llama.cpp/ggml.c

20639 lines
663 KiB
C

#define _GNU_SOURCE // Defines CLOCK_MONOTONIC on Linux
#define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
#include "ggml.h"
#ifdef GGML_USE_K_QUANTS
#include "k_quants.h"
#endif
#if defined(_MSC_VER) || defined(__MINGW32__)
#include <malloc.h> // using malloc.h with MSC/MINGW
#elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
#include <alloca.h>
#endif
#include <assert.h>
#include <errno.h>
#include <time.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdint.h>
#include <inttypes.h>
#include <stdio.h>
#include <float.h>
#include <limits.h>
#include <stdarg.h>
#include <signal.h>
#ifdef GGML_USE_METAL
#include <unistd.h>
#endif
// static_assert should be a #define, but if it's not,
// fall back to the _Static_assert C11 keyword.
// if C99 - static_assert is noop
// ref: https://stackoverflow.com/a/53923785/4039976
#ifndef static_assert
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
#define static_assert(cond, msg) _Static_assert(cond, msg)
#else
#define static_assert(cond, msg) struct global_scope_noop_trick
#endif
#endif
#if defined(_MSC_VER)
// disable "possible loss of data" to avoid hundreds of casts
// we should just be careful :)
#pragma warning(disable: 4244 4267)
#endif
#if defined(_WIN32)
#include <windows.h>
typedef volatile LONG atomic_int;
typedef atomic_int atomic_bool;
static void atomic_store(atomic_int * ptr, LONG val) {
InterlockedExchange(ptr, val);
}
static LONG atomic_load(atomic_int * ptr) {
return InterlockedCompareExchange(ptr, 0, 0);
}
static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
return InterlockedExchangeAdd(ptr, inc);
}
static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
return atomic_fetch_add(ptr, -(dec));
}
typedef HANDLE pthread_t;
typedef DWORD thread_ret_t;
static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
(void) unused;
HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
if (handle == NULL)
{
return EAGAIN;
}
*out = handle;
return 0;
}
static int pthread_join(pthread_t thread, void * unused) {
(void) unused;
return (int) WaitForSingleObject(thread, INFINITE);
}
static int sched_yield (void) {
Sleep (0);
return 0;
}
#else
#include <pthread.h>
#include <stdatomic.h>
typedef void * thread_ret_t;
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#endif
// __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
#if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
#ifndef __FMA__
#define __FMA__
#endif
#ifndef __F16C__
#define __F16C__
#endif
#ifndef __SSE3__
#define __SSE3__
#endif
#endif
/*#define GGML_PERF*/
#define GGML_DEBUG 0
#define GGML_GELU_FP16
#define GGML_GELU_QUICK_FP16
#define GGML_SILU_FP16
// #define GGML_CROSS_ENTROPY_EXP_FP16
// #define GGML_FLASH_ATTN_EXP_FP16
#define GGML_SOFT_MAX_UNROLL 4
#define GGML_VEC_DOT_UNROLL 2
//
// logging
//
#if (GGML_DEBUG >= 1)
#define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
#else
#define GGML_PRINT_DEBUG(...)
#endif
#if (GGML_DEBUG >= 5)
#define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
#else
#define GGML_PRINT_DEBUG_5(...)
#endif
#if (GGML_DEBUG >= 10)
#define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
#else
#define GGML_PRINT_DEBUG_10(...)
#endif
#define GGML_PRINT(...) printf(__VA_ARGS__)
#ifdef GGML_USE_ACCELERATE
// uncomment to use vDSP for soft max computation
// note: not sure if it is actually faster
//#define GGML_SOFT_MAX_ACCELERATE
#endif
//
// logging
//
#if (GGML_DEBUG >= 1)
#define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
#else
#define GGML_PRINT_DEBUG(...)
#endif
#if (GGML_DEBUG >= 5)
#define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
#else
#define GGML_PRINT_DEBUG_5(...)
#endif
#if (GGML_DEBUG >= 10)
#define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
#else
#define GGML_PRINT_DEBUG_10(...)
#endif
#define GGML_PRINT(...) printf(__VA_ARGS__)
//
// end of logging block
//
#if defined(_MSC_VER) || defined(__MINGW32__)
#define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
#define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
#else
inline static void * ggml_aligned_malloc(size_t size) {
void * aligned_memory = NULL;
#ifdef GGML_USE_METAL
int result = posix_memalign(&aligned_memory, getpagesize(), size);
#else
int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
#endif
if (result != 0) {
// Handle allocation failure
const char *error_desc = "unknown allocation error";
switch (result) {
case EINVAL:
error_desc = "invalid alignment value";
break;
case ENOMEM:
error_desc = "insufficient memory";
break;
}
GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
return NULL;
}
return aligned_memory;
}
#define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
#define GGML_ALIGNED_FREE(ptr) free(ptr)
#endif
#define UNUSED GGML_UNUSED
#define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
//
// tensor access macros
//
#define GGML_TENSOR_UNARY_OP_LOCALS \
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
#define GGML_TENSOR_BINARY_OP_LOCALS \
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); \
GGML_TENSOR_LOCALS(size_t, nb1, src1, nb); \
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
#if defined(GGML_USE_ACCELERATE)
#include <Accelerate/Accelerate.h>
#if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
#include "ggml-opencl.h"
#endif
#elif defined(GGML_USE_OPENBLAS)
#if defined(GGML_BLAS_USE_MKL)
#include <mkl.h>
#else
#include <cblas.h>
#endif
#elif defined(GGML_USE_CUBLAS)
#include "ggml-cuda.h"
#elif defined(GGML_USE_CLBLAST)
#include "ggml-opencl.h"
#endif
#undef MIN
#undef MAX
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
// floating point type used to accumulate sums
typedef double ggml_float;
// 16-bit float
// on Arm, we use __fp16
// on x86, we use uint16_t
#ifdef __ARM_NEON
// if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
//
// $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
//
#include <arm_neon.h>
#define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
#define GGML_COMPUTE_FP32_TO_FP16(x) (x)
#define GGML_FP16_TO_FP32(x) ((float) (x))
#define GGML_FP32_TO_FP16(x) (x)
#else
#ifdef __wasm_simd128__
#include <wasm_simd128.h>
#else
#ifdef __POWER9_VECTOR__
#include <altivec.h>
#undef bool
#define bool _Bool
#else
#if defined(_MSC_VER) || defined(__MINGW32__)
#include <intrin.h>
#else
#if !defined(__riscv)
#include <immintrin.h>
#endif
#endif
#endif
#endif
#ifdef __F16C__
#ifdef _MSC_VER
#define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
#define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
#else
#define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
#define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
#endif
#elif defined(__POWER9_VECTOR__)
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
/* the inline asm below is about 12% faster than the lookup method */
#define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
register float f;
register double d;
__asm__(
"mtfprd %0,%2\n"
"xscvhpdp %0,%0\n"
"frsp %1,%0\n" :
/* temp */ "=d"(d),
/* out */ "=f"(f):
/* in */ "r"(h));
return f;
}
static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
register double d;
register ggml_fp16_t r;
__asm__( /* xscvdphp can work on double or single precision */
"xscvdphp %0,%2\n"
"mffprd %1,%0\n" :
/* temp */ "=d"(d),
/* out */ "=r"(r):
/* in */ "f"(f));
return r;
}
#else
// FP16 <-> FP32
// ref: https://github.com/Maratyszcza/FP16
static inline float fp32_from_bits(uint32_t w) {
union {
uint32_t as_bits;
float as_value;
} fp32;
fp32.as_bits = w;
return fp32.as_value;
}
static inline uint32_t fp32_to_bits(float f) {
union {
float as_value;
uint32_t as_bits;
} fp32;
fp32.as_value = f;
return fp32.as_bits;
}
static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
const uint32_t w = (uint32_t) h << 16;
const uint32_t sign = w & UINT32_C(0x80000000);
const uint32_t two_w = w + w;
const uint32_t exp_offset = UINT32_C(0xE0) << 23;
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
const float exp_scale = 0x1.0p-112f;
#else
const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
#endif
const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
const uint32_t magic_mask = UINT32_C(126) << 23;
const float magic_bias = 0.5f;
const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
const uint32_t result = sign |
(two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
return fp32_from_bits(result);
}
static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
const float scale_to_inf = 0x1.0p+112f;
const float scale_to_zero = 0x1.0p-110f;
#else
const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
#endif
float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
const uint32_t w = fp32_to_bits(f);
const uint32_t shl1_w = w + w;
const uint32_t sign = w & UINT32_C(0x80000000);
uint32_t bias = shl1_w & UINT32_C(0xFF000000);
if (bias < UINT32_C(0x71000000)) {
bias = UINT32_C(0x71000000);
}
base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
const uint32_t bits = fp32_to_bits(base);
const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
const uint32_t nonsign = exp_bits + mantissa_bits;
return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
}
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
#endif // __F16C__
#endif // __ARM_NEON
//
// global data
//
// precomputed gelu table for f16 (128 KB)
static ggml_fp16_t table_gelu_f16[1 << 16];
// precomputed quick gelu table for f16 (128 KB)
static ggml_fp16_t table_gelu_quick_f16[1 << 16];
// precomputed silu table for f16 (128 KB)
static ggml_fp16_t table_silu_f16[1 << 16];
// precomputed exp table for f16 (128 KB)
static ggml_fp16_t table_exp_f16[1 << 16];
// precomputed f32 table for f16 (256 KB)
static float table_f32_f16[1 << 16];
#if defined(__ARM_NEON) || defined(__wasm_simd128__)
#define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
#define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
#define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
#define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
#define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
#define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
#define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
#define B8(c,s ) B7(c,s, c), B7(c,s, s)
// precomputed tables for expanding 8bits to 8 bytes:
static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
#endif
// On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
// so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
// This is also true for POWER9.
#if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
uint16_t s;
memcpy(&s, &f, sizeof(uint16_t));
return table_f32_f16[s];
}
#define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
#endif
// note: do not use these inside ggml.c
// these are meant to be used via the ggml.h API
float ggml_fp16_to_fp32(ggml_fp16_t x) {
return (float) GGML_FP16_TO_FP32(x);
}
ggml_fp16_t ggml_fp32_to_fp16(float x) {
return GGML_FP32_TO_FP16(x);
}
void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
for (int i = 0; i < n; i++) {
y[i] = GGML_FP16_TO_FP32(x[i]);
}
}
void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
int i = 0;
#if defined(__F16C__)
for (; i + 7 < n; i += 8) {
__m256 x_vec = _mm256_loadu_ps(x + i);
__m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
_mm_storeu_si128((__m128i *)(y + i), y_vec);
}
for(; i + 3 < n; i += 4) {
__m128 x_vec = _mm_loadu_ps(x + i);
__m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
_mm_storel_epi64((__m128i *)(y + i), y_vec);
}
#endif
for (; i < n; i++) {
y[i] = GGML_FP32_TO_FP16(x[i]);
}
}
//
// timing
//
#if defined(_MSC_VER) || defined(__MINGW32__)
static int64_t timer_freq, timer_start;
void ggml_time_init(void) {
LARGE_INTEGER t;
QueryPerformanceFrequency(&t);
timer_freq = t.QuadPart;
// The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
// and the uptime is high enough.
// We subtract the program start time to reduce the likelihood of that happening.
QueryPerformanceCounter(&t);
timer_start = t.QuadPart;
}
int64_t ggml_time_ms(void) {
LARGE_INTEGER t;
QueryPerformanceCounter(&t);
return ((t.QuadPart-timer_start) * 1000) / timer_freq;
}
int64_t ggml_time_us(void) {
LARGE_INTEGER t;
QueryPerformanceCounter(&t);
return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
}
#else
void ggml_time_init(void) {}
int64_t ggml_time_ms(void) {
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
}
int64_t ggml_time_us(void) {
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
}
#endif
int64_t ggml_cycles(void) {
return clock();
}
int64_t ggml_cycles_per_ms(void) {
return CLOCKS_PER_SEC/1000;
}
#ifdef GGML_PERF
#define ggml_perf_time_ms() ggml_time_ms()
#define ggml_perf_time_us() ggml_time_us()
#define ggml_perf_cycles() ggml_cycles()
#define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
#else
#define ggml_perf_time_ms() 0
#define ggml_perf_time_us() 0
#define ggml_perf_cycles() 0
#define ggml_perf_cycles_per_ms() 0
#endif
//
// cache line
//
#if defined(__cpp_lib_hardware_interference_size)
#define CACHE_LINE_SIZE hardware_destructive_interference_size
#else
#if defined(__POWER9_VECTOR__)
#define CACHE_LINE_SIZE 128
#else
#define CACHE_LINE_SIZE 64
#endif
#endif
static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
//
// quantization
//
#define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
// multiply int8_t, add results pairwise twice
static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
// Get absolute values of x vectors
const __m128i ax = _mm_sign_epi8(x, x);
// Sign the values of the y vectors
const __m128i sy = _mm_sign_epi8(y, x);
// Perform multiplication and create 16-bit values
const __m128i dot = _mm_maddubs_epi16(ax, sy);
const __m128i ones = _mm_set1_epi16(1);
return _mm_madd_epi16(ones, dot);
}
#if __AVX__ || __AVX2__ || __AVX512F__
// horizontally add 8 floats
static inline float hsum_float_8(const __m256 x) {
__m128 res = _mm256_extractf128_ps(x, 1);
res = _mm_add_ps(res, _mm256_castps256_ps128(x));
res = _mm_add_ps(res, _mm_movehl_ps(res, res));
res = _mm_add_ss(res, _mm_movehdup_ps(res));
return _mm_cvtss_f32(res);
}
// horizontally add 8 int32_t
static inline int hsum_i32_8(const __m256i a) {
const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
const __m128i sum64 = _mm_add_epi32(hi64, sum128);
const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
}
// horizontally add 4 int32_t
static inline int hsum_i32_4(const __m128i a) {
const __m128i hi64 = _mm_unpackhi_epi64(a, a);
const __m128i sum64 = _mm_add_epi32(hi64, a);
const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
}
#if defined(__AVX2__) || defined(__AVX512F__)
// spread 32 bits to 32 bytes { 0x00, 0xFF }
static inline __m256i bytes_from_bits_32(const uint8_t * x) {
uint32_t x32;
memcpy(&x32, x, sizeof(uint32_t));
const __m256i shuf_mask = _mm256_set_epi64x(
0x0303030303030303, 0x0202020202020202,
0x0101010101010101, 0x0000000000000000);
__m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
bytes = _mm256_or_si256(bytes, bit_mask);
return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
}
// Unpack 32 4-bit fields into 32 bytes
// The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
{
const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
const __m256i lowMask = _mm256_set1_epi8( 0xF );
return _mm256_and_si256(lowMask, bytes);
}
// add int16_t pairwise and return as float vector
static inline __m256 sum_i16_pairs_float(const __m256i x) {
const __m256i ones = _mm256_set1_epi16(1);
const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
return _mm256_cvtepi32_ps(summed_pairs);
}
static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
#if __AVXVNNI__
const __m256i zero = _mm256_setzero_si256();
const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
return _mm256_cvtepi32_ps(summed_pairs);
#else
// Perform multiplication and create 16-bit values
const __m256i dot = _mm256_maddubs_epi16(ax, sy);
return sum_i16_pairs_float(dot);
#endif
}
// multiply int8_t, add results pairwise twice and return as float vector
static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
#if __AVXVNNIINT8__
const __m256i zero = _mm256_setzero_si256();
const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
return _mm256_cvtepi32_ps(summed_pairs);
#else
// Get absolute values of x vectors
const __m256i ax = _mm256_sign_epi8(x, x);
// Sign the values of the y vectors
const __m256i sy = _mm256_sign_epi8(y, x);
return mul_sum_us8_pairs_float(ax, sy);
#endif
}
static inline __m128i packNibbles( __m256i bytes )
{
// Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
#if __AVX512F__
const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
#else
const __m256i lowByte = _mm256_set1_epi16( 0xFF );
__m256i high = _mm256_andnot_si256( lowByte, bytes );
__m256i low = _mm256_and_si256( lowByte, bytes );
high = _mm256_srli_epi16( high, 4 );
bytes = _mm256_or_si256( low, high );
// Compress uint16_t lanes into bytes
__m128i r0 = _mm256_castsi256_si128( bytes );
__m128i r1 = _mm256_extracti128_si256( bytes, 1 );
return _mm_packus_epi16( r0, r1 );
#endif
}
#elif defined(__AVX__)
// spread 32 bits to 32 bytes { 0x00, 0xFF }
static inline __m256i bytes_from_bits_32(const uint8_t * x) {
uint32_t x32;
memcpy(&x32, x, sizeof(uint32_t));
const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
__m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
__m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
bytesl = _mm_or_si128(bytesl, bit_mask);
bytesh = _mm_or_si128(bytesh, bit_mask);
bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
return MM256_SET_M128I(bytesh, bytesl);
}
// Unpack 32 4-bit fields into 32 bytes
// The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
{
// Load 16 bytes from memory
__m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
__m128i tmph = _mm_srli_epi16(tmpl, 4);
const __m128i lowMask = _mm_set1_epi8(0xF);
tmpl = _mm_and_si128(lowMask, tmpl);
tmph = _mm_and_si128(lowMask, tmph);
return MM256_SET_M128I(tmph, tmpl);
}
// add int16_t pairwise and return as float vector
static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
const __m128i ones = _mm_set1_epi16(1);
const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
return _mm256_cvtepi32_ps(summed_pairs);
}
static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
const __m128i axl = _mm256_castsi256_si128(ax);
const __m128i axh = _mm256_extractf128_si256(ax, 1);
const __m128i syl = _mm256_castsi256_si128(sy);
const __m128i syh = _mm256_extractf128_si256(sy, 1);
// Perform multiplication and create 16-bit values
const __m128i dotl = _mm_maddubs_epi16(axl, syl);
const __m128i doth = _mm_maddubs_epi16(axh, syh);
return sum_i16_pairs_float(doth, dotl);
}
// multiply int8_t, add results pairwise twice and return as float vector
static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
const __m128i xl = _mm256_castsi256_si128(x);
const __m128i xh = _mm256_extractf128_si256(x, 1);
const __m128i yl = _mm256_castsi256_si128(y);
const __m128i yh = _mm256_extractf128_si256(y, 1);
// Get absolute values of x vectors
const __m128i axl = _mm_sign_epi8(xl, xl);
const __m128i axh = _mm_sign_epi8(xh, xh);
// Sign the values of the y vectors
const __m128i syl = _mm_sign_epi8(yl, xl);
const __m128i syh = _mm_sign_epi8(yh, xh);
// Perform multiplication and create 16-bit values
const __m128i dotl = _mm_maddubs_epi16(axl, syl);
const __m128i doth = _mm_maddubs_epi16(axh, syh);
return sum_i16_pairs_float(doth, dotl);
}
static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
{
// Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
const __m128i lowByte = _mm_set1_epi16( 0xFF );
__m128i high = _mm_andnot_si128( lowByte, bytes1 );
__m128i low = _mm_and_si128( lowByte, bytes1 );
high = _mm_srli_epi16( high, 4 );
bytes1 = _mm_or_si128( low, high );
high = _mm_andnot_si128( lowByte, bytes2 );
low = _mm_and_si128( lowByte, bytes2 );
high = _mm_srli_epi16( high, 4 );
bytes2 = _mm_or_si128( low, high );
return _mm_packus_epi16( bytes1, bytes2);
}
#endif
#elif defined(__SSSE3__)
// horizontally add 4x4 floats
static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
__m128 res_0 =_mm_hadd_ps(a, b);
__m128 res_1 =_mm_hadd_ps(c, d);
__m128 res =_mm_hadd_ps(res_0, res_1);
res =_mm_hadd_ps(res, res);
res =_mm_hadd_ps(res, res);
return _mm_cvtss_f32(res);
}
#endif // __AVX__ || __AVX2__ || __AVX512F__
#endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
#if defined(__ARM_NEON)
#if !defined(__aarch64__)
inline static uint16_t vaddvq_u8(uint8x16_t v) {
return
(uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
(uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
(uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
(uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
(uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
(uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
(uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
(uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
}
inline static int16_t vaddvq_s8(int8x16_t v) {
return
(int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
(int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
(int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
(int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
(int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
(int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
(int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
(int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
}
inline static int32_t vaddvq_s16(int16x8_t v) {
return
(int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
(int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
(int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
(int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
}
inline static uint32_t vaddvq_u16(uint16x8_t v) {
return
(uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
(uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
(uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
(uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
}
inline static int32_t vaddvq_s32(int32x4_t v) {
return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
}
inline static float vaddvq_f32(float32x4_t v) {
return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
}
inline static float vminvq_f32(float32x4_t v) {
return
MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
}
inline static float vmaxvq_f32(float32x4_t v) {
return
MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
}
inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
int32x4_t res;
res[0] = roundf(vgetq_lane_f32(v, 0));
res[1] = roundf(vgetq_lane_f32(v, 1));
res[2] = roundf(vgetq_lane_f32(v, 2));
res[3] = roundf(vgetq_lane_f32(v, 3));
return res;
}
#endif
#endif
// we know the values are in the [-1 .. 1] range, so abs(d) cannot be more than 1/8 when using 4 bits
#define Q4_0DM (1.0f/8.0f)
#define Q4_0D(x) (((x)*Q4_0DM) / 127.0f)
#define QK4_0 32
typedef struct {
int8_t d; // delta
uint8_t qs[QK4_0 / 2]; // nibbles / quants
} block_q4_0;
static_assert(sizeof(block_q4_0) == sizeof(int8_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
#define Q4_1DM (2.0f/15.0f)
#define Q4_1MM (2.0f )
#define Q4_1D(x) ( (((x) & 0xFF)*Q4_1DM) / 255.0f)
#define Q4_1M(x) (-1.0f + (((x) >> 8)*Q4_1MM) / 255.0f)
#define QK4_1 32
typedef struct {
uint16_t dm; // 8-bit delta + 8-bit min (can be adjusted easily)
uint8_t qs[QK4_1 / 2]; // nibbles / quants
} block_q4_1;
static_assert(sizeof(block_q4_1) == sizeof(uint16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
#define QK5_0 32
typedef struct {
ggml_fp16_t d; // delta
uint8_t qh[4]; // 5-th bit of quants
uint8_t qs[QK5_0 / 2]; // nibbles / quants
} block_q5_0;
static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
// we know the values are in the [-1 .. 1] range, so:
// - d is unsigned 4-bit that represents maximum value of 2.0/31 when using 5 bits
// - m is unsigned 4-bit that represents offset from -1.0 which cannot be more than 2.0
#define Q5_1DM (2.0f/31.0f)
#define Q5_1MM (2.0f )
#define Q5_1D(x) ( (((x) & 0x0F)*Q5_1DM) / 15.0f)
#define Q5_1M(x) (-1.0f + (((x) >> 4)*Q5_1MM) / 15.0f)
#define QK5_1 32
typedef struct {
uint8_t dm; // 4-bit delta + 4-bit min (can be adjusted easily)
uint8_t qh[4]; // 5-th bit of quants
uint8_t qs[QK5_1 / 2]; // nibbles / quants
} block_q5_1;
static_assert(sizeof(block_q5_1) == sizeof(uint8_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
#define QK8_0 32
typedef struct {
ggml_fp16_t d; // delta
int8_t qs[QK8_0]; // quants
} block_q8_0;
static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
#define QK8_1 32
typedef struct {
float d; // delta
