mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-01 00:39:00 +01:00
9bc6db28d0
* ggml-quants : 1.625 bpw ternary packing for BitNet 1.58b * ggml-quants : faster 1.625 bpw AVX2 vec_dot Not using a lookup table anymore makes it match q4_0 speed. * gguf-py : fix formatting * llama : remove spaces on empty line * ggml-quants : subtract 1 when back in epi8 This makes the 1.625 bpw type go faster than q4_0. Still not the fastest. * ggml-quants : Q2_2 now faster than Q4_K on with AVX2 * ggml-quants : cleanup Q1_3 code formatting * ggml-quants : ARM NEON vec_dot for q2_2 and q1_3 * ggml-quants : use ceiling division when quantizing q1_3 * convert-hf : simplify BitNet pre-quantization This still results in the exact same tensor weights and scales, but it reveals some weirdness in the current algorithm. * convert-hf : allow converting the weird BitNet 1.3B Its FFN size is 5460 which is not convenient. The offending tensors are kept in F16, which makes the final model 5.01 bpw. * bitnet : replace 1.58b with b1.58, as in the paper * ggml-quants : fix build failure on Windows * ggml-quants : attempt to fix Arm 32-bit support * ggml : add some informative comments in q1_3 vec_dot * ggml : add TQ1_0 and TQ2_0 ternary quantization types * ggml : even faster TQ2_0 * ggml : also faster TQ1_0 Same optimization as for TQ2_0 by offsetting the sum instead of the weights. This makes TQ1_0 almost as fast as Q8_0 on AVX2. * ggml : fix build issues in certain environments * ggml : add NEON vec_dot implementation for TQ1_0 and TQ2_0 * ggml : avoid directly using vmlal_high_s8, for 32-bit ARM compat The compiler seems smart enough to use the same instruction even when using vget_high_s8 instead. * ggml : remove q1_3 and q2_2 No more 1.625 bpw and 2.000 bpw, now instead using 1.6875 bpw and 2.0625 bpw with TQ1_0 and TQ2_0, respectively. * llama : remove the separate scale tensors of BitNet b1.58 They won't be needed, since the remaining ternary quant types have built-in scales. * ggml-quants : rename fields of TQ1_0 and TQ2_0 structs for consistency * ggml-quants : allow using vdotq_s32 in TQ2_0 vec_dot Not yet tested on hardware which supports it, might not work or might not even compile. But also it might. It should make the performance better on recent ARM CPUs. * ggml-quants : remove comment about possible format change of TQ2_0 Making it slightly more convenient for AVX512 but less convenient for everything else is not worth the trouble. * gguf-py : Numpy (de)quantization for TQ1_0 and TQ2_0 * ggml-quants : use roundf instead of nearest_int for TQ1_0 and TQ2_0 This does not change anything for ternary models, since their values should never end up being in halfway cases anyway. * convert : allow direct conversion to TQ1_0 and TQ2_0 The token embeddings and output tensors are kept in F16 to allow quantizing them to Q4_K and Q6_K with llama-quantize. * llama : handle fallback for TQ1_0 and TQ2_0 with Q4_0 Q4_0 is not completely symmetric (so not lossless for ternary models), but it should be good enough. * ggml-quants : allow using ARM dot product instructions for TQ1_0 * ggml-quants : deduplicate TQ1_0 and TQ2_0 __ARM_FEATURE_DOTPROD support * ggml : remove unused ggml_mul special case It would otherwise conflict with the more general optimization coming with Mamba-2. * ggml : handle TQ1_0 and TQ2_0 in dequantization-based operators * test-backend-ops : add TQ1_0 and TQ2_0 comments for later Not yet adding uncommented, because some backends like SYCL and Metal do not properly handle unknown types in supports_op for GGML_OP_MUL_MAT. (and Metal also doesn't handle it with GGML_OP_GET_ROWS) Support for TQ1_0 and TQ2_0 for other backends than CPU will be added in follow-up pull requests.
1490 lines
52 KiB
Python
1490 lines
52 KiB
Python
from __future__ import annotations
|
|
|
|
from enum import Enum, IntEnum, auto
|
|
from typing import Any
|
|
|
|
#
|
|
# constants
|
|
#
|
|
|
|
GGUF_MAGIC = 0x46554747 # "GGUF"
|
|
GGUF_VERSION = 3
|
|
GGUF_DEFAULT_ALIGNMENT = 32
|
|
GGML_QUANT_VERSION = 2 # GGML_QNT_VERSION from ggml.h
|
|
|
|
#
|
|
# metadata keys
|
|
#
|
|
|
|
|
|
class Keys:
|
|
class General:
|
|
TYPE = "general.type"
|
|
ARCHITECTURE = "general.architecture"
|
|
QUANTIZATION_VERSION = "general.quantization_version"
|
|
ALIGNMENT = "general.alignment"
|
|
FILE_TYPE = "general.file_type"
|
|
|
|
# Authorship Metadata
|
|
NAME = "general.name"
|
|
AUTHOR = "general.author"
|
|
VERSION = "general.version"
|
|
ORGANIZATION = "general.organization"
|
|
|
|
FINETUNE = "general.finetune"
|
|
BASENAME = "general.basename"
|
|
|
|
DESCRIPTION = "general.description"
|
|
QUANTIZED_BY = "general.quantized_by"
|
|
|
|
SIZE_LABEL = "general.size_label"
|
|
|
|
# Licensing details
|
|
LICENSE = "general.license"
|
|
LICENSE_NAME = "general.license.name"
|
|
LICENSE_LINK = "general.license.link"
|
|
|
|
# Typically represents the converted GGUF repo (Unless native)
|
|
URL = "general.url" # Model Website/Paper
|
|
DOI = "general.doi"
|
|
UUID = "general.uuid"
|
|
REPO_URL = "general.repo_url" # Model Source Repository (git/svn/etc...)
|
|
|
|
# Model Source during conversion
|
|
SOURCE_URL = "general.source.url" # Model Website/Paper
|
|
SOURCE_DOI = "general.source.doi"
|
|
SOURCE_UUID = "general.source.uuid"
|
|
SOURCE_REPO_URL = "general.source.repo_url" # Model Source Repository (git/svn/etc...)
|
|
|
|
# Base Model Source. There can be more than one source if it's a merged
|
|
# model like with 'Mistral-7B-Merge-14-v0.1'. This will assist in
|
|
# tracing linage of models as it is finetuned or merged over time.
|
|
BASE_MODEL_COUNT = "general.base_model.count"
|
|
BASE_MODEL_NAME = "general.base_model.{id}.name"
|
|
BASE_MODEL_AUTHOR = "general.base_model.{id}.author"
|
|
BASE_MODEL_VERSION = "general.base_model.{id}.version"
|
|
BASE_MODEL_ORGANIZATION = "general.base_model.{id}.organization"
|
|
BASE_MODEL_URL = "general.base_model.{id}.url" # Model Website/Paper
|
|
BASE_MODEL_DOI = "general.base_model.{id}.doi"
|
|
