llama.cpp/examples/parallel/parallel.cpp
compilade 557410b8f0
llama : greatly reduce output buffer memory usage (#6122)
* llama : greatly reduce logits memory usage

* llama : more compact state saving and reloading

* llama : fix lctx.n_outputs not being set before building graph

* perplexity : adapt to the logits API changes

* perplexity : fix Winogrande, use correct logits for second choice start

The first logits used to evaluate the second choice were not from
the end of the common prefix; instead, they were the logits from the end
of the first choice. This has been corrected.

The previous implementation sometimes had outliers in the scores of
choices for some tasks, and the logic to skip choices words
in the log-likelihood evaluation probably was an attempt to reduce those,
but it was complex and didn't quite seem to be the right thing.

This is simpler now, and the outlier scores aren't there anymore.

* perplexity : normalize spaces and punctuation in Winogrande sentences

* llama : fix embedding conditions

* llama : fix llama_get_embeddings_ith when the resulting id is 0

* llama : fix wrong n_outputs in llama_set_inputs

A mismatch happened when using a smaller n_ubatch than n_batch and then using
llama_batch_get_one(). The decision of what n_outputs should be now almost
fully depends on how lctx.n_outputs is set in llama_decode_internal.
The conditions are simpler this way.

* llama : when saving the state, recalculate n_outputs

This ensures the correct number of outputs for the entire previous batch
is stored in the session file, even when n_ubatch is smaller than n_batch.

* llama : fix not-skipping outputs of non-causal models

* llama : fix running a batch with n_outputs == 0

It previously worked because lctx.inp_out_ids was not initialized,
so it pointed to some garbage address which was somehow still valid when I
ran my tests.

* llama : keep same graph topology even when n_outputs == 0

* ggml : saner ggml_can_repeat with empty tensors

*  ggml : future-proof ggml_is_empty by using GGML_MAX_DIMS - 1

* ggml : do not multi-thread ops returning empty tensors

* ggml : make ggml_is_empty public and work with views

* llama : use a vector for ctx->output_ids

* llama : rework reallocation logic for llama_output_reserve

Now comparing the actual size with the new total size of the output buffer
to allow more efficient enabling and disabling of the embeddings
and/or logits output in the future.

* ggml : skip empty tensors in all backends

* llama : fix llama_output_reserve nullptr deref when new_size is 0

* perplexity : make Winogrande work as it does on master

The problems with the Winogrande implementation will
need to be fixed in a separate PR to ease review.

* llama : clearer error messages for invalid logits or embeddings ids

* llama : assert all models that can have inp_out_ids

Since the graph topology is now constant, this presence check
can be done even when there are no outputs.

* llama : assert logits and embd buffers exist before writing to them

* llama : handle errors from llama_output_reserve at call sites

* perplexity : make hellaswag and multiple-choice outputs identical to master

Due to how the KV cache is updated, the logprobs for tokens in a batch
are very slightly affected by the other tokens present in the batch,
so to make hellaswag and multiple-choice return exactly the same results
as on master, the last token of each sequence needs to be evaluated
even though its output is not used at all.

This will probably be changed back in the future to make these benchmarks
a tiny bit faster.

* perplexity : fix division by zero when using less than 100 multiple-choice tasks

* llama : allow loading state saved with a different ctx size

When loading a session file, the context size is now only required to be
at least enough to load the KV cells contained in that session file,
instead of requiring to use exactly the same context size as when saving.

Doing this enables the use-case of extending or shrinking the context size
of a saved session.

This breaks existing session files because the meaning of kv_buf_size
is slightly changed (previously it was the size of the whole KV cache,
now it's only the size of the saved part of it). This allows for
finer-grained sanity checks when loading in an effort to keep kv_buf_size
useful even when the kv_size is changed.