float s; // d * sum(qs[i])
int8_t qs[QK8_1]; // quants
} block_q8_1;
static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
// reference implementation for deterministic creation of model files
static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
static const int qk = QK4_0;
assert(k % qk == 0);
const int nb = k / qk;
for (int i = 0; i < nb; i++) {
float amax = 0.0f; // absolute max
float max = 0.0f;
for (int j = 0; j < qk; j++) {
const float v = x[i*qk + j];
if (amax < fabsf(v)) {
amax = fabsf(v);
max = v;
}
}
float d = max / -8;
y[i].d = (int8_t)(ceilf((127.0f * d) / Q4_0DM));
d = Q4_0D(y[i].d);
const float id = d ? 1.0f/d : 0.0f;
for (int j = 0; j < qk/2; ++j) {
const float x0 = x[i*qk + 0 + j]*id;
const float x1 = x[i*qk + qk/2 + j]*id;
const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
y[i].qs[j] = xi0;
y[i].qs[j] |= xi1 << 4;
}
}
}
static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
quantize_row_q4_0_reference(x, y, k);
}
static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
const int qk = QK4_1;
assert(k % qk == 0);
const int nb = k / qk;
for (int i = 0; i < nb; i++) {
float min = FLT_MAX;
float max = -FLT_MAX;
for (int j = 0; j < qk; j++) {
const float v = x[i*qk + j];
if (v < min) min = v;
if (v > max) max = v;
}
y[i].dm = (uint16_t)(floorf((255.0f * (min + 1.0f)) / Q4_1MM)) << 8;
min = Q4_1M(y[i].dm);
float d = (max - min) / ((1 << 4) - 1);
y[i].dm |= (uint16_t)(ceilf((255.0f * d) / Q4_1DM));
d = Q4_1D(y[i].dm);
const float id = d ? 1.0f/d : 0.0f;
for (int j = 0; j < qk/2; ++j) {
const float x0 = (x[i*qk + 0 + j] - min)*id;
const float x1 = (x[i*qk + qk/2 + j] - min)*id;
const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
y[i].qs[j] = xi0;
y[i].qs[j] |= xi1 << 4;
}
}
}
static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
quantize_row_q4_1_reference(x, y, k);
}
static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
static const int qk = QK5_0;
assert(k % qk == 0);
const int nb = k / qk;
for (int i = 0; i < nb; i++) {
float amax = 0.0f; // absolute max
float max = 0.0f;
for (int j = 0; j < qk; j++) {
const float v = x[i*qk + j];
if (amax < fabsf(v)) {
amax = fabsf(v);
max = v;
}
}
const float d = max / -16;
const float id = d ? 1.0f/d : 0.0f;
y[i].d = GGML_FP32_TO_FP16(d);
uint32_t qh = 0;
for (int j = 0; j < qk/2; ++j) {
const float x0 = x[i*qk + 0 + j]*id;
const float x1 = x[i*qk + qk/2 + j]*id;
const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
// get the 5-th bit and store it in qh at the right position
qh |= ((xi0 & 0x10) >> 4) << (j + 0);
qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
}
memcpy(&y[i].qh, &qh, sizeof(qh));
}
}
static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
quantize_row_q5_0_reference(x, y, k);
}
static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
const int qk = QK5_1;
assert(k % qk == 0);
const int nb = k / qk;
for (int i = 0; i < nb; i++) {
float min = FLT_MAX;
float max = -FLT_MAX;
for (int j = 0; j < qk; j++) {
const float v = x[i*qk + j];
if (v < min) min = v;
if (v > max) max = v;
}
y[i].dm = (uint8_t)(floorf((15.0f * (min + 1.0f)) / Q5_1MM)) << 4;
min = Q5_1M(y[i].dm);
float d = (max - min) / ((1 << 5) - 1);
y[i].dm |= (uint8_t)(ceilf((15.0f * d) / Q5_1DM));
d = Q5_1D(y[i].dm);
const float id = d ? 1.0f/d : 0.0f;
uint32_t qh = 0;
for (int j = 0; j < qk/2; ++j) {
const float x0 = (x[i*qk + 0 + j] - min)*id;
const float x1 = (x[i*qk + qk/2 + j] - min)*id;
const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
// get the 5-th bit and store it in qh at the right position
qh |= ((xi0 & 0x10) >> 4) << (j + 0);
qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
}
memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
}
}
static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
quantize_row_q5_1_reference(x, y, k);
}
// reference implementation for deterministic creation of model files
static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
assert(k % QK8_0 == 0);
const int nb = k / QK8_0;
for (int i = 0; i < nb; i++) {
float amax = 0.0f; // absolute max
for (int j = 0; j < QK8_0; j++) {
const float v = x[i*QK8_0 + j];
amax = MAX(amax, fabsf(v));
}
const float d = amax / ((1 << 7) - 1);
const float id = d ? 1.0f/d : 0.0f;
y[i].d = GGML_FP32_TO_FP16(d);
for (int j = 0; j < QK8_0; ++j) {
const float x0 = x[i*QK8_0 + j]*id;
y[i].qs[j] = roundf(x0);
}
}
}
static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
assert(QK8_0 == 32);
assert(k % QK8_0 == 0);
const int nb = k / QK8_0;
block_q8_0 * restrict y = vy;
#if defined(__ARM_NEON)
for (int i = 0; i < nb; i++) {
float32x4_t srcv [8];
float32x4_t asrcv[8];
float32x4_t amaxv[8];
for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
const float amax = vmaxvq_f32(amaxv[0]);
const float d = amax / ((1 << 7) - 1);
const float id = d ? 1.0f/d : 0.0f;
y[i].d = GGML_FP32_TO_FP16(d);
for (int j = 0; j < 8; j++) {
const float32x4_t v = vmulq_n_f32(srcv[j], id);
const int32x4_t vi = vcvtnq_s32_f32(v);
y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
}
}
#elif defined(__wasm_simd128__)
for (int i = 0; i < nb; i++) {
v128_t srcv [8];
v128_t asrcv[8];
v128_t amaxv[8];
for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
wasm_f32x4_extract_lane(amaxv[0], 1)),
MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
wasm_f32x4_extract_lane(amaxv[0], 3)));
const float d = amax / ((1 << 7) - 1);
const float id = d ? 1.0f/d : 0.0f;
y[i].d = GGML_FP32_TO_FP16(d);
for (int j = 0; j < 8; j++) {
const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
}
}
#elif defined(__AVX2__) || defined(__AVX__)
for (int i = 0; i < nb; i++) {
// Load elements into 4 AVX vectors
__m256 v0 = _mm256_loadu_ps( x );
__m256 v1 = _mm256_loadu_ps( x + 8 );
__m256 v2 = _mm256_loadu_ps( x + 16 );
__m256 v3 = _mm256_loadu_ps( x + 24 );
x += 32;
// Compute max(abs(e)) for the block
const __m256 signBit = _mm256_set1_ps( -0.0f );
__m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
__m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
const float maxScalar = _mm_cvtss_f32( max4 );
// Quantize these floats
const float d = maxScalar / 127.f;
y[i].d = GGML_FP32_TO_FP16(d);
const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
const __m256 mul = _mm256_set1_ps( id );
// Apply the multiplier
v0 = _mm256_mul_ps( v0, mul );
v1 = _mm256_mul_ps( v1, mul );
v2 = _mm256_mul_ps( v2, mul );
v3 = _mm256_mul_ps( v3, mul );
// Round to nearest integer
v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
// Convert floats to integers
__m256i i0 = _mm256_cvtps_epi32( v0 );
__m256i i1 = _mm256_cvtps_epi32( v1 );
__m256i i2 = _mm256_cvtps_epi32( v2 );
__m256i i3 = _mm256_cvtps_epi32( v3 );
#if defined(__AVX2__)
// Convert int32 to int16
i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
// Convert int16 to int8
i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
// We got our precious signed bytes, but the order is now wrong
// These AVX2 pack instructions process 16-byte pieces independently
// The following instruction is fixing the order
const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
i0 = _mm256_permutevar8x32_epi32( i0, perm );
_mm256_storeu_si256((__m256i *)y[i].qs, i0);
#else
// Since we don't have in AVX some necessary functions,
// we split the registers in half and call AVX2 analogs from SSE
__m128i ni0 = _mm256_castsi256_si128( i0 );
__m128i ni1 = _mm256_extractf128_si256( i0, 1);
__m128i ni2 = _mm256_castsi256_si128( i1 );
__m128i ni3 = _mm256_extractf128_si256( i1, 1);
__m128i ni4 = _mm256_castsi256_si128( i2 );
__m128i ni5 = _mm256_extractf128_si256( i2, 1);
__m128i ni6 = _mm256_castsi256_si128( i3 );
__m128i ni7 = _mm256_extractf128_si256( i3, 1);
// Convert int32 to int16
ni0 = _mm_packs_epi32( ni0, ni1 );
ni2 = _mm_packs_epi32( ni2, ni3 );
ni4 = _mm_packs_epi32( ni4, ni5 );
ni6 = _mm_packs_epi32( ni6, ni7 );
// Convert int16 to int8
ni0 = _mm_packs_epi16( ni0, ni2 );
ni4 = _mm_packs_epi16( ni4, ni6 );
_mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
_mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
#endif
}
#else
// scalar
quantize_row_q8_0_reference(x, y, k);
#endif
}
// reference implementation for deterministic creation of model files
static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
assert(QK8_1 == 32);
assert(k % QK8_1 == 0);
const int nb = k / QK8_1;
for (int i = 0; i < nb; i++) {
float amax = 0.0f; // absolute max
for (int j = 0; j < QK8_1; j++) {
const float v = x[i*QK8_1 + j];
amax = MAX(amax, fabsf(v));
}
const float d = amax / ((1 << 7) - 1);
const float id = d ? 1.0f/d : 0.0f;
y[i].d = d;
int sum = 0;
for (int j = 0; j < QK8_1/2; ++j) {
const float v0 = x[i*QK8_1 + j]*id;
const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
y[i].qs[ j] = roundf(v0);
y[i].qs[QK8_1/2 + j] = roundf(v1);
sum += y[i].qs[ j];
sum += y[i].qs[QK8_1/2 + j];
}
y[i].s = sum*d;
}
}
static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
assert(k % QK8_1 == 0);
const int nb = k / QK8_1;
block_q8_1 * restrict y = vy;
#if defined(__ARM_NEON)
for (int i = 0; i < nb; i++) {
float32x4_t srcv [8];
float32x4_t asrcv[8];
float32x4_t amaxv[8];
for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
const float amax = vmaxvq_f32(amaxv[0]);
const float d = amax / ((1 << 7) - 1);
const float id = d ? 1.0f/d : 0.0f;
y[i].d = d;
int32x4_t accv = vdupq_n_s32(0);
for (int j = 0; j < 8; j++) {
const float32x4_t v = vmulq_n_f32(srcv[j], id);
const int32x4_t vi = vcvtnq_s32_f32(v);
y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
accv = vaddq_s32(accv, vi);
}
y[i].s = d * vaddvq_s32(accv);
}
#elif defined(__wasm_simd128__)
for (int i = 0; i < nb; i++) {
v128_t srcv [8];
v128_t asrcv[8];
v128_t amaxv[8];
for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
wasm_f32x4_extract_lane(amaxv[0], 1)),
MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
wasm_f32x4_extract_lane(amaxv[0], 3)));
const float d = amax / ((1 << 7) - 1);
const float id = d ? 1.0f/d : 0.0f;
y[i].d = d;
v128_t accv = wasm_i32x4_splat(0);
for (int j = 0; j < 8; j++) {
const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
accv = wasm_i32x4_add(accv, vi);
}
y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
wasm_i32x4_extract_lane(accv, 1) +
wasm_i32x4_extract_lane(accv, 2) +
wasm_i32x4_extract_lane(accv, 3));
}
#elif defined(__AVX2__) || defined(__AVX__)
for (int i = 0; i < nb; i++) {
// Load elements into 4 AVX vectors
__m256 v0 = _mm256_loadu_ps( x );
__m256 v1 = _mm256_loadu_ps( x + 8 );
__m256 v2 = _mm256_loadu_ps( x + 16 );
__m256 v3 = _mm256_loadu_ps( x + 24 );
x += 32;
// Compute max(abs(e)) for the block
const __m256 signBit = _mm256_set1_ps( -0.0f );
__m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
__m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
const float maxScalar = _mm_cvtss_f32( max4 );
// Quantize these floats
const float d = maxScalar / 127.f;
y[i].d = d;
const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
const __m256 mul = _mm256_set1_ps( id );
// Apply the multiplier
v0 = _mm256_mul_ps( v0, mul );
v1 = _mm256_mul_ps( v1, mul );
v2 = _mm256_mul_ps( v2, mul );
v3 = _mm256_mul_ps( v3, mul );
// Round to nearest integer
v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
// Convert floats to integers
__m256i i0 = _mm256_cvtps_epi32( v0 );
__m256i i1 = _mm256_cvtps_epi32( v1 );
__m256i i2 = _mm256_cvtps_epi32( v2 );
__m256i i3 = _mm256_cvtps_epi32( v3 );
#if defined(__AVX2__)
// Compute the sum of the quants and set y[i].s
y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
// Convert int32 to int16
i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
// Convert int16 to int8
i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
// We got our precious signed bytes, but the order is now wrong
// These AVX2 pack instructions process 16-byte pieces independently
// The following instruction is fixing the order
const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
i0 = _mm256_permutevar8x32_epi32( i0, perm );
_mm256_storeu_si256((__m256i *)y[i].qs, i0);
#else
// Since we don't have in AVX some necessary functions,
// we split the registers in half and call AVX2 analogs from SSE
__m128i ni0 = _mm256_castsi256_si128( i0 );
__m128i ni1 = _mm256_extractf128_si256( i0, 1);
__m128i ni2 = _mm256_castsi256_si128( i1 );
__m128i ni3 = _mm256_extractf128_si256( i1, 1);
__m128i ni4 = _mm256_castsi256_si128( i2 );
__m128i ni5 = _mm256_extractf128_si256( i2, 1);
__m128i ni6 = _mm256_castsi256_si128( i3 );
__m128i ni7 = _mm256_extractf128_si256( i3, 1);
// Compute the sum of the quants and set y[i].s
const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
// Convert int32 to int16
ni0 = _mm_packs_epi32( ni0, ni1 );
ni2 = _mm_packs_epi32( ni2, ni3 );
ni4 = _mm_packs_epi32( ni4, ni5 );
ni6 = _mm_packs_epi32( ni6, ni7 );
// Convert int16 to int8
ni0 = _mm_packs_epi16( ni0, ni2 );
ni4 = _mm_packs_epi16( ni4, ni6 );
_mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
_mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
#endif
}
#else
// scalar
quantize_row_q8_1_reference(x, y, k);
#endif
}
static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
static const int qk = QK4_0;
assert(k % qk == 0);
const int nb = k / qk;
for (int i = 0; i < nb; i++) {
const float d = Q4_0D(x[i].d);
for (int j = 0; j < qk/2; ++j) {
const int x0 = (x[i].qs[j] & 0x0F) - 8;
const int x1 = (x[i].qs[j] >> 4) - 8;
y[i*qk + j + 0 ] = x0*d;
y[i*qk + j + qk/2] = x1*d;
}
}
}
static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
static const int qk = QK4_1;
assert(k % qk == 0);
const int nb = k / qk;
for (int i = 0; i < nb; i++) {
const float d = Q4_1D(x[i].dm);
const float m = Q4_1M(x[i].dm);
for (int j = 0; j < qk/2; ++j) {
const int x0 = (x[i].qs[j] & 0x0F);
const int x1 = (x[i].qs[j] >> 4);
y[i*qk + j + 0 ] = x0*d + m;
y[i*qk + j + qk/2] = x1*d + m;
}
}
}
static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
static const int qk = QK5_0;
assert(k % qk == 0);
const int nb = k / qk;
for (int i = 0; i < nb; i++) {
const float d = GGML_FP16_TO_FP32(x[i].d);
uint32_t qh;
memcpy(&qh, x[i].qh, sizeof(qh));
for (int j = 0; j < qk/2; ++j) {
const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
y[i*qk + j + 0 ] = x0*d;
y[i*qk + j + qk/2] = x1*d;
}
}
}
static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
static const int qk = QK5_1;
assert(k % qk == 0);
const int nb = k / qk;
for (int i = 0; i < nb; i++) {
const float d = Q5_1D(x[i].dm);
const float m = Q5_1M(x[i].dm);
uint32_t qh;
memcpy(&qh, x[i].qh, sizeof(qh));
for (int j = 0; j < qk/2; ++j) {
const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
const int x1 = (x[i].qs[j] >> 4) | xh_1;
y[i*qk + j + 0 ] = x0*d + m;
y[i*qk + j + qk/2] = x1*d + m;
}
}
}
static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
static const int qk = QK8_0;
assert(k % qk == 0);
const int nb = k / qk;
const block_q8_0 * restrict x = vx;
for (int i = 0; i < nb; i++) {
const float d = GGML_FP16_TO_FP32(x[i].d);
for (int j = 0; j < qk; ++j) {
y[i*qk + j] = x[i].qs[j]*d;
}
}
}
static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
[GGML_TYPE_I8] = {
.type_name = "i8",
.blck_size = 1,
.type_size = sizeof(int8_t),
.is_quantized = false,
},
[GGML_TYPE_I16] = {
.type_name = "i16",
.blck_size = 1,
.type_size = sizeof(int16_t),
.is_quantized = false,
},
[GGML_TYPE_I32] = {
.type_name = "i32",
.blck_size = 1,
.type_size = sizeof(int32_t),
.is_quantized = false,
},
[GGML_TYPE_F32] = {
.type_name = "f32",
.blck_size = 1,
.type_size = sizeof(float),
.is_quantized = false,
.vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
.vec_dot_type = GGML_TYPE_F32,
},
[GGML_TYPE_F16] = {
.type_name = "f16",
.blck_size = 1,
.type_size = sizeof(ggml_fp16_t),
.is_quantized = false,
.to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
.from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
.from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
.vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
.vec_dot_type = GGML_TYPE_F16,
},
[GGML_TYPE_Q4_0] = {
.type_name = "q4_0",
.blck_size = QK4_0,
.type_size = sizeof(block_q4_0),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_q4_0,
.from_float = quantize_row_q4_0,
.from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
.vec_dot = ggml_vec_dot_q4_0_q8_0,
.vec_dot_type = GGML_TYPE_Q8_0,
},
[GGML_TYPE_Q4_1] = {
.type_name = "q4_1",
.blck_size = QK4_1,
.type_size = sizeof(block_q4_1),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_q4_1,
.from_float = quantize_row_q4_1,
.from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
.vec_dot = ggml_vec_dot_q4_1_q8_1,
.vec_dot_type = GGML_TYPE_Q8_1,
},
[GGML_TYPE_Q5_0] = {
.type_name = "q5_0",
.blck_size = QK5_0,
.type_size = sizeof(block_q5_0),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_q5_0,
.from_float = quantize_row_q5_0,
.from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
.vec_dot = ggml_vec_dot_q5_0_q8_0,
.vec_dot_type = GGML_TYPE_Q8_0,
},
[GGML_TYPE_Q5_1] = {
.type_name = "q5_1",
.blck_size = QK5_1,
.type_size = sizeof(block_q5_1),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_q5_1,
.from_float = quantize_row_q5_1,
.from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
.vec_dot = ggml_vec_dot_q5_1_q8_1,
.vec_dot_type = GGML_TYPE_Q8_1,
},
[GGML_TYPE_Q8_0] = {
.type_name = "q8_0",
.blck_size = QK8_0,
.type_size = sizeof(block_q8_0),
.is_quantized = true,
.to_float = dequantize_row_q8_0,
.from_float = quantize_row_q8_0,
.from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
.vec_dot = ggml_vec_dot_q8_0_q8_0,
.vec_dot_type = GGML_TYPE_Q8_0,
},
[GGML_TYPE_Q8_1] = {
.type_name = "q8_1",
.blck_size = QK8_1,
.type_size = sizeof(block_q8_1),
.is_quantized = true,
.from_float = quantize_row_q8_1,
.from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
.vec_dot_type = GGML_TYPE_Q8_1,
},
#ifdef GGML_USE_K_QUANTS
[GGML_TYPE_Q2_K] = {
.type_name = "q2_K",
.blck_size = QK_K,
.type_size = sizeof(block_q2_K),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_q2_K,
.from_float = quantize_row_q2_K,
.from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
.vec_dot = ggml_vec_dot_q2_K_q8_K,
.vec_dot_type = GGML_TYPE_Q8_K,
},
[GGML_TYPE_Q3_K] = {
.type_name = "q3_K",
.blck_size = QK_K,
.type_size = sizeof(block_q3_K),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_q3_K,
.from_float = quantize_row_q3_K,
.from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
.vec_dot = ggml_vec_dot_q3_K_q8_K,
.vec_dot_type = GGML_TYPE_Q8_K,
},
[GGML_TYPE_Q4_K] = {
.type_name = "q4_K",
.blck_size = QK_K,
.type_size = sizeof(block_q4_K),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_q4_K,
.from_float = quantize_row_q4_K,
.from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
.vec_dot = ggml_vec_dot_q4_K_q8_K,
.vec_dot_type = GGML_TYPE_Q8_K,
},
[GGML_TYPE_Q5_K] = {
.type_name = "q5_K",
.blck_size = QK_K,
.type_size = sizeof(block_q5_K),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_q5_K,
.from_float = quantize_row_q5_K,
.from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
.vec_dot = ggml_vec_dot_q5_K_q8_K,
.vec_dot_type = GGML_TYPE_Q8_K,
},
[GGML_TYPE_Q6_K] = {
.type_name = "q6_K",
.blck_size = QK_K,
.type_size = sizeof(block_q6_K),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_q6_K,
.from_float = quantize_row_q6_K,
.from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
.vec_dot = ggml_vec_dot_q6_K_q8_K,
.vec_dot_type = GGML_TYPE_Q8_K,
},
[GGML_TYPE_Q8_K] = {
.type_name = "q8_K",
.blck_size = QK_K,
.type_size = sizeof(block_q8_K),
.is_quantized = true,
.from_float = quantize_row_q8_K,
}
#endif
};
// For internal test use
ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
GGML_ASSERT(type < GGML_TYPE_COUNT);
return type_traits[type];
}
//
// simd mappings
//
// we define a common set of C macros which map to specific intrinsics based on the current architecture
// we then implement the fundamental computation operations below using only these macros
// adding support for new architectures requires to define the corresponding SIMD macros
//
// GGML_F32_STEP / GGML_F16_STEP
// number of elements to process in a single step
//
// GGML_F32_EPR / GGML_F16_EPR
// number of elements to fit in a single register
//
#if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
#define GGML_SIMD
// F32 NEON
#define GGML_F32_STEP 16
#define GGML_F32_EPR 4
#define GGML_F32x4 float32x4_t
#define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
#define GGML_F32x4_SET1(x) vdupq_n_f32(x)
#define GGML_F32x4_LOAD vld1q_f32
#define GGML_F32x4_STORE vst1q_f32
#define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
#define GGML_F32x4_ADD vaddq_f32
#define GGML_F32x4_MUL vmulq_f32
#define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
#define GGML_F32x4_REDUCE(res, x) \
{ \
int offset = GGML_F32_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = vaddq_f32(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = vaddq_f32(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = vaddq_f32(x[i], x[offset+i]); \
} \
res = GGML_F32x4_REDUCE_ONE(x[0]); \
}
#define GGML_F32_VEC GGML_F32x4
#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
#define GGML_F32_VEC_STORE GGML_F32x4_STORE
#define GGML_F32_VEC_FMA GGML_F32x4_FMA
#define GGML_F32_VEC_ADD GGML_F32x4_ADD
#define GGML_F32_VEC_MUL GGML_F32x4_MUL
#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
// F16 NEON
#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
#define GGML_F16_STEP 32
#define GGML_F16_EPR 8
#define GGML_F16x8 float16x8_t
#define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
#define GGML_F16x8_SET1(x) vdupq_n_f16(x)
#define GGML_F16x8_LOAD vld1q_f16
#define GGML_F16x8_STORE vst1q_f16
#define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
#define GGML_F16x8_ADD vaddq_f16
#define GGML_F16x8_MUL vmulq_f16
#define GGML_F16x8_REDUCE(res, x) \
{ \
int offset = GGML_F16_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = vaddq_f16(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = vaddq_f16(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = vaddq_f16(x[i], x[offset+i]); \
} \
const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
}
#define GGML_F16_VEC GGML_F16x8
#define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
#define GGML_F16_VEC_SET1 GGML_F16x8_SET1
#define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
#define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
#define GGML_F16_VEC_FMA GGML_F16x8_FMA
#define GGML_F16_VEC_ADD GGML_F16x8_ADD
#define GGML_F16_VEC_MUL GGML_F16x8_MUL
#define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
#else
// if FP16 vector arithmetic is not supported, we use FP32 instead
// and take advantage of the vcvt_ functions to convert to/from FP16
#define GGML_F16_STEP 16
#define GGML_F16_EPR 4
#define GGML_F32Cx4 float32x4_t
#define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
#define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
#define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
#define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
#define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
#define GGML_F32Cx4_ADD vaddq_f32
#define GGML_F32Cx4_MUL vmulq_f32
#define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
#define GGML_F16_VEC GGML_F32Cx4
#define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
#define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
#define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
#define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
#define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
#define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
#endif
#elif defined(__AVX__)
#define GGML_SIMD
// F32 AVX
#define GGML_F32_STEP 32
#define GGML_F32_EPR 8
#define GGML_F32x8 __m256
#define GGML_F32x8_ZERO _mm256_setzero_ps()
#define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
#define GGML_F32x8_LOAD _mm256_loadu_ps
#define GGML_F32x8_STORE _mm256_storeu_ps
#if defined(__FMA__)
#define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
#else
#define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
#endif
#define GGML_F32x8_ADD _mm256_add_ps
#define GGML_F32x8_MUL _mm256_mul_ps
#define GGML_F32x8_REDUCE(res, x) \
{ \
int offset = GGML_F32_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm256_add_ps(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm256_add_ps(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm256_add_ps(x[i], x[offset+i]); \
} \
const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
_mm256_extractf128_ps(x[0], 1)); \
const __m128 t1 = _mm_hadd_ps(t0, t0); \
res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
}
// TODO: is this optimal ?