BASE_MODEL_UUID = "general.base_model.{id}.uuid"
|
|
BASE_MODEL_REPO_URL = "general.base_model.{id}.repo_url" # Model Source Repository (git/svn/etc...)
|
|
|
|
# Array based KV stores
|
|
TAGS = "general.tags"
|
|
LANGUAGES = "general.languages"
|
|
DATASETS = "general.datasets"
|
|
|
|
class LLM:
|
|
VOCAB_SIZE = "{arch}.vocab_size"
|
|
CONTEXT_LENGTH = "{arch}.context_length"
|
|
EMBEDDING_LENGTH = "{arch}.embedding_length"
|
|
BLOCK_COUNT = "{arch}.block_count"
|
|
LEADING_DENSE_BLOCK_COUNT = "{arch}.leading_dense_block_count"
|
|
FEED_FORWARD_LENGTH = "{arch}.feed_forward_length"
|
|
EXPERT_FEED_FORWARD_LENGTH = "{arch}.expert_feed_forward_length"
|
|
EXPERT_SHARED_FEED_FORWARD_LENGTH = "{arch}.expert_shared_feed_forward_length"
|
|
USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
|
|
TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout"
|
|
EXPERT_COUNT = "{arch}.expert_count"
|
|
EXPERT_USED_COUNT = "{arch}.expert_used_count"
|
|
EXPERT_SHARED_COUNT = "{arch}.expert_shared_count"
|
|
EXPERT_WEIGHTS_SCALE = "{arch}.expert_weights_scale"
|
|
POOLING_TYPE = "{arch}.pooling_type"
|
|
LOGIT_SCALE = "{arch}.logit_scale"
|
|
DECODER_START_TOKEN_ID = "{arch}.decoder_start_token_id"
|
|
ATTN_LOGIT_SOFTCAPPING = "{arch}.attn_logit_softcapping"
|
|
FINAL_LOGIT_SOFTCAPPING = "{arch}.final_logit_softcapping"
|
|
RESCALE_EVERY_N_LAYERS = "{arch}.rescale_every_n_layers"
|
|
TIME_MIX_EXTRA_DIM = "{arch}.time_mix_extra_dim"
|
|
TIME_DECAY_EXTRA_DIM = "{arch}.time_decay_extra_dim"
|
|
|
|
class Attention:
|
|
HEAD_COUNT = "{arch}.attention.head_count"
|
|
HEAD_COUNT_KV = "{arch}.attention.head_count_kv"
|
|
MAX_ALIBI_BIAS = "{arch}.attention.max_alibi_bias"
|
|
CLAMP_KQV = "{arch}.attention.clamp_kqv"
|
|
KEY_LENGTH = "{arch}.attention.key_length"
|
|
VALUE_LENGTH = "{arch}.attention.value_length"
|
|
LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon"
|
|
LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
|
|
CAUSAL = "{arch}.attention.causal"
|
|
Q_LORA_RANK = "{arch}.attention.q_lora_rank"
|
|
KV_LORA_RANK = "{arch}.attention.kv_lora_rank"
|
|
REL_BUCKETS_COUNT = "{arch}.attention.relative_buckets_count"
|
|
SLIDING_WINDOW = "{arch}.attention.sliding_window"
|
|
|
|
class Rope:
|
|
DIMENSION_COUNT = "{arch}.rope.dimension_count"
|
|
FREQ_BASE = "{arch}.rope.freq_base"
|
|
SCALING_TYPE = "{arch}.rope.scaling.type"
|
|
SCALING_FACTOR = "{arch}.rope.scaling.factor"
|
|
SCALING_ATTN_FACTOR = "{arch}.rope.scaling.attn_factor"
|
|
SCALING_ORIG_CTX_LEN = "{arch}.rope.scaling.original_context_length"
|
|
SCALING_FINETUNED = "{arch}.rope.scaling.finetuned"
|
|
SCALING_YARN_LOG_MUL = "{arch}.rope.scaling.yarn_log_multiplier"
|
|
|
|
class Split:
|
|
LLM_KV_SPLIT_NO = "split.no"
|
|
LLM_KV_SPLIT_COUNT = "split.count"
|
|
LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count"
|
|
|
|
class SSM:
|
|
CONV_KERNEL = "{arch}.ssm.conv_kernel"
|
|
INNER_SIZE = "{arch}.ssm.inner_size"
|
|
STATE_SIZE = "{arch}.ssm.state_size"
|
|
TIME_STEP_RANK = "{arch}.ssm.time_step_rank"
|
|
DT_B_C_RMS = "{arch}.ssm.dt_b_c_rms"
|
|
|
|
class WKV:
|
|
HEAD_SIZE = "{arch}.wkv.head_size"
|
|
|
|
class Tokenizer:
|
|
MODEL = "tokenizer.ggml.model"
|
|
PRE = "tokenizer.ggml.pre"
|
|
LIST = "tokenizer.ggml.tokens"
|
|
TOKEN_TYPE = "tokenizer.ggml.token_type"
|
|
TOKEN_TYPE_COUNT = "tokenizer.ggml.token_type_count" # for BERT-style token types
|
|
SCORES = "tokenizer.ggml.scores"
|
|
MERGES = "tokenizer.ggml.merges"
|
|
BOS_ID = "tokenizer.ggml.bos_token_id"
|
|
EOS_ID = "tokenizer.ggml.eos_token_id"
|
|
UNK_ID = "tokenizer.ggml.unknown_token_id"
|
|
SEP_ID = "tokenizer.ggml.seperator_token_id"
|
|
PAD_ID = "tokenizer.ggml.padding_token_id"
|
|
CLS_ID = "tokenizer.ggml.cls_token_id"
|
|
MASK_ID = "tokenizer.ggml.mask_token_id"
|
|
ADD_BOS = "tokenizer.ggml.add_bos_token"
|
|
ADD_EOS = "tokenizer.ggml.add_eos_token"
|
|
ADD_PREFIX = "tokenizer.ggml.add_space_prefix"
|
|
REMOVE_EXTRA_WS = "tokenizer.ggml.remove_extra_whitespaces"
|
|
PRECOMPILED_CHARSMAP = "tokenizer.ggml.precompiled_charsmap"
|
|
HF_JSON = "tokenizer.huggingface.json"
|
|
RWKV = "tokenizer.rwkv.world"
|
|
CHAT_TEMPLATE = "tokenizer.chat_template"
|
|
CHAT_TEMPLATE_N = "tokenizer.chat_template.{name}"
|
|
CHAT_TEMPLATES = "tokenizer.chat_templates"
|
|
# FIM/Infill special tokens constants
|
|
PREFIX_ID = "tokenizer.ggml.prefix_token_id"
|
|
SUFFIX_ID = "tokenizer.ggml.suffix_token_id"
|
|
MIDDLE_ID = "tokenizer.ggml.middle_token_id"
|
|
EOT_ID = "tokenizer.ggml.eot_token_id"
|
|
EOM_ID = "tokenizer.ggml.eom_token_id"
|
|
|
|
class Adapter:
|
|
TYPE = "adapter.type"
|
|
LORA_ALPHA = "adapter.lora.alpha"
|
|
|
|
#
|
|
# recommended mapping of model tensor names for storage in gguf
|
|
#
|
|
|
|
|
|
class GGUFType:
|
|
MODEL = "model"
|
|
ADAPTER = "adapter"
|
|
|
|
|
|
class MODEL_ARCH(IntEnum):
|
|
LLAMA = auto()
|
|
FALCON = auto()
|
|
BAICHUAN = auto()
|
|
GROK = auto()
|
|
GPT2 = auto()
|
|
GPTJ = auto()
|
|
GPTNEOX = auto()
|
|
MPT = auto()
|
|
STARCODER = auto()
|
|
REFACT = auto()
|
|
BERT = auto()
|
|
NOMIC_BERT = auto()
|
|
JINA_BERT_V2 = auto()
|
|
BLOOM = auto()
|
|
STABLELM = auto()
|
|
QWEN = auto()
|
|
QWEN2 = auto()
|
|
QWEN2MOE = auto()
|
|
PHI2 = auto()
|
|
PHI3 = auto()
|
|
PLAMO = auto()
|
|
CODESHELL = auto()
|
|
ORION = auto()
|
|
INTERNLM2 = auto()
|
|
MINICPM = auto()
|
|
GEMMA = auto()
|
|
GEMMA2 = auto()
|
|
STARCODER2 = auto()
|
|
RWKV6 = auto()
|
|
MAMBA = auto()
|
|
XVERSE = auto()
|
|
COMMAND_R = auto()
|
|
DBRX = auto()
|
|
OLMO = auto()
|
|
OPENELM = auto()
|
|
ARCTIC = auto()
|
|
DEEPSEEK2 = auto()
|
|
CHATGLM = auto()
|
|
BITNET = auto()
|
|
T5 = auto()
|
|
T5ENCODER = auto()
|
|
JAIS = auto()
|
|
NEMOTRON = auto()
|
|
EXAONE = auto()
|
|
|
|
|
|
class MODEL_TENSOR(IntEnum):
|
|
TOKEN_EMBD = auto()
|
|
TOKEN_EMBD_NORM = auto()
|
|
TOKEN_TYPES = auto()
|
|
POS_EMBD = auto()
|
|
OUTPUT = auto()
|
|
OUTPUT_NORM = auto()
|
|
ROPE_FREQS = auto()
|
|
ROPE_FACTORS_LONG = auto()
|
|
ROPE_FACTORS_SHORT = auto()
|
|
ATTN_Q = auto()
|
|
ATTN_K = auto()
|
|
