llama.cpp/examples/export-lora/export-lora.cpp
Diego Devesa 7eee341bee
common : use common_ prefix for common library functions (#9805)
* common : use common_ prefix for common library functions

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2024-10-10 22:57:42 +02:00

422 lines
16 KiB
C++

#include "arg.h"
#include "common.h"
#include "ggml.h"
#include "ggml-alloc.h"
#include <map>
#include <vector>
#include <string>
#include <thread>
#include <fstream>
static bool g_verbose = false;
struct tensor_transformation {
struct ggml_tensor * in;
struct ggml_tensor * out;
bool is_copy;
};
static std::string get_kv_str(struct gguf_context * ctx_gguf, const std::string & key){
int id = gguf_find_key(ctx_gguf, key.c_str());
return id < 0 ? "" : std::string(gguf_get_val_str(ctx_gguf, id));
}
static float get_kv_f32(struct gguf_context * ctx_gguf, const std::string & key) {
int id = gguf_find_key(ctx_gguf, key.c_str());
return id < 0 ? 0.0f : gguf_get_val_f32(ctx_gguf, id);
}
static void zeros(std::ofstream & file, size_t n) {
char zero = 0;
for (size_t i = 0; i < n; ++i) {
file.write(&zero, 1);
}
}
static std::string ggml_ne_string(const ggml_tensor * t) {
std::string str;
for (int i = 0; i < GGML_MAX_DIMS; ++i) {
str += std::to_string(t->ne[i]);
if (i + 1 < GGML_MAX_DIMS) {
str += ", ";
}
}
return str;
}
static struct gguf_context * load_gguf(std::string & fname, struct ggml_context ** ctx_ggml) {
struct gguf_init_params params = {
/*.no_alloc = */ true,
/*.ctx = */ ctx_ggml,
};
struct gguf_context * ctx_gguf = gguf_init_from_file(fname.c_str(), params);
if (!ctx_gguf) {
throw std::runtime_error("failed to load input GGUF from " + fname);
}
return ctx_gguf;
}
struct file_input {
struct ggml_context * ctx_meta = nullptr;
struct gguf_context * ctx_gguf = nullptr;
std::ifstream f_in;
std::map<std::string, ggml_tensor *> tensors;
float alpha;
float scale;
file_input(std::string & fname, float scale): f_in(fname, std::ios::binary), scale(scale) {
if (!f_in.is_open()) {
throw std::runtime_error("failed to open input gguf from " + fname);
}
ctx_gguf = load_gguf(fname, &ctx_meta);
alpha = get_kv_f32(ctx_gguf, "adapter.lora.alpha");
printf("%s: loaded gguf from %s\n", __func__, fname.c_str());
for (ggml_tensor * cur = ggml_get_first_tensor(ctx_meta); cur; cur = ggml_get_next_tensor(ctx_meta, cur)) {
std::string name(cur->name);
tensors[name] = cur;
if (g_verbose) {
printf("%s: %s\n", __func__, cur->name);
}
}
}
ggml_tensor * get_tensor(std::string name) {
if (tensors.find(name) == tensors.end()) {
return nullptr;
}
return tensors[name];
}
void read_tensor_data(std::string name, std::vector<uint8_t> & buf) {
if (tensors.find(name) == tensors.end()) {
throw std::runtime_error("cannot find tensor with name: " + name);
}
auto len = ggml_nbytes(tensors[name]);
if (buf.size() < len) {
buf.resize(len);
}
auto i_tensor_in = gguf_find_tensor(ctx_gguf, name.c_str()); // idx of tensor in the input file
auto offset = gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, i_tensor_in);
f_in.seekg(offset);
f_in.read((char* )buf.data(), len);
}
~file_input() {
gguf_free(ctx_gguf);
ggml_free(ctx_meta);
}
};
struct lora_merge_ctx {
// input base model + adapters
file_input base_model;
std::vector<std::unique_ptr<file_input>> adapters;
// for computing merged tensor