#define GGML_F32_VEC GGML_F32x8
#define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
#define GGML_F32_VEC_SET1 GGML_F32x8_SET1
#define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
#define GGML_F32_VEC_STORE GGML_F32x8_STORE
#define GGML_F32_VEC_FMA GGML_F32x8_FMA
#define GGML_F32_VEC_ADD GGML_F32x8_ADD
#define GGML_F32_VEC_MUL GGML_F32x8_MUL
#define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
// F16 AVX
#define GGML_F16_STEP 32
#define GGML_F16_EPR 8
// F16 arithmetic is not supported by AVX, so we use F32 instead
#define GGML_F32Cx8 __m256
#define GGML_F32Cx8_ZERO _mm256_setzero_ps()
#define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
#if defined(__F16C__)
// the _mm256_cvt intrinsics require F16C
#define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
#define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
#else
static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
float tmp[8];
for (int i = 0; i < 8; i++) {
tmp[i] = GGML_FP16_TO_FP32(x[i]);
}
return _mm256_loadu_ps(tmp);
}
static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
float arr[8];
_mm256_storeu_ps(arr, y);
for (int i = 0; i < 8; i++)
x[i] = GGML_FP32_TO_FP16(arr[i]);
}
#define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
#define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
#endif
#define GGML_F32Cx8_FMA GGML_F32x8_FMA
#define GGML_F32Cx8_ADD _mm256_add_ps
#define GGML_F32Cx8_MUL _mm256_mul_ps
#define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
#define GGML_F16_VEC GGML_F32Cx8
#define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
#define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
#define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
#define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
#define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
#define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
#elif defined(__POWER9_VECTOR__)
#define GGML_SIMD
// F32 POWER9
#define GGML_F32_STEP 32
#define GGML_F32_EPR 4
#define GGML_F32x4 vector float
#define GGML_F32x4_ZERO 0.0f
#define GGML_F32x4_SET1 vec_splats
#define GGML_F32x4_LOAD(p) vec_xl(0, p)
#define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
#define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
#define GGML_F32x4_ADD vec_add
#define GGML_F32x4_MUL vec_mul
#define GGML_F32x4_REDUCE(res, x) \
{ \
int offset = GGML_F32_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = vec_add(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = vec_add(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = vec_add(x[i], x[offset+i]); \
} \
res = vec_extract(x[0], 0) + \
vec_extract(x[0], 1) + \
vec_extract(x[0], 2) + \
vec_extract(x[0], 3); \
}
#define GGML_F32_VEC GGML_F32x4
#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
#define GGML_F32_VEC_STORE GGML_F32x4_STORE
#define GGML_F32_VEC_FMA GGML_F32x4_FMA
#define GGML_F32_VEC_ADD GGML_F32x4_ADD
#define GGML_F32_VEC_MUL GGML_F32x4_MUL
#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
// F16 POWER9
#define GGML_F16_STEP GGML_F32_STEP
#define GGML_F16_EPR GGML_F32_EPR
#define GGML_F16_VEC GGML_F32x4
#define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
#define GGML_F16_VEC_SET1 GGML_F32x4_SET1
#define GGML_F16_VEC_FMA GGML_F32x4_FMA
#define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
// Use vec_xl, not vec_ld, in case the load address is not aligned.
#define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
vec_extract_fp32_from_shortl(vec_xl(0, p))
#define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
#define GGML_F16_VEC_STORE(p, r, i) \
if (i & 0x1) \
vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
r[i - GGML_ENDIAN_BYTE(0)]), \
0, p - GGML_F16_EPR)
#elif defined(__wasm_simd128__)
#define GGML_SIMD
// F32 WASM
#define GGML_F32_STEP 16
#define GGML_F32_EPR 4
#define GGML_F32x4 v128_t
#define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
#define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
#define GGML_F32x4_LOAD wasm_v128_load
#define GGML_F32x4_STORE wasm_v128_store
#define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
#define GGML_F32x4_ADD wasm_f32x4_add
#define GGML_F32x4_MUL wasm_f32x4_mul
#define GGML_F32x4_REDUCE(res, x) \
{ \
int offset = GGML_F32_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
} \
res = wasm_f32x4_extract_lane(x[0], 0) + \
wasm_f32x4_extract_lane(x[0], 1) + \
wasm_f32x4_extract_lane(x[0], 2) + \
wasm_f32x4_extract_lane(x[0], 3); \
}
#define GGML_F32_VEC GGML_F32x4
#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
#define GGML_F32_VEC_STORE GGML_F32x4_STORE
#define GGML_F32_VEC_FMA GGML_F32x4_FMA
#define GGML_F32_VEC_ADD GGML_F32x4_ADD
#define GGML_F32_VEC_MUL GGML_F32x4_MUL
#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
// F16 WASM
#define GGML_F16_STEP 16
#define GGML_F16_EPR 4
inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
float tmp[4];
tmp[0] = GGML_FP16_TO_FP32(p[0]);
tmp[1] = GGML_FP16_TO_FP32(p[1]);
tmp[2] = GGML_FP16_TO_FP32(p[2]);
tmp[3] = GGML_FP16_TO_FP32(p[3]);
return wasm_v128_load(tmp);
}
inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
float tmp[4];
wasm_v128_store(tmp, x);
p[0] = GGML_FP32_TO_FP16(tmp[0]);
p[1] = GGML_FP32_TO_FP16(tmp[1]);
p[2] = GGML_FP32_TO_FP16(tmp[2]);
p[3] = GGML_FP32_TO_FP16(tmp[3]);
}
#define GGML_F16x4 v128_t
#define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
#define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
#define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
#define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
#define GGML_F16x4_FMA GGML_F32x4_FMA
#define GGML_F16x4_ADD wasm_f32x4_add
#define GGML_F16x4_MUL wasm_f32x4_mul
#define GGML_F16x4_REDUCE(res, x) \
{ \
int offset = GGML_F16_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
} \
res = wasm_f32x4_extract_lane(x[0], 0) + \
wasm_f32x4_extract_lane(x[0], 1) + \
wasm_f32x4_extract_lane(x[0], 2) + \
wasm_f32x4_extract_lane(x[0], 3); \
}
#define GGML_F16_VEC GGML_F16x4
#define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
#define GGML_F16_VEC_SET1 GGML_F16x4_SET1
#define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
#define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
#define GGML_F16_VEC_FMA GGML_F16x4_FMA
#define GGML_F16_VEC_ADD GGML_F16x4_ADD
#define GGML_F16_VEC_MUL GGML_F16x4_MUL
#define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
#elif defined(__SSE3__)
#define GGML_SIMD
// F32 SSE
#define GGML_F32_STEP 32
#define GGML_F32_EPR 4
#define GGML_F32x4 __m128
#define GGML_F32x4_ZERO _mm_setzero_ps()
#define GGML_F32x4_SET1(x) _mm_set1_ps(x)
#define GGML_F32x4_LOAD _mm_loadu_ps
#define GGML_F32x4_STORE _mm_storeu_ps
#if defined(__FMA__)
// TODO: Does this work?
#define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
#else
#define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
#endif
#define GGML_F32x4_ADD _mm_add_ps
#define GGML_F32x4_MUL _mm_mul_ps
#define GGML_F32x4_REDUCE(res, x) \
{ \
int offset = GGML_F32_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm_add_ps(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm_add_ps(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm_add_ps(x[i], x[offset+i]); \
} \
const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
}
// TODO: is this optimal ?
#define GGML_F32_VEC GGML_F32x4
#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
#define GGML_F32_VEC_STORE GGML_F32x4_STORE
#define GGML_F32_VEC_FMA GGML_F32x4_FMA
#define GGML_F32_VEC_ADD GGML_F32x4_ADD
#define GGML_F32_VEC_MUL GGML_F32x4_MUL
#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
// F16 SSE
#define GGML_F16_STEP 32
#define GGML_F16_EPR 4
static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
float tmp[4];
tmp[0] = GGML_FP16_TO_FP32(x[0]);
tmp[1] = GGML_FP16_TO_FP32(x[1]);
tmp[2] = GGML_FP16_TO_FP32(x[2]);
tmp[3] = GGML_FP16_TO_FP32(x[3]);
return _mm_loadu_ps(tmp);
}
static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
float arr[4];
_mm_storeu_ps(arr, y);
x[0] = GGML_FP32_TO_FP16(arr[0]);
x[1] = GGML_FP32_TO_FP16(arr[1]);
x[2] = GGML_FP32_TO_FP16(arr[2]);
x[3] = GGML_FP32_TO_FP16(arr[3]);
}
#define GGML_F32Cx4 __m128
#define GGML_F32Cx4_ZERO _mm_setzero_ps()
#define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
#define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
#define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
#define GGML_F32Cx4_FMA GGML_F32x4_FMA
#define GGML_F32Cx4_ADD _mm_add_ps
#define GGML_F32Cx4_MUL _mm_mul_ps
#define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
#define GGML_F16_VEC GGML_F32Cx4
#define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
#define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
#define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
#define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
#define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
#define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
#endif
// GGML_F32_ARR / GGML_F16_ARR
// number of registers to use per step
#ifdef GGML_SIMD
#define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
#define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
#endif
//
// fundamental operations
//
inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
#ifdef GGML_SIMD
float sumf = 0.0f;
const int np = (n & ~(GGML_F32_STEP - 1));
GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
GGML_F32_VEC ax[GGML_F32_ARR];
GGML_F32_VEC ay[GGML_F32_ARR];
for (int i = 0; i < np; i += GGML_F32_STEP) {
for (int j = 0; j < GGML_F32_ARR; j++) {
ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
}
}
// reduce sum0..sum3 to sum0
GGML_F32_VEC_REDUCE(sumf, sum);
// leftovers
for (int i = np; i < n; ++i) {
sumf += x[i]*y[i];
}
#else
// scalar
ggml_float sumf = 0.0;
for (int i = 0; i < n; ++i) {
sumf += (ggml_float)(x[i]*y[i]);
}
#endif
*s = sumf;
}
static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
ggml_float sumf = 0.0;
#if defined(GGML_SIMD)
const int np = (n & ~(GGML_F16_STEP - 1));
GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
GGML_F16_VEC ax[GGML_F16_ARR];
GGML_F16_VEC ay[GGML_F16_ARR];
for (int i = 0; i < np; i += GGML_F16_STEP) {
for (int j = 0; j < GGML_F16_ARR; j++) {
ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
}
}
// reduce sum0..sum3 to sum0
GGML_F16_VEC_REDUCE(sumf, sum);
// leftovers
for (int i = np; i < n; ++i) {
sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
}
#else
for (int i = 0; i < n; ++i) {
sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
}
#endif
*s = sumf;
}
static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
const int qk = QK8_0;
const int nb = n / qk;
assert(n % qk == 0);
const block_q4_0 * restrict x = vx;
const block_q8_0 * restrict y = vy;
#if defined(__ARM_NEON)
float32x4_t sumv0 = vdupq_n_f32(0.0f);
float32x4_t sumv1 = vdupq_n_f32(0.0f);
GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
for (int i = 0; i < nb; i += 2) {
const block_q4_0 * restrict x0 = &x[i + 0];
const block_q4_0 * restrict x1 = &x[i + 1];
const block_q8_0 * restrict y0 = &y[i + 0];
const block_q8_0 * restrict y1 = &y[i + 1];
const uint8x16_t m4b = vdupq_n_u8(0x0F);
const int8x16_t s8b = vdupq_n_s8(0x8);
const uint8x16_t v0_0 = vld1q_u8(x0->qs);
const uint8x16_t v0_1 = vld1q_u8(x1->qs);
// 4-bit -> 8-bit
const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
// sub 8
const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
// load y
const int8x16_t v1_0l = vld1q_s8(y0->qs);
const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
const int8x16_t v1_1l = vld1q_s8(y1->qs);
const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
#if defined(__ARM_FEATURE_DOTPROD)
// dot product into int32x4_t
const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), Q4_0D(x0->d)*GGML_FP16_TO_FP32(y0->d));
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), Q4_0D(x1->d)*GGML_FP16_TO_FP32(y1->d));
#else
const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), Q4_0D(x0->d)*GGML_FP16_TO_FP32(y0->d));
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), Q4_0D(x1->d)*GGML_FP16_TO_FP32(y1->d));
#endif
}
*s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
#elif defined(__AVX2__)
// Initialize accumulator with zeros
__m256 acc = _mm256_setzero_ps();
// Main loop
for (int i = 0; i < nb; ++i) {
/* Compute combined scale for the block */
const __m256 d = _mm256_set1_ps( Q4_0D(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
__m256i bx = bytes_from_nibbles_32(x[i].qs);
// Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
const __m256i off = _mm256_set1_epi8( 8 );
bx = _mm256_sub_epi8( bx, off );
__m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
const __m256 q = mul_sum_i8_pairs_float(bx, by);
/* Multiply q with scale and accumulate */
acc = _mm256_fmadd_ps( d, q, acc );
}
*s = hsum_float_8(acc);
#elif defined(__AVX__)
// Initialize accumulator with zeros
__m256 acc = _mm256_setzero_ps();
// Main loop
for (int i = 0; i < nb; ++i) {
// Compute combined scale for the block
const __m256 d = _mm256_set1_ps( Q4_0D(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
const __m128i lowMask = _mm_set1_epi8(0xF);
const __m128i off = _mm_set1_epi8(8);
const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
__m128i bx = _mm_and_si128(lowMask, tmp);
__m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
bx = _mm_sub_epi8(bx, off);
const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
bx = _mm_sub_epi8(bx, off);
const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
// Convert int32_t to float
__m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
// Apply the scale, and accumulate
acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
}
*s = hsum_float_8(acc);
#elif defined(__SSSE3__)
// set constants
const __m128i lowMask = _mm_set1_epi8(0xF);
const __m128i off = _mm_set1_epi8(8);
// Initialize accumulator with zeros
__m128 acc_0 = _mm_setzero_ps();
__m128 acc_1 = _mm_setzero_ps();
__m128 acc_2 = _mm_setzero_ps();
__m128 acc_3 = _mm_setzero_ps();
// First round without accumulation
{
_mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
_mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
// Compute combined scale for the block 0 and 1
const __m128 d_0_1 = _mm_set1_ps( Q4_0D(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
__m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
__m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
bx_0 = _mm_sub_epi8(bx_0, off);
const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
__m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
__m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
bx_1 = _mm_sub_epi8(bx_1, off);
const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
_mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
_mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
// Compute combined scale for the block 2 and 3
const __m128 d_2_3 = _mm_set1_ps( Q4_0D(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
__m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
__m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
bx_2 = _mm_sub_epi8(bx_2, off);
const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
__m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
__m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
bx_3 = _mm_sub_epi8(bx_3, off);
const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
// Convert int32_t to float
__m128 p0 = _mm_cvtepi32_ps(i32_0);
__m128 p1 = _mm_cvtepi32_ps(i32_1);
__m128 p2 = _mm_cvtepi32_ps(i32_2);
__m128 p3 = _mm_cvtepi32_ps(i32_3);
// Apply the scale
acc_0 = _mm_mul_ps( d_0_1, p0 );
acc_1 = _mm_mul_ps( d_0_1, p1 );
acc_2 = _mm_mul_ps( d_2_3, p2 );
acc_3 = _mm_mul_ps( d_2_3, p3 );
}
// Main loop
GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
for (int i = 2; i < nb; i+=2) {
_mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
_mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
// Compute combined scale for the block 0 and 1
const __m128 d_0_1 = _mm_set1_ps( Q4_0D(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
__m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
__m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
bx_0 = _mm_sub_epi8(bx_0, off);
const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
__m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
__m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
bx_1 = _mm_sub_epi8(bx_1, off);
const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
_mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
_mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
// Compute combined scale for the block 2 and 3
const __m128 d_2_3 = _mm_set1_ps( Q4_0D(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
__m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
__m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
bx_2 = _mm_sub_epi8(bx_2, off);
const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
__m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
__m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
bx_3 = _mm_sub_epi8(bx_3, off);
const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
// Convert int32_t to float
__m128 p0 = _mm_cvtepi32_ps(i32_0);
__m128 p1 = _mm_cvtepi32_ps(i32_1);
__m128 p2 = _mm_cvtepi32_ps(i32_2);
__m128 p3 = _mm_cvtepi32_ps(i32_3);
// Apply the scale
__m128 p0_d = _mm_mul_ps( d_0_1, p0 );
__m128 p1_d = _mm_mul_ps( d_0_1, p1 );
__m128 p2_d = _mm_mul_ps( d_2_3, p2 );
__m128 p3_d = _mm_mul_ps( d_2_3, p3 );
// Acummulate
acc_0 = _mm_add_ps(p0_d, acc_0);
acc_1 = _mm_add_ps(p1_d, acc_1);
acc_2 = _mm_add_ps(p2_d, acc_2);
acc_3 = _mm_add_ps(p3_d, acc_3);
}
*s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
#else
// scalar
float sumf = 0.0;
for (int i = 0; i < nb; i++) {
int sumi = 0;
for (int j = 0; j < qk/2; ++j) {
const int v0 = (x[i].qs[j] & 0x0F) - 8;
const int v1 = (x[i].qs[j] >> 4) - 8;
sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
}
sumf += sumi*Q4_0D(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
}
*s = sumf;
#endif
}
static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
const int qk = QK8_1;
const int nb = n / qk;
assert(n % qk == 0);
const block_q4_1 * restrict x = vx;
const block_q8_1 * restrict y = vy;
// TODO: add WASM SIMD
#if defined(__ARM_NEON)
float32x4_t sumv0 = vdupq_n_f32(0.0f);
float32x4_t sumv1 = vdupq_n_f32(0.0f);
float summs = 0;
GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
for (int i = 0; i < nb; i += 2) {
const block_q4_1 * restrict x0 = &x[i + 0];
const block_q4_1 * restrict x1 = &x[i + 1];
const block_q8_1 * restrict y0 = &y[i + 0];
const block_q8_1 * restrict y1 = &y[i + 1];
summs += Q4_1M(x0->dm) * y0->s + Q4_1M(x1->dm) * y1->s;
const uint8x16_t m4b = vdupq_n_u8(0x0F);
const uint8x16_t v0_0 = vld1q_u8(x0->qs);
const uint8x16_t v0_1 = vld1q_u8(x1->qs);
// 4-bit -> 8-bit
const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
// load y
const int8x16_t v1_0l = vld1q_s8(y0->qs);
const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
const int8x16_t v1_1l = vld1q_s8(y1->qs);
const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
#if defined(__ARM_FEATURE_DOTPROD)
// dot product into int32x4_t
const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), Q4_1D(x0->dm)*y0->d);
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), Q4_1D(x1->dm)*y1->d);
#else
const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), Q4_1D(x0->dm)*y0->d);
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), Q4_1D(x1->dm)*y1->d);
#endif
}
*s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
#elif defined(__AVX2__) || defined(__AVX__)
// Initialize accumulator with zeros
__m256 acc = _mm256_setzero_ps();
float summs = 0;
// Main loop
for (int i = 0; i < nb; ++i) {
const float d0 = Q4_1D(x[i].dm);
const float d1 = y[i].d;
summs += Q4_1M(x[i].dm) * y[i].s;
const __m256 d0v = _mm256_set1_ps( d0 );
const __m256 d1v = _mm256_set1_ps( d1 );
// Compute combined scales
const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
// Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
const __m256i bx = bytes_from_nibbles_32(x[i].qs);
const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
const __m256 xy = mul_sum_us8_pairs_float(bx, by);
// Accumulate d0*d1*x*y
#if defined(__AVX2__)
acc = _mm256_fmadd_ps( d0d1, xy, acc );
#else
acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
#endif
}
*s = hsum_float_8(acc) + summs;
#else
// scalar
float sumf = 0.0;
for (int i = 0; i < nb; i++) {
int sumi = 0;
for (int j = 0; j < qk/2; ++j) {
const int v0 = (x[i].qs[j] & 0x0F);
const int v1 = (x[i].qs[j] >> 4);
sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
}
sumf += (Q4_1D(x[i].dm)*y[i].d)*sumi + Q4_1M(x[i].dm)*y[i].s;
}
*s = sumf;
#endif
}
static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
const int qk = QK8_0;
const int nb = n / qk;
assert(n % qk == 0);
assert(qk == QK5_0);
const block_q5_0 * restrict x = vx;
const block_q8_0 * restrict y = vy;
#if defined(__ARM_NEON)
float32x4_t sumv0 = vdupq_n_f32(0.0f);
float32x4_t sumv1 = vdupq_n_f32(0.0f);
uint32_t qh0;
uint32_t qh1;
uint64_t tmp0[4];
uint64_t tmp1[4];
GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
for (int i = 0; i < nb; i += 2) {
const block_q5_0 * restrict x0 = &x[i];
const block_q5_0 * restrict x1 = &x[i + 1];
const block_q8_0 * restrict y0 = &y[i];
const block_q8_0 * restrict y1 = &y[i + 1];
const uint8x16_t m4b = vdupq_n_u8(0x0F);
// extract the 5th bit via lookup table ((!b) << 4)
memcpy(&qh0, x0->qh, sizeof(qh0));
memcpy(&qh1, x1->qh, sizeof(qh1));
tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
tmp0[3] = table_b2b_1[(qh0 >> 24) ];
tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
tmp1[3] = table_b2b_1[(qh1 >> 24) ];
const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
const uint8x16_t v0_0 = vld1q_u8(x0->qs);
const uint8x16_t v0_1 = vld1q_u8(x1->qs);
// 4-bit -> 8-bit
int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
// add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
// load y
const int8x16_t v1_0l = vld1q_s8(y0->qs);
const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
const int8x16_t v1_1l = vld1q_s8(y1->qs);
const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
#if defined(__ARM_FEATURE_DOTPROD)
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
#else
const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
#endif
}
*s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
#elif defined(__wasm_simd128__)
v128_t sumv = wasm_f32x4_splat(0.0f);
uint32_t qh;
uint64_t tmp[4];
// TODO: check if unrolling this is better
for (int i = 0; i < nb; ++i) {
const block_q5_0 * restrict x0 = &x[i];
const block_q8_0 * restrict y0 = &y[i];
const v128_t m4b = wasm_i8x16_splat(0x0F);
// extract the 5th bit
memcpy(&qh, x0->qh, sizeof(qh));
tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
tmp[3] = table_b2b_1[(qh >> 24) ];
const v128_t qhl = wasm_v128_load(tmp + 0);
const v128_t qhh = wasm_v128_load(tmp + 2);
const v128_t v0 = wasm_v128_load(x0->qs);
// 4-bit -> 8-bit
const v128_t v0l = wasm_v128_and (v0, m4b);
const v128_t v0h = wasm_u8x16_shr(v0, 4);
// add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
// load y
const v128_t v1l = wasm_v128_load(y0->qs);
const v128_t v1h = wasm_v128_load(y0->qs + 16);
// int8x16 -> int16x8
const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
// dot product
sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
wasm_i32x4_add(
wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
}
*s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
#elif defined(__AVX2__)
// Initialize accumulator with zeros
__m256 acc = _mm256_setzero_ps();
// Main loop
for (int i = 0; i < nb; i++) {
/* Compute combined scale for the block */
const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
__m256i bx = bytes_from_nibbles_32(x[i].qs);
__m256i bxhi = bytes_from_bits_32(x[i].qh);
bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
bx = _mm256_or_si256(bx, bxhi);
__m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
const __m256 q = mul_sum_i8_pairs_float(bx, by);
/* Multiply q with scale and accumulate */
acc = _mm256_fmadd_ps(d, q, acc);
}
*s = hsum_float_8(acc);
#elif defined(__AVX__)
// Initialize accumulator with zeros
__m256 acc = _mm256_setzero_ps();
__m128i mask = _mm_set1_epi8((char)0xF0);
// Main loop
for (int i = 0; i < nb; i++) {
/* Compute combined scale for the block */
const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
__m256i bx = bytes_from_nibbles_32(x[i].qs);
const __m256i bxhi = bytes_from_bits_32(x[i].qh);
__m128i bxhil = _mm256_castsi256_si128(bxhi);
__m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
bxhil = _mm_andnot_si128(bxhil, mask);
bxhih = _mm_andnot_si128(bxhih, mask);
__m128i bxl = _mm256_castsi256_si128(bx);
__m128i bxh = _mm256_extractf128_si256(bx, 1);
bxl = _mm_or_si128(bxl, bxhil);
bxh = _mm_or_si128(bxh, bxhih);
bx = MM256_SET_M128I(bxh, bxl);
const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
const __m256 q = mul_sum_i8_pairs_float(bx, by);
/* Multiply q with scale and accumulate */
acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
}
*s = hsum_float_8(acc);
#else
// scalar
float sumf = 0.0;
for (int i = 0; i < nb; i++) {
uint32_t qh;
memcpy(&qh, x[i].qh, sizeof(qh));
int sumi = 0;
for (int j = 0; j < qk/2; ++j) {
const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
}
sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
}
*s = sumf;
#endif
}
static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
const int qk = QK8_1;
const int nb = n / qk;
assert(n % qk == 0);
assert(qk == QK5_1);
const block_q5_1 * restrict x = vx;
const block_q8_1 * restrict y = vy;
#if defined(__ARM_NEON)
float32x4_t sumv0 = vdupq_n_f32(0.0f);
float32x4_t sumv1 = vdupq_n_f32(0.0f);
float summs0 = 0.0f;
float summs1 = 0.0f;
uint32_t qh0;
uint32_t qh1;
uint64_t tmp0[4];
uint64_t tmp1[4];
GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
for (int i = 0; i < nb; i += 2) {
const block_q5_1 * restrict x0 = &x[i];
const block_q5_1 * restrict x1 = &x[i + 1];
const block_q8_1 * restrict y0 = &y[i];
const block_q8_1 * restrict y1 = &y[i + 1];
const uint8x16_t m4b = vdupq_n_u8(0x0F);
summs0 += Q5_1M(x0->dm) * y0->s;
summs1 += Q5_1M(x1->dm) * y1->s;
// extract the 5th bit via lookup table ((b) << 4)
memcpy(&qh0, x0->qh, sizeof(qh0));
memcpy(&qh1, x1->qh, sizeof(qh1));
tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
tmp0[3] = table_b2b_0[(qh0 >> 24) ];
tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
tmp1[3] = table_b2b_0[(qh1 >> 24) ];
const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
const uint8x16_t v0_0 = vld1q_u8(x0->qs);
const uint8x16_t v0_1 = vld1q_u8(x1->qs);
// 4-bit -> 8-bit
const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
// add high bit
const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
// load y
const int8x16_t v1_0l = vld1q_s8(y0->qs);
const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
const int8x16_t v1_1l = vld1q_s8(y1->qs);
const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
#if defined(__ARM_FEATURE_DOTPROD)
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), Q5_1D(x0->dm)*y0->d);
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), Q5_1D(x1->dm)*y1->d);
#else
const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), Q5_1D(x0->dm)*y0->d);
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), Q5_1D(x1->dm)*y1->d);
#endif
}
*s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
#elif defined(__wasm_simd128__)
v128_t sumv = wasm_f32x4_splat(0.0f);
float summs = 0.0f;
uint32_t qh;
uint64_t tmp[4];
// TODO: check if unrolling this is better
for (int i = 0; i < nb; ++i) {
const block_q5_1 * restrict x0 = &x[i];
const block_q8_1 * restrict y0 = &y[i];
summs += Q5_1M(x0->dm) * y0->s;
const v128_t m4b = wasm_i8x16_splat(0x0F);
// extract the 5th bit
memcpy(&qh, x0->qh, sizeof(qh));
tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
tmp[3] = table_b2b_0[(qh >> 24) ];
const v128_t qhl = wasm_v128_load(tmp + 0);
const v128_t qhh = wasm_v128_load(tmp + 2);
const v128_t v0 = wasm_v128_load(x0->qs);
// 4-bit -> 8-bit
const v128_t v0l = wasm_v128_and (v0, m4b);
const v128_t v0h = wasm_u8x16_shr(v0, 4);
// add high bit
const v128_t v0lf = wasm_v128_or(v0l, qhl);
const v128_t v0hf = wasm_v128_or(v0h, qhh);
// load y
const v128_t v1l = wasm_v128_load(y0->qs);
const v128_t v1h = wasm_v128_load(y0->qs + 16);
// int8x16 -> int16x8
const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
// dot product
sumv = wasm_f32x4_add(sumv,
wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
wasm_f32x4_splat(Q5_1D(x0->dm) * y0->d)));
}
*s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
#elif defined(__AVX2__)
// Initialize accumulator with zeros
__m256 acc = _mm256_setzero_ps();
float summs = 0.0f;
// Main loop
for (int i = 0; i < nb; i++) {
const __m256 dx = _mm256_set1_ps(Q5_1D(x[i].dm));
summs += Q5_1M(x[i].dm) * y[i].s;
__m256i bx = bytes_from_nibbles_32(x[i].qs);
__m256i bxhi = bytes_from_bits_32(x[i].qh);
bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
bx = _mm256_or_si256(bx, bxhi);
const __m256 dy = _mm256_set1_ps(y[i].d);
const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
const __m256 q = mul_sum_us8_pairs_float(bx, by);
acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
}
*s = hsum_float_8(acc) + summs;
#elif defined(__AVX__)
// Initialize accumulator with zeros
__m256 acc = _mm256_setzero_ps();
__m128i mask = _mm_set1_epi8(0x10);
float summs = 0.0f;
// Main loop
for (int i = 0; i < nb; i++) {
const __m256 dx = _mm256_set1_ps(Q5_1D(x[i].dm));
summs += Q5_1M(x[i].dm) * y[i].s;
__m256i bx = bytes_from_nibbles_32(x[i].qs);
const __m256i bxhi = bytes_from_bits_32(x[i].qh);
__m128i bxhil = _mm256_castsi256_si128(bxhi);
__m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
bxhil = _mm_and_si128(bxhil, mask);
bxhih = _mm_and_si128(bxhih, mask);
__m128i bxl = _mm256_castsi256_si128(bx);
__m128i bxh = _mm256_extractf128_si256(bx, 1);
bxl = _mm_or_si128(bxl, bxhil);
bxh = _mm_or_si128(bxh, bxhih);
bx = MM256_SET_M128I(bxh, bxl);
const __m256 dy = _mm256_set1_ps(y[i].d);
const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
const __m256 q = mul_sum_us8_pairs_float(bx, by);
acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
}
*s = hsum_float_8(acc) + summs;
#else
// scalar
float sumf = 0.0;
for (int i = 0; i < nb; i++) {
uint32_t qh;
memcpy(&qh, x[i].qh, sizeof(qh));
int sumi = 0;
for (int j = 0; j < qk/2; ++j) {
const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
}
sumf += (Q5_1D(x[i].dm)*y[i].d)*sumi + Q5_1M(x[i].dm)*y[i].s;
}
*s = sumf;
#endif
}
static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
const int qk = QK8_0;
const int nb = n / qk;
assert(n % qk == 0);
const block_q8_0 * restrict x = vx;
const block_q8_0 * restrict y = vy;
#if defined(__ARM_NEON)
float32x4_t sumv0 = vdupq_n_f32(0.0f);
float32x4_t sumv1 = vdupq_n_f32(0.0f);
GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
for (int i = 0; i < nb; i += 2) {
const block_q8_0 * restrict x0 = &x[i + 0];
const block_q8_0 * restrict x1 = &x[i + 1];
const block_q8_0 * restrict y0 = &y[i + 0];
const block_q8_0 * restrict y1 = &y[i + 1];
const int8x16_t x0_0 = vld1q_s8(x0->qs);
const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
const int8x16_t x1_0 = vld1q_s8(x1->qs);
const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
// load y
const int8x16_t y0_0 = vld1q_s8(y0->qs);
const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
const int8x16_t y1_0 = vld1q_s8(y1->qs);
const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
#if defined(__ARM_FEATURE_DOTPROD)
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
#else
const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
#endif
}
*s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
#elif defined(__AVX2__) || defined(__AVX__)
// Initialize accumulator with zeros
__m256 acc = _mm256_setzero_ps();
// Main loop
for (int i = 0; i < nb; ++i) {
// Compute combined scale for the block
const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
__m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
__m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
const __m256 q = mul_sum_i8_pairs_float(bx, by);
// Multiply q with scale and accumulate
#if defined(__AVX2__)
acc = _mm256_fmadd_ps( d, q, acc );
#else
acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
#endif
}
*s = hsum_float_8(acc);
#else
// scalar
float sumf = 0.0;
for (int i = 0; i < nb; i++) {
int sumi = 0;
for (int j = 0; j < qk; j++) {
sumi += x[i].qs[j]*y[i].qs[j];
}
sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
}
*s = sumf;
#endif
}
// compute GGML_VEC_DOT_UNROLL dot products at once
// xs - x row stride in bytes
inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
}
#if defined(GGML_SIMD)
const int np = (n & ~(GGML_F16_STEP - 1));
GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
GGML_F16_VEC ax[GGML_F16_ARR];
GGML_F16_VEC ay[GGML_F16_ARR];
for (int i = 0; i < np; i += GGML_F16_STEP) {
for (int j = 0; j < GGML_F16_ARR; j++) {
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
}
}
}
// reduce sum0..sum3 to sum0
for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
}
// leftovers
for (int i = np; i < n; ++i) {
for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
}
}
#else
for (int i = 0; i < n; ++i) {
for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
}
}
#endif
for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
s[i] = sumf[i];
}
}
inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
#if defined(GGML_SIMD)
const int np = (n & ~(GGML_F32_STEP - 1));
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
GGML_F32_VEC ax[GGML_F32_ARR];
GGML_F32_VEC ay[GGML_F32_ARR];
for (int i = 0; i < np; i += GGML_F32_STEP) {
for (int j = 0; j < GGML_F32_ARR; j++) {
ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
}
}
// leftovers
for (int i = np; i < n; ++i) {
y[i] += x[i]*v;
}
#else
// scalar
for (int i = 0; i < n; ++i) {
y[i] += x[i]*v;
}
#endif
}
//inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
#if defined(GGML_USE_ACCELERATE)
vDSP_vsmul(y, 1, &v, y, 1, n);
#elif defined(GGML_SIMD)
const int np = (n & ~(GGML_F32_STEP - 1));
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
GGML_F32_VEC ay[GGML_F32_ARR];
for (int i = 0; i < np; i += GGML_F32_STEP) {
for (int j = 0; j < GGML_F32_ARR; j++) {
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
}
}
// leftovers
for (int i = np; i < n; ++i) {
y[i] *= v;
}
#else
// scalar
for (int i = 0; i < n; ++i) {
y[i] *= v;
}
#endif
}
inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
static const float GELU_COEF_A = 0.044715f;
static const float GELU_QUICK_COEF = -1.702f;
static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
inline static float ggml_gelu_f32(float x) {
return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
}
inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
const uint16_t * i16 = (const uint16_t *) x;
for (int i = 0; i < n; ++i) {
y[i] = table_gelu_f16[i16[i]];
}
}
#ifdef GGML_GELU_FP16
inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
uint16_t t;
for (int i = 0; i < n; ++i) {
ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
memcpy(&t, &fp16, sizeof(uint16_t));
y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
}
}
#else
inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
for (int i = 0; i < n; ++i) {
y[i] = ggml_gelu_f32(x[i]);
}
}
#endif
inline static float ggml_gelu_quick_f32(float x) {
return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
}
//inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
// const uint16_t * i16 = (const uint16_t *) x;
// for (int i = 0; i < n; ++i) {
// y[i] = table_gelu_quick_f16[i16[i]];
// }
//}
#ifdef GGML_GELU_QUICK_FP16
inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
uint16_t t;
for (int i = 0; i < n; ++i) {
ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
memcpy(&t, &fp16, sizeof(uint16_t));
y[i] = GGML_FP16_TO_FP32(table_gelu_quick_f16[t]);
}
}
#else
inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
for (int i = 0; i < n; ++i) {
y[i] = ggml_gelu_quick_f32(x[i]);
}
}
#endif
// Sigmoid Linear Unit (SiLU) function
inline static float ggml_silu_f32(float x) {
return x/(1.0f + expf(-x));
}
//inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
// const uint16_t * i16 = (const uint16_t *) x;
// for (int i = 0; i < n; ++i) {
// y[i] = table_silu_f16[i16[i]];
// }
//}
#ifdef GGML_SILU_FP16
inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
uint16_t t;
for (int i = 0; i < n; ++i) {
ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
memcpy(&t, &fp16, sizeof(uint16_t));
y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
}
}
#else
inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
for (int i = 0; i < n; ++i) {
y[i] = ggml_silu_f32(x[i]);
}
}
#endif
inline static float ggml_silu_backward_f32(float x, float dy) {
const float s = 1.0f/(1.0f + expf(-x));
return dy*s*(1.0f + x*(1.0f - s));
}
#ifdef GGML_SILU_FP16
inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
for (int i = 0; i < n; ++i) {
// we did not use x[i] to compute forward silu but its f16 equivalent
// take derivative at f16 of x[i]:
ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
float usedx = GGML_FP16_TO_FP32(fp16);
dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
}
}
#else
inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
for (int i = 0; i < n; ++i) {
dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
}
}
#endif
inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
#ifndef GGML_USE_ACCELERATE
ggml_float sum = 0.0;
for (int i = 0; i < n; ++i) {
sum += (ggml_float)x[i];
}
*s = sum;
#else
vDSP_sve(x, 1, s, n);
#endif
}
inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
ggml_float sum = 0.0;
for (int i = 0; i < n; ++i) {
sum += (ggml_float)x[i];
}
*s = sum;
}
inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
float sum = 0.0f;
for (int i = 0; i < n; ++i) {
sum += GGML_FP16_TO_FP32(x[i]);
}
*s = sum;
}
inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
#ifndef GGML_USE_ACCELERATE
float max = -INFINITY;
for (int i = 0; i < n; ++i) {
max = MAX(max, x[i]);
}
*s = max;
#else
vDSP_maxv(x, 1, s, n);
#endif
}
inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
ggml_vec_norm_f32(n, s, x);
*s = 1.f/(*s);
}
inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
float max = -INFINITY;
int idx = 0;
for (int i = 0; i < n; ++i) {
max = MAX(max, x[i]);
if (max == x[i]) { idx = i; }
}
*s = idx;
}
//
// data types
//
static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"NONE",
"DUP",
"ADD",
"ADD1",
"ACC",
"SUB",
"MUL",
"DIV",
"SQR",
"SQRT",
"LOG",
"SUM",
"SUM_ROWS",
"MEAN",
"ARGMAX",
"REPEAT",
"REPEAT_BACK",
"CONCAT",
"SILU_BACK",
"NORM",
"RMS_NORM",
"RMS_NORM_BACK",
"GROUP_NORM",
"MUL_MAT",
"OUT_PROD",
"SCALE",
"SET",
"CPY",
"CONT",
"RESHAPE",
"VIEW",
"PERMUTE",
"TRANSPOSE",
"GET_ROWS",
"GET_ROWS_BACK",
"DIAG",
"DIAG_MASK_INF",
"DIAG_MASK_ZERO",
"SOFT_MAX",
"SOFT_MAX_BACK",
"ROPE",
"ROPE_BACK",
"ALIBI",
"CLAMP",
"CONV_1D",
"CONV_2D",
"CONV_TRANSPOSE_2D",
"POOL_1D",
"POOL_2D",
"UPSCALE",
"FLASH_ATTN",
"FLASH_FF",
"FLASH_ATTN_BACK",
"WIN_PART",
"WIN_UNPART",
"GET_REL_POS",
"ADD_REL_POS",
"UNARY",
"MAP_UNARY",
"MAP_BINARY",
"MAP_CUSTOM1_F32",
"MAP_CUSTOM2_F32",
"MAP_CUSTOM3_F32",
"MAP_CUSTOM1",
"MAP_CUSTOM2",
"MAP_CUSTOM3",
"CROSS_ENTROPY_LOSS",
"CROSS_ENTROPY_LOSS_BACK",
};
static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"none",
"x",
"x+y",
"x+y",
"view(x,nb,offset)+=y->x",
"x-y",
"x*y",
"x/y",
"x^2",
"√x",
"log(x)",
"Σx",
"Σx_k",
"Σx/n",
"argmax(x)",
"repeat(x)",
"repeat_back(x)",
"concat(x, y)",
"silu_back(x)",
"norm(x)",
"rms_norm(x)",
"rms_norm_back(x)",
"group_norm(x)",
"X*Y",
"X*Y",
"x*v",
"y-\\>view(x)",
"x-\\>y",
"cont(x)",
"reshape(x)",
"view(x)",
"permute(x)",
"transpose(x)",
"get_rows(x)",
"get_rows_back(x)",
"diag(x)",
"diag_mask_inf(x)",
"diag_mask_zero(x)",
"soft_max(x)",
"soft_max_back(x)",
"rope(x)",
"rope_back(x)",
"alibi(x)",
"clamp(x)",
"conv_1d(x)",
"conv_2d(x)",
"conv_transpose_2d(x)",
"pool_1d(x)",
"pool_2d(x)",
"upscale(x)",
"flash_attn(x)",
"flash_ff(x)",
"flash_attn_back(x)",
"win_part(x)",
"win_unpart(x)",
"get_rel_pos(x)",
"add_rel_pos(x)",
"unary(x)",
"f(x)",
"f(x,y)",
"custom_f32(x)",
"custom_f32(x,y)",
"custom_f32(x,y,z)",
"custom(x)",
"custom(x,y)",
"custom(x,y,z)",
"cross_entropy_loss(x,y)",
"cross_entropy_loss_back(x,y)",
};
static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
// WARN:
// Mis-confguration can lead to problem that's hard to reason about:
// * At best it crash or talks nosense.
// * At worst it talks slightly difference but hard to perceive.