ATTN_V = auto()
|
|
ATTN_QKV = auto()
|
|
ATTN_OUT = auto()
|
|
ATTN_NORM = auto()
|
|
ATTN_NORM_2 = auto()
|
|
ATTN_OUT_NORM = auto()
|
|
ATTN_POST_NORM = auto()
|
|
ATTN_ROT_EMBD = auto()
|
|
FFN_GATE_INP = auto()
|
|
FFN_GATE_INP_SHEXP = auto()
|
|
FFN_NORM = auto()
|
|
FFN_PRE_NORM = auto()
|
|
FFN_POST_NORM = auto()
|
|
FFN_GATE = auto()
|
|
FFN_DOWN = auto()
|
|
FFN_UP = auto()
|
|
FFN_ACT = auto()
|
|
FFN_NORM_EXP = auto()
|
|
FFN_GATE_EXP = auto()
|
|
FFN_DOWN_EXP = auto()
|
|
FFN_UP_EXP = auto()
|
|
FFN_GATE_SHEXP = auto()
|
|
FFN_DOWN_SHEXP = auto()
|
|
FFN_UP_SHEXP = auto()
|
|
ATTN_Q_NORM = auto()
|
|
ATTN_K_NORM = auto()
|
|
LAYER_OUT_NORM = auto()
|
|
SSM_IN = auto()
|
|
SSM_CONV1D = auto()
|
|
SSM_X = auto()
|
|
SSM_DT = auto()
|
|
SSM_A = auto()
|
|
SSM_D = auto()
|
|
SSM_OUT = auto()
|
|
TIME_MIX_W1 = auto()
|
|
TIME_MIX_W2 = auto()
|
|
TIME_MIX_LERP_X = auto()
|
|
TIME_MIX_LERP_K = auto()
|
|
TIME_MIX_LERP_V = auto()
|
|
TIME_MIX_LERP_R = auto()
|
|
TIME_MIX_LERP_G = auto()
|
|
TIME_MIX_LERP_W = auto()
|
|
TIME_MIX_FIRST = auto()
|
|
TIME_MIX_DECAY = auto()
|
|
TIME_MIX_DECAY_W1 = auto()
|
|
TIME_MIX_DECAY_W2 = auto()
|
|
TIME_MIX_KEY = auto()
|
|
TIME_MIX_VALUE = auto()
|
|
TIME_MIX_RECEPTANCE = auto()
|
|
TIME_MIX_GATE = auto()
|
|
TIME_MIX_LN = auto()
|
|
TIME_MIX_OUTPUT = auto()
|
|
CHANNEL_MIX_LERP_K = auto()
|
|
CHANNEL_MIX_LERP_R = auto()
|
|
CHANNEL_MIX_KEY = auto()
|
|
CHANNEL_MIX_RECEPTANCE = auto()
|
|
CHANNEL_MIX_VALUE = auto()
|
|
ATTN_Q_A = auto()
|
|
ATTN_Q_B = auto()
|
|
ATTN_KV_A_MQA = auto()
|
|
ATTN_KV_B = auto()
|
|
ATTN_Q_A_NORM = auto()
|
|
ATTN_KV_A_NORM = auto()
|
|
FFN_SUB_NORM = auto()
|
|
ATTN_SUB_NORM = auto()
|
|
DEC_ATTN_NORM = auto()
|
|
DEC_ATTN_Q = auto()
|
|
DEC_ATTN_K = auto()
|
|
DEC_ATTN_V = auto()
|
|
DEC_ATTN_OUT = auto()
|
|
DEC_ATTN_REL_B = auto()
|
|
DEC_CROSS_ATTN_NORM = auto()
|
|
DEC_CROSS_ATTN_Q = auto()
|
|
DEC_CROSS_ATTN_K = auto()
|
|
DEC_CROSS_ATTN_V = auto()
|
|
DEC_CROSS_ATTN_OUT = auto()
|
|
DEC_CROSS_ATTN_REL_B = auto()
|
|
DEC_FFN_NORM = auto()
|
|
DEC_FFN_GATE = auto()
|
|
DEC_FFN_DOWN = auto()
|
|
DEC_FFN_UP = auto()
|
|
DEC_OUTPUT_NORM = auto()
|
|
ENC_ATTN_NORM = auto()
|
|
ENC_ATTN_Q = auto()
|
|
ENC_ATTN_K = auto()
|
|
ENC_ATTN_V = auto()
|
|
ENC_ATTN_OUT = auto()
|
|
ENC_ATTN_REL_B = auto()
|
|
ENC_FFN_NORM = auto()
|
|
ENC_FFN_GATE = auto()
|
|
ENC_FFN_DOWN = auto()
|
|
ENC_FFN_UP = auto()
|
|
ENC_OUTPUT_NORM = auto()
|
|
|
|
|
|
MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
|
MODEL_ARCH.LLAMA: "llama",
|
|
MODEL_ARCH.FALCON: "falcon",
|
|
MODEL_ARCH.BAICHUAN: "baichuan",
|
|
MODEL_ARCH.GROK: "grok",
|
|
MODEL_ARCH.GPT2: "gpt2",
|
|
MODEL_ARCH.GPTJ: "gptj",
|
|
MODEL_ARCH.GPTNEOX: "gptneox",
|
|
MODEL_ARCH.MPT: "mpt",
|
|
MODEL_ARCH.STARCODER: "starcoder",
|
|
MODEL_ARCH.REFACT: "refact",
|
|
MODEL_ARCH.BERT: "bert",
|
|
MODEL_ARCH.NOMIC_BERT: "nomic-bert",
|
|
MODEL_ARCH.JINA_BERT_V2: "jina-bert-v2",
|
|
MODEL_ARCH.BLOOM: "bloom",
|
|
MODEL_ARCH.STABLELM: "stablelm",
|
|
MODEL_ARCH.QWEN: "qwen",
|
|
MODEL_ARCH.QWEN2: "qwen2",
|
|
MODEL_ARCH.QWEN2MOE: "qwen2moe",
|
|
MODEL_ARCH.PHI2: "phi2",
|
|
MODEL_ARCH.PHI3: "phi3",
|
|
MODEL_ARCH.PLAMO: "plamo",
|
|
MODEL_ARCH.CODESHELL: "codeshell",
|
|
MODEL_ARCH.ORION: "orion",
|
|
MODEL_ARCH.INTERNLM2: "internlm2",
|
|
MODEL_ARCH.MINICPM: "minicpm",
|
|
MODEL_ARCH.GEMMA: "gemma",
|
|
MODEL_ARCH.GEMMA2: "gemma2",
|
|
MODEL_ARCH.STARCODER2: "starcoder2",
|
|
MODEL_ARCH.RWKV6: "rwkv6",
|
|
MODEL_ARCH.MAMBA: "mamba",
|
|
MODEL_ARCH.XVERSE: "xverse",
|
|
MODEL_ARCH.COMMAND_R: "command-r",
|
|
MODEL_ARCH.DBRX: "dbrx",
|
|
MODEL_ARCH.OLMO: "olmo",
|
|
MODEL_ARCH.OPENELM: "openelm",
|
|
MODEL_ARCH.ARCTIC: "arctic",
|
|
MODEL_ARCH.DEEPSEEK2: "deepseek2",
|
|
MODEL_ARCH.CHATGLM: "chatglm",
|
|
MODEL_ARCH.BITNET: "bitnet",
|
|
MODEL_ARCH.T5: "t5",
|
|
MODEL_ARCH.T5ENCODER: "t5encoder",
|
|
MODEL_ARCH.JAIS: "jais",
|
|
MODEL_ARCH.NEMOTRON: "nemotron",
|
|
MODEL_ARCH.EXAONE: "exaone",
|
|
}
|
|
|
|
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
|
MODEL_TENSOR.TOKEN_EMBD: "token_embd",
|
|
MODEL_TENSOR.TOKEN_EMBD_NORM: "token_embd_norm",
|
|
MODEL_TENSOR.TOKEN_TYPES: "token_types",
|
|
MODEL_TENSOR.POS_EMBD: "position_embd",
|
|
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
|
|
MODEL_TENSOR.OUTPUT: "output",
|
|
MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
|
|
MODEL_TENSOR.ROPE_FACTORS_LONG: "rope_factors_long",
|
|
MODEL_TENSOR.ROPE_FACTORS_SHORT: "rope_factors_short",
|
|
MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
|
|
MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
|
|
MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
|
|
MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
|
|
MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
|
|
MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
|
|
MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
|
|
MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
|
|
MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm",
|
|
MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm",
|
|
MODEL_TENSOR.ATTN_OUT_NORM: "blk.{bid}.attn_output_norm",
|
|
MODEL_TENSOR.ATTN_POST_NORM: "blk.{bid}.post_attention_norm",
|
|
MODEL_TENSOR.FFN_GATE_INP: "blk.{bid}.ffn_gate_inp",
|
|
MODEL_TENSOR.FFN_GATE_INP_SHEXP: "blk.{bid}.ffn_gate_inp_shexp",
|
|
MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
|
|
MODEL_TENSOR.FFN_PRE_NORM: "blk.{bid}.ffn_norm",
|
|
MODEL_TENSOR.FFN_POST_NORM: "blk.{bid}.post_ffw_norm",
|
|
MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
|
|
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
|
|
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
|
|
MODEL_TENSOR.FFN_GATE_SHEXP: "blk.{bid}.ffn_gate_shexp",
|
|
MODEL_TENSOR.FFN_DOWN_SHEXP: "blk.{bid}.ffn_down_shexp",
|
|
MODEL_TENSOR.FFN_UP_SHEXP: "blk.{bid}.ffn_up_shexp",
|
|
MODEL_TENSOR.FFN_ACT: "blk.{bid}.ffn",
|
|
MODEL_TENSOR.FFN_NORM_EXP: "blk.{bid}.ffn_norm_exps",
|
|
MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate_exps",