* llama : minor

ggml-ci

* readme : update recent API changes, and warn about Vulkan

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-03-26 16:46:41 +02:00

428 lines
15 KiB
C++

// A basic application simulating a server with multiple clients.
// The clients submit requests to the server and they are processed in parallel.
#include "common.h"
#include "llama.h"
#include <cmath>
#include <cstdio>
#include <string>
#include <vector>
#include <ctime>
// trim whitespace from the beginning and end of a string
static std::string trim(const std::string & str) {
size_t start = 0;
size_t end = str.size();
while (start < end && isspace(str[start])) {
start += 1;
}
while (end > start && isspace(str[end - 1])) {
end -= 1;
}
return str.substr(start, end - start);
}
static std::string k_system =
R"(Transcript of a never ending dialog, where the User interacts with an Assistant.
The Assistant is helpful, kind, honest, good at writing, and never fails to answer the User's requests immediately and with precision.
User: Recommend a nice restaurant in the area.
Assistant: I recommend the restaurant "The Golden Duck". It is a 5 star restaurant with a great view of the city. The food is delicious and the service is excellent. The prices are reasonable and the portions are generous. The restaurant is located at 123 Main Street, New York, NY 10001. The phone number is (212) 555-1234. The hours are Monday through Friday from 11:00 am to 10:00 pm. The restaurant is closed on Saturdays and Sundays.
User: Who is Richard Feynman?
Assistant: Richard Feynman was an American physicist who is best known for his work in quantum mechanics and particle physics. He was awarded the Nobel Prize in Physics in 1965 for his contributions to the development of quantum electrodynamics. He was a popular lecturer and author, and he wrote several books, including "Surely You're Joking, Mr. Feynman!" and "What Do You Care What Other People Think?".
User:)";
static std::vector<std::string> k_prompts = {
"What is the meaning of life?",
"Tell me an interesting fact about llamas.",
"What is the best way to cook a steak?",
"Are you familiar with the Special Theory of Relativity and can you explain it to me?",
"Recommend some interesting books to read.",
"What is the best way to learn a new language?",
"How to get a job at Google?",
"If you could have any superpower, what would it be?",
"I want to learn how to play the piano.",
};
struct client {
~client() {
if (ctx_sampling) {
llama_sampling_free(ctx_sampling);
}
}
int32_t id = 0;
llama_seq_id seq_id = -1;
llama_token sampled;
int64_t t_start_prompt;
int64_t t_start_gen;
int32_t n_prompt = 0;
int32_t n_decoded = 0;
int32_t i_batch = -1;
std::string input;
std::string prompt;
std::string response;
struct llama_sampling_context * ctx_sampling = nullptr;
};
static void print_date_time() {
std::time_t current_time = std::time(nullptr);
std::tm* local_time = std::localtime(&current_time);
char buffer[80];
strftime(buffer, sizeof(buffer), "%Y-%m-%d %H:%M:%S", local_time);
printf("\n\033[35mrun parameters as at %s\033[0m\n", buffer);
}
// Define a split string function to ...
static std::vector<std::string> split_string(const std::string& input, char delimiter) {
std::vector<std::string> tokens;
std::istringstream stream(input);
std::string token;
while (std::getline(stream, token, delimiter)) {
tokens.push_back(token);
}
return tokens;
}
int main(int argc, char ** argv) {
srand(1234);
gpt_params params;
if (gpt_params_parse(argc, argv, params) == false) {
return 1;
}
// number of simultaneous "clients" to simulate
const int32_t n_clients = params.n_parallel;
// dedicate one sequence to the system prompt
params.n_parallel += 1;
// requests to simulate
const int32_t n_seq = params.n_sequences;
// insert new requests as soon as the previous one is done
const bool cont_batching = params.cont_batching;
const bool dump_kv_cache = params.dump_kv_cache;
#ifndef LOG_DISABLE_LOGS
log_set_target(log_filename_generator("parallel", "log"));
LOG_TEE("Log start\n");
log_dump_cmdline(argc, argv);
#endif // LOG_DISABLE_LOGS
// init llama.cpp
llama_backend_init();
llama_numa_init(params.numa);
llama_model * model = NULL;
llama_context * ctx = NULL;