//
// An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
// Take care about compile options (e.g., GGML_USE_xxx).
static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
static void ggml_setup_op_has_task_pass(void) {
{ // INIT
bool * p = GGML_OP_HAS_INIT;
p[GGML_OP_ACC ] = true;
p[GGML_OP_MUL_MAT ] = true;
p[GGML_OP_OUT_PROD ] = true;
p[GGML_OP_SET ] = true;
p[GGML_OP_GET_ROWS_BACK ] = true;
p[GGML_OP_DIAG_MASK_INF ] = true;
p[GGML_OP_DIAG_MASK_ZERO ] = true;
p[GGML_OP_CONV_1D ] = true;
p[GGML_OP_CONV_2D ] = true;
p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
p[GGML_OP_FLASH_ATTN_BACK ] = true;
p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
p[GGML_OP_ADD_REL_POS ] = true;
}
{ // FINALIZE
bool * p = GGML_OP_HAS_FINALIZE;
p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
}
}
//
// ggml context
//
struct ggml_context {
size_t mem_size;
void * mem_buffer;
bool mem_buffer_owned;
bool no_alloc;
bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
int n_objects;
struct ggml_object * objects_begin;
struct ggml_object * objects_end;
struct ggml_scratch scratch;
struct ggml_scratch scratch_save;
};
struct ggml_context_container {
bool used;
struct ggml_context context;
};
//
// NUMA support
//
#define GGML_NUMA_MAX_NODES 8
#define GGML_NUMA_MAX_CPUS 512
struct ggml_numa_node {
uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
uint32_t n_cpus;
};
struct ggml_numa_nodes {
struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
uint32_t n_nodes;
uint32_t total_cpus; // hardware threads on system
};
//
// ggml state
//
struct ggml_state {
struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
struct ggml_numa_nodes numa;
};
// global state
static struct ggml_state g_state;
static atomic_int g_state_barrier = 0;
// barrier via spin lock
inline static void ggml_critical_section_start(void) {
int processing = atomic_fetch_add(&g_state_barrier, 1);
while (processing > 0) {
// wait for other threads to finish
atomic_fetch_sub(&g_state_barrier, 1);
sched_yield(); // TODO: reconsider this
processing = atomic_fetch_add(&g_state_barrier, 1);
}
}
// TODO: make this somehow automatically executed
// some sort of "sentry" mechanism
inline static void ggml_critical_section_end(void) {
atomic_fetch_sub(&g_state_barrier, 1);
}
void ggml_numa_init(void) {
if (g_state.numa.n_nodes > 0) {
fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
return;
}
#ifdef __linux__
struct stat st;
char path[256];
int rv;
// enumerate nodes
while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
if (stat(path, &st) != 0) { break; }
++g_state.numa.n_nodes;
}
// enumerate CPUs
while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
if (stat(path, &st) != 0) { break; }
++g_state.numa.total_cpus;
}
GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
g_state.numa.n_nodes = 0;
return;
}
for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
struct ggml_numa_node * node = &g_state.numa.nodes[n];
GGML_PRINT_DEBUG("CPUs on node %u:", n);
node->n_cpus = 0;
for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
if (stat(path, &st) == 0) {
node->cpus[node->n_cpus++] = c;
GGML_PRINT_DEBUG(" %u", c);
}
}
GGML_PRINT_DEBUG("\n");
}
if (ggml_is_numa()) {
FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
if (fptr != NULL) {
char buf[42];
if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
}
fclose(fptr);
}
}
#else
// TODO
#endif
}
bool ggml_is_numa(void) {
return g_state.numa.n_nodes > 1;
}
////////////////////////////////////////////////////////////////////////////////
void ggml_print_object(const struct ggml_object * obj) {
GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
obj->type, obj->offs, obj->size, (const void *) obj->next);
}
void ggml_print_objects(const struct ggml_context * ctx) {
struct ggml_object * obj = ctx->objects_begin;
GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
while (obj != NULL) {
ggml_print_object(obj);
obj = obj->next;
}
GGML_PRINT("%s: --- end ---\n", __func__);
}
int64_t ggml_nelements(const struct ggml_tensor * tensor) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
}
int64_t ggml_nrows(const struct ggml_tensor * tensor) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
}
size_t ggml_nbytes(const struct ggml_tensor * tensor) {
size_t nbytes = tensor->ne[0]*tensor->nb[0]/ggml_blck_size(tensor->type);
for (int i = 1; i < GGML_MAX_DIMS; ++i) {
nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
}
return nbytes;
}
size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
}
size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return (nrows_split*tensor->ne[0]*ggml_type_size(tensor->type))/ggml_blck_size(tensor->type);
}
int ggml_blck_size(enum ggml_type type) {
return type_traits[type].blck_size;
}
size_t ggml_type_size(enum ggml_type type) {
return type_traits[type].type_size;
}
float ggml_type_sizef(enum ggml_type type) {
return ((float)(type_traits[type].type_size))/type_traits[type].blck_size;
}
const char * ggml_type_name(enum ggml_type type) {
return type_traits[type].type_name;
}
bool ggml_is_quantized(enum ggml_type type) {
return type_traits[type].is_quantized;
}
const char * ggml_op_name(enum ggml_op op) {
return GGML_OP_NAME[op];
}
const char * ggml_op_symbol(enum ggml_op op) {
return GGML_OP_SYMBOL[op];
}
size_t ggml_element_size(const struct ggml_tensor * tensor) {
return ggml_type_size(tensor->type);
}
static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
}
static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
}
static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return tensor->ne[2] == 1 && tensor->ne[3] == 1;
}
static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return (t0->ne[0] == t1->ne[0]) &&
(t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
(t1->ne[3]%t0->ne[3] == 0);
}
static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return
(t0->ne[1] == t1->ne[1]) &&
(t0->ne[2] == t1->ne[2]) &&
(t0->ne[3] == t1->ne[3]);
}
enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
enum ggml_type wtype = GGML_TYPE_COUNT;
switch (ftype) {
case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
}
GGML_ASSERT(wtype != GGML_TYPE_COUNT);
return wtype;
}
size_t ggml_tensor_overhead(void) {
return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
}
bool ggml_is_transposed(const struct ggml_tensor * tensor) {
return tensor->nb[0] > tensor->nb[1];
}
bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return
tensor->nb[0] == ggml_type_size(tensor->type) &&
tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
}
static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return
tensor->nb[0] == ggml_type_size(tensor->type) &&
tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
}
bool ggml_is_permuted(const struct ggml_tensor * tensor) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
}
static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return
tensor->nb[0] == ggml_type_size(tensor->type) &&
tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
}
bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return
(t0->ne[0] == t1->ne[0] ) &&
(t0->ne[1] == t1->ne[1] ) &&
(t0->ne[2] == t1->ne[2] ) &&
(t0->ne[3] == t1->ne[3] );
}
// check if t1 can be represented as a repeatition of t0
static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return
(t1->ne[0]%t0->ne[0] == 0) &&
(t1->ne[1]%t0->ne[1] == 0) &&
(t1->ne[2]%t0->ne[2] == 0) &&
(t1->ne[3]%t0->ne[3] == 0);
}
static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
}
static inline int ggml_up32(int n) {
return (n + 31) & ~31;
}
//static inline int ggml_up64(int n) {
// return (n + 63) & ~63;
//}
static inline int ggml_up(int n, int m) {
// assert m is a power of 2
GGML_ASSERT((m & (m - 1)) == 0);
return (n + m - 1) & ~(m - 1);
}
// assert that pointer is aligned to GGML_MEM_ALIGN
#define ggml_assert_aligned(ptr) \
GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
////////////////////////////////////////////////////////////////////////////////
struct ggml_context * ggml_init(struct ggml_init_params params) {
// make this function thread safe
ggml_critical_section_start();
static bool is_first_call = true;
if (is_first_call) {
// initialize time system (required on Windows)
ggml_time_init();
// initialize GELU, Quick GELU, SILU and EXP F32 tables
{
const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
ggml_fp16_t ii;
for (int i = 0; i < (1 << 16); ++i) {
uint16_t ui = i;
memcpy(&ii, &ui, sizeof(ii));
const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
}
const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
}
// initialize g_state
{
const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
g_state = (struct ggml_state) {
/*.contexts =*/ { { 0 } },
/*.numa =*/ {
.n_nodes = 0,
.total_cpus = 0,
},
};
for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
g_state.contexts[i].used = false;
}
const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
}
#if defined(GGML_USE_CUBLAS)
ggml_init_cublas();
#elif defined(GGML_USE_CLBLAST)
ggml_cl_init();
#endif
ggml_setup_op_has_task_pass();
is_first_call = false;
}
// find non-used context in g_state
struct ggml_context * ctx = NULL;
for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
if (!g_state.contexts[i].used) {
g_state.contexts[i].used = true;
ctx = &g_state.contexts[i].context;
GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
break;
}
}
if (ctx == NULL) {
GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
ggml_critical_section_end();
return NULL;
}
const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
*ctx = (struct ggml_context) {
/*.mem_size =*/ mem_size,
/*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
/*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
/*.no_alloc =*/ params.no_alloc,
/*.no_alloc_save =*/ params.no_alloc,
/*.n_objects =*/ 0,
/*.objects_begin =*/ NULL,
/*.objects_end =*/ NULL,
/*.scratch =*/ { 0, 0, NULL, },
/*.scratch_save =*/ { 0, 0, NULL, },
};
GGML_ASSERT(ctx->mem_buffer != NULL);
ggml_assert_aligned(ctx->mem_buffer);
GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
ggml_critical_section_end();
return ctx;
}
void ggml_free(struct ggml_context * ctx) {
// make this function thread safe
ggml_critical_section_start();
bool found = false;
for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
if (&g_state.contexts[i].context == ctx) {
g_state.contexts[i].used = false;
GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
__func__, i, ggml_used_mem(ctx));
if (ctx->mem_buffer_owned) {
GGML_ALIGNED_FREE(ctx->mem_buffer);
}
found = true;
break;
}
}
if (!found) {
GGML_PRINT_DEBUG("%s: context not found\n", __func__);
}
ggml_critical_section_end();
}
size_t ggml_used_mem(const struct ggml_context * ctx) {
return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
}
size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
ctx->scratch = scratch;
return result;
}
bool ggml_get_no_alloc(struct ggml_context * ctx) {
return ctx->no_alloc;
}
void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
ctx->no_alloc = no_alloc;
}
void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
return ctx->mem_buffer;
}
size_t ggml_get_mem_size(const struct ggml_context * ctx) {
return ctx->mem_size;
}
size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
size_t max_size = 0;
struct ggml_object * obj = ctx->objects_begin;
while (obj != NULL) {
if (obj->type == GGML_OBJECT_TENSOR) {
struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
const size_t size = ggml_nbytes(tensor);
if (max_size < size) {
max_size = size;
}
}
obj = obj->next;
}
return max_size;
}
// IMPORTANT:
// when creating "opt" tensors, always save and load the scratch buffer
// this is an error prone process, but it is necessary to support inplace
// operators when using scratch buffers
// TODO: implement a better way
static void ggml_scratch_save(struct ggml_context * ctx) {
// this is needed to allow opt tensors to store their data
// TODO: again, need to find a better way
ctx->no_alloc_save = ctx->no_alloc;
ctx->no_alloc = false;
ctx->scratch_save = ctx->scratch;
ctx->scratch.data = NULL;
}
static void ggml_scratch_load(struct ggml_context * ctx) {
ctx->no_alloc = ctx->no_alloc_save;
ctx->scratch = ctx->scratch_save;
}
////////////////////////////////////////////////////////////////////////////////
static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
// always insert objects at the end of the context's memory pool
struct ggml_object * obj_cur = ctx->objects_end;
const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
const size_t cur_end = cur_offs + cur_size;
// align to GGML_MEM_ALIGN
size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
char * const mem_buffer = ctx->mem_buffer;
struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
__func__, cur_end + size_needed, ctx->mem_size);
assert(false);
return NULL;
}
*obj_new = (struct ggml_object) {
.offs = cur_end + GGML_OBJECT_SIZE,
.size = size_needed,
.next = NULL,
.type = type,
};
ggml_assert_aligned(mem_buffer + obj_new->offs);
if (obj_cur != NULL) {
obj_cur->next = obj_new;
} else {
// this is the first object in this context
ctx->objects_begin = obj_new;
}
ctx->objects_end = obj_new;
//printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
return obj_new;
}
static struct ggml_tensor * ggml_new_tensor_impl(
struct ggml_context * ctx,
enum ggml_type type,
int n_dims,
const int64_t * ne,
struct ggml_tensor * view_src,
size_t view_offs) {
assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
// find the base tensor and absolute offset
if (view_src != NULL && view_src->view_src != NULL) {
view_offs += view_src->view_offs;
view_src = view_src->view_src;
}
size_t data_size = ggml_type_size(type)*(ne[0]/ggml_blck_size(type));
for (int i = 1; i < n_dims; i++) {
data_size *= ne[i];
}
GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
void * data = view_src != NULL ? view_src->data : NULL;
if (data != NULL) {
data = (char *) data + view_offs;
}
size_t obj_alloc_size = 0;
if (view_src == NULL && ctx->no_alloc == false) {
if (ctx->scratch.data != NULL) {
// allocate tensor data in the scratch buffer
if (ctx->scratch.offs + data_size > ctx->scratch.size) {
GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
__func__, ctx->scratch.offs + data_size, ctx->scratch.size);
assert(false);
return NULL;
}
data = (char * const) ctx->scratch.data + ctx->scratch.offs;
ctx->scratch.offs += data_size;
} else {
// allocate tensor data in the context's memory pool
obj_alloc_size = data_size;
}
}
struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
// TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
*result = (struct ggml_tensor) {
/*.type =*/ type,
/*.backend =*/ GGML_BACKEND_CPU,
/*.n_dims =*/ n_dims,
/*.ne =*/ { 1, 1, 1, 1 },
/*.nb =*/ { 0, 0, 0, 0 },
/*.op =*/ GGML_OP_NONE,
/*.op_params =*/ { 0 },
/*.is_param =*/ false,
/*.grad =*/ NULL,
/*.src =*/ { NULL },
/*.perf_runs =*/ 0,
/*.perf_cycles =*/ 0,
/*.perf_time_us =*/ 0,
/*.view_src =*/ view_src,
/*.view_offs =*/ view_offs,
/*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
/*.name =*/ { 0 },
/*.extra =*/ NULL,
/*.padding =*/ { 0 },
};
// TODO: this should not be needed as long as we don't rely on aligned SIMD loads
//ggml_assert_aligned(result->data);
for (int i = 0; i < n_dims; i++) {
result->ne[i] = ne[i];
}
result->nb[0] = ggml_type_size(type);
result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
for (int i = 2; i < GGML_MAX_DIMS; i++) {
result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
}
ctx->n_objects++;
return result;
}
struct ggml_tensor * ggml_new_tensor(
struct ggml_context * ctx,
enum ggml_type type,
int n_dims,
const int64_t * ne) {
return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
}
struct ggml_tensor * ggml_new_tensor_1d(
struct ggml_context * ctx,
enum ggml_type type,
int64_t ne0) {
return ggml_new_tensor(ctx, type, 1, &ne0);
}
struct ggml_tensor * ggml_new_tensor_2d(
struct ggml_context * ctx,
enum ggml_type type,
int64_t ne0,
int64_t ne1) {
const int64_t ne[2] = { ne0, ne1 };
return ggml_new_tensor(ctx, type, 2, ne);
}
struct ggml_tensor * ggml_new_tensor_3d(
struct ggml_context * ctx,
enum ggml_type type,
int64_t ne0,
int64_t ne1,
int64_t ne2) {
const int64_t ne[3] = { ne0, ne1, ne2 };
return ggml_new_tensor(ctx, type, 3, ne);
}
struct ggml_tensor * ggml_new_tensor_4d(
struct ggml_context * ctx,
enum ggml_type type,
int64_t ne0,
int64_t ne1,
int64_t ne2,
int64_t ne3) {
const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
return ggml_new_tensor(ctx, type, 4, ne);
}
struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
ggml_scratch_save(ctx);
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
ggml_scratch_load(ctx);
ggml_set_i32(result, value);
return result;
}
struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
ggml_scratch_save(ctx);
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
ggml_scratch_load(ctx);
ggml_set_f32(result, value);
return result;
}
struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
return ggml_new_tensor(ctx, src->type, src->n_dims, src->ne);
}
static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
assert(params_size <= GGML_MAX_OP_PARAMS);
memcpy(tensor->op_params, params, params_size);
}
static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
return ((const int32_t *)(tensor->op_params))[i];
}
static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
((int32_t *)(tensor->op_params))[i] = value;
}
struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
memset(tensor->data, 0, ggml_nbytes(tensor));
return tensor;
}
struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
const int n = ggml_nrows(tensor);
const int nc = tensor->ne[0];
const size_t n1 = tensor->nb[1];
char * const data = tensor->data;
switch (tensor->type) {
case GGML_TYPE_I8:
{
assert(tensor->nb[0] == sizeof(int8_t));
for (int i = 0; i < n; i++) {
ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
}
} break;
case GGML_TYPE_I16:
{
assert(tensor->nb[0] == sizeof(int16_t));
for (int i = 0; i < n; i++) {
ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
}
} break;
case GGML_TYPE_I32:
{
assert(tensor->nb[0] == sizeof(int32_t));
for (int i = 0; i < n; i++) {
ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
}
} break;
case GGML_TYPE_F16:
{
assert(tensor->nb[0] == sizeof(ggml_fp16_t));
for (int i = 0; i < n; i++) {
ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
}
} break;
case GGML_TYPE_F32:
{
assert(tensor->nb[0] == sizeof(float));
for (int i = 0; i < n; i++) {
ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
}
} break;
default:
{
GGML_ASSERT(false);
} break;
}
return tensor;
}
struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
const int n = ggml_nrows(tensor);
const int nc = tensor->ne[0];
const size_t n1 = tensor->nb[1];
char * const data = tensor->data;
switch (tensor->type) {
case GGML_TYPE_I8:
{
assert(tensor->nb[0] == sizeof(int8_t));
for (int i = 0; i < n; i++) {
ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
}
} break;
case GGML_TYPE_I16:
{
assert(tensor->nb[0] == sizeof(int16_t));
for (int i = 0; i < n; i++) {
ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
}
} break;
case GGML_TYPE_I32:
{
assert(tensor->nb[0] == sizeof(int32_t));
for (int i = 0; i < n; i++) {
ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
}
} break;
case GGML_TYPE_F16:
{
assert(tensor->nb[0] == sizeof(ggml_fp16_t));
for (int i = 0; i < n; i++) {
ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
}
} break;
case GGML_TYPE_F32:
{
assert(tensor->nb[0] == sizeof(float));
for (int i = 0; i < n; i++) {
ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
}
} break;
default:
{
GGML_ASSERT(false);
} break;
}
return tensor;
}
int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
switch (tensor->type) {
case GGML_TYPE_I8:
{
GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
return ((int8_t *)(tensor->data))[i];
} break;
case GGML_TYPE_I16:
{
GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
return ((int16_t *)(tensor->data))[i];
} break;
case GGML_TYPE_I32:
{
GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
return ((int32_t *)(tensor->data))[i];
} break;
case GGML_TYPE_F16:
{
GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
} break;
case GGML_TYPE_F32:
{
GGML_ASSERT(tensor->nb[0] == sizeof(float));
return ((float *)(tensor->data))[i];
} break;
default:
{
GGML_ASSERT(false);
} break;
}
return 0.0f;
}
void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
switch (tensor->type) {
case GGML_TYPE_I8:
{
GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
((int8_t *)(tensor->data))[i] = value;
} break;
case GGML_TYPE_I16:
{
GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
((int16_t *)(tensor->data))[i] = value;
} break;
case GGML_TYPE_I32:
{
GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
((int32_t *)(tensor->data))[i] = value;
} break;
case GGML_TYPE_F16:
{
GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
} break;
case GGML_TYPE_F32:
{
GGML_ASSERT(tensor->nb[0] == sizeof(float));
((float *)(tensor->data))[i] = value;
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
switch (tensor->type) {
case GGML_TYPE_I8:
{
GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
return ((int8_t *)(tensor->data))[i];
} break;
case GGML_TYPE_I16:
{
GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
return ((int16_t *)(tensor->data))[i];
} break;
case GGML_TYPE_I32:
{
GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
return ((int32_t *)(tensor->data))[i];
} break;
case GGML_TYPE_F16:
{
GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
} break;
case GGML_TYPE_F32:
{
GGML_ASSERT(tensor->nb[0] == sizeof(float));
return ((float *)(tensor->data))[i];
} break;
default:
{
GGML_ASSERT(false);
} break;
}
return 0.0f;
}
void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
switch (tensor->type) {
case GGML_TYPE_I8:
{
GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
((int8_t *)(tensor->data))[i] = value;
} break;
case GGML_TYPE_I16:
{
GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
((int16_t *)(tensor->data))[i] = value;
} break;
case GGML_TYPE_I32:
{
GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
((int32_t *)(tensor->data))[i] = value;
} break;
case GGML_TYPE_F16:
{
GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
} break;
case GGML_TYPE_F32:
{
GGML_ASSERT(tensor->nb[0] == sizeof(float));
((float *)(tensor->data))[i] = value;
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
void * ggml_get_data(const struct ggml_tensor * tensor) {
return tensor->data;
}
float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
assert(tensor->type == GGML_TYPE_F32);
return (float *)(tensor->data);
}
enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
GGML_ASSERT(tensor->op == GGML_OP_UNARY);
return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
}
const char * ggml_get_name(const struct ggml_tensor * tensor) {
return tensor->name;
}
struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
strncpy(tensor->name, name, sizeof(tensor->name));
tensor->name[sizeof(tensor->name) - 1] = '\0';
return tensor;
}
struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
va_list args;
va_start(args, fmt);
vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
va_end(args);
return tensor;
}
struct ggml_tensor * ggml_view_tensor(
struct ggml_context * ctx,
struct ggml_tensor * src) {
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src, 0);
ggml_format_name(result, "%s (view)", src->name);
for (int i = 0; i < GGML_MAX_DIMS; i++) {
result->nb[i] = src->nb[i];
}
return result;
}
struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
struct ggml_object * obj = ctx->objects_begin;
char * const mem_buffer = ctx->mem_buffer;
while (obj != NULL) {
if (obj->type == GGML_OBJECT_TENSOR) {
struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
if (strcmp(cur->name, name) == 0) {
return cur;
}
}
obj = obj->next;
}
return NULL;
}
////////////////////////////////////////////////////////////////////////////////
// ggml_dup
static struct ggml_tensor * ggml_dup_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
bool inplace) {
bool is_node = false;
if (!inplace && (a->grad)) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op = GGML_OP_DUP;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_dup(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_dup_impl(ctx, a, false);
}
struct ggml_tensor * ggml_dup_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_dup_impl(ctx, a, true);
}
// ggml_add
static struct ggml_tensor * ggml_add_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
bool inplace) {
// TODO: support less-strict constraint
// GGML_ASSERT(ggml_can_repeat(b, a));
GGML_ASSERT(ggml_can_repeat_rows(b, a));
bool is_node = false;
if (!inplace && (a->grad || b->grad)) {
// TODO: support backward pass for broadcasting
GGML_ASSERT(ggml_are_same_shape(a, b));
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op = GGML_OP_ADD;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
return result;
}
struct ggml_tensor * ggml_add(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_add_impl(ctx, a, b, false);
}
struct ggml_tensor * ggml_add_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_add_impl(ctx, a, b, true);
}
// ggml_add1
static struct ggml_tensor * ggml_add1_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
bool inplace) {
GGML_ASSERT(ggml_is_scalar(b));
GGML_ASSERT(ggml_is_padded_1d(a));
bool is_node = false;
if (a->grad || b->grad) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op = GGML_OP_ADD1;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
return result;
}
struct ggml_tensor * ggml_add1(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_add1_impl(ctx, a, b, false);
}
struct ggml_tensor * ggml_add1_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_add1_impl(ctx, a, b, true);
}
// ggml_acc
static struct ggml_tensor * ggml_acc_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t nb1,
size_t nb2,
size_t nb3,
size_t offset,
bool inplace) {
GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
GGML_ASSERT(ggml_is_contiguous(a));
GGML_ASSERT(a->type == GGML_TYPE_F32);
GGML_ASSERT(b->type == GGML_TYPE_F32);
bool is_node = false;
if (!inplace && (a->grad || b->grad)) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_ACC;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
return result;
}
struct ggml_tensor * ggml_acc(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t nb1,
size_t nb2,
size_t nb3,
size_t offset) {
return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
}
struct ggml_tensor * ggml_acc_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t nb1,
size_t nb2,
size_t nb3,
size_t offset) {
return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
}
// ggml_sub
static struct ggml_tensor * ggml_sub_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
bool inplace) {
GGML_ASSERT(ggml_are_same_shape(a, b));
bool is_node = false;
if (!inplace && (a->grad || b->grad)) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op = GGML_OP_SUB;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
return result;
}
struct ggml_tensor * ggml_sub(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_sub_impl(ctx, a, b, false);
}
struct ggml_tensor * ggml_sub_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_sub_impl(ctx, a, b, true);
}
// ggml_mul
static struct ggml_tensor * ggml_mul_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
bool inplace) {
// TODO: support less-strict constraint
// GGML_ASSERT(ggml_can_repeat(b, a));
GGML_ASSERT(ggml_can_repeat_rows(b, a));
bool is_node = false;
if (!inplace && (a->grad || b->grad)) {
// TODO: support backward pass for broadcasting
GGML_ASSERT(ggml_are_same_shape(a, b));
is_node = true;
}
if (inplace) {
GGML_ASSERT(is_node == false);
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op = GGML_OP_MUL;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
return result;
}
struct ggml_tensor * ggml_mul(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_mul_impl(ctx, a, b, false);
}
struct ggml_tensor * ggml_mul_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_mul_impl(ctx, a, b, true);
}
// ggml_div
static struct ggml_tensor * ggml_div_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
bool inplace) {
GGML_ASSERT(ggml_are_same_shape(a, b));
bool is_node = false;
if (!inplace && (a->grad || b->grad)) {
is_node = true;
}
if (inplace) {
GGML_ASSERT(is_node == false);
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op = GGML_OP_DIV;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
return result;
}
struct ggml_tensor * ggml_div(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_div_impl(ctx, a, b, false);
}
struct ggml_tensor * ggml_div_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_div_impl(ctx, a, b, true);
}
// ggml_sqr
static struct ggml_tensor * ggml_sqr_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
bool inplace) {
bool is_node = false;
if (!inplace && (a->grad)) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op = GGML_OP_SQR;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_sqr(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_sqr_impl(ctx, a, false);
}
struct ggml_tensor * ggml_sqr_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_sqr_impl(ctx, a, true);
}
// ggml_sqrt
static struct ggml_tensor * ggml_sqrt_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
bool inplace) {
bool is_node = false;
if (!inplace && (a->grad)) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op = GGML_OP_SQRT;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_sqrt(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_sqrt_impl(ctx, a, false);
}
struct ggml_tensor * ggml_sqrt_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_sqrt_impl(ctx, a, true);
}
// ggml_log
static struct ggml_tensor * ggml_log_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
bool inplace) {
bool is_node = false;
if (!inplace && (a->grad)) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op = GGML_OP_LOG;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_log(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_log_impl(ctx, a, false);
}
struct ggml_tensor * ggml_log_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_log_impl(ctx, a, true);
}
// ggml_sum
struct ggml_tensor * ggml_sum(
struct ggml_context * ctx,
struct ggml_tensor * a) {
bool is_node = false;
if (a->grad) {
is_node = true;
}
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
result->op = GGML_OP_SUM;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
// ggml_sum_rows
struct ggml_tensor * ggml_sum_rows(
struct ggml_context * ctx,
struct ggml_tensor * a) {
bool is_node = false;