|
|
MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down_exps",
|
|
MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up_exps",
|
|
MODEL_TENSOR.LAYER_OUT_NORM: "blk.{bid}.layer_output_norm",
|
|
MODEL_TENSOR.SSM_IN: "blk.{bid}.ssm_in",
|
|
MODEL_TENSOR.SSM_CONV1D: "blk.{bid}.ssm_conv1d",
|
|
MODEL_TENSOR.SSM_X: "blk.{bid}.ssm_x",
|
|
MODEL_TENSOR.SSM_DT: "blk.{bid}.ssm_dt",
|
|
MODEL_TENSOR.SSM_A: "blk.{bid}.ssm_a",
|
|
MODEL_TENSOR.SSM_D: "blk.{bid}.ssm_d",
|
|
MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out",
|
|
MODEL_TENSOR.TIME_MIX_W1: "blk.{bid}.time_mix_w1",
|
|
MODEL_TENSOR.TIME_MIX_W2: "blk.{bid}.time_mix_w2",
|
|
MODEL_TENSOR.TIME_MIX_LERP_X: "blk.{bid}.time_mix_lerp_x",
|
|
MODEL_TENSOR.TIME_MIX_LERP_K: "blk.{bid}.time_mix_lerp_k",
|
|
MODEL_TENSOR.TIME_MIX_LERP_V: "blk.{bid}.time_mix_lerp_v",
|
|
MODEL_TENSOR.TIME_MIX_LERP_R: "blk.{bid}.time_mix_lerp_r",
|
|
MODEL_TENSOR.TIME_MIX_LERP_G: "blk.{bid}.time_mix_lerp_g",
|
|
MODEL_TENSOR.TIME_MIX_LERP_W: "blk.{bid}.time_mix_lerp_w",
|
|
MODEL_TENSOR.TIME_MIX_FIRST: "blk.{bid}.time_mix_first",
|
|
MODEL_TENSOR.TIME_MIX_DECAY: "blk.{bid}.time_mix_decay",
|
|
MODEL_TENSOR.TIME_MIX_DECAY_W1: "blk.{bid}.time_mix_decay_w1",
|
|
MODEL_TENSOR.TIME_MIX_DECAY_W2: "blk.{bid}.time_mix_decay_w2",
|
|
MODEL_TENSOR.TIME_MIX_KEY: "blk.{bid}.time_mix_key",
|
|
MODEL_TENSOR.TIME_MIX_VALUE: "blk.{bid}.time_mix_value",
|
|
MODEL_TENSOR.TIME_MIX_RECEPTANCE: "blk.{bid}.time_mix_receptance",
|
|
MODEL_TENSOR.TIME_MIX_GATE: "blk.{bid}.time_mix_gate",
|
|
MODEL_TENSOR.TIME_MIX_LN: "blk.{bid}.time_mix_ln",
|
|
MODEL_TENSOR.TIME_MIX_OUTPUT: "blk.{bid}.time_mix_output",
|
|
MODEL_TENSOR.CHANNEL_MIX_LERP_K: "blk.{bid}.channel_mix_lerp_k",
|
|
MODEL_TENSOR.CHANNEL_MIX_LERP_R: "blk.{bid}.channel_mix_lerp_r",
|
|
MODEL_TENSOR.CHANNEL_MIX_KEY: "blk.{bid}.channel_mix_key",
|
|
MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE: "blk.{bid}.channel_mix_receptance",
|
|
MODEL_TENSOR.CHANNEL_MIX_VALUE: "blk.{bid}.channel_mix_value",
|
|
MODEL_TENSOR.ATTN_Q_A: "blk.{bid}.attn_q_a",
|
|
MODEL_TENSOR.ATTN_Q_B: "blk.{bid}.attn_q_b",
|
|
MODEL_TENSOR.ATTN_KV_A_MQA: "blk.{bid}.attn_kv_a_mqa",
|
|
MODEL_TENSOR.ATTN_KV_B: "blk.{bid}.attn_kv_b",
|
|
MODEL_TENSOR.ATTN_Q_A_NORM: "blk.{bid}.attn_q_a_norm",
|
|
MODEL_TENSOR.ATTN_KV_A_NORM: "blk.{bid}.attn_kv_a_norm",
|
|
MODEL_TENSOR.ATTN_SUB_NORM: "blk.{bid}.attn_sub_norm",
|
|
MODEL_TENSOR.FFN_SUB_NORM: "blk.{bid}.ffn_sub_norm",
|
|
MODEL_TENSOR.DEC_ATTN_NORM: "dec.blk.{bid}.attn_norm",
|
|
MODEL_TENSOR.DEC_ATTN_Q: "dec.blk.{bid}.attn_q",
|
|
MODEL_TENSOR.DEC_ATTN_K: "dec.blk.{bid}.attn_k",
|
|
MODEL_TENSOR.DEC_ATTN_V: "dec.blk.{bid}.attn_v",
|
|
MODEL_TENSOR.DEC_ATTN_OUT: "dec.blk.{bid}.attn_o",
|
|
MODEL_TENSOR.DEC_ATTN_REL_B: "dec.blk.{bid}.attn_rel_b",
|
|
MODEL_TENSOR.DEC_CROSS_ATTN_NORM: "dec.blk.{bid}.cross_attn_norm",
|
|
MODEL_TENSOR.DEC_CROSS_ATTN_Q: "dec.blk.{bid}.cross_attn_q",
|
|
MODEL_TENSOR.DEC_CROSS_ATTN_K: "dec.blk.{bid}.cross_attn_k",
|
|
MODEL_TENSOR.DEC_CROSS_ATTN_V: "dec.blk.{bid}.cross_attn_v",
|
|
MODEL_TENSOR.DEC_CROSS_ATTN_OUT: "dec.blk.{bid}.cross_attn_o",
|
|
MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: "dec.blk.{bid}.cross_attn_rel_b",
|
|
MODEL_TENSOR.DEC_FFN_NORM: "dec.blk.{bid}.ffn_norm",
|
|
MODEL_TENSOR.DEC_FFN_GATE: "dec.blk.{bid}.ffn_gate",
|
|
MODEL_TENSOR.DEC_FFN_DOWN: "dec.blk.{bid}.ffn_down",
|
|
MODEL_TENSOR.DEC_FFN_UP: "dec.blk.{bid}.ffn_up",
|
|
MODEL_TENSOR.DEC_OUTPUT_NORM: "dec.output_norm",
|
|
MODEL_TENSOR.ENC_ATTN_NORM: "enc.blk.{bid}.attn_norm",
|
|
MODEL_TENSOR.ENC_ATTN_Q: "enc.blk.{bid}.attn_q",
|
|
MODEL_TENSOR.ENC_ATTN_K: "enc.blk.{bid}.attn_k",
|
|
MODEL_TENSOR.ENC_ATTN_V: "enc.blk.{bid}.attn_v",
|
|
MODEL_TENSOR.ENC_ATTN_OUT: "enc.blk.{bid}.attn_o",
|
|
MODEL_TENSOR.ENC_ATTN_REL_B: "enc.blk.{bid}.attn_rel_b",
|
|
MODEL_TENSOR.ENC_FFN_NORM: "enc.blk.{bid}.ffn_norm",
|
|
MODEL_TENSOR.ENC_FFN_GATE: "enc.blk.{bid}.ffn_gate",
|
|
MODEL_TENSOR.ENC_FFN_DOWN: "enc.blk.{bid}.ffn_down",
|
|
MODEL_TENSOR.ENC_FFN_UP: "enc.blk.{bid}.ffn_up",
|
|
MODEL_TENSOR.ENC_OUTPUT_NORM: "enc.output_norm",
|
|
}
|
|
|
|
MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|
MODEL_ARCH.LLAMA: [
|
|
MODEL_TENSOR.TOKEN_EMBD,
|
|
MODEL_TENSOR.OUTPUT_NORM,
|
|
MODEL_TENSOR.OUTPUT,
|
|
MODEL_TENSOR.ROPE_FREQS,
|
|
MODEL_TENSOR.ATTN_NORM,
|
|
MODEL_TENSOR.ATTN_Q,
|
|
MODEL_TENSOR.ATTN_K,
|
|
MODEL_TENSOR.ATTN_V,
|
|
MODEL_TENSOR.ATTN_OUT,
|
|
MODEL_TENSOR.ATTN_ROT_EMBD,
|
|
MODEL_TENSOR.FFN_GATE_INP,
|
|
MODEL_TENSOR.FFN_NORM,
|
|
MODEL_TENSOR.FFN_GATE,
|
|
MODEL_TENSOR.FFN_DOWN,
|
|
MODEL_TENSOR.FFN_UP,
|
|
MODEL_TENSOR.FFN_GATE_EXP,
|
|
MODEL_TENSOR.FFN_DOWN_EXP,
|
|
MODEL_TENSOR.FFN_UP_EXP,
|
|
],
|
|
MODEL_ARCH.GROK: [
|
|
MODEL_TENSOR.TOKEN_EMBD,
|
|
MODEL_TENSOR.OUTPUT_NORM,
|
|
MODEL_TENSOR.OUTPUT,
|
|
MODEL_TENSOR.ROPE_FREQS,
|
|
MODEL_TENSOR.ATTN_NORM,
|
|
MODEL_TENSOR.ATTN_Q,
|
|
MODEL_TENSOR.ATTN_K,
|
|
MODEL_TENSOR.ATTN_V,
|
|
MODEL_TENSOR.ATTN_OUT,
|
|
MODEL_TENSOR.ATTN_ROT_EMBD,
|
|
MODEL_TENSOR.ATTN_OUT_NORM,
|
|
MODEL_TENSOR.FFN_GATE_INP,
|
|
MODEL_TENSOR.FFN_NORM,
|
|
MODEL_TENSOR.FFN_GATE,
|
|
MODEL_TENSOR.FFN_DOWN,
|
|
MODEL_TENSOR.FFN_UP,
|
|
MODEL_TENSOR.FFN_GATE_EXP,
|
|
MODEL_TENSOR.FFN_DOWN_EXP,
|
|
MODEL_TENSOR.FFN_UP_EXP,
|
|
MODEL_TENSOR.LAYER_OUT_NORM,
|
|
],
|
|
MODEL_ARCH.GPTNEOX: [
|
|
MODEL_TENSOR.TOKEN_EMBD,
|
|
MODEL_TENSOR.OUTPUT_NORM,
|
|
MODEL_TENSOR.OUTPUT,
|
|
MODEL_TENSOR.ATTN_NORM,
|
|
MODEL_TENSOR.ATTN_QKV,
|
|
MODEL_TENSOR.ATTN_OUT,
|
|
MODEL_TENSOR.FFN_NORM,
|
|
MODEL_TENSOR.FFN_DOWN,
|
|
MODEL_TENSOR.FFN_UP,
|
|
],
|
|
MODEL_ARCH.FALCON: [
|
|
MODEL_TENSOR.TOKEN_EMBD,
|
|
MODEL_TENSOR.OUTPUT_NORM,
|
|
MODEL_TENSOR.OUTPUT,
|
|
MODEL_TENSOR.ATTN_NORM,
|
|
MODEL_TENSOR.ATTN_NORM_2,
|
|
MODEL_TENSOR.ATTN_QKV,
|
|
MODEL_TENSOR.ATTN_OUT,
|
|
MODEL_TENSOR.FFN_DOWN,
|
|
MODEL_TENSOR.FFN_UP,
|
|
],
|
|
MODEL_ARCH.BAICHUAN: [
|
|
MODEL_TENSOR.TOKEN_EMBD,
|
|
MODEL_TENSOR.OUTPUT_NORM,
|
|
MODEL_TENSOR.OUTPUT,
|
|
MODEL_TENSOR.ROPE_FREQS,