// load the target model
std::tie(model, ctx) = llama_init_from_gpt_params(params);
// load the prompts from an external file if there are any
if (params.prompt.empty()) {
printf("\n\033[32mNo new questions so proceed with build-in defaults.\033[0m\n");
} else {
// Output each line of the input params.prompts vector and copy to k_prompts
int index = 0;
printf("\n\033[32mNow printing the external prompt file %s\033[0m\n\n", params.prompt_file.c_str());
std::vector<std::string> prompts = split_string(params.prompt, '\n');
for (const auto& prompt : prompts) {
k_prompts.resize(index + 1);
k_prompts[index] = prompt;
index++;
printf("%3d prompt: %s\n", index, prompt.c_str());
}
}
fprintf(stderr, "\n\n");
fflush(stderr);
const int n_ctx = llama_n_ctx(ctx);
std::vector<client> clients(n_clients);
for (size_t i = 0; i < clients.size(); ++i) {
auto & client = clients[i];
client.id = i;
client.ctx_sampling = llama_sampling_init(params.sparams);
}
std::vector<llama_token> tokens_system;
tokens_system = ::llama_tokenize(ctx, k_system, true);
const int32_t n_tokens_system = tokens_system.size();
llama_seq_id g_seq_id = 0;
// the max batch size is as large as the context to handle cases where we get very long input prompt from multiple
// users. regardless of the size, the main loop will chunk the batch into a maximum of params.n_batch tokens at a time
llama_batch batch = llama_batch_init(n_ctx, 0, 1);
int32_t n_total_prompt = 0;
int32_t n_total_gen = 0;
int32_t n_cache_miss = 0;
struct llama_kv_cache_view kvc_view = llama_kv_cache_view_init(ctx, n_clients);
const auto t_main_start = ggml_time_us();
LOG_TEE("%s: Simulating parallel requests from clients:\n", __func__);
LOG_TEE("%s: n_parallel = %d, n_sequences = %d, cont_batching = %d, system tokens = %d\n", __func__, n_clients, n_seq, cont_batching, n_tokens_system);
LOG_TEE("\n");
{
LOG_TEE("%s: Evaluating the system prompt ...\n", __func__);
for (int32_t i = 0; i < n_tokens_system; ++i) {
llama_batch_add(batch, tokens_system[i], i, { 0 }, false);
}
if (llama_decode(ctx, batch) != 0) {
LOG_TEE("%s: llama_decode() failed\n", __func__);
return 1;
}
// assign the system KV cache to all parallel sequences
for (int32_t i = 1; i <= n_clients; ++i) {
llama_kv_cache_seq_cp(ctx, 0, i, -1, -1);
}
LOG_TEE("\n");
}
LOG_TEE("Processing requests ...\n\n");
while (true) {
if (dump_kv_cache) {
llama_kv_cache_view_update(ctx, &kvc_view);
dump_kv_cache_view_seqs(kvc_view, 40);
}
llama_batch_clear(batch);
// decode any currently ongoing sequences
for (auto & client : clients) {
if (client.seq_id == -1) {
continue;
}
client.i_batch = batch.n_tokens;
llama_batch_add(batch, client.sampled, n_tokens_system + client.n_prompt + client.n_decoded, { client.id + 1 }, true);
client.n_decoded += 1;
}
if (batch.n_tokens == 0) {
// all sequences have ended - clear the entire KV cache
for (int i = 1; i <= n_clients; ++i) {
llama_kv_cache_seq_rm(ctx, i, -1, -1);
// but keep the system prompt
llama_kv_cache_seq_cp(ctx, 0, i, -1, -1);
}
LOG_TEE("%s: clearing the KV cache\n", __func__);
}
// insert new sequences for decoding
if (cont_batching || batch.n_tokens == 0) {
for (auto & client : clients) {
if (client.seq_id == -1 && g_seq_id < n_seq) {
client.seq_id = g_seq_id;
client.t_start_prompt = ggml_time_us();
client.t_start_gen = 0;
client.input = k_prompts[rand() % k_prompts.size()];
client.prompt = client.input + "\nAssistant:";
client.response = "";
llama_sampling_reset(client.ctx_sampling);
// do not prepend BOS because we have a system prompt!
std::vector<llama_token> tokens_prompt;
tokens_prompt = ::llama_tokenize(ctx, client.prompt, false);
for (size_t i = 0; i < tokens_prompt.size(); ++i) {
llama_batch_add(batch, tokens_prompt[i], i + n_tokens_system, { client.id + 1 }, false);
}
// extract the logits only for the last token
if (batch.n_tokens > 0) {
batch.logits[batch.n_tokens - 1] = true;
}
client.n_prompt = tokens_prompt.size();
client.n_decoded = 0;
client.i_batch = batch.n_tokens - 1;
LOG_TEE("\033[31mClient %3d, seq %4d, started decoding ...\033[0m\n", client.id, client.seq_id);
g_seq_id += 1;
// insert new requests one-by-one
//if (cont_batching) {
// break;
//}
}
}
}
if (batch.n_tokens == 0) {
break;
}
// process in chunks of params.n_batch