if (a->grad) {
is_node = true;
}
int64_t ne[4] = {1,1,1,1};
for (int i = 1; i < a->n_dims; ++i) {
ne[i] = a->ne[i];
}
struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
result->op = GGML_OP_SUM_ROWS;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
// ggml_mean
struct ggml_tensor * ggml_mean(
struct ggml_context * ctx,
struct ggml_tensor * a) {
bool is_node = false;
if (a->grad) {
GGML_ASSERT(false); // TODO: implement
is_node = true;
}
int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
result->op = GGML_OP_MEAN;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
// ggml_argmax
struct ggml_tensor * ggml_argmax(
struct ggml_context * ctx,
struct ggml_tensor * a) {
GGML_ASSERT(ggml_is_matrix(a));
bool is_node = false;
if (a->grad) {
GGML_ASSERT(false);
is_node = true;
}
int64_t ne[GGML_MAX_DIMS] = { a->ne[1], 1, 1, 1 };
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, ne);
result->op = GGML_OP_ARGMAX;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
// ggml_repeat
struct ggml_tensor * ggml_repeat(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
GGML_ASSERT(ggml_can_repeat(a, b));
bool is_node = false;
if (a->grad) {
is_node = true;
}
struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
result->op = GGML_OP_REPEAT;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
return result;
}
// ggml_repeat_back
struct ggml_tensor * ggml_repeat_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
GGML_ASSERT(ggml_can_repeat(b, a));
bool is_node = false;
if (a->grad) {
is_node = true;
}
if (ggml_are_same_shape(a, b) && !is_node) {
return a;
}
struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
result->op = GGML_OP_REPEAT_BACK;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
return result;
}
// ggml_concat
struct ggml_tensor * ggml_concat(
struct ggml_context* ctx,
struct ggml_tensor* a,
struct ggml_tensor* b) {
GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
bool is_node = false;
if (a->grad || b->grad) {
is_node = true;
}
struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
result->op = GGML_OP_CONCAT;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
return result;
}
// ggml_abs
struct ggml_tensor * ggml_abs(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
}
struct ggml_tensor * ggml_abs_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
}
// ggml_sgn
struct ggml_tensor * ggml_sgn(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
}
struct ggml_tensor * ggml_sgn_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
}
// ggml_neg
struct ggml_tensor * ggml_neg(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
}
struct ggml_tensor * ggml_neg_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
}
// ggml_step
struct ggml_tensor * ggml_step(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
}
struct ggml_tensor * ggml_step_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
}
// ggml_tanh
struct ggml_tensor * ggml_tanh(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
}
struct ggml_tensor * ggml_tanh_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
}
// ggml_elu
struct ggml_tensor * ggml_elu(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
}
struct ggml_tensor * ggml_elu_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
}
// ggml_relu
struct ggml_tensor * ggml_relu(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
}
struct ggml_tensor * ggml_relu_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
}
// ggml_gelu
struct ggml_tensor * ggml_gelu(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
}
struct ggml_tensor * ggml_gelu_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
}
// ggml_gelu_quick
struct ggml_tensor * ggml_gelu_quick(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
}
struct ggml_tensor * ggml_gelu_quick_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
}
// ggml_silu
struct ggml_tensor * ggml_silu(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
}
struct ggml_tensor * ggml_silu_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
}
// ggml_silu_back
struct ggml_tensor * ggml_silu_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
bool is_node = false;
if (a->grad || b->grad) {
// TODO: implement backward
is_node = true;
}
struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
result->op = GGML_OP_SILU_BACK;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
return result;
}
// ggml_norm
static struct ggml_tensor * ggml_norm_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
float eps,
bool inplace) {
bool is_node = false;
if (!inplace && (a->grad)) {
GGML_ASSERT(false); // TODO: implement backward
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
ggml_set_op_params(result, &eps, sizeof(eps));
result->op = GGML_OP_NORM;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_norm(
struct ggml_context * ctx,
struct ggml_tensor * a,
float eps) {
return ggml_norm_impl(ctx, a, eps, false);
}
struct ggml_tensor * ggml_norm_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
float eps) {
return ggml_norm_impl(ctx, a, eps, true);
}
// ggml_rms_norm
static struct ggml_tensor * ggml_rms_norm_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
float eps,
bool inplace) {
bool is_node = false;
if (!inplace && (a->grad)) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
ggml_set_op_params(result, &eps, sizeof(eps));
result->op = GGML_OP_RMS_NORM;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_rms_norm(
struct ggml_context * ctx,
struct ggml_tensor * a,
float eps) {
return ggml_rms_norm_impl(ctx, a, eps, false);
}
struct ggml_tensor * ggml_rms_norm_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
float eps) {
return ggml_rms_norm_impl(ctx, a, eps, true);
}
// ggml_rms_norm_back
struct ggml_tensor * ggml_rms_norm_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
float eps) {
bool is_node = false;
if (a->grad) {
// TODO: implement backward
is_node = true;
}
struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
ggml_set_op_params(result, &eps, sizeof(eps));
result->op = GGML_OP_RMS_NORM_BACK;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
return result;
}
// ggml_group_norm
static struct ggml_tensor * ggml_group_norm_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_groups,
bool inplace) {
bool is_node = false;
if (!inplace && (a->grad)) {
GGML_ASSERT(false); // TODO: implement backward
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op = GGML_OP_GROUP_NORM;
result->op_params[0] = n_groups;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = NULL; // TODO: maybe store epsilon here?
return result;
}
struct ggml_tensor * ggml_group_norm(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_groups) {
return ggml_group_norm_impl(ctx, a, n_groups, false);
}
struct ggml_tensor * ggml_group_norm_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_groups) {
return ggml_group_norm_impl(ctx, a, n_groups, true);
}
// ggml_mul_mat
struct ggml_tensor * ggml_mul_mat(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
GGML_ASSERT(ggml_can_mul_mat(a, b));
GGML_ASSERT(!ggml_is_transposed(a));
bool is_node = false;
if (a->grad || b->grad) {
is_node = true;
}
const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
result->op = GGML_OP_MUL_MAT;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
return result;
}
// ggml_out_prod
struct ggml_tensor * ggml_out_prod(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
GGML_ASSERT(ggml_can_out_prod(a, b));
GGML_ASSERT(!ggml_is_transposed(a));
bool is_node = false;
if (a->grad || b->grad) {
is_node = true;
}
const int64_t ne[4] = { a->ne[0], b->ne[0], a->ne[2], b->ne[3] };
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
result->op = GGML_OP_OUT_PROD;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
return result;
}
// ggml_scale
static struct ggml_tensor * ggml_scale_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
bool inplace) {
GGML_ASSERT(ggml_is_scalar(b));
GGML_ASSERT(ggml_is_padded_1d(a));
bool is_node = false;
if (a->grad || b->grad) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op = GGML_OP_SCALE;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
return result;
}
struct ggml_tensor * ggml_scale(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_scale_impl(ctx, a, b, false);
}
struct ggml_tensor * ggml_scale_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_scale_impl(ctx, a, b, true);
}
// ggml_set
static struct ggml_tensor * ggml_set_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t nb1,
size_t nb2,
size_t nb3,
size_t offset,
bool inplace) {
GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
bool is_node = false;
if (a->grad || b->grad) {
is_node = true;
}
// make a view of the destination
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_SET;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
return result;
}
struct ggml_tensor * ggml_set(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t nb1,
size_t nb2,
size_t nb3,
size_t offset) {
return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
}
struct ggml_tensor * ggml_set_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t nb1,
size_t nb2,
size_t nb3,
size_t offset) {
return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
}
struct ggml_tensor * ggml_set_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t offset) {
return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
}
struct ggml_tensor * ggml_set_1d_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t offset) {
return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
}
struct ggml_tensor * ggml_set_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t nb1,
size_t offset) {
return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
}
struct ggml_tensor * ggml_set_2d_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t nb1,
size_t offset) {
return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
}
// ggml_cpy
static struct ggml_tensor * ggml_cpy_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
bool inplace) {
GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
bool is_node = false;
if (!inplace && (a->grad || b->grad)) {
is_node = true;
}
// make a view of the destination
struct ggml_tensor * result = ggml_view_tensor(ctx, b);
if (strlen(b->name) > 0) {
ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
} else {
ggml_format_name(result, "%s (copy)", a->name);
}
result->op = GGML_OP_CPY;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
return result;
}
struct ggml_tensor * ggml_cpy(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_cpy_impl(ctx, a, b, false);
}
struct ggml_tensor * ggml_cpy_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_cpy_impl(ctx, a, b, true);
}
// ggml_cont
static struct ggml_tensor * ggml_cont_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
bool inplace) {
bool is_node = false;
if (!inplace && a->grad) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
ggml_format_name(result, "%s (cont)", a->name);
result->op = GGML_OP_CONT;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_cont(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_cont_impl(ctx, a, false);
}
struct ggml_tensor * ggml_cont_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_cont_impl(ctx, a, true);
}
// ggml_reshape
struct ggml_tensor * ggml_reshape(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
GGML_ASSERT(ggml_is_contiguous(a));
GGML_ASSERT(ggml_is_contiguous(b));
GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
bool is_node = false;
if (a->grad) {
is_node = true;
}
if (b->grad) {
// gradient propagation is not supported
//GGML_ASSERT(false);
}
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a, 0);
ggml_format_name(result, "%s (reshaped)", a->name);
result->op = GGML_OP_RESHAPE;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_reshape_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0) {
GGML_ASSERT(ggml_is_contiguous(a));
GGML_ASSERT(ggml_nelements(a) == ne0);
bool is_node = false;
if (a->grad) {
is_node = true;
}
const int64_t ne[1] = { ne0 };
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
ggml_format_name(result, "%s (reshaped)", a->name);
result->op = GGML_OP_RESHAPE;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_reshape_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1) {
GGML_ASSERT(ggml_is_contiguous(a));
GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
bool is_node = false;
if (a->grad) {
is_node = true;
}
const int64_t ne[2] = { ne0, ne1 };
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
ggml_format_name(result, "%s (reshaped)", a->name);
result->op = GGML_OP_RESHAPE;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_reshape_3d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2) {
GGML_ASSERT(ggml_is_contiguous(a));
GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
bool is_node = false;
if (a->grad) {
is_node = true;
}
const int64_t ne[3] = { ne0, ne1, ne2 };
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
ggml_format_name(result, "%s (reshaped)", a->name);
result->op = GGML_OP_RESHAPE;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_reshape_4d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2,
int64_t ne3) {
GGML_ASSERT(ggml_is_contiguous(a));
GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
bool is_node = false;
if (a->grad) {
is_node = true;
}
const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
ggml_format_name(result, "%s (reshaped)", a->name);
result->op = GGML_OP_RESHAPE;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
static struct ggml_tensor * ggml_view_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_dims,
const int64_t * ne,
size_t offset) {
bool is_node = false;
if (a->grad) {
is_node = true;
}
struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
ggml_format_name(result, "%s (view)", a->name);
ggml_set_op_params(result, &offset, sizeof(offset));
result->op = GGML_OP_VIEW;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
// ggml_view_1d
struct ggml_tensor * ggml_view_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
size_t offset) {
struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
return result;
}
// ggml_view_2d
struct ggml_tensor * ggml_view_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
size_t nb1,
size_t offset) {
const int64_t ne[2] = { ne0, ne1 };
struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
result->nb[1] = nb1;
result->nb[2] = result->nb[1]*ne1;
result->nb[3] = result->nb[2];
return result;
}
// ggml_view_3d
struct ggml_tensor * ggml_view_3d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2,
size_t nb1,
size_t nb2,
size_t offset) {
const int64_t ne[3] = { ne0, ne1, ne2 };
struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
result->nb[1] = nb1;
result->nb[2] = nb2;
result->nb[3] = result->nb[2]*ne2;
return result;
}
// ggml_view_4d
struct ggml_tensor * ggml_view_4d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2,
int64_t ne3,
size_t nb1,
size_t nb2,
size_t nb3,
size_t offset) {
const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
result->nb[1] = nb1;
result->nb[2] = nb2;
result->nb[3] = nb3;
return result;
}
// ggml_permute
struct ggml_tensor * ggml_permute(
struct ggml_context * ctx,
struct ggml_tensor * a,
int axis0,
int axis1,
int axis2,
int axis3) {
GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
GGML_ASSERT(axis0 != axis1);
GGML_ASSERT(axis0 != axis2);
GGML_ASSERT(axis0 != axis3);
GGML_ASSERT(axis1 != axis2);
GGML_ASSERT(axis1 != axis3);
GGML_ASSERT(axis2 != axis3);
bool is_node = false;
if (a->grad) {
is_node = true;
}
struct ggml_tensor * result = ggml_view_tensor(ctx, a);
ggml_format_name(result, "%s (permuted)", a->name);
int ne[GGML_MAX_DIMS];
int nb[GGML_MAX_DIMS];
ne[axis0] = a->ne[0];
ne[axis1] = a->ne[1];
ne[axis2] = a->ne[2];
ne[axis3] = a->ne[3];
nb[axis0] = a->nb[0];
nb[axis1] = a->nb[1];
nb[axis2] = a->nb[2];
nb[axis3] = a->nb[3];
result->ne[0] = ne[0];
result->ne[1] = ne[1];
result->ne[2] = ne[2];
result->ne[3] = ne[3];
result->nb[0] = nb[0];
result->nb[1] = nb[1];
result->nb[2] = nb[2];
result->nb[3] = nb[3];
result->op = GGML_OP_PERMUTE;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
int32_t params[] = { axis0, axis1, axis2, axis3 };
ggml_set_op_params(result, params, sizeof(params));
return result;
}
// ggml_transpose
struct ggml_tensor * ggml_transpose(
struct ggml_context * ctx,
struct ggml_tensor * a) {
bool is_node = false;
if (a->grad) {
is_node = true;
}
struct ggml_tensor * result = ggml_view_tensor(ctx, a);
ggml_format_name(result, "%s (transposed)", a->name);
result->ne[0] = a->ne[1];
result->ne[1] = a->ne[0];
result->nb[0] = a->nb[1];
result->nb[1] = a->nb[0];
result->op = GGML_OP_TRANSPOSE;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
// ggml_get_rows
struct ggml_tensor * ggml_get_rows(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
bool is_node = false;
if (a->grad || b->grad) {
is_node = true;
}
// TODO: implement non F32 return
//struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
result->op = GGML_OP_GET_ROWS;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
return result;
}
// ggml_get_rows_back
struct ggml_tensor * ggml_get_rows_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c) {
GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
bool is_node = false;
if (a->grad || b->grad) {
is_node = true;
}
// TODO: implement non F32 return
//struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
result->op = GGML_OP_GET_ROWS_BACK;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
result->src[2] = c;
return result;
}
// ggml_diag
struct ggml_tensor * ggml_diag(
struct ggml_context * ctx,
struct ggml_tensor * a) {
GGML_ASSERT(a->ne[1] == 1);
bool is_node = false;
if (a->grad) {
is_node = true;
}
const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
result->op = GGML_OP_DIAG;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
// ggml_diag_mask_inf
static struct ggml_tensor * ggml_diag_mask_inf_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_past,
bool inplace) {
bool is_node = false;
if (a->grad) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
int32_t params[] = { n_past };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_DIAG_MASK_INF;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_diag_mask_inf(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_past) {
return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
}
struct ggml_tensor * ggml_diag_mask_inf_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_past) {
return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
}
// ggml_diag_mask_zero
static struct ggml_tensor * ggml_diag_mask_zero_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_past,
bool inplace) {
bool is_node = false;
if (a->grad) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
int32_t params[] = { n_past };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_DIAG_MASK_ZERO;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_diag_mask_zero(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_past) {
return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
}
struct ggml_tensor * ggml_diag_mask_zero_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_past) {
return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
}
// ggml_soft_max
static struct ggml_tensor * ggml_soft_max_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
bool inplace) {
bool is_node = false;
if (a->grad) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op = GGML_OP_SOFT_MAX;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_soft_max(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_soft_max_impl(ctx, a, false);
}
struct ggml_tensor * ggml_soft_max_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a) {
return ggml_soft_max_impl(ctx, a, true);
}
// ggml_soft_max_back
static struct ggml_tensor * ggml_soft_max_back_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
bool inplace) {
bool is_node = false;
if (a->grad || b->grad) {
is_node = true; // TODO : implement backward pass
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
result->op = GGML_OP_SOFT_MAX_BACK;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
return result;
}
struct ggml_tensor * ggml_soft_max_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_soft_max_back_impl(ctx, a, b, false);
}
struct ggml_tensor * ggml_soft_max_back_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_soft_max_back_impl(ctx, a, b, true);
}
// ggml_rope
static struct ggml_tensor * ggml_rope_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_past,
int n_dims,
int mode,
int n_ctx,
float freq_base,
float freq_scale,
float xpos_base,
bool xpos_down,
bool inplace) {
GGML_ASSERT(n_past >= 0);
bool is_node = false;
if (a->grad) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
int32_t params[8] = { n_past, n_dims, mode, n_ctx };
memcpy(params + 4, &freq_base, sizeof(float));
memcpy(params + 5, &freq_scale, sizeof(float));
memcpy(params + 6, &xpos_base, sizeof(float));
memcpy(params + 7, &xpos_down, sizeof(bool));
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_ROPE;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_rope(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_past,
int n_dims,
int mode,
int n_ctx) {
return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, 10000.0f, 1.0f, 0.0f, false, false);
}
struct ggml_tensor * ggml_rope_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_past,
int n_dims,
int mode,
int n_ctx) {
return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, 10000.0f, 1.0f, 0.0f, false, true);
}
struct ggml_tensor * ggml_rope_custom(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_past,
int n_dims,
int mode,
int n_ctx,
float freq_base,
float freq_scale) {
return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, freq_base, freq_scale, 0.0f, false, false);
}
struct ggml_tensor * ggml_rope_custom_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_past,
int n_dims,
int mode,
int n_ctx,
float freq_base,
float freq_scale) {
return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, freq_base, freq_scale, 0.0f, false, true);
}
struct ggml_tensor * ggml_rope_xpos_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_past,
int n_dims,
float base,
bool down) {
return ggml_rope_impl(ctx, a, n_past, n_dims, 0, 0, 10000.0f, 1.0f, base, down, true);
}
// ggml_rope_back
struct ggml_tensor * ggml_rope_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_past,
int n_dims,
int mode,
int n_ctx,
float freq_base,
float freq_scale,
float xpos_base,
bool xpos_down) {
GGML_ASSERT(n_past >= 0);
GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
bool is_node = false;
if (a->grad) {
is_node = false; // TODO: implement backward
}
struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
int32_t params[8] = { n_past, n_dims, mode, n_ctx };
memcpy(params + 4, &freq_base, sizeof(float));
memcpy(params + 5, &freq_scale, sizeof(float));
memcpy(params + 6, &xpos_base, sizeof(float));
memcpy(params + 7, &xpos_down, sizeof(bool));
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_ROPE_BACK;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
// ggml_alibi
struct ggml_tensor * ggml_alibi(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_past,
int n_head,
float bias_max) {
GGML_ASSERT(n_past >= 0);
bool is_node = false;
if (a->grad) {
GGML_ASSERT(false); // TODO: implement backward
is_node = true;
}
// TODO: when implement backward, fix this:
//struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
struct ggml_tensor * result = ggml_view_tensor(ctx, a);
int32_t op_params[3] = { n_past, n_head };
memcpy(op_params + 2, &bias_max, sizeof(float));
ggml_set_op_params(result, op_params, sizeof(op_params));
result->op = GGML_OP_ALIBI;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
// ggml_clamp
struct ggml_tensor * ggml_clamp(
struct ggml_context * ctx,
struct ggml_tensor * a,
float min,
float max) {
bool is_node = false;
if (a->grad) {
GGML_ASSERT(false); // TODO: implement backward
is_node = true;
}
// TODO: when implement backward, fix this:
struct ggml_tensor * result = ggml_view_tensor(ctx, a);
float params[] = { min, max };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_CLAMP;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
// ggml_conv_1d
static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
}
GGML_API struct ggml_tensor * ggml_conv_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s0,
int p0,
int d0) {
GGML_ASSERT(ggml_is_matrix(b));
GGML_ASSERT(a->ne[1] == b->ne[1]);
bool is_node = false;
if (a->grad || b->grad) {
GGML_ASSERT(false); // TODO: implement backward
is_node = true;
}
const int64_t ne[4] = {
ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
a->ne[2], 1, 1,
};
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
int32_t params[] = { s0, p0, d0 };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_CONV_1D;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
return result;
}
// ggml_conv_1d_ph
struct ggml_tensor* ggml_conv_1d_ph(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s,
int d) {
return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
}
// ggml_conv_2d
struct ggml_tensor * ggml_conv_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s0,
int s1,
int p0,
int p1,
int d0,
int d1) {
GGML_ASSERT(a->ne[2] == b->ne[2]);
bool is_node = false;
if (a->grad || b->grad) {
GGML_ASSERT(false); // TODO: implement backward
is_node = true;
}
const int64_t ne[4] = {
ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1),
a->ne[3], b->ne[3],
};
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
int32_t params[] = { s0, s1, p0, p1, d0, d1 };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_CONV_2D;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
return result;
}
// ggml_conv_2d_sk_p0
struct ggml_tensor * ggml_conv_2d_sk_p0(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
}
// ggml_conv_2d_s1_ph
struct ggml_tensor * ggml_conv_2d_s1_ph(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
}
// ggml_conv_transpose_2d_p0
static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
return (ins - 1) * s - 2 * p + ks;
}
struct ggml_tensor * ggml_conv_transpose_2d_p0(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int stride) {
GGML_ASSERT(a->ne[3] == b->ne[2]);
bool is_node = false;
if (a->grad || b->grad) {
GGML_ASSERT(false); // TODO: implement backward
is_node = true;
}
const int64_t ne[4] = {
ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
a->ne[2], b->ne[3],
};
struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
ggml_set_op_params_i32(result, 0, stride);
result->op = GGML_OP_CONV_TRANSPOSE_2D;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
return result;
}
// ggml_pool_*
static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, int p) {
return (ins + 2 * p - ks) / s + 1;
}
// ggml_pool_1d
struct ggml_tensor * ggml_pool_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_op_pool op,
int k0,
int s0,
int p0) {
bool is_node = false;
if (a->grad) {
GGML_ASSERT(false); // TODO: implement backward
is_node = true;
}
const int64_t ne[3] = {
ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
a->ne[1],
};
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
int32_t params[] = { op, k0, s0, p0 };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_POOL_1D;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
// ggml_pool_2d
struct ggml_tensor * ggml_pool_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_op_pool op,
int k0,
int k1,
int s0,
int s1,
int p0,
int p1) {
bool is_node = false;
if (a->grad) {
GGML_ASSERT(false); // TODO: implement backward
is_node = true;
}
const int64_t ne[3] = {
ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
a->ne[2],
};
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_POOL_2D;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
// ggml_upscale
static struct ggml_tensor * ggml_upscale_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
int scale_factor) {
bool is_node = false;
if (a->grad) {
GGML_ASSERT(false); // TODO: implement backward
is_node = true;
}
struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
a->ne[0] * scale_factor,
a->ne[1] * scale_factor,
a->ne[2], a->ne[3]);
result->op = GGML_OP_UPSCALE;
result->op_params[0] = scale_factor;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = NULL;
return result;
}
struct ggml_tensor * ggml_upscale(
struct ggml_context * ctx,
struct ggml_tensor * a,
int scale_factor) {
return ggml_upscale_impl(ctx, a, scale_factor);
}
// ggml_flash_attn
struct ggml_tensor * ggml_flash_attn(
struct ggml_context * ctx,
struct ggml_tensor * q,
struct ggml_tensor * k,
struct ggml_tensor * v,
bool masked) {
GGML_ASSERT(ggml_can_mul_mat(k, q));
// TODO: check if vT can be multiplied by (k*qT)
bool is_node = false;
if (q->grad || k->grad || v->grad) {
is_node = true;
}
//struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, q->n_dims, q->ne);
int32_t t = masked ? 1 : 0;
ggml_set_op_params(result, &t, sizeof(t));
result->op = GGML_OP_FLASH_ATTN;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = q;
result->src[1] = k;
result->src[2] = v;
return result;
}
// ggml_flash_ff
struct ggml_tensor * ggml_flash_ff(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b0,
struct ggml_tensor * b1,
struct ggml_tensor * c0,
struct ggml_tensor * c1) {
GGML_ASSERT(ggml_can_mul_mat(b0, a));
// TODO: more checks
bool is_node = false;
if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
is_node = true;
}
//struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne);
result->op = GGML_OP_FLASH_FF;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b0;
result->src[2] = b1;
result->src[3] = c0;
result->src[4] = c1;
return result;
}
// ggml_flash_attn_back
struct ggml_tensor * ggml_flash_attn_back(
struct ggml_context * ctx,
struct ggml_tensor * q,
struct ggml_tensor * k,
struct ggml_tensor * v,
struct ggml_tensor * d,
bool masked) {
GGML_ASSERT(ggml_can_mul_mat(k, q));
// TODO: check if vT can be multiplied by (k*qT)
// d shape [D,N,ne2,ne3]
// q shape [D,N,ne2,ne3]
// k shape [D,M,ne2,ne3]
// v shape [M,D,ne2,ne3]
const int64_t D = q->ne[0];
const int64_t N = q->ne[1];
const int64_t M = k->ne[1];
const int64_t ne2 = q->ne[2];
const int64_t ne3 = q->ne[3];
GGML_ASSERT(k->ne[0] == D);
GGML_ASSERT(v->ne[0] == M);
GGML_ASSERT(v->ne[1] == D);
GGML_ASSERT(d->ne[0] == D);
GGML_ASSERT(d->ne[1] == N);
GGML_ASSERT(k->ne[2] == ne2);
GGML_ASSERT(k->ne[3] == ne3);
GGML_ASSERT(v->ne[2] == ne2);
GGML_ASSERT(v->ne[3] == ne3);
GGML_ASSERT(d->ne[2] == ne2);
GGML_ASSERT(d->ne[3] == ne3);
bool is_node = false;
if (q->grad || k->grad || v->grad) {
// when using this operation (in backwards pass) these grads are set.