|
|
MODEL_TENSOR.ATTN_NORM,
|
|
MODEL_TENSOR.ATTN_Q,
|
|
MODEL_TENSOR.ATTN_K,
|
|
MODEL_TENSOR.ATTN_V,
|
|
MODEL_TENSOR.ATTN_OUT,
|
|
MODEL_TENSOR.ATTN_ROT_EMBD,
|
|
MODEL_TENSOR.FFN_NORM,
|
|
MODEL_TENSOR.FFN_GATE,
|
|
MODEL_TENSOR.FFN_DOWN,
|
|
MODEL_TENSOR.FFN_UP,
|
|
],
|
|
MODEL_ARCH.STARCODER: [
|
|
MODEL_TENSOR.TOKEN_EMBD,
|
|
MODEL_TENSOR.POS_EMBD,
|
|
MODEL_TENSOR.OUTPUT_NORM,
|
|
MODEL_TENSOR.OUTPUT,
|
|
MODEL_TENSOR.ATTN_NORM,
|
|
MODEL_TENSOR.ATTN_QKV,
|
|
MODEL_TENSOR.ATTN_OUT,
|
|
MODEL_TENSOR.FFN_NORM,
|
|
MODEL_TENSOR.FFN_DOWN,
|
|
MODEL_TENSOR.FFN_UP,
|
|
],
|
|
MODEL_ARCH.BERT: [
|
|
MODEL_TENSOR.TOKEN_EMBD,
|
|
MODEL_TENSOR.TOKEN_EMBD_NORM,
|
|
MODEL_TENSOR.TOKEN_TYPES,
|
|
MODEL_TENSOR.POS_EMBD,
|
|
MODEL_TENSOR.OUTPUT_NORM,
|
|
MODEL_TENSOR.ATTN_OUT_NORM,
|
|
MODEL_TENSOR.ATTN_Q,
|
|
MODEL_TENSOR.ATTN_K,
|
|
MODEL_TENSOR.ATTN_V,
|
|
MODEL_TENSOR.ATTN_OUT,
|
|
MODEL_TENSOR.FFN_DOWN,
|
|
MODEL_TENSOR.FFN_UP,
|
|
MODEL_TENSOR.LAYER_OUT_NORM,
|
|
],
|
|
MODEL_ARCH.NOMIC_BERT: [
|
|
MODEL_TENSOR.TOKEN_EMBD,
|
|
MODEL_TENSOR.TOKEN_EMBD_NORM,
|
|
MODEL_TENSOR.TOKEN_TYPES,
|
|
MODEL_TENSOR.POS_EMBD,
|
|
MODEL_TENSOR.OUTPUT_NORM,
|
|
MODEL_TENSOR.ATTN_OUT_NORM,
|
|
MODEL_TENSOR.ATTN_QKV,
|
|
MODEL_TENSOR.ATTN_OUT,
|
|
MODEL_TENSOR.FFN_GATE,
|
|
MODEL_TENSOR.FFN_DOWN,
|
|
MODEL_TENSOR.FFN_UP,
|
|
MODEL_TENSOR.LAYER_OUT_NORM,
|
|
],
|
|
MODEL_ARCH.JINA_BERT_V2: [
|
|
MODEL_TENSOR.TOKEN_EMBD,
|
|
MODEL_TENSOR.TOKEN_EMBD_NORM,
|
|
MODEL_TENSOR.TOKEN_TYPES,
|
|
MODEL_TENSOR.ATTN_NORM_2,
|
|
MODEL_TENSOR.ATTN_OUT_NORM,
|
|
MODEL_TENSOR.ATTN_Q,
|
|
MODEL_TENSOR.ATTN_Q_NORM,
|
|
MODEL_TENSOR.ATTN_K,
|
|
MODEL_TENSOR.ATTN_K_NORM,
|
|
MODEL_TENSOR.ATTN_V,
|
|
MODEL_TENSOR.ATTN_OUT,
|
|
MODEL_TENSOR.FFN_UP,
|
|
MODEL_TENSOR.FFN_GATE,
|
|
MODEL_TENSOR.FFN_DOWN,
|
|
MODEL_TENSOR.LAYER_OUT_NORM,
|
|
],
|
|
MODEL_ARCH.MPT: [
|
|
MODEL_TENSOR.TOKEN_EMBD,
|
|
MODEL_TENSOR.OUTPUT_NORM,
|
|
MODEL_TENSOR.OUTPUT,
|
|
MODEL_TENSOR.ATTN_NORM,
|
|
MODEL_TENSOR.ATTN_QKV,
|
|
MODEL_TENSOR.ATTN_OUT,
|
|
MODEL_TENSOR.FFN_NORM,
|
|
MODEL_TENSOR.FFN_DOWN,
|
|
MODEL_TENSOR.FFN_UP,
|
|
MODEL_TENSOR.FFN_ACT,
|
|
MODEL_TENSOR.ATTN_Q_NORM,
|
|
MODEL_TENSOR.ATTN_K_NORM,
|
|
MODEL_TENSOR.POS_EMBD,
|
|
],
|
|
MODEL_ARCH.GPTJ: [
|
|
MODEL_TENSOR.TOKEN_EMBD,
|
|
MODEL_TENSOR.OUTPUT_NORM,
|
|
MODEL_TENSOR.OUTPUT,
|
|
MODEL_TENSOR.ATTN_NORM,
|
|
MODEL_TENSOR.ATTN_Q,
|
|
MODEL_TENSOR.ATTN_K,
|
|
MODEL_TENSOR.ATTN_V,
|
|
MODEL_TENSOR.ATTN_OUT,
|
|
MODEL_TENSOR.FFN_DOWN,
|
|
MODEL_TENSOR.FFN_UP,
|
|
],
|
|
MODEL_ARCH.REFACT: [
|
|
MODEL_TENSOR.TOKEN_EMBD,
|
|
MODEL_TENSOR.OUTPUT_NORM,
|
|
MODEL_TENSOR.OUTPUT,
|
|
MODEL_TENSOR.ATTN_NORM,
|
|
MODEL_TENSOR.ATTN_Q,
|
|
MODEL_TENSOR.ATTN_K,
|
|
MODEL_TENSOR.ATTN_V,
|
|
MODEL_TENSOR.ATTN_OUT,
|
|
MODEL_TENSOR.FFN_NORM,
|
|
MODEL_TENSOR.FFN_GATE,
|
|
MODEL_TENSOR.FFN_DOWN,
|
|
MODEL_TENSOR.FFN_UP,
|
|
],
|
|
MODEL_ARCH.BLOOM: [
|
|
MODEL_TENSOR.TOKEN_EMBD,
|
|
MODEL_TENSOR.TOKEN_EMBD_NORM,
|
|
MODEL_TENSOR.OUTPUT_NORM,
|
|
MODEL_TENSOR.OUTPUT,
|
|
MODEL_TENSOR.ATTN_NORM,
|
|
MODEL_TENSOR.ATTN_QKV,
|
|
MODEL_TENSOR.ATTN_OUT,
|
|
MODEL_TENSOR.FFN_NORM,
|
|
MODEL_TENSOR.FFN_DOWN,
|
|
MODEL_TENSOR.FFN_UP,
|
|
],
|
|
MODEL_ARCH.STABLELM: [
|
|
MODEL_TENSOR.TOKEN_EMBD,
|
|
MODEL_TENSOR.OUTPUT_NORM,
|
|
MODEL_TENSOR.OUTPUT,
|
|
MODEL_TENSOR.ROPE_FREQS,
|
|
MODEL_TENSOR.ATTN_NORM,
|
|
MODEL_TENSOR.ATTN_Q,
|
|
MODEL_TENSOR.ATTN_K,
|
|
MODEL_TENSOR.ATTN_V,
|
|
MODEL_TENSOR.ATTN_OUT,
|
|
MODEL_TENSOR.FFN_NORM,
|
|
MODEL_TENSOR.FFN_GATE,
|
|
MODEL_TENSOR.FFN_DOWN,
|
|
MODEL_TENSOR.FFN_UP,
|
|
MODEL_TENSOR.ATTN_Q_NORM,
|
|
MODEL_TENSOR.ATTN_K_NORM,
|
|
],
|
|
MODEL_ARCH.QWEN: [
|
|
MODEL_TENSOR.TOKEN_EMBD,
|
|
MODEL_TENSOR.OUTPUT_NORM,
|
|
MODEL_TENSOR.OUTPUT,
|
|
MODEL_TENSOR.ROPE_FREQS,
|
|
MODEL_TENSOR.ATTN_NORM,
|
|
MODEL_TENSOR.ATTN_QKV,
|
|
MODEL_TENSOR.ATTN_OUT,
|
|
MODEL_TENSOR.ATTN_ROT_EMBD,
|
|
MODEL_TENSOR.FFN_NORM,
|
|
MODEL_TENSOR.FFN_GATE,
|
|
MODEL_TENSOR.FFN_DOWN,
|
|
MODEL_TENSOR.FFN_UP,
|
|
],
|
|
MODEL_ARCH.QWEN2: [
|
|
MODEL_TENSOR.TOKEN_EMBD,
|
|
MODEL_TENSOR.OUTPUT_NORM,
|
|
MODEL_TENSOR.OUTPUT,
|
|
MODEL_TENSOR.ATTN_NORM,
|
|
MODEL_TENSOR.ATTN_Q,
|
|
MODEL_TENSOR.ATTN_K,
|
|
MODEL_TENSOR.ATTN_V,
|
|
MODEL_TENSOR.ATTN_OUT,
|
|
MODEL_TENSOR.FFN_NORM,
|
|
MODEL_TENSOR.FFN_GATE,
|
|
MODEL_TENSOR.FFN_DOWN,
|
|
MODEL_TENSOR.FFN_UP,
|
|
],
|
|
MODEL_ARCH.QWEN2MOE: [
|
|
MODEL_TENSOR.TOKEN_EMBD,
|
|
MODEL_TENSOR.OUTPUT_NORM,
|
|
MODEL_TENSOR.OUTPUT,
|
|
MODEL_TENSOR.ATTN_NORM,
|
|
MODEL_TENSOR.ATTN_Q,
|
|
MODEL_TENSOR.ATTN_K,
|
|
MODEL_TENSOR.ATTN_V,
|
|
MODEL_TENSOR.ATTN_OUT,
|
|
MODEL_TENSOR.FFN_NORM,
|
|
MODEL_TENSOR.FFN_GATE_INP,
|
|
MODEL_TENSOR.FFN_GATE_EXP,
|
|
MODEL_TENSOR.FFN_DOWN_EXP,
|
|
MODEL_TENSOR.FFN_UP_EXP,
|
|
MODEL_TENSOR.FFN_GATE_INP_SHEXP,
|
|
MODEL_TENSOR.FFN_GATE_SHEXP,
|
|
MODEL_TENSOR.FFN_DOWN_SHEXP,
|
|
MODEL_TENSOR.FFN_UP_SHEXP,
|
|
],
|
|
MODEL_ARCH.PLAMO: [
|
|
MODEL_TENSOR.TOKEN_EMBD,
|
|
MODEL_TENSOR.OUTPUT_NORM,
|
|
MODEL_TENSOR.OUTPUT,
|
|
MODEL_TENSOR.ROPE_FREQS,
|
|
MODEL_TENSOR.ATTN_NORM,
|
|
MODEL_TENSOR.ATTN_Q,
|
|
MODEL_TENSOR.ATTN_K,
|
|
MODEL_TENSOR.ATTN_V,
|
|
MODEL_TENSOR.ATTN_OUT,
|
|
MODEL_TENSOR.ATTN_ROT_EMBD,
|
|
MODEL_TENSOR.FFN_GATE,
|
|
MODEL_TENSOR.FFN_DOWN,
|
|
MODEL_TENSOR.FFN_UP,
|
|
],
|
|
MODEL_ARCH.GPT2: [
|
|
MODEL_TENSOR.TOKEN_EMBD,
|
|
MODEL_TENSOR.POS_EMBD,
|
|
MODEL_TENSOR.OUTPUT_NORM,
|
|
MODEL_TENSOR.OUTPUT,
|
|
MODEL_TENSOR.ATTN_NORM,
|
|
MODEL_TENSOR.ATTN_QKV,
|
|
MODEL_TENSOR.ATTN_OUT,
|
|
MODEL_TENSOR.FFN_NORM,
|
|
MODEL_TENSOR.FFN_DOWN,
|
|
MODEL_TENSOR.FFN_UP,
|
|
],
|
|
MODEL_ARCH.PHI2: [
|
|
MODEL_TENSOR.TOKEN_EMBD,
|
|
MODEL_TENSOR.OUTPUT_NORM,
|
|
MODEL_TENSOR.OUTPUT,
|
|
MODEL_TENSOR.ATTN_NORM,
|
|
MODEL_TENSOR.ATTN_QKV,
|
|
MODEL_TENSOR.ATTN_Q,
|
|
MODEL_TENSOR.ATTN_K,
|
|
MODEL_TENSOR.ATTN_V,
|
|
MODEL_TENSOR.ATTN_OUT,
|
|
MODEL_TENSOR.FFN_NORM,
|
|
MODEL_TENSOR.FFN_DOWN,
|
|
MODEL_TENSOR.FFN_UP,
|
|
],
|
|
MODEL_ARCH.PHI3: [
|
|
MODEL_TENSOR.TOKEN_EMBD,
|
|
MODEL_TENSOR.OUTPUT_NORM,
|
|
MODEL_TENSOR.OUTPUT,
|
|
