Chafik 6777c544bd
json: fix additionalProperties, allow space after enum/const ()
* json: default additionalProperty to true

* json: don't force additional props after normal properties!

* json: allow space after enum/const

* json: update pydantic example to set additionalProperties: false

* json: prevent additional props to redefine a typed prop

* port not_strings to python, add trailing space

* fix not_strings & port to js+py

* Update json-schema-to-grammar.cpp

* fix _not_strings for substring overlaps

* json: fix additionalProperties default, uncomment tests

* json: add integ. test case for additionalProperties

* json: nit: simplify condition

* reformat grammar integ tests w/ R"""()""" strings where there's escapes

* update # tokens in server test: consts can now have trailing space
2024-06-26 01:45:58 +01:00

80 lines
3.1 KiB
Python

# Usage:
#! ./llama-server -m some-model.gguf &
#! pip install pydantic
#! python json-schema-pydantic-example.py
from pydantic import BaseModel, Extra, TypeAdapter
from annotated_types import MinLen
from typing import Annotated, List, Optional
import json, requests
if True:
def create_completion(*, response_model=None, endpoint="http://localhost:8080/v1/chat/completions", messages, **kwargs):
'''
Creates a chat completion using an OpenAI-compatible endpoint w/ JSON schema support
(llama.cpp server, llama-cpp-python, Anyscale / Together...)
The response_model param takes a type (+ supports Pydantic) and behaves just as w/ Instructor (see below)
'''
if response_model:
type_adapter = TypeAdapter(response_model)
schema = type_adapter.json_schema()
messages = [{
"role": "system",
"content": f"You respond in JSON format with the following schema: {json.dumps(schema, indent=2)}"
}] + messages
response_format={"type": "json_object", "schema": schema}
data = requests.post(endpoint, headers={"Content-Type": "application/json"},
json=dict(messages=messages, response_format=response_format, **kwargs)).json()
if 'error' in data:
raise Exception(data['error']['message'])
content = data["choices"][0]["message"]["content"]
return type_adapter.validate_json(content) if type_adapter else content
else:
# This alternative branch uses Instructor + OpenAI client lib.
# Instructor support streamed iterable responses, retry & more.
# (see https://python.useinstructor.com/)
#! pip install instructor openai
import instructor, openai
client = instructor.patch(
openai.OpenAI(api_key="123", base_url="http://localhost:8080"),
mode=instructor.Mode.JSON_SCHEMA)
create_completion = client.chat.completions.create
if __name__ == '__main__':
class QAPair(BaseModel):
class Config:
extra = 'forbid' # triggers additionalProperties: false in the JSON schema
question: str
concise_answer: str
justification: str
stars: Annotated[int, Field(ge=1, le=5)]
class PyramidalSummary(BaseModel):
class Config:
extra = 'forbid' # triggers additionalProperties: false in the JSON schema
title: str
summary: str
question_answers: Annotated[List[QAPair], MinLen(2)]
sub_sections: Optional[Annotated[List['PyramidalSummary'], MinLen(2)]]
print("# Summary\n", create_completion(
model="...",
response_model=PyramidalSummary,
messages=[{
"role": "user",
"content": f"""
You are a highly efficient corporate document summarizer.
Create a pyramidal summary of an imaginary internal document about our company processes
(starting high-level, going down to each sub sections).
Keep questions short, and answers even shorter (trivia / quizz style).
"""
}]))