// we don't want to create (big) grad of our result, so is_node is false.
is_node = false;
}
// store gradients of q, k and v as continuous tensors concatenated in result.
// q shape[D,N,ne2,ne3] ; k shape [D,M,ne2,ne3] ; v shape [M,D,ne2,ne3]
// gradq->data = result->data
// gradk->data = result->data + nb0*D*N*ne2*ne3
// gradv->data = result->data + nb0*D*N*ne2*ne3 + nb0*D*M*ne2*ne3
// note: v and gradv are actually transposed, i.e. v->ne[0] != D.
int64_t ne[4] = {D,M+N+M,ne2,ne3};
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
int32_t masked_i = masked ? 1 : 0;
ggml_set_op_params(result, &masked_i, sizeof(masked_i));
result->op = GGML_OP_FLASH_ATTN_BACK;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = q;
result->src[1] = k;
result->src[2] = v;
result->src[3] = d;
return result;
}
// ggml_win_part
struct ggml_tensor * ggml_win_part(
struct ggml_context * ctx,
struct ggml_tensor * a,
int w) {
GGML_ASSERT(a->ne[3] == 1);
GGML_ASSERT(a->type == GGML_TYPE_F32);
bool is_node = false;
if (a->grad) {
GGML_ASSERT(false); // TODO: implement backward
is_node = true;
}
// padding
const int px = (w - a->ne[1]%w)%w;
const int py = (w - a->ne[2]%w)%w;
const int npx = (px + a->ne[1])/w;
const int npy = (py + a->ne[2])/w;
const int np = npx*npy;
const int64_t ne[4] = { a->ne[0], w, w, np, };
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
int32_t params[] = { npx, npy, w };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_WIN_PART;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
// ggml_win_unpart
struct ggml_tensor * ggml_win_unpart(
struct ggml_context * ctx,
struct ggml_tensor * a,
int w0,
int h0,
int w) {
GGML_ASSERT(a->type == GGML_TYPE_F32);
bool is_node = false;
if (a->grad) {
GGML_ASSERT(false); // TODO: implement backward
is_node = true;
}
const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
int32_t params[] = { w };
ggml_set_op_params(result, params, sizeof(params));
result->op = GGML_OP_WIN_UNPART;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
// ggml_get_rel_pos
struct ggml_tensor * ggml_get_rel_pos(
struct ggml_context * ctx,
struct ggml_tensor * a,
int qh,
int kh) {
GGML_ASSERT(qh == kh);
GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
bool is_node = false;
if (a->grad) {
GGML_ASSERT(false); // TODO: implement backward
is_node = true;
}
const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
result->op = GGML_OP_GET_REL_POS;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = NULL;
return result;
}
// ggml_add_rel_pos
static struct ggml_tensor * ggml_add_rel_pos_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * pw,
struct ggml_tensor * ph,
bool inplace) {
GGML_ASSERT(ggml_are_same_shape(pw, ph));
GGML_ASSERT(ggml_is_contiguous(a));
GGML_ASSERT(ggml_is_contiguous(pw));
GGML_ASSERT(ggml_is_contiguous(ph));
GGML_ASSERT(ph->type == GGML_TYPE_F32);
GGML_ASSERT(pw->type == GGML_TYPE_F32);
GGML_ASSERT(pw->ne[3] == a->ne[2]);
GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
bool is_node = false;
if (!inplace && (a->grad || pw->grad || ph->grad)) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
result->op = GGML_OP_ADD_REL_POS;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = pw;
result->src[2] = ph;
return result;
}
struct ggml_tensor * ggml_add_rel_pos(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * pw,
struct ggml_tensor * ph) {
return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
}
struct ggml_tensor * ggml_add_rel_pos_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * pw,
struct ggml_tensor * ph) {
return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
}
// gmml_unary
static struct ggml_tensor * ggml_unary_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_unary_op op,
bool inplace) {
bool is_node = false;
if (!inplace && (a->grad)) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
ggml_set_op_params_i32(result, 0, (int32_t) op);
result->op = GGML_OP_UNARY;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_unary(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_unary_op op) {
return ggml_unary_impl(ctx, a, op, false);
}
struct ggml_tensor * ggml_unary_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_unary_op op) {
return ggml_unary_impl(ctx, a, op, true);
}
// ggml_map_unary
static struct ggml_tensor * ggml_map_unary_impl_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
const ggml_unary_op_f32_t fun,
bool inplace) {
bool is_node = false;
if (!inplace && a->grad) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
result->op = GGML_OP_MAP_UNARY;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_map_unary_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
const ggml_unary_op_f32_t fun) {
return ggml_map_unary_impl_f32(ctx, a, fun, false);
}
struct ggml_tensor * ggml_map_unary_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
const ggml_unary_op_f32_t fun) {
return ggml_map_unary_impl_f32(ctx, a, fun, true);
}
// ggml_map_binary
static struct ggml_tensor * ggml_map_binary_impl_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
const ggml_binary_op_f32_t fun,
bool inplace) {
GGML_ASSERT(ggml_are_same_shape(a, b));
bool is_node = false;
if (!inplace && (a->grad || b->grad)) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
result->op = GGML_OP_MAP_BINARY;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
return result;
}
struct ggml_tensor * ggml_map_binary_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
const ggml_binary_op_f32_t fun) {
return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
}
struct ggml_tensor * ggml_map_binary_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
const ggml_binary_op_f32_t fun) {
return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
}
// ggml_map_custom1_f32
static struct ggml_tensor * ggml_map_custom1_impl_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
const ggml_custom1_op_f32_t fun,
bool inplace) {
bool is_node = false;
if (!inplace && a->grad) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
result->op = GGML_OP_MAP_CUSTOM1_F32;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_map_custom1_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
const ggml_custom1_op_f32_t fun) {
return ggml_map_custom1_impl_f32(ctx, a, fun, false);
}
struct ggml_tensor * ggml_map_custom1_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
const ggml_custom1_op_f32_t fun) {
return ggml_map_custom1_impl_f32(ctx, a, fun, true);
}
// ggml_map_custom2_f32
static struct ggml_tensor * ggml_map_custom2_impl_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
const ggml_custom2_op_f32_t fun,
bool inplace) {
bool is_node = false;
if (!inplace && (a->grad || b->grad)) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
result->op = GGML_OP_MAP_CUSTOM2_F32;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
return result;
}
struct ggml_tensor * ggml_map_custom2_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
const ggml_custom2_op_f32_t fun) {
return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
}
struct ggml_tensor * ggml_map_custom2_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
const ggml_custom2_op_f32_t fun) {
return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
}
// ggml_map_custom3_f32
static struct ggml_tensor * ggml_map_custom3_impl_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
const ggml_custom3_op_f32_t fun,
bool inplace) {
bool is_node = false;
if (!inplace && (a->grad || b->grad || c->grad)) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
result->op = GGML_OP_MAP_CUSTOM3_F32;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
result->src[2] = c;
return result;
}
struct ggml_tensor * ggml_map_custom3_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
const ggml_custom3_op_f32_t fun) {
return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
}
struct ggml_tensor * ggml_map_custom3_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
const ggml_custom3_op_f32_t fun) {
return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
}
// ggml_map_custom1
struct ggml_map_custom1_op_params {
ggml_custom1_op_t fun;
int n_tasks;
void * userdata;
};
static struct ggml_tensor * ggml_map_custom1_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
const ggml_custom1_op_t fun,
int n_tasks,
void * userdata,
bool inplace) {
GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
bool is_node = false;
if (!inplace && a->grad) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
struct ggml_map_custom1_op_params params = {
/*.fun =*/ fun,
/*.n_tasks =*/ n_tasks,
/*.userdata =*/ userdata
};
ggml_set_op_params(result, (const void *) &params, sizeof(params));
result->op = GGML_OP_MAP_CUSTOM1;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
struct ggml_tensor * ggml_map_custom1(
struct ggml_context * ctx,
struct ggml_tensor * a,
const ggml_custom1_op_t fun,
int n_tasks,
void * userdata) {
return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
}
struct ggml_tensor * ggml_map_custom1_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
const ggml_custom1_op_t fun,
int n_tasks,
void * userdata) {
return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
}
// ggml_map_custom2
struct ggml_map_custom2_op_params {
ggml_custom2_op_t fun;
int n_tasks;
void * userdata;
};
static struct ggml_tensor * ggml_map_custom2_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
const ggml_custom2_op_t fun,
int n_tasks,
void * userdata,
bool inplace) {
GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
bool is_node = false;
if (!inplace && (a->grad || b->grad)) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
struct ggml_map_custom2_op_params params = {
/*.fun =*/ fun,
/*.n_tasks =*/ n_tasks,
/*.userdata =*/ userdata
};
ggml_set_op_params(result, (const void *) &params, sizeof(params));
result->op = GGML_OP_MAP_CUSTOM2;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
return result;
}
struct ggml_tensor * ggml_map_custom2(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
const ggml_custom2_op_t fun,
int n_tasks,
void * userdata) {
return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
}
struct ggml_tensor * ggml_map_custom2_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
const ggml_custom2_op_t fun,
int n_tasks,
void * userdata) {
return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
}
// ggml_map_custom3
struct ggml_map_custom3_op_params {
ggml_custom3_op_t fun;
int n_tasks;
void * userdata;
};
static struct ggml_tensor * ggml_map_custom3_impl(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
const ggml_custom3_op_t fun,
int n_tasks,
void * userdata,
bool inplace) {
GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
bool is_node = false;
if (!inplace && (a->grad || b->grad || c->grad)) {
is_node = true;
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
struct ggml_map_custom3_op_params params = {
/*.fun =*/ fun,
/*.n_tasks =*/ n_tasks,
/*.userdata =*/ userdata
};
ggml_set_op_params(result, (const void *) &params, sizeof(params));
result->op = GGML_OP_MAP_CUSTOM3;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
result->src[2] = c;
return result;
}
struct ggml_tensor * ggml_map_custom3(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
const ggml_custom3_op_t fun,
int n_tasks,
void * userdata) {
return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
}
struct ggml_tensor * ggml_map_custom3_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
const ggml_custom3_op_t fun,
int n_tasks,
void * userdata) {
return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
}
// ggml_cross_entropy_loss
struct ggml_tensor * ggml_cross_entropy_loss(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
GGML_ASSERT(ggml_are_same_shape(a, b));
bool is_node = false;
if (a->grad || b->grad) {
is_node = true;
}
struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
result->op = GGML_OP_CROSS_ENTROPY_LOSS;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b;
return result;
}
// ggml_cross_entropy_loss_back
struct ggml_tensor * ggml_cross_entropy_loss_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c) {
GGML_ASSERT(ggml_are_same_shape(a, b));
GGML_ASSERT(ggml_is_scalar(c));
struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
result->grad = NULL;
result->src[0] = a;
result->src[1] = b;
result->src[2] = c;
return result;
}
////////////////////////////////////////////////////////////////////////////////
void ggml_set_param(
struct ggml_context * ctx,
struct ggml_tensor * tensor) {
tensor->is_param = true;
GGML_ASSERT(tensor->grad == NULL);
tensor->grad = ggml_dup_tensor(ctx, tensor);
}
// ggml_compute_forward_dup
static void ggml_compute_forward_dup_same_cont(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
GGML_ASSERT(src0->type == dst->type);
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
const size_t nb00 = src0->nb[0];
const size_t nb0 = dst->nb[0];
const int ith = params->ith; // thread index
const int nth = params->nth; // number of threads
// parallelize by elements
const int ne = ggml_nelements(dst);
const int dr = (ne + nth - 1) / nth;
const int ie0 = dr * ith;
const int ie1 = MIN(ie0 + dr, ne);
if (ie0 < ie1) {
memcpy(
((char *) dst->data + ie0*nb0),
((char *) src0->data + ie0*nb00),
(ie1 - ie0) * ggml_type_size(src0->type));
}
}
static void ggml_compute_forward_dup_f16(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
GGML_TENSOR_UNARY_OP_LOCALS;
const int ith = params->ith; // thread index
const int nth = params->nth; // number of threads
if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
ggml_compute_forward_dup_same_cont(params, src0, dst);
return;
}
// parallelize by rows
const int nr = ne01;
// number of rows per thread
const int dr = (nr + nth - 1) / nth;
// row range for this thread
const int ir0 = dr * ith;
const int ir1 = MIN(ir0 + dr, nr);
if (src0->type == dst->type &&
ne00 == ne0 &&
nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
// copy by rows
const size_t rs = ne00*nb00;
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = ir0; i01 < ir1; i01++) {
memcpy(
((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
rs);
}
}
}
return;
}
// TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
if (ggml_is_contiguous(dst)) {
if (nb00 == sizeof(ggml_fp16_t)) {
if (dst->type == GGML_TYPE_F16) {
size_t id = 0;
const size_t rs = ne00 * nb00;
char * dst_ptr = (char *) dst->data;
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += rs * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
memcpy(dst_ptr + id, src0_ptr, rs);
id += rs;
}
id += rs * (ne01 - ir1);
}
}
} else if (dst->type == GGML_TYPE_F32) {
size_t id = 0;
float * dst_ptr = (float *) dst->data;
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += ne00 * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
for (int i00 = 0; i00 < ne00; i00++) {
dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
id++;
}
}
id += ne00 * (ne01 - ir1);
}
}
} else if (type_traits[dst->type].from_float) {
ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
size_t id = 0;
size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
char * dst_ptr = (char *) dst->data;
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += rs * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
for (int i00 = 0; i00 < ne00; i00++) {
src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
}
quantize_row_q(src0_f32, dst_ptr + id, ne00);
id += rs;
}
id += rs * (ne01 - ir1);
}
}
} else {
GGML_ASSERT(false); // TODO: implement
}
} else {
//printf("%s: this is not optimal - fix me\n", __func__);
if (dst->type == GGML_TYPE_F32) {
size_t id = 0;
float * dst_ptr = (float *) dst->data;
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += ne00 * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
for (int i00 = 0; i00 < ne00; i00++) {
const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
id++;
}
}
id += ne00 * (ne01 - ir1);
}
}
} else if (dst->type == GGML_TYPE_F16) {
size_t id = 0;
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += ne00 * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
for (int i00 = 0; i00 < ne00; i00++) {
const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
dst_ptr[id] = *src0_ptr;
id++;
}
}
id += ne00 * (ne01 - ir1);
}
}
} else {
GGML_ASSERT(false); // TODO: implement
}
}
return;
}
// dst counters
int64_t i10 = 0;
int64_t i11 = 0;
int64_t i12 = 0;
int64_t i13 = 0;
if (dst->type == GGML_TYPE_F16) {
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
i10 += ne00 * ir0;
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
for (int64_t i01 = ir0; i01 < ir1; i01++) {
for (int64_t i00 = 0; i00 < ne00; i00++) {
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
if (++i10 == ne00) {
i10 = 0;
if (++i11 == ne01) {
i11 = 0;
if (++i12 == ne02) {
i12 = 0;
if (++i13 == ne03) {
i13 = 0;
}
}
}
}
}
}
i10 += ne00 * (ne01 - ir1);
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
} else if (dst->type == GGML_TYPE_F32) {
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
i10 += ne00 * ir0;
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
for (int64_t i01 = ir0; i01 < ir1; i01++) {
for (int64_t i00 = 0; i00 < ne00; i00++) {
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
*(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
if (++i10 == ne0) {
i10 = 0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
i10 += ne00 * (ne01 - ir1);
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
} else {
GGML_ASSERT(false); // TODO: implement
}
}
static void ggml_compute_forward_dup_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
GGML_TENSOR_UNARY_OP_LOCALS;
const int ith = params->ith; // thread index
const int nth = params->nth; // number of threads
if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
ggml_compute_forward_dup_same_cont(params, src0, dst);
return;
}
// parallelize by rows
const int nr = ne01;
// number of rows per thread
const int dr = (nr + nth - 1) / nth;
// row range for this thread
const int ir0 = dr * ith;
const int ir1 = MIN(ir0 + dr, nr);
if (src0->type == dst->type &&
ne00 == ne0 &&
nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
// copy by rows
const size_t rs = ne00*nb00;
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = ir0; i01 < ir1; i01++) {
memcpy(
((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
rs);
}
}
}
return;
}
if (ggml_is_contiguous(dst)) {
// TODO: simplify
if (nb00 == sizeof(float)) {
if (dst->type == GGML_TYPE_F32) {
size_t id = 0;
const size_t rs = ne00 * nb00;
char * dst_ptr = (char *) dst->data;
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += rs * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
memcpy(dst_ptr + id, src0_ptr, rs);
id += rs;
}
id += rs * (ne01 - ir1);
}
}
} else if (type_traits[dst->type].from_float) {
ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
size_t id = 0;
size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
char * dst_ptr = (char *) dst->data;
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += rs * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
quantize_row_q(src0_ptr, dst_ptr + id, ne00);
id += rs;
}
id += rs * (ne01 - ir1);
}
}
} else {
GGML_ASSERT(false); // TODO: implement
}
} else {
//printf("%s: this is not optimal - fix me\n", __func__);
if (dst->type == GGML_TYPE_F32) {
size_t id = 0;
float * dst_ptr = (float *) dst->data;
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += ne00 * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
for (int i00 = 0; i00 < ne00; i00++) {
const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
dst_ptr[id] = *src0_ptr;
id++;
}
}
id += ne00 * (ne01 - ir1);
}
}
} else if (dst->type == GGML_TYPE_F16) {
size_t id = 0;
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = 0; i02 < ne02; i02++) {
id += ne00 * ir0;
for (int i01 = ir0; i01 < ir1; i01++) {
for (int i00 = 0; i00 < ne00; i00++) {
const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
id++;
}
}
id += ne00 * (ne01 - ir1);
}
}
} else {
GGML_ASSERT(false); // TODO: implement
}
}
return;
}
// dst counters
int64_t i10 = 0;
int64_t i11 = 0;
int64_t i12 = 0;
int64_t i13 = 0;
if (dst->type == GGML_TYPE_F32) {
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
i10 += ne00 * ir0;
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
for (int64_t i01 = ir0; i01 < ir1; i01++) {
for (int64_t i00 = 0; i00 < ne00; i00++) {
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
memcpy(dst_ptr, src0_ptr, sizeof(float));
if (++i10 == ne0) {
i10 = 0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
i10 += ne00 * (ne01 - ir1);
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
} else if (dst->type == GGML_TYPE_F16) {
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
i10 += ne00 * ir0;
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
for (int64_t i01 = ir0; i01 < ir1; i01++) {
for (int64_t i00 = 0; i00 < ne00; i00++) {
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
*(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
if (++i10 == ne0) {
i10 = 0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
i10 += ne00 * (ne01 - ir1);
while (i10 >= ne0) {
i10 -= ne0;
if (++i11 == ne1) {
i11 = 0;
if (++i12 == ne2) {
i12 = 0;
if (++i13 == ne3) {
i13 = 0;
}
}
}
}
}
}
} else {
GGML_ASSERT(false); // TODO: implement
}
}
static void ggml_compute_forward_dup(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
ggml_compute_forward_dup_same_cont(params, src0, dst);
return;
}
switch (src0->type) {
case GGML_TYPE_F16:
{
ggml_compute_forward_dup_f16(params, src0, dst);
} break;
case GGML_TYPE_F32:
{
ggml_compute_forward_dup_f32(params, src0, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_add
static void ggml_compute_forward_add_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(src0);
GGML_TENSOR_BINARY_OP_LOCALS;
GGML_ASSERT( nb0 == sizeof(float));
GGML_ASSERT(nb00 == sizeof(float));
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
if (nb10 == sizeof(float)) {
for (int ir = ir0; ir < ir1; ++ir) {
// src1 is broadcastable across src0 and dst in i1, i2, i3
const int64_t i03 = ir/(ne02*ne01);
const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
const int64_t i13 = i03 % ne13;
const int64_t i12 = i02 % ne12;
const int64_t i11 = i01 % ne11;
float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
#ifdef GGML_USE_ACCELERATE
vDSP_vadd(src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
#else
ggml_vec_add_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
#endif
// }
// }
}
} else {
// src1 is not contiguous
for (int ir = ir0; ir < ir1; ++ir) {