MODEL_TENSOR.ATTN_NORM,
|
|
MODEL_TENSOR.ATTN_QKV,
|
|
MODEL_TENSOR.ATTN_Q,
|
|
MODEL_TENSOR.ATTN_K,
|
|
MODEL_TENSOR.ATTN_V,
|
|
MODEL_TENSOR.ATTN_OUT,
|
|
MODEL_TENSOR.FFN_NORM,
|
|
MODEL_TENSOR.FFN_DOWN,
|
|
MODEL_TENSOR.FFN_UP,
|
|
],
|
|
MODEL_ARCH.CODESHELL: [
|
|
MODEL_TENSOR.TOKEN_EMBD,
|
|
MODEL_TENSOR.POS_EMBD,
|
|
MODEL_TENSOR.OUTPUT_NORM,
|
|
MODEL_TENSOR.OUTPUT,
|
|
MODEL_TENSOR.ATTN_NORM,
|
|
MODEL_TENSOR.ATTN_QKV,
|
|
MODEL_TENSOR.ATTN_OUT,
|
|
MODEL_TENSOR.ATTN_ROT_EMBD,
|
|
MODEL_TENSOR.FFN_NORM,
|
|
MODEL_TENSOR.FFN_DOWN,
|
|
MODEL_TENSOR.FFN_UP,
|
|
],
|
|
MODEL_ARCH.ORION: [
|
|
MODEL_TENSOR.TOKEN_EMBD,
|
|
MODEL_TENSOR.OUTPUT_NORM,
|
|
MODEL_TENSOR.OUTPUT,
|
|
MODEL_TENSOR.ROPE_FREQS,
|
|
MODEL_TENSOR.ATTN_NORM,
|
|
MODEL_TENSOR.ATTN_Q,
|
|
MODEL_TENSOR.ATTN_K,
|
|
MODEL_TENSOR.ATTN_V,
|
|
MODEL_TENSOR.ATTN_OUT,
|
|
MODEL_TENSOR.ATTN_ROT_EMBD,
|
|
MODEL_TENSOR.FFN_NORM,
|
|
MODEL_TENSOR.FFN_GATE,
|
|
MODEL_TENSOR.FFN_DOWN,
|
|
MODEL_TENSOR.FFN_UP,
|
|
],
|
|
MODEL_ARCH.INTERNLM2: [
|
|
MODEL_TENSOR.TOKEN_EMBD,
|
|
MODEL_TENSOR.OUTPUT_NORM,
|
|
MODEL_TENSOR.OUTPUT,
|
|
MODEL_TENSOR.ATTN_NORM,
|
|
MODEL_TENSOR.ATTN_Q,
|
|
MODEL_TENSOR.ATTN_K,
|
|
MODEL_TENSOR.ATTN_V,
|
|
MODEL_TENSOR.ATTN_OUT,
|
|
MODEL_TENSOR.ATTN_ROT_EMBD,
|
|
MODEL_TENSOR.FFN_NORM,
|
|
MODEL_TENSOR.FFN_GATE,
|
|
MODEL_TENSOR.FFN_DOWN,
|
|
MODEL_TENSOR.FFN_UP,
|
|
],
|
|
MODEL_ARCH.MINICPM: [
|
|
MODEL_TENSOR.TOKEN_EMBD,
|
|
MODEL_TENSOR.OUTPUT,
|
|
MODEL_TENSOR.OUTPUT_NORM,
|
|
MODEL_TENSOR.ROPE_FREQS,
|
|
MODEL_TENSOR.ATTN_NORM,
|
|
MODEL_TENSOR.ATTN_Q,
|
|
MODEL_TENSOR.ATTN_K,
|
|
MODEL_TENSOR.ATTN_V,
|
|
MODEL_TENSOR.ATTN_OUT,
|
|
MODEL_TENSOR.ATTN_ROT_EMBD,
|
|
MODEL_TENSOR.FFN_GATE_INP,
|
|
MODEL_TENSOR.FFN_NORM,
|
|
MODEL_TENSOR.FFN_GATE,
|
|
MODEL_TENSOR.FFN_DOWN,
|
|
MODEL_TENSOR.FFN_UP,
|
|
MODEL_TENSOR.FFN_GATE_EXP,
|
|
MODEL_TENSOR.FFN_DOWN_EXP,
|
|
MODEL_TENSOR.FFN_UP_EXP,
|
|
],
|
|
MODEL_ARCH.GEMMA: [
|
|
MODEL_TENSOR.TOKEN_EMBD,
|
|
MODEL_TENSOR.OUTPUT_NORM,
|
|
MODEL_TENSOR.ATTN_NORM,
|
|
MODEL_TENSOR.ATTN_Q,
|
|
MODEL_TENSOR.ATTN_K,
|
|
MODEL_TENSOR.ATTN_V,
|
|
MODEL_TENSOR.ATTN_OUT,
|
|
MODEL_TENSOR.FFN_GATE,
|
|
MODEL_TENSOR.FFN_DOWN,
|
|
MODEL_TENSOR.FFN_UP,
|
|
MODEL_TENSOR.FFN_NORM,
|
|
],
|
|
MODEL_ARCH.GEMMA2: [
|
|
MODEL_TENSOR.TOKEN_EMBD,
|
|
MODEL_TENSOR.OUTPUT_NORM,
|
|
MODEL_TENSOR.ATTN_Q,
|
|
MODEL_TENSOR.ATTN_K,
|
|
MODEL_TENSOR.ATTN_V,
|
|
MODEL_TENSOR.ATTN_OUT,
|
|
MODEL_TENSOR.FFN_GATE,
|
|
MODEL_TENSOR.FFN_DOWN,
|
|
MODEL_TENSOR.FFN_UP,
|
|
MODEL_TENSOR.ATTN_NORM,
|
|
MODEL_TENSOR.ATTN_POST_NORM,
|
|
MODEL_TENSOR.FFN_PRE_NORM,
|
|
MODEL_TENSOR.FFN_POST_NORM,
|
|
],
|
|
MODEL_ARCH.STARCODER2: [
|
|
MODEL_TENSOR.TOKEN_EMBD,
|
|
MODEL_TENSOR.OUTPUT_NORM,
|
|
MODEL_TENSOR.OUTPUT,
|
|
MODEL_TENSOR.ROPE_FREQS,
|
|
MODEL_TENSOR.ATTN_NORM,
|
|
MODEL_TENSOR.ATTN_Q,
|
|
MODEL_TENSOR.ATTN_K,
|
|
MODEL_TENSOR.ATTN_V,
|
|
MODEL_TENSOR.ATTN_OUT,
|
|
MODEL_TENSOR.ATTN_ROT_EMBD,
|
|
MODEL_TENSOR.FFN_NORM,
|
|
MODEL_TENSOR.FFN_DOWN,
|
|
MODEL_TENSOR.FFN_UP,
|
|
],
|
|
MODEL_ARCH.RWKV6: [
|
|
MODEL_TENSOR.TOKEN_EMBD,
|
|
MODEL_TENSOR.TOKEN_EMBD_NORM,
|
|
MODEL_TENSOR.OUTPUT_NORM,
|
|
MODEL_TENSOR.OUTPUT,
|
|
MODEL_TENSOR.ATTN_NORM,
|
|
MODEL_TENSOR.ATTN_NORM_2,
|
|
MODEL_TENSOR.TIME_MIX_W1,
|
|
MODEL_TENSOR.TIME_MIX_W2,
|
|
MODEL_TENSOR.TIME_MIX_LERP_X,
|
|
MODEL_TENSOR.TIME_MIX_LERP_K,
|
|
MODEL_TENSOR.TIME_MIX_LERP_V,
|
|
MODEL_TENSOR.TIME_MIX_LERP_R,
|
|
MODEL_TENSOR.TIME_MIX_LERP_G,
|
|
MODEL_TENSOR.TIME_MIX_LERP_W,
|
|
MODEL_TENSOR.TIME_MIX_FIRST,
|
|
MODEL_TENSOR.TIME_MIX_DECAY,
|
|
MODEL_TENSOR.TIME_MIX_DECAY_W1,
|
|
MODEL_TENSOR.TIME_MIX_DECAY_W2,
|
|
MODEL_TENSOR.TIME_MIX_KEY,
|
|
MODEL_TENSOR.TIME_MIX_VALUE,
|
|
MODEL_TENSOR.TIME_MIX_RECEPTANCE,
|
|
MODEL_TENSOR.TIME_MIX_GATE,
|
|
MODEL_TENSOR.TIME_MIX_LN,
|
|
MODEL_TENSOR.TIME_MIX_OUTPUT,
|
|
MODEL_TENSOR.CHANNEL_MIX_LERP_K,
|
|
MODEL_TENSOR.CHANNEL_MIX_LERP_R,
|
|
MODEL_TENSOR.CHANNEL_MIX_KEY,
|
|
MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE,
|
|
MODEL_TENSOR.CHANNEL_MIX_VALUE,
|
|
],
|
|
MODEL_ARCH.MAMBA: [
|
|
MODEL_TENSOR.TOKEN_EMBD,
|
|
MODEL_TENSOR.OUTPUT_NORM,
|
|
MODEL_TENSOR.OUTPUT,
|
|
MODEL_TENSOR.ATTN_NORM,
|
|
MODEL_TENSOR.SSM_IN,
|
|
MODEL_TENSOR.SSM_CONV1D,
|
|
MODEL_TENSOR.SSM_X,
|
|
MODEL_TENSOR.SSM_DT,
|
|
MODEL_TENSOR.SSM_A,
|
|
MODEL_TENSOR.SSM_D,
|
|
MODEL_TENSOR.SSM_OUT,
|
|
],
|
|
MODEL_ARCH.XVERSE: [
|
|
MODEL_TENSOR.TOKEN_EMBD,
|
|
MODEL_TENSOR.OUTPUT_NORM,
|
|
MODEL_TENSOR.OUTPUT,
|
|
MODEL_TENSOR.ROPE_FREQS,
|
|
MODEL_TENSOR.ATTN_NORM,
|
|
MODEL_TENSOR.ATTN_Q,
|
|
MODEL_TENSOR.ATTN_K,
|
|
MODEL_TENSOR.ATTN_V,
|
|
MODEL_TENSOR.ATTN_OUT,
|
|
MODEL_TENSOR.ATTN_ROT_EMBD,
|
|
MODEL_TENSOR.FFN_NORM,
|
|
MODEL_TENSOR.FFN_GATE,
|
|
MODEL_TENSOR.FFN_DOWN,
|
|
MODEL_TENSOR.FFN_UP,
|
|
],
|
|
MODEL_ARCH.COMMAND_R: [
|
|
MODEL_TENSOR.TOKEN_EMBD,
|
|
MODEL_TENSOR.OUTPUT_NORM,
|
|
MODEL_TENSOR.ATTN_NORM,
|
|
MODEL_TENSOR.ATTN_Q,
|
|
MODEL_TENSOR.ATTN_K,
|
|
MODEL_TENSOR.ATTN_V,
|
|
MODEL_TENSOR.ATTN_OUT,
|
|
MODEL_TENSOR.FFN_GATE,
|
|
MODEL_TENSOR.FFN_DOWN,
|
|
MODEL_TENSOR.FFN_UP,
|
|
MODEL_TENSOR.ATTN_K_NORM,
|
|
MODEL_TENSOR.ATTN_Q_NORM,
|
|
],
|
|
MODEL_ARCH.DBRX: [
|
|
MODEL_TENSOR.TOKEN_EMBD,
|
|
MODEL_TENSOR.OUTPUT_NORM,
|
|
MODEL_TENSOR.OUTPUT,
|
|
MODEL_TENSOR.ATTN_NORM,
|
|
MODEL_TENSOR.ATTN_QKV,
|
|
MODEL_TENSOR.ATTN_OUT,
|
|
MODEL_TENSOR.ATTN_OUT_NORM,
|
|
MODEL_TENSOR.FFN_GATE_INP,
|
|
MODEL_TENSOR.FFN_GATE_EXP,
|
|
MODEL_TENSOR.FFN_DOWN_EXP,
|
|
MODEL_TENSOR.FFN_UP_EXP,
|
|
],
|
|
MODEL_ARCH.OLMO: [
|
|
MODEL_TENSOR.TOKEN_EMBD,
|
|
MODEL_TENSOR.OUTPUT,
|
|
MODEL_TENSOR.ATTN_Q,
|
|
MODEL_TENSOR.ATTN_K,
|
|
MODEL_TENSOR.ATTN_V,
|
|
MODEL_TENSOR.ATTN_OUT,
|
|
MODEL_TENSOR.FFN_GATE,
|
|
MODEL_TENSOR.FFN_DOWN,
|
|
MODEL_TENSOR.FFN_UP,
|
|
],
|
|
MODEL_ARCH.OPENELM: [
|
|
MODEL_TENSOR.TOKEN_EMBD,
|
|
MODEL_TENSOR.OUTPUT_NORM,
|
|
MODEL_TENSOR.ATTN_NORM,
|
|
MODEL_TENSOR.ATTN_QKV,
|
|
MODEL_TENSOR.ATTN_Q_NORM,
|
|
MODEL_TENSOR.ATTN_K_NORM,
|
|
MODEL_TENSOR.ATTN_OUT,
|
|
MODEL_TENSOR.FFN_NORM,
|
|
MODEL_TENSOR.FFN_GATE,