int n_threads;
ggml_backend_t backend = nullptr;
ggml_gallocr_t allocr = nullptr;
std::vector<uint8_t> read_buf;
// output file
struct gguf_context * ctx_out;
struct ggml_context * ctx_out_ggml;
std::ofstream fout;
lora_merge_ctx(
std::string & base_fname,
std::vector<common_lora_adapter_info> & lora_files,
std::string & outfile,
int n_threads) : base_model(base_fname, 0), n_threads(n_threads), fout(outfile, std::ios::binary) {
fout.exceptions(std::ofstream::failbit); // fail fast on write errors
if (gguf_find_key(base_model.ctx_gguf, LLM_KV_SPLIT_COUNT) >= 0) {
throw std::runtime_error("split model is not yet supported");
}
for (auto & lora_inp : lora_files) {
auto fname = lora_inp.path;
auto scale = lora_inp.scale;
std::unique_ptr<file_input> adapter(new file_input(fname, scale));
check_metadata_lora(adapter.get());
adapters.push_back(std::move(adapter));
}
ctx_out = gguf_init_empty();
struct ggml_init_params params = {
/*.mem_size =*/ gguf_get_n_tensors(base_model.ctx_gguf)*ggml_tensor_overhead(),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
ctx_out_ggml = ggml_init(params);
backend = ggml_backend_cpu_init();
allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(backend));
}
void check_metadata_lora(file_input * adapter) {
auto general_type = get_kv_str(adapter->ctx_gguf, "general.type");
if (general_type != "adapter") {
throw std::runtime_error("expect general.type to be 'adapter', but got: " + general_type);
}
auto adapter_type = get_kv_str(adapter->ctx_gguf, "adapter.type");
if (adapter_type != "lora") {
throw std::runtime_error("expect adapter.type to be 'lora', but got: " + adapter_type);
}
auto general_arch_base = get_kv_str(base_model.ctx_gguf, "general.architecture");
auto general_arch_lora = get_kv_str(adapter->ctx_gguf, "general.architecture");
if (general_arch_base != general_arch_lora) {
throw std::runtime_error("model arch and LoRA arch mismatch");
}
}
ggml_type get_out_tensor_type(struct ggml_tensor * t) {
if (t->type == GGML_TYPE_F32) {
return GGML_TYPE_F32;
} else {
return GGML_TYPE_F16;
}
}
void run_merge() {
// prepare metadata
gguf_set_kv(ctx_out, base_model.ctx_gguf);
// output is forced to f16 for now
gguf_set_val_u32(ctx_out, "general.file_type", LLAMA_FTYPE_MOSTLY_F16);
// check if all lora adapters have the same tensors
// TODO: remove this when we can support merging subset of adapters. Ref: https://github.com/ggerganov/llama.cpp/pull/8607#discussion_r1686027777
static const char * err_no_subset_adapter = "Input adapters do not have the same list of tensors. This is not yet supported. Please merge the adapter one-by-one instead of merging all at once.";
if (adapters.size() > 1) {
for (size_t i = 1; i < adapters.size(); ++i) {
if (adapters[0]->tensors.size() != adapters[i]->tensors.size()) {
throw std::runtime_error(err_no_subset_adapter);
}
for (auto & it : adapters[i]->tensors) {
if (adapters[0]->get_tensor(it.first) == nullptr) {
throw std::runtime_error(err_no_subset_adapter);
}
}
}
}
// mapping base tensor to out tensor (same shape with base, but different type)
std::vector<tensor_transformation> trans;
for (auto & it : base_model.tensors) {
bool t_a = true;
bool t_b = true;
for (auto & adapter : adapters) {
t_a &= nullptr != adapter->get_tensor(it.first + ".lora_a");