// src1 is broadcastable across src0 and dst in i1, i2, i3
const int64_t i03 = ir/(ne02*ne01);
const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
const int64_t i13 = i03 % ne13;
const int64_t i12 = i02 % ne12;
const int64_t i11 = i01 % ne11;
float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
for (int i0 = 0; i0 < ne0; i0++) {
float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
}
}
}
}
static void ggml_compute_forward_add_f16_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(src0);
GGML_TENSOR_BINARY_OP_LOCALS;
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F16);
GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
if (nb10 == sizeof(float)) {
for (int ir = ir0; ir < ir1; ++ir) {
// src0, src1 and dst are same shape => same indices
const int i3 = ir/(ne2*ne1);
const int i2 = (ir - i3*ne2*ne1)/ne1;
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
for (int i = 0; i < ne0; i++) {
dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
}
}
}
else {
// src1 is not contiguous
GGML_ASSERT(false);
}
}
static void ggml_compute_forward_add_f16_f16(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(src0);
GGML_TENSOR_BINARY_OP_LOCALS;
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F16);
GGML_ASSERT(dst->type == GGML_TYPE_F16);
GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
if (nb10 == sizeof(ggml_fp16_t)) {
for (int ir = ir0; ir < ir1; ++ir) {
// src0, src1 and dst are same shape => same indices
const int i3 = ir/(ne2*ne1);
const int i2 = (ir - i3*ne2*ne1)/ne1;
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
for (int i = 0; i < ne0; i++) {
dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
}
}
}
else {
// src1 is not contiguous
GGML_ASSERT(false);
}
}
static void ggml_compute_forward_add_q_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
const int nr = ggml_nrows(src0);
GGML_TENSOR_BINARY_OP_LOCALS;
const int ith = params->ith;
const int nth = params->nth;
const enum ggml_type type = src0->type;
ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
// we don't support permuted src0 or src1
GGML_ASSERT(nb00 == ggml_type_size(type));
GGML_ASSERT(nb10 == sizeof(float));
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 <= nb1);
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
GGML_ASSERT(ggml_is_quantized(src0->type));
GGML_ASSERT(dst->type == src0->type);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
for (int ir = ir0; ir < ir1; ++ir) {
// src0 indices
const int i03 = ir/(ne02*ne01);
const int i02 = (ir - i03*ne02*ne01)/ne01;
const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
// src1 and dst are same shape as src0 => same indices
const int i13 = i03;
const int i12 = i02;
const int i11 = i01;
const int i3 = i03;
const int i2 = i02;
const int i1 = i01;
void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
assert(ne00 % 32 == 0);
// unquantize row from src0 to temp buffer
dequantize_row_q(src0_row, wdata, ne00);
// add src1
ggml_vec_acc_f32(ne00, wdata, src1_row);
// quantize row to dst
quantize_row_q(wdata, dst_row, ne00);
}
}
static void ggml_compute_forward_add(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_add_f32(params, src0, src1, dst);
} break;
case GGML_TYPE_F16:
{
if (src1->type == GGML_TYPE_F16) {
ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
}
else if (src1->type == GGML_TYPE_F32) {
ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
}
else {
GGML_ASSERT(false);
}
} break;
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
{
ggml_compute_forward_add_q_f32(params, src0, src1, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_add1
static void ggml_compute_forward_add1_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
GGML_ASSERT(ggml_are_same_shape(src0, dst));
GGML_ASSERT(ggml_is_scalar(src1));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(src0);
GGML_TENSOR_UNARY_OP_LOCALS;
GGML_ASSERT( nb0 == sizeof(float));
GGML_ASSERT(nb00 == sizeof(float));
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int ir = ir0; ir < ir1; ++ir) {
// src0 and dst are same shape => same indices
const int i3 = ir/(ne2*ne1);
const int i2 = (ir - i3*ne2*ne1)/ne1;
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
#ifdef GGML_USE_ACCELERATE
UNUSED(ggml_vec_add1_f32);
vDSP_vadd(
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
(float *) ((char *) src1->data), 0,
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
ne0);
#else
ggml_vec_add1_f32(ne0,
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
*(float *) src1->data);
#endif
}
}
static void ggml_compute_forward_add1_f16_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
GGML_ASSERT(ggml_are_same_shape(src0, dst));
GGML_ASSERT(ggml_is_scalar(src1));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
// scalar to add
const float v = *(float *) src1->data;
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(src0);
GGML_TENSOR_UNARY_OP_LOCALS;
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F16);
GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int ir = ir0; ir < ir1; ++ir) {
// src0 and dst are same shape => same indices
const int i3 = ir/(ne2*ne1);
const int i2 = (ir - i3*ne2*ne1)/ne1;
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
for (int i = 0; i < ne0; i++) {
dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
}
}
}
static void ggml_compute_forward_add1_f16_f16(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
GGML_ASSERT(ggml_are_same_shape(src0, dst));
GGML_ASSERT(ggml_is_scalar(src1));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
// scalar to add
const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(src0);
GGML_TENSOR_UNARY_OP_LOCALS;
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F16);
GGML_ASSERT(dst->type == GGML_TYPE_F16);
GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int ir = ir0; ir < ir1; ++ir) {
// src0 and dst are same shape => same indices
const int i3 = ir/(ne2*ne1);
const int i2 = (ir - i3*ne2*ne1)/ne1;
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
for (int i = 0; i < ne0; i++) {
dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
}
}
}
static void ggml_compute_forward_add1_q_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
GGML_ASSERT(ggml_are_same_shape(src0, dst));
GGML_ASSERT(ggml_is_scalar(src1));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
// scalar to add
const float v = *(float *) src1->data;
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(src0);
GGML_TENSOR_UNARY_OP_LOCALS;
const enum ggml_type type = src0->type;
ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
// we don't support permuted src0
GGML_ASSERT(nb00 == ggml_type_size(type));
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 <= nb1);
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
GGML_ASSERT(ggml_is_quantized(src0->type));
GGML_ASSERT(dst->type == src0->type);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
for (int ir = ir0; ir < ir1; ++ir) {
// src0 and dst are same shape => same indices
const int i3 = ir/(ne2*ne1);
const int i2 = (ir - i3*ne2*ne1)/ne1;
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
assert(ne0 % 32 == 0);
// unquantize row from src0 to temp buffer
dequantize_row_q(src0_row, wdata, ne0);
// add src1
ggml_vec_acc1_f32(ne0, wdata, v);
// quantize row to dst
quantize_row_q(wdata, dst_row, ne0);
}
}
static void ggml_compute_forward_add1(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_add1_f32(params, src0, src1, dst);
} break;
case GGML_TYPE_F16:
{
if (src1->type == GGML_TYPE_F16) {
ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
}
else if (src1->type == GGML_TYPE_F32) {
ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
}
else {
GGML_ASSERT(false);
}
} break;
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q8_1:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
{
ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_acc
static void ggml_compute_forward_acc_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
GGML_ASSERT(ggml_are_same_shape(src0, dst));
GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
// view src0 and dst with these strides and data offset inbytes during acc
// nb0 is implicitely element_size because src0 and dst are contiguous
size_t nb1 = ((int32_t *) dst->op_params)[0];
size_t nb2 = ((int32_t *) dst->op_params)[1];
size_t nb3 = ((int32_t *) dst->op_params)[2];
size_t offset = ((int32_t *) dst->op_params)[3];
bool inplace = (bool) ((int32_t *) dst->op_params)[4];
if (!inplace && (params->type == GGML_TASK_INIT)) {
// memcpy needs to be synchronized across threads to avoid race conditions.
// => do it in INIT phase
memcpy(
((char *) dst->data),
((char *) src0->data),
ggml_nbytes(dst));
}
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(src1);
const int nc = src1->ne[0];
GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
// src0 and dst as viewed during acc
const size_t nb0 = ggml_element_size(src0);
const size_t nb00 = nb0;
const size_t nb01 = nb1;
const size_t nb02 = nb2;
const size_t nb03 = nb3;
GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
GGML_ASSERT(nb10 == sizeof(float));
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int ir = ir0; ir < ir1; ++ir) {
// src0 and dst are viewed with shape of src1 and offset
// => same indices
const int i3 = ir/(ne12*ne11);
const int i2 = (ir - i3*ne12*ne11)/ne11;
const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
#ifdef GGML_USE_ACCELERATE
vDSP_vadd(
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
(float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
#else
ggml_vec_add_f32(nc,
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
(float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
#endif
}
}
static void ggml_compute_forward_acc(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_acc_f32(params, src0, src1, dst);
} break;
case GGML_TYPE_F16:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q8_1:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_sub
static void ggml_compute_forward_sub_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
assert(params->ith == 0);
assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
const int nr = ggml_nrows(src0);
GGML_TENSOR_BINARY_OP_LOCALS;
GGML_ASSERT( nb0 == sizeof(float));
GGML_ASSERT(nb00 == sizeof(float));
if (nb10 == sizeof(float)) {
for (int ir = 0; ir < nr; ++ir) {
// src0, src1 and dst are same shape => same indices
const int i3 = ir/(ne2*ne1);
const int i2 = (ir - i3*ne2*ne1)/ne1;
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
#ifdef GGML_USE_ACCELERATE
vDSP_vsub(
(float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
ne0);
#else
ggml_vec_sub_f32(ne0,
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
(float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
#endif
// }
// }
}
} else {
// src1 is not contiguous
for (int ir = 0; ir < nr; ++ir) {
// src0, src1 and dst are same shape => same indices
const int i3 = ir/(ne2*ne1);
const int i2 = (ir - i3*ne2*ne1)/ne1;
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
for (int i0 = 0; i0 < ne0; i0++) {
float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
}
}
}
}
static void ggml_compute_forward_sub(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_sub_f32(params, src0, src1, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_mul
static void ggml_compute_forward_mul_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
const int ith = params->ith;
const int nth = params->nth;
#ifdef GGML_USE_CLBLAST
if (src1->backend == GGML_BACKEND_GPU) {
if (ith == 0) {
ggml_cl_mul(src0, src1, dst);
}
return;
}
#endif
const int64_t nr = ggml_nrows(src0);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
GGML_TENSOR_BINARY_OP_LOCALS;
GGML_ASSERT( nb0 == sizeof(float));
GGML_ASSERT(nb00 == sizeof(float));
GGML_ASSERT(ne00 == ne10);
if (nb10 == sizeof(float)) {
for (int64_t ir = ir0; ir < ir1; ++ir) {
// src0 and dst are same shape => same indices
const int64_t i03 = ir/(ne02*ne01);
const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
const int64_t i13 = i03 % ne13;
const int64_t i12 = i02 % ne12;
const int64_t i11 = i01 % ne11;
float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
}
} else {
// src1 is not contiguous
for (int64_t ir = ir0; ir < ir1; ++ir) {
// src0 and dst are same shape => same indices
// src1 is broadcastable across src0 and dst in i1, i2, i3
const int64_t i03 = ir/(ne02*ne01);
const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
const int64_t i13 = i03 % ne13;
const int64_t i12 = i02 % ne12;
const int64_t i11 = i01 % ne11;
float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
for (int64_t i0 = 0; i0 < ne00; i0++) {
float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
}
}
}
}
static void ggml_compute_forward_mul(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_mul_f32(params, src0, src1, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_div
static void ggml_compute_forward_div_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
assert(params->ith == 0);
assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
const int nr = ggml_nrows(src0);
GGML_TENSOR_BINARY_OP_LOCALS;
GGML_ASSERT( nb0 == sizeof(float));
GGML_ASSERT(nb00 == sizeof(float));
if (nb10 == sizeof(float)) {
for (int ir = 0; ir < nr; ++ir) {
// src0, src1 and dst are same shape => same indices
const int i3 = ir/(ne2*ne1);
const int i2 = (ir - i3*ne2*ne1)/ne1;
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
#ifdef GGML_USE_ACCELERATE
UNUSED(ggml_vec_div_f32);
vDSP_vdiv(
(float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
ne0);
#else
ggml_vec_div_f32(ne0,
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
(float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
(float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
#endif
// }
// }
}
} else {
// src1 is not contiguous
for (int ir = 0; ir < nr; ++ir) {
// src0, src1 and dst are same shape => same indices
const int i3 = ir/(ne2*ne1);
const int i2 = (ir - i3*ne2*ne1)/ne1;
const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
for (int i0 = 0; i0 < ne0; i0++) {
float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
}
}
}
}
static void ggml_compute_forward_div(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_div_f32(params, src0, src1, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_sqr
static void ggml_compute_forward_sqr_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
assert(params->ith == 0);
assert(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
assert( dst->nb[0] == sizeof(float));
assert(src0->nb[0] == sizeof(float));
for (int i = 0; i < n; i++) {
ggml_vec_sqr_f32(nc,
(float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1])));
}
}
static void ggml_compute_forward_sqr(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_sqr_f32(params, src0, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_sqrt
static void ggml_compute_forward_sqrt_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
assert(params->ith == 0);
assert(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
assert( dst->nb[0] == sizeof(float));
assert(src0->nb[0] == sizeof(float));
for (int i = 0; i < n; i++) {
ggml_vec_sqrt_f32(nc,
(float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1])));
}
}
static void ggml_compute_forward_sqrt(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_sqrt_f32(params, src0, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_log
static void ggml_compute_forward_log_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
GGML_ASSERT(params->ith == 0);
GGML_ASSERT(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
GGML_ASSERT( dst->nb[0] == sizeof(float));
GGML_ASSERT(src0->nb[0] == sizeof(float));
for (int i = 0; i < n; i++) {
ggml_vec_log_f32(nc,
(float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1])));
}
}
static void ggml_compute_forward_log(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_log_f32(params, src0, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_sum
static void ggml_compute_forward_sum_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
assert(params->ith == 0);
assert(ggml_is_scalar(dst));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
assert(ggml_is_scalar(dst));
assert(src0->nb[0] == sizeof(float));
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb);
ggml_float sum = 0;
ggml_float row_sum = 0;
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = 0; i01 < ne01; i01++) {
ggml_vec_sum_f32_ggf(ne00,
&row_sum,
(float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
sum += row_sum;
}
}
}
((float *) dst->data)[0] = sum;
}
static void ggml_compute_forward_sum_f16(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
assert(params->ith == 0);
assert(ggml_is_scalar(dst));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
assert(src0->nb[0] == sizeof(ggml_fp16_t));
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb);
float sum = 0;
float row_sum = 0;
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = 0; i01 < ne01; i01++) {
ggml_vec_sum_f16_ggf(ne00,
&row_sum,
(ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
sum += row_sum;
}
}
}
((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
}
static void ggml_compute_forward_sum(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_sum_f32(params, src0, dst);
} break;
case GGML_TYPE_F16:
{
ggml_compute_forward_sum_f16(params, src0, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_sum_rows
static void ggml_compute_forward_sum_rows_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
GGML_ASSERT(params->ith == 0);
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
GGML_ASSERT(src0->nb[0] == sizeof(float));
GGML_ASSERT(dst->nb[0] == sizeof(float));
GGML_TENSOR_UNARY_OP_LOCALS;
GGML_ASSERT(ne0 == 1);
GGML_ASSERT(ne1 == ne01);
GGML_ASSERT(ne2 == ne02);
GGML_ASSERT(ne3 == ne03);
for (int64_t i3 = 0; i3 < ne03; i3++) {
for (int64_t i2 = 0; i2 < ne02; i2++) {
for (int64_t i1 = 0; i1 < ne01; i1++) {
float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
float row_sum = 0;
ggml_vec_sum_f32(ne00, &row_sum, src_row);
dst_row[0] = row_sum;
}
}
}
}
static void ggml_compute_forward_sum_rows(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_sum_rows_f32(params, src0, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_mean
static void ggml_compute_forward_mean_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
assert(params->ith == 0);
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
assert(src0->nb[0] == sizeof(float));
GGML_TENSOR_UNARY_OP_LOCALS;
assert(ne0 == 1);
assert(ne1 == ne01);
assert(ne2 == ne02);
assert(ne3 == ne03);
UNUSED(ne0);
UNUSED(ne1);
UNUSED(ne2);
UNUSED(ne3);
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = 0; i01 < ne01; i01++) {
ggml_vec_sum_f32(ne00,
(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
(float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
*(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
}
}
}
}
static void ggml_compute_forward_mean(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_mean_f32(params, src0, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_argmax
static void ggml_compute_forward_argmax_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
assert(params->ith == 0);
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
assert(src0->nb[0] == sizeof(float));
assert(dst->nb[0] == sizeof(float));
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
const size_t nb01 = src0->nb[1];
const size_t nb0 = dst->nb[0];
for (int64_t i1 = 0; i1 < ne01; i1++) {
float * src = (float *) ((char *) src0->data + i1*nb01);
int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
int v = 0;
ggml_vec_argmax_f32(ne00, &v, src);
dst_[0] = v;
}
}
static void ggml_compute_forward_argmax(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_argmax_f32(params, src0, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_repeat
static void ggml_compute_forward_repeat_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
GGML_ASSERT(params->ith == 0);
GGML_ASSERT(ggml_can_repeat(src0, dst));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
GGML_TENSOR_UNARY_OP_LOCALS;
// guaranteed to be an integer due to the check in ggml_can_repeat
const int nr0 = (int)(ne0/ne00);
const int nr1 = (int)(ne1/ne01);
const int nr2 = (int)(ne2/ne02);
const int nr3 = (int)(ne3/ne03);
// TODO: support for transposed / permuted tensors
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb00 == sizeof(float));
// TODO: maybe this is not optimal?
for (int i3 = 0; i3 < nr3; i3++) {
for (int k3 = 0; k3 < ne03; k3++) {
for (int i2 = 0; i2 < nr2; i2++) {
for (int k2 = 0; k2 < ne02; k2++) {
for (int i1 = 0; i1 < nr1; i1++) {
for (int k1 = 0; k1 < ne01; k1++) {
for (int i0 = 0; i0 < nr0; i0++) {
ggml_vec_cpy_f32(ne00,
(float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
(float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
}
}
}
}
}
}
}
}
static void ggml_compute_forward_repeat(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_repeat_f32(params, src0, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_repeat_back
static void ggml_compute_forward_repeat_back_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
GGML_ASSERT(params->ith == 0);
GGML_ASSERT(ggml_can_repeat(dst, src0));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
GGML_TENSOR_UNARY_OP_LOCALS;
// guaranteed to be an integer due to the check in ggml_can_repeat
const int nr0 = (int)(ne00/ne0);
const int nr1 = (int)(ne01/ne1);
const int nr2 = (int)(ne02/ne2);
const int nr3 = (int)(ne03/ne3);
// TODO: support for transposed / permuted tensors
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb00 == sizeof(float));
if (ggml_is_contiguous(dst)) {
ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
} else {
for (int k3 = 0; k3 < ne3; k3++) {
for (int k2 = 0; k2 < ne2; k2++) {
for (int k1 = 0; k1 < ne1; k1++) {
ggml_vec_set_f32(ne0,
(float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
0);
}
}
}
}
// TODO: maybe this is not optimal?
for (int i3 = 0; i3 < nr3; i3++) {
for (int k3 = 0; k3 < ne3; k3++) {
for (int i2 = 0; i2 < nr2; i2++) {
for (int k2 = 0; k2 < ne2; k2++) {
for (int i1 = 0; i1 < nr1; i1++) {
for (int k1 = 0; k1 < ne1; k1++) {
for (int i0 = 0; i0 < nr0; i0++) {
ggml_vec_acc_f32(ne0,
(float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
(float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
}
}
}
}
}
}
}
}
static void ggml_compute_forward_repeat_back(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_repeat_back_f