|
|
MODEL_TENSOR.FFN_DOWN,
|
|
MODEL_TENSOR.FFN_UP,
|
|
],
|
|
MODEL_ARCH.ARCTIC: [
|
|
MODEL_TENSOR.TOKEN_EMBD,
|
|
MODEL_TENSOR.OUTPUT_NORM,
|
|
MODEL_TENSOR.OUTPUT,
|
|
MODEL_TENSOR.ROPE_FREQS,
|
|
MODEL_TENSOR.ATTN_NORM,
|
|
MODEL_TENSOR.ATTN_Q,
|
|
MODEL_TENSOR.ATTN_K,
|
|
MODEL_TENSOR.ATTN_V,
|
|
MODEL_TENSOR.ATTN_OUT,
|
|
MODEL_TENSOR.ATTN_ROT_EMBD,
|
|
MODEL_TENSOR.FFN_GATE_INP,
|
|
MODEL_TENSOR.FFN_NORM,
|
|
MODEL_TENSOR.FFN_GATE,
|
|
MODEL_TENSOR.FFN_DOWN,
|
|
MODEL_TENSOR.FFN_UP,
|
|
MODEL_TENSOR.FFN_NORM_EXP,
|
|
MODEL_TENSOR.FFN_GATE_EXP,
|
|
MODEL_TENSOR.FFN_DOWN_EXP,
|
|
MODEL_TENSOR.FFN_UP_EXP,
|
|
],
|
|
MODEL_ARCH.DEEPSEEK2: [
|
|
MODEL_TENSOR.TOKEN_EMBD,
|
|
MODEL_TENSOR.OUTPUT_NORM,
|
|
MODEL_TENSOR.OUTPUT,
|
|
MODEL_TENSOR.ROPE_FREQS,
|
|
MODEL_TENSOR.ATTN_NORM,
|
|
MODEL_TENSOR.ATTN_Q,
|
|
MODEL_TENSOR.ATTN_Q_A,
|
|
MODEL_TENSOR.ATTN_Q_B,
|
|
MODEL_TENSOR.ATTN_KV_A_MQA,
|
|
MODEL_TENSOR.ATTN_KV_B,
|
|
MODEL_TENSOR.ATTN_Q_A_NORM,
|
|
MODEL_TENSOR.ATTN_KV_A_NORM,
|
|
MODEL_TENSOR.ATTN_OUT,
|
|
MODEL_TENSOR.ATTN_ROT_EMBD,
|
|
MODEL_TENSOR.FFN_GATE_INP,
|
|
MODEL_TENSOR.FFN_NORM,
|
|
MODEL_TENSOR.FFN_GATE,
|
|
MODEL_TENSOR.FFN_DOWN,
|
|
MODEL_TENSOR.FFN_UP,
|
|
MODEL_TENSOR.FFN_GATE_EXP,
|
|
MODEL_TENSOR.FFN_DOWN_EXP,
|
|
MODEL_TENSOR.FFN_UP_EXP,
|
|
MODEL_TENSOR.FFN_GATE_SHEXP,
|
|
MODEL_TENSOR.FFN_DOWN_SHEXP,
|
|
MODEL_TENSOR.FFN_UP_SHEXP,
|
|
],
|
|
MODEL_ARCH.CHATGLM : [
|
|
MODEL_TENSOR.TOKEN_EMBD,
|
|
MODEL_TENSOR.ROPE_FREQS,
|
|
MODEL_TENSOR.OUTPUT_NORM,
|
|
MODEL_TENSOR.OUTPUT,
|
|
MODEL_TENSOR.ATTN_NORM,
|
|
MODEL_TENSOR.ATTN_QKV,
|
|
MODEL_TENSOR.ATTN_OUT,
|
|
MODEL_TENSOR.FFN_NORM,
|
|
MODEL_TENSOR.FFN_DOWN,
|
|
MODEL_TENSOR.FFN_UP,
|
|
],
|
|
MODEL_ARCH.BITNET: [
|
|
MODEL_TENSOR.ATTN_Q,
|
|
MODEL_TENSOR.ATTN_K,
|
|
MODEL_TENSOR.ATTN_V,
|
|
MODEL_TENSOR.TOKEN_EMBD,
|
|
MODEL_TENSOR.OUTPUT_NORM,
|
|
MODEL_TENSOR.ATTN_NORM,
|
|
MODEL_TENSOR.ATTN_OUT,
|
|
MODEL_TENSOR.FFN_NORM,
|
|
MODEL_TENSOR.FFN_GATE,
|
|
MODEL_TENSOR.FFN_DOWN,
|
|
MODEL_TENSOR.FFN_UP,
|
|
MODEL_TENSOR.ATTN_SUB_NORM,
|
|
MODEL_TENSOR.FFN_SUB_NORM,
|
|
],
|
|
MODEL_ARCH.T5: [
|
|
MODEL_TENSOR.TOKEN_EMBD,
|
|
MODEL_TENSOR.OUTPUT,
|
|
MODEL_TENSOR.DEC_ATTN_NORM,
|
|
MODEL_TENSOR.DEC_ATTN_Q,
|
|
MODEL_TENSOR.DEC_ATTN_K,
|
|
MODEL_TENSOR.DEC_ATTN_V,
|
|
MODEL_TENSOR.DEC_ATTN_OUT,
|
|
MODEL_TENSOR.DEC_ATTN_REL_B,
|
|
MODEL_TENSOR.DEC_CROSS_ATTN_NORM,
|
|
MODEL_TENSOR.DEC_CROSS_ATTN_Q,
|
|
MODEL_TENSOR.DEC_CROSS_ATTN_K,
|
|
MODEL_TENSOR.DEC_CROSS_ATTN_V,
|
|
MODEL_TENSOR.DEC_CROSS_ATTN_OUT,
|
|
MODEL_TENSOR.DEC_CROSS_ATTN_REL_B,
|
|
MODEL_TENSOR.DEC_FFN_NORM,
|
|
MODEL_TENSOR.DEC_FFN_GATE,
|
|
MODEL_TENSOR.DEC_FFN_DOWN,
|
|
MODEL_TENSOR.DEC_FFN_UP,
|
|
MODEL_TENSOR.DEC_OUTPUT_NORM,
|
|
MODEL_TENSOR.ENC_ATTN_NORM,
|
|
MODEL_TENSOR.ENC_ATTN_Q,
|
|
MODEL_TENSOR.ENC_ATTN_K,
|
|
MODEL_TENSOR.ENC_ATTN_V,
|
|
MODEL_TENSOR.ENC_ATTN_OUT,
|
|
MODEL_TENSOR.ENC_ATTN_REL_B,
|
|
MODEL_TENSOR.ENC_FFN_NORM,
|
|
MODEL_TENSOR.ENC_FFN_GATE,
|
|
MODEL_TENSOR.ENC_FFN_DOWN,
|
|
MODEL_TENSOR.ENC_FFN_UP,
|
|
MODEL_TENSOR.ENC_OUTPUT_NORM,
|
|
],
|
|
MODEL_ARCH.T5ENCODER: [
|
|
MODEL_TENSOR.TOKEN_EMBD,
|
|
MODEL_TENSOR.OUTPUT,
|
|
MODEL_TENSOR.ENC_ATTN_NORM,
|
|
MODEL_TENSOR.ENC_ATTN_Q,
|
|
MODEL_TENSOR.ENC_ATTN_K,
|
|
MODEL_TENSOR.ENC_ATTN_V,
|
|
MODEL_TENSOR.ENC_ATTN_OUT,
|
|
MODEL_TENSOR.ENC_ATTN_REL_B,
|
|
MODEL_TENSOR.ENC_FFN_NORM,
|
|
MODEL_TENSOR.ENC_FFN_GATE,
|
|
MODEL_TENSOR.ENC_FFN_DOWN,
|
|
MODEL_TENSOR.ENC_FFN_UP,
|
|
MODEL_TENSOR.ENC_OUTPUT_NORM,
|
|
],
|
|
MODEL_ARCH.JAIS: [
|
|
MODEL_TENSOR.TOKEN_EMBD,
|
|
MODEL_TENSOR.OUTPUT_NORM,
|
|
MODEL_TENSOR.OUTPUT,
|
|
MODEL_TENSOR.ATTN_NORM,
|
|
MODEL_TENSOR.ATTN_QKV,
|
|
MODEL_TENSOR.ATTN_OUT,
|
|
MODEL_TENSOR.FFN_NORM,
|
|
MODEL_TENSOR.FFN_DOWN,
|
|
MODEL_TENSOR.FFN_GATE,
|
|
MODEL_TENSOR.FFN_UP,
|
|
],
|
|
MODEL_ARCH.NEMOTRON: [
|
|
MODEL_TENSOR.TOKEN_EMBD,
|
|
MODEL_TENSOR.OUTPUT_NORM,
|
|
MODEL_TENSOR.OUTPUT,
|
|
MODEL_TENSOR.ROPE_FREQS,
|
|
MODEL_TENSOR.ATTN_NORM,
|
|
MODEL_TENSOR.ATTN_Q,
|
|
MODEL_TENSOR.ATTN_K,
|
|
MODEL_TENSOR.ATTN_V,
|
|
MODEL_TENSOR.ATTN_OUT,
|
|
MODEL_TENSOR.ATTN_ROT_EMBD,
|
|
MODEL_TENSOR.FFN_NORM,
|
|
MODEL_TENSOR.FFN_DOWN,
|
|
MODEL_TENSOR.FFN_UP,
|
|
],
|
|
MODEL_ARCH.EXAONE: [
|
|
MODEL_TENSOR.TOKEN_EMBD,
|
|
MODEL_TENSOR.OUTPUT_NORM,
|
|
MODEL_TENSOR.OUTPUT,
|
|
MODEL_TENSOR.ROPE_FREQS,
|
|
MODEL_TENSOR.ATTN_NORM,
|
|
MODEL_TENSOR.ATTN_Q,
|
|
MODEL_TENSOR.ATTN_K,
|
|
MODEL_TENSOR.ATTN_V,
|
|
MODEL_TENSOR.ATTN_OUT,
|
|
MODEL_TENSOR.ATTN_ROT_EMBD,
|
|
MODEL_TENSOR.FFN_NORM,
|
|
MODEL_TENSOR.FFN_GATE,
|
|
MODEL_TENSOR.FFN_DOWN,
|
|
MODEL_TENSOR.FFN_UP,
|
|
],
|
|
# TODO
|
|
}
|
|
|
|
# tensors that will not be serialized
|
|
MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|
MODEL_ARCH.LLAMA: [
|
|
MODEL_TENSOR.ROPE_FREQS,
|
|
MODEL_TENSOR.ATTN_ROT_EMBD,
|
|
],
|
|
MODEL_ARCH.BAICHUAN: [
|
|
MODEL_TENSOR.ROPE_FREQS,
|
|
MODEL_TENSOR.ATTN_ROT_EMBD,
|
|
],
|
|
MODEL_ARCH.QWEN: [
|
|
MODEL_TENSOR.ROPE_FREQS,
|
|
MODEL_TENSOR.ATTN_ROT_EMBD,
|
|
],
|
|
MODEL_ARCH.CODESHELL: [
|
|
MODEL_TENSOR.ROPE_FREQS,
|
|
MODEL_TENSOR.ATTN_ROT_EMBD,
|
|
],
|
|
MODEL_ARCH.ORION: [
|
|
MODEL_TENSOR.ROPE_FREQS,
|
|
MODEL_TENSOR.ATTN_ROT_EMBD,
|
|
],
|
|
MODEL_ARCH.STARCODER2: [
|
|
MODEL_TENSOR.ROPE_FREQS,
|
|
MODEL_TENSOR.ATTN_ROT_EMBD,
|
|
],
|
|
MODEL_ARCH.XVERSE: [
|
|
MODEL_TENSOR.ROPE_FREQS,
|
|
MODEL_TENSOR.ATTN_ROT_EMBD,
|
|
],
|
|
MODEL_ARCH.DEEPSEEK2: [
|
|
MODEL_TENSOR.ROPE_FREQS,
|
|
MODEL_TENSOR.ATTN_ROT_EMBD,
|
|
],
|
|
MODEL_ARCH.CHATGLM: [
|
|
MODEL_TENSOR.ROPE_FREQS,
|
|
],
|
|
MODEL_ARCH.NEMOTRON: [
|
|
MODEL_TENSOR.ROPE_FREQS,
|
|
MODEL_TENSOR.ATTN_ROT_EMBD,
|
|
],
|
|
}
|
|
|
|
#
|
|
# types
|
|
#
|
|
|
|
|
|
class TokenType(IntEnum):
|
|
NORMAL = 1
|
|
UNKNOWN = 2
|
|
CONTROL = 3
|
|
USER_DEFINED = 4
|
|
UNUSED = 5
|
|
BYTE = 6
|
|
|
|
|
|
class RopeScalingType(Enum):
|
|
NONE = 'none'
|
|
LINEAR = 'linear'
|
|
YARN = 'yarn'
|
|
|
|
|
|
class PoolingType(IntEnum):
|
|
NONE = 0
|
|
MEAN = 1
|
|
CLS = 2
|
|
|
|
|
|
class GGMLQuantizationType(IntEnum):