t_b &= nullptr != adapter->get_tensor(it.first + ".lora_b");
}
auto base_tensor = it.second;
if (!t_a && !t_b) {
// only copy
struct ggml_tensor * cpy_tensor = ggml_dup_tensor(ctx_out_ggml, base_tensor);
ggml_set_name(cpy_tensor, base_tensor->name);
trans.push_back({
cpy_tensor,
cpy_tensor,
true,
});
gguf_add_tensor(ctx_out, cpy_tensor);
} else if (t_a && t_b) {
// need merging
struct ggml_tensor * out_tensor = ggml_new_tensor(
ctx_out_ggml, get_out_tensor_type(base_tensor), GGML_MAX_DIMS, base_tensor->ne);
ggml_set_name(out_tensor, base_tensor->name);
trans.push_back({
base_tensor,
out_tensor,
false,
});
gguf_add_tensor(ctx_out, out_tensor);
} else {
throw std::runtime_error("tensor " + it.first + " missing either lora_a or lora_b");
}
}
// placeholder for the meta data
{
size_t meta_size = gguf_get_meta_size(ctx_out);
zeros(fout, meta_size);
}
// process base model tensors
size_t n_merged = 0;
for (auto & it : trans) {
if (!it.is_copy) {
merge_tensor(it.in, it.out);
n_merged++;
} else {
copy_tensor(it.in);
}
}
// write output metadata
{
std::vector<uint8_t> data(gguf_get_meta_size(ctx_out));
gguf_get_meta_data(ctx_out, data.data());
fout.seekp(0);
fout.write((const char *)data.data(), data.size());
}
printf("%s : merged %ld tensors with lora adapters\n", __func__, n_merged);
printf("%s : wrote %ld tensors to output file\n", __func__, trans.size());
}
void copy_tensor(struct ggml_tensor * base) {
printf("%s : %s [%s]\n", __func__, base->name, ggml_ne_string(base).c_str());
size_t len = ggml_nbytes(base);
base_model.read_tensor_data(base->name, read_buf);
fout.write((char* )read_buf.data(), len);
zeros(fout, GGML_PAD(len, GGUF_DEFAULT_ALIGNMENT) - len);
}
void merge_tensor(struct ggml_tensor * base, struct ggml_tensor * out) {
std::string name_base(base->name);
std::string name_lora_a = name_base + ".lora_a";
std::string name_lora_b = name_base + ".lora_b";
printf("%s : %s [%s]\n", __func__, base->name, ggml_ne_string(base).c_str());
// context for input tensor
std::vector<struct ggml_tensor *> inp_a(adapters.size());
std::vector<struct ggml_tensor *> inp_b(adapters.size());
struct ggml_init_params params {
/*.mem_size =*/ ggml_tensor_overhead()*(2+adapters.size()*2),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
};
struct ggml_context * ctx = ggml_init(params);
// alloc tensors
struct ggml_tensor * inp_base = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, base->ne);
for (size_t i = 0; i < adapters.size(); ++i) {
auto t_a = adapters[i]->get_tensor(name_lora_a);
auto t_b = adapters[i]->get_tensor(name_lora_b);
// TODO: add support for quantized lora
if (ggml_is_quantized(t_a->type) || ggml_is_quantized(t_b->type)) {
throw std::runtime_error("quantized LoRA adapters is not supported, please retry with f16 or f32");
}
inp_a[i] = ggml_dup_tensor(ctx, t_a);
inp_b[i] = ggml_dup_tensor(ctx, t_b);
}
ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx, backend);
// load base tensor to backend buffer
base_model.read_tensor_data(name_base, read_buf);
if (base->type != GGML_TYPE_F32) {
// optionally dequantize it
printf("%s : + dequantize base tensor from %s to F32\n", __func__, ggml_type_name(base->type));
auto nels = ggml_nelements(inp_base);
const auto * qtype = ggml_get_type_traits(base->type);
