mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-03 17:51:09 +01:00
f4ab2a4147
* merged the changes from deepseeker models to main branch * Moved regex patterns to unicode.cpp and updated unicode.h * Moved header files * Resolved issues * added and refactored unicode_regex_split and related functions * Updated/merged the deepseek coder pr * Refactored code * Adding unicode regex mappings * Adding unicode regex function * Added needed functionality, testing remains * Fixed issues * Fixed issue with gpt2 regex custom preprocessor * unicode : fix? unicode_wstring_to_utf8 * lint : fix whitespaces * tests : add tokenizer tests for numbers * unicode : remove redundant headers * tests : remove and rename tokenizer test scripts * tests : add sample usage * gguf-py : reader prints warnings on duplicate keys * llama : towards llama3 tokenization support (wip) * unicode : shot in the dark to fix tests on Windows * unicode : first try custom implementations * convert : add "tokenizer.ggml.pre" GGUF KV (wip) * llama : use new pre-tokenizer type * convert : fix pre-tokenizer type writing * lint : fix * make : add test-tokenizer-0-llama-v3 * wip * models : add llama v3 vocab file * llama : adapt punctuation regex + add llama 3 regex * minor * unicode : set bomb * unicode : set bomb * unicode : always use std::wregex * unicode : support \p{N}, \p{L} and \p{P} natively * unicode : try fix windows * unicode : category support via std::regex * unicode : clean-up * unicode : simplify * convert : add convert-hf-to-gguf-update.py ggml-ci * lint : update * convert : add falcon ggml-ci * unicode : normalize signatures * lint : fix * lint : fix * convert : remove unused functions * convert : add comments * convert : exercise contractions ggml-ci * lint : fix * cmake : refactor test targets * tests : refactor vocab tests ggml-ci * tests : add more vocabs and tests ggml-ci * unicode : cleanup * scripts : ignore new update script in check-requirements.sh * models : add phi-3, mpt, gpt-2, starcoder * tests : disable obsolete ggml-ci * tests : use faster bpe test ggml-ci * llama : more prominent warning for old BPE models * tests : disable test-tokenizer-1-bpe due to slowness ggml-ci --------- Co-authored-by: Jaggzh <jaggz.h@gmail.com> Co-authored-by: Kazim Abrar Mahi <kazimabrarmahi135@gmail.com>
112 lines
3.1 KiB
C++
112 lines
3.1 KiB
C++
#include "llama.h"
|
|
#include "common.h"
|
|
#include "unicode.h"
|
|
#include "console.h"
|
|
|
|
#include <cassert>
|
|
#include <codecvt>
|
|
#include <cstdio>
|
|
#include <cstring>
|
|
#include <locale>
|
|
#include <string>
|
|
#include <thread>
|
|
#include <vector>
|
|
|
|
int main(int argc, char ** argv) {
|
|
if (argc < 2) {
|
|
fprintf(stderr, "Usage: %s <vocab-file>\n", argv[0]);
|
|
return 1;
|
|
}
|
|
|
|
const std::string fname = argv[1];
|
|
|
|
fprintf(stderr, "%s : reading vocab from: '%s'\n", __func__, fname.c_str());
|
|
|
|
llama_model * model;
|
|
llama_context * ctx;
|
|
|
|
llama_backend_init();
|
|
|
|
// load the vocab
|
|
{
|
|
auto mparams = llama_model_default_params();
|
|
|
|
mparams.vocab_only = true;
|
|
|
|
model = llama_load_model_from_file(fname.c_str(), mparams);
|
|
|
|
if (model == NULL) {
|
|
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
|
|
return 1;
|
|
}
|
|
|
|
auto cparams = llama_context_default_params();
|
|
|
|
ctx = llama_new_context_with_model(model, cparams);
|
|
|
|
if (ctx == NULL) {
|
|
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
|
|
llama_free_model(model);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
GGML_ASSERT(llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM);
|
|
|
|
#ifdef _WIN32
|
|
// We need this for unicode console support
|
|
console::init(false, false);
|
|
atexit([]() { console::cleanup(); });
|
|
#endif
|
|
|
|
const int n_vocab = llama_n_vocab(model);
|
|
|
|
for (int i = 0; i < n_vocab; ++i) {
|
|
std::string str = llama_detokenize_spm(ctx, std::vector<int>(1, i));
|
|
std::vector<llama_token> tokens = llama_tokenize(ctx, str, false);
|
|
std::string check = llama_detokenize_spm(ctx, tokens);
|
|
if (check != str) {
|
|
fprintf(stderr, "%s : error: token %d detokenizes to '%s'(%zu) but tokenization of this detokenizes to '%s'(%zu)\n",
|
|
__func__, i, str.c_str(), str.length(), check.c_str(), check.length());
|
|
return 2;
|
|
}
|
|
}
|
|
|
|
// unicode
|
|
{
|
|
const int nthread = std::thread::hardware_concurrency();
|
|
|
|
std::vector<std::thread> threads(nthread);
|
|
|
|
for (int i = 0; i < nthread; ++i) {
|
|
threads[i] = std::thread([i, nthread, ctx]() {
|
|
for (uint32_t cp = i; cp < 0x0010ffff; cp += nthread) {
|
|
if (cp >= 0xd800 && cp <= 0xdfff) {
|
|
continue;
|
|
}
|
|
|
|
std::string str = unicode_cpt_to_utf8(cp);
|
|
std::vector<llama_token> tokens = llama_tokenize(ctx, str, false);
|
|
std::string check = llama_detokenize_spm(ctx, tokens);
|
|
if (cp != 9601 && str != check) {
|
|
fprintf(stderr, "error: codepoint %x detokenizes to '%s'(%zu) instead of '%s'(%zu)\n",
|
|
cp, check.c_str(), check.length(), str.c_str(), str.length());
|
|
std::exit(3);
|
|
}
|
|
}
|
|
});
|
|
}
|
|
|
|
for (auto & t : threads) {
|
|
t.join();
|
|
}
|
|
}
|
|
|
|
llama_free_model(model);
|
|
llama_free(ctx);
|
|
|
|
llama_backend_free();
|
|
|
|
return 0;
|
|
}
|