|
|
F32 = 0
|
|
F16 = 1
|
|
Q4_0 = 2
|
|
Q4_1 = 3
|
|
Q5_0 = 6
|
|
Q5_1 = 7
|
|
Q8_0 = 8
|
|
Q8_1 = 9
|
|
Q2_K = 10
|
|
Q3_K = 11
|
|
Q4_K = 12
|
|
Q5_K = 13
|
|
Q6_K = 14
|
|
Q8_K = 15
|
|
IQ2_XXS = 16
|
|
IQ2_XS = 17
|
|
IQ3_XXS = 18
|
|
IQ1_S = 19
|
|
IQ4_NL = 20
|
|
IQ3_S = 21
|
|
IQ2_S = 22
|
|
IQ4_XS = 23
|
|
I8 = 24
|
|
I16 = 25
|
|
I32 = 26
|
|
I64 = 27
|
|
F64 = 28
|
|
IQ1_M = 29
|
|
BF16 = 30
|
|
Q4_0_4_4 = 31
|
|
Q4_0_4_8 = 32
|
|
Q4_0_8_8 = 33
|
|
TQ1_0 = 34
|
|
TQ2_0 = 35
|
|
|
|
|
|
# TODO: add GGMLFileType from ggml_ftype in ggml.h
|
|
|
|
|
|
# from llama_ftype in llama.h
|
|
# ALL VALUES SHOULD BE THE SAME HERE AS THEY ARE OVER THERE.
|
|
class LlamaFileType(IntEnum):
|
|
ALL_F32 = 0
|
|
MOSTLY_F16 = 1 # except 1d tensors
|
|
MOSTLY_Q4_0 = 2 # except 1d tensors
|
|
MOSTLY_Q4_1 = 3 # except 1d tensors
|
|
# MOSTLY_Q4_1_SOME_F16 = 4 # tok_embeddings.weight and output.weight are F16
|
|
# MOSTLY_Q4_2 = 5 # support has been removed
|
|
# MOSTLY_Q4_3 = 6 # support has been removed
|
|
MOSTLY_Q8_0 = 7 # except 1d tensors
|
|
MOSTLY_Q5_0 = 8 # except 1d tensors
|
|
MOSTLY_Q5_1 = 9 # except 1d tensors
|
|
MOSTLY_Q2_K = 10 # except 1d tensors
|
|
MOSTLY_Q3_K_S = 11 # except 1d tensors
|
|
MOSTLY_Q3_K_M = 12 # except 1d tensors
|
|
MOSTLY_Q3_K_L = 13 # except 1d tensors
|
|
MOSTLY_Q4_K_S = 14 # except 1d tensors
|
|
MOSTLY_Q4_K_M = 15 # except 1d tensors
|
|
MOSTLY_Q5_K_S = 16 # except 1d tensors
|
|
MOSTLY_Q5_K_M = 17 # except 1d tensors
|
|
MOSTLY_Q6_K = 18 # except 1d tensors
|
|
MOSTLY_IQ2_XXS = 19 # except 1d tensors
|
|
MOSTLY_IQ2_XS = 20 # except 1d tensors
|
|
MOSTLY_Q2_K_S = 21 # except 1d tensors
|
|
MOSTLY_IQ3_XS = 22 # except 1d tensors
|
|
MOSTLY_IQ3_XXS = 23 # except 1d tensors
|
|
MOSTLY_IQ1_S = 24 # except 1d tensors
|
|
MOSTLY_IQ4_NL = 25 # except 1d tensors
|
|
MOSTLY_IQ3_S = 26 # except 1d tensors
|
|
MOSTLY_IQ3_M = 27 # except 1d tensors
|
|
MOSTLY_IQ2_S = 28 # except 1d tensors
|
|
MOSTLY_IQ2_M = 29 # except 1d tensors
|
|
MOSTLY_IQ4_XS = 30 # except 1d tensors
|
|
MOSTLY_IQ1_M = 31 # except 1d tensors
|
|
MOSTLY_BF16 = 32 # except 1d tensors
|
|
MOSTLY_Q4_0_4_4 = 33 # except 1d tensors
|
|
MOSTLY_Q4_0_4_8 = 34 # except 1d tensors
|
|
MOSTLY_Q4_0_8_8 = 35 # except 1d tensors
|
|
MOSTLY_TQ1_0 = 36 # except 1d tensors
|
|
MOSTLY_TQ2_0 = 37 # except 1d tensors
|
|
|
|
GUESSED = 1024 # not specified in the model file
|
|
|
|
|
|
class GGUFEndian(IntEnum):
|
|
LITTLE = 0
|
|
BIG = 1
|
|
|
|
|
|
class GGUFValueType(IntEnum):
|
|
UINT8 = 0
|
|
INT8 = 1
|
|
UINT16 = 2
|
|
INT16 = 3
|
|
UINT32 = 4
|
|
INT32 = 5
|
|
FLOAT32 = 6
|
|
BOOL = 7
|
|
STRING = 8
|
|
ARRAY = 9
|
|
UINT64 = 10
|
|
INT64 = 11
|
|
FLOAT64 = 12
|
|
|
|
@staticmethod
|
|
def get_type(val: Any) -> GGUFValueType:
|
|
if isinstance(val, (str, bytes, bytearray)):
|
|
return GGUFValueType.STRING
|
|
elif isinstance(val, list):
|
|
return GGUFValueType.ARRAY
|
|
elif isinstance(val, float):
|
|
return GGUFValueType.FLOAT32
|
|
elif isinstance(val, bool):
|
|
return GGUFValueType.BOOL
|
|
elif isinstance(val, int):
|
|
return GGUFValueType.INT32
|
|
# TODO: need help with 64-bit types in Python
|
|
else:
|
|
raise ValueError(f"Unknown type: {type(val)}")
|
|
|
|
|
|
# Items here are (block size, type size)
|
|
QK_K = 256
|
|
GGML_QUANT_SIZES: dict[GGMLQuantizationType, tuple[int, int]] = {
|
|
GGMLQuantizationType.F32: (1, 4),
|
|
GGMLQuantizationType.F16: (1, 2),
|
|
GGMLQuantizationType.Q4_0: (32, 2 + 16),
|
|
GGMLQuantizationType.Q4_1: (32, 2 + 2 + 16),
|
|
GGMLQuantizationType.Q5_0: (32, 2 + 4 + 16),
|
|
GGMLQuantizationType.Q5_1: (32, 2 + 2 + 4 + 16),
|
|
GGMLQuantizationType.Q8_0: (32, 2 + 32),
|
|
GGMLQuantizationType.Q8_1: (32, 4 + 4 + 32),
|
|
GGMLQuantizationType.Q2_K: (256, 2 + 2 + QK_K // 16 + QK_K // 4),
|
|
GGMLQuantizationType.Q3_K: (256, 2 + QK_K // 4 + QK_K // 8 + 12),
|
|
GGMLQuantizationType.Q4_K: (256, 2 + 2 + QK_K // 2 + 12),
|
|
GGMLQuantizationType.Q5_K: (256, 2 + 2 + QK_K // 2 + QK_K // 8 + 12),
|
|
GGMLQuantizationType.Q6_K: (256, 2 + QK_K // 2 + QK_K // 4 + QK_K // 16),
|
|
GGMLQuantizationType.Q8_K: (256, 4 + QK_K + QK_K // 8),
|
|
GGMLQuantizationType.IQ2_XXS: (256, 2 + QK_K // 4),
|
|
GGMLQuantizationType.IQ2_XS: (256, 2 + QK_K // 4 + QK_K // 32),
|
|
GGMLQuantizationType.IQ3_XXS: (256, 2 + QK_K // 4 + QK_K // 8),
|
|
GGMLQuantizationType.IQ1_S: (256, 2 + QK_K // 8 + QK_K // 16),
|
|
GGMLQuantizationType.IQ4_NL: (32, 2 + 16),
|
|
GGMLQuantizationType.IQ3_S: (256, 2 + QK_K // 4 + QK_K // 8 + QK_K // 32 + 4),
|
|
GGMLQuantizationType.IQ2_S: (256, 2 + QK_K // 4 + QK_K // 16),
|
|
GGMLQuantizationType.IQ4_XS: (256, 2 + 2 + QK_K // 2 + QK_K // 64),
|
|
GGMLQuantizationType.I8: (1, 1),
|
|
GGMLQuantizationType.I16: (1, 2),
|
|
GGMLQuantizationType.I32: (1, 4),
|
|
GGMLQuantizationType.I64: (1, 8),
|
|
GGMLQuantizationType.F64: (1, 8),
|
|
GGMLQuantizationType.IQ1_M: (256, QK_K // 8 + QK_K // 16 + QK_K // 32),
|
|
GGMLQuantizationType.BF16: (1, 2),
|
|
GGMLQuantizationType.Q4_0_4_4:(32, 2 + 16),
|
|
GGMLQuantizationType.Q4_0_4_8:(32, 2 + 16),
|
|
GGMLQuantizationType.Q4_0_8_8:(32, 2 + 16),
|
|
GGMLQuantizationType.TQ1_0: (256, 2 + 4 * 13),
|
|
GGMLQuantizationType.TQ2_0: (256, 2 + 64),
|
|
}
|
|
|
|
|
|
# Aliases for backward compatibility.
|
|
|
|
# general
|
|
KEY_GENERAL_ARCHITECTURE = Keys.General.ARCHITECTURE
|
|
KEY_GENERAL_QUANTIZATION_VERSION = Keys.General.QUANTIZATION_VERSION
|
|
KEY_GENERAL_ALIGNMENT = Keys.General.ALIGNMENT
|
|
KEY_GENERAL_NAME = Keys.General.NAME
|
|
KEY_GENERAL_AUTHOR = Keys.General.AUTHOR
|
|
KEY_GENERAL_URL = Keys.General.URL
|
|
KEY_GENERAL_DESCRIPTION = Keys.General.DESCRIPTION
|
|
KEY_GENERAL_LICENSE = Keys.General.LICENSE
|
|
KEY_GENERAL_SOURCE_URL = Keys.General.SOURCE_URL
|
|
KEY_GENERAL_FILE_TYPE = Keys.General.FILE_TYPE
|
|
|
|
# LLM
|
|
KEY_VOCAB_SIZE = Keys.LLM.VOCAB_SIZE
|
|
KEY_CONTEXT_LENGTH = Keys.LLM.CONTEXT_LENGTH
|
|
KEY_EMBEDDING_LENGTH = Keys.LLM.EMBEDDING_LENGTH
|
|
KEY_BLOCK_COUNT = Keys.LLM.BLOCK_COUNT
|
|
KEY_FEED_FORWARD_LENGTH = Keys.LLM.FEED_FORWARD_LENGTH
|
|
KEY_USE_PARALLEL_RESIDUAL = Keys.LLM.USE_PARALLEL_RESIDUAL
|
|
KEY_TENSOR_DATA_LAYOUT = Keys.LLM.TENSOR_DATA_LAYOUT
|
|
|
|
# attention
|
|
KEY_ATTENTION_HEAD_COUNT = Keys.Attention.HEAD_COUNT
|
|
KEY_ATTENTION_HEAD_COUNT_KV = Keys.Attention.HEAD_COUNT_KV
|
|
KEY_ATTENTION_MAX_ALIBI_BIAS = Keys.Attention.MAX_ALIBI_BIAS
|
|
KEY_ATTENTION_CLAMP_KQV = Keys.Attention.CLAMP_KQV
|
|
KEY_ATTENTION_LAYERNORM_EPS = Keys.Attention.LAYERNORM_EPS
|
|
KEY_ATTENTION_LAYERNORM_RMS_EPS = Keys.Attention.LAYERNORM_RMS_EPS
|
|
|
|
# RoPE
|
|
KEY_ROPE_DIMENSION_COUNT = Keys.Rope.DIMENSION_COUNT
|
|
KEY_ROPE_FREQ_BASE = Keys.Rope.FREQ_BASE
|
|
KEY_ROPE_SCALING_TYPE = Keys.Rope.SCALING_TYPE
|
|
KEY_ROPE_SCALING_FACTOR = Keys.Rope.SCALING_FACTOR
|
|
KEY_ROPE_SCALING_ORIG_CTX_LEN = Keys.Rope.SCALING_ORIG_CTX_LEN
|
|
KEY_ROPE_SCALING_FINETUNED = Keys.Rope.SCALING_FINETUNED
|
|
|
|
# SSM
|
|
KEY_SSM_CONV_KERNEL = Keys.SSM.CONV_KERNEL
|
|
KEY_SSM_INNER_SIZE = Keys.SSM.INNER_SIZE
|
|
KEY_SSM_STATE_SIZE = Keys.SSM.STATE_SIZE
|
|
KEY_SSM_TIME_STEP_RANK = Keys.SSM.TIME_STEP_RANK
|
|
KEY_SSM_DT_B_C_RMS = Keys.SSM.DT_B_C_RMS
|
|
|
|
# tokenization
|
|
KEY_TOKENIZER_MODEL = Keys.Tokenizer.MODEL
|
|
KEY_TOKENIZER_PRE = Keys.Tokenizer.PRE
|
|
KEY_TOKENIZER_LIST = Keys.Tokenizer.LIST
|
|
KEY_TOKENIZER_TOKEN_TYPE = Keys.Tokenizer.TOKEN_TYPE
|
|
KEY_TOKENIZER_SCORES = Keys.Tokenizer.SCORES
|
|
KEY_TOKENIZER_MERGES = Keys.Tokenizer.MERGES
|
|
KEY_TOKENIZER_BOS_ID = Keys.Tokenizer.BOS_ID
|
|
KEY_TOKENIZER_EOS_ID = Keys.Tokenizer.EOS_ID
|
|
KEY_TOKENIZER_UNK_ID = Keys.Tokenizer.UNK_ID
|
|
KEY_TOKENIZER_SEP_ID = Keys.Tokenizer.SEP_ID
|
|
KEY_TOKENIZER_PAD_ID = Keys.Tokenizer.PAD_ID
|
|
KEY_TOKENIZER_CLS_ID = Keys.Tokenizer.CLS_ID
|
|
KEY_TOKENIZER_MASK_ID = Keys.Tokenizer.MASK_ID
|
|
KEY_TOKENIZER_HF_JSON = Keys.Tokenizer.HF_JSON
|
|
KEY_TOKENIZER_RWKV = Keys.Tokenizer.RWKV
|
|
KEY_TOKENIZER_PRIFIX_ID = Keys.Tokenizer.PREFIX_ID
|
|
KEY_TOKENIZER_SUFFIX_ID = Keys.Tokenizer.SUFFIX_ID
|
|
KEY_TOKENIZER_MIDDLE_ID = Keys.Tokenizer.MIDDLE_ID
|
|
KEY_TOKENIZER_EOT_ID = Keys.Tokenizer.EOT_ID
|
|
KEY_TOKENIZER_EOM_ID = Keys.Tokenizer.EOM_ID
|