std::vector<uint8_t> dequant_buf(nels * sizeof(float));
qtype->to_float(read_buf.data(), (float *)dequant_buf.data(), nels);
ggml_backend_tensor_set(inp_base, dequant_buf.data(), 0, dequant_buf.size());
} else {
ggml_backend_tensor_set(inp_base, read_buf.data(), 0, ggml_nbytes(inp_base));
}
// load lora tensors to backend buffer
for (size_t i = 0; i < adapters.size(); ++i) {
adapters[i]->read_tensor_data(name_lora_a, read_buf);
ggml_backend_tensor_set(inp_a[i], read_buf.data(), 0, ggml_nbytes(inp_a[i]));
adapters[i]->read_tensor_data(name_lora_b, read_buf);
ggml_backend_tensor_set(inp_b[i], read_buf.data(), 0, ggml_nbytes(inp_b[i]));
}
// build graph
struct ggml_cgraph * gf;
{
static size_t buf_size = ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead();
static std::vector<uint8_t> buf(buf_size);
struct ggml_init_params params0 = {
/*.mem_size =*/ buf_size,
/*.mem_buffer =*/ buf.data(),
/*.no_alloc =*/ true,
};
struct ggml_context * ctx0 = ggml_init(params0);
gf = ggml_new_graph(ctx0);
struct ggml_tensor * cur = inp_base;
for (size_t i = 0; i < adapters.size(); ++i) {
struct ggml_tensor * a_T = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_cast(ctx0, inp_a[i], GGML_TYPE_F32)));
struct ggml_tensor * delta = ggml_mul_mat(ctx0, a_T, ggml_cast(ctx0, inp_b[i], GGML_TYPE_F32));
// scale
const float alpha = adapters[i]->alpha;
const float rank = (float) inp_b[i]->ne[0];
const float scale = alpha ? adapters[i]->scale * alpha / rank : adapters[i]->scale;
delta = ggml_scale(ctx0, delta, scale);
cur = ggml_add(ctx0, delta, cur);
printf("%s : + merging from adapter[%ld] type=%s\n", __func__, i, ggml_type_name(inp_a[i]->type));
printf("%s : input_scale=%f calculated_scale=%f rank=%d\n", __func__, adapters[i]->scale, scale, (int) inp_b[i]->ne[0]);
}
cur = ggml_cast(ctx0, cur, out->type);
printf("%s : + output type is %s\n", __func__, ggml_type_name(out->type));
ggml_build_forward_expand(gf, cur);
ggml_free(ctx0);
}
// compute
{
ggml_gallocr_alloc_graph(allocr, gf);
ggml_backend_cpu_set_n_threads(backend, n_threads);
ggml_backend_graph_compute(backend, gf);
}
// write data to output file
{
auto * result = ggml_graph_node(gf, -1);
size_t len = ggml_nbytes(result);
if (read_buf.size() < len) {
read_buf.resize(len);
}
ggml_backend_tensor_get(result, read_buf.data(), 0, len);
fout.write((char* )read_buf.data(), len);
zeros(fout, GGML_PAD(len, GGUF_DEFAULT_ALIGNMENT) - len);
}
ggml_free(ctx);
ggml_backend_buffer_free(buffer);
}
~lora_merge_ctx() {
ggml_gallocr_free(allocr);
ggml_backend_free(backend);
gguf_free(ctx_out);
ggml_free(ctx_out_ggml);
}
};
static void print_usage(int, char ** argv) {
printf("\nexample usage:\n");
printf("\n %s -m base-model.gguf --lora lora-file.gguf -o merged-model-f16.gguf\n", argv[0]);
printf("\nNOTE: output model is F16\n");
printf("\n");
}
int main(int argc, char ** argv) {
common_params params;
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_EXPORT_LORA, print_usage)) {
return 1;
}
g_verbose = (params.verbosity > 1);
try {
lora_merge_ctx ctx(params.model, params.lora_adapters, params.lora_outfile, params.cpuparams.n_threads);
ctx.run_merge();
} catch (const std::exception & err) {
fprintf(stderr, "%s\n", err.what());
exit(EXIT_FAILURE);
}
printf("done, output file is %s\n", params.lora_outfile.c_str());
return 0;
}