int32_t n_batch = params.n_batch;
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) {
// experiment: process in powers of 2
//if (i + n_batch > (int32_t) batch.n_tokens && n_batch > 32) {
// n_batch /= 2;
// i -= n_batch;
// continue;
//}
const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
llama_batch batch_view = {
n_tokens,
batch.token + i,
nullptr,
batch.pos + i,
batch.n_seq_id + i,
batch.seq_id + i,
batch.logits + i,
0, 0, 0, // unused
};
const int ret = llama_decode(ctx, batch_view);
if (ret != 0) {
if (n_batch == 1 || ret < 0) {
// if you get here, it means the KV cache is full - try increasing it via the context size
LOG_TEE("%s : failed to decode the batch, n_batch = %d, ret = %d\n", __func__, n_batch, ret);
return 1;
}
LOG("%s : failed to decode the batch, retrying with n_batch = %d\n", __func__, n_batch / 2);
n_cache_miss += 1;
// retry with half the batch size to try to find a free slot in the KV cache
n_batch /= 2;
i -= n_batch;
continue;
}
LOG("%s : decoded batch of %d tokens\n", __func__, n_tokens);
for (auto & client : clients) {
if (client.i_batch < (int) i || client.i_batch >= (int) (i + n_tokens)) {
continue;
}
//printf("client %d, seq %d, token %d, pos %d, batch %d\n",
// client.id, client.seq_id, client.sampled, client.n_decoded, client.i_batch);
const llama_token id = llama_sampling_sample(client.ctx_sampling, ctx, NULL, client.i_batch - i);
llama_sampling_accept(client.ctx_sampling, ctx, id, true);
if (client.n_decoded == 1) {
// start measuring generation time after the first token to make sure all concurrent clients
// have their prompt already processed
client.t_start_gen = ggml_time_us();
}
const std::string token_str = llama_token_to_piece(ctx, id);
client.response += token_str;
client.sampled = id;
//printf("client %d, seq %d, token %d, pos %d, batch %d: %s\n",
// client.id, client.seq_id, id, client.n_decoded, client.i_batch, token_str.c_str());
if (client.n_decoded > 2 &&
(id == llama_token_eos(model) ||
(params.n_predict > 0 && client.n_decoded + client.n_prompt >= params.n_predict) ||
client.response.find("User:") != std::string::npos ||
client.response.find('\n') != std::string::npos)) {
// basic reverse prompt
const size_t pos = client.response.find("User:");
if (pos != std::string::npos) {
client.response = client.response.substr(0, pos);
}
// delete only the generated part of the sequence, i.e. keep the system prompt in the cache
llama_kv_cache_seq_rm(ctx, client.id + 1, -1, -1);
llama_kv_cache_seq_cp(ctx, 0, client.id + 1, -1, -1);
const auto t_main_end = ggml_time_us();
LOG_TEE("\033[31mClient %3d, seq %3d/%3d, prompt %4d t, response %4d t, time %5.2f s, speed %5.2f t/s, cache miss %d \033[0m \nInput: %s\n\033[35mResponse: %s\033[0m\n\n",
client.id, client.seq_id, n_seq, client.n_prompt, client.n_decoded,
(t_main_end - client.t_start_prompt) / 1e6,
(double) (client.n_prompt + client.n_decoded) / (t_main_end - client.t_start_prompt) * 1e6,
n_cache_miss,
::trim(client.input).c_str(),
::trim(client.response).c_str());
n_total_prompt += client.n_prompt;
n_total_gen += client.n_decoded;
client.seq_id = -1;
}
client.i_batch = -1;
}
}
}
const auto t_main_end = ggml_time_us();
print_date_time();
LOG_TEE("\n%s: n_parallel = %d, n_sequences = %d, cont_batching = %d, system tokens = %d\n", __func__, n_clients, n_seq, cont_batching, n_tokens_system);
if (params.prompt_file.empty()) {
params.prompt_file = "used built-in defaults";
}
LOG_TEE("External prompt file: \033[32m%s\033[0m\n", params.prompt_file.c_str());
LOG_TEE("Model and path used: \033[32m%s\033[0m\n\n", params.model.c_str());
LOG_TEE("Total prompt tokens: %6d, speed: %5.2f t/s\n", n_total_prompt, (double) (n_total_prompt ) / (t_main_end - t_main_start) * 1e6);
LOG_TEE("Total gen tokens: %6d, speed: %5.2f t/s\n", n_total_gen, (double) (n_total_gen ) / (t_main_end - t_main_start) * 1e6);
LOG_TEE("Total speed (AVG): %6s speed: %5.2f t/s\n", "", (double) (n_total_prompt + n_total_gen) / (t_main_end - t_main_start) * 1e6);
LOG_TEE("Cache misses: %6d\n", n_cache_miss);
LOG_TEE("\n");
llama_print_timings(ctx);
llama_batch_free(batch);
llama_free(ctx);
llama_free_model(model);
llama_backend_free();
fprintf(stderr, "\n\n");
return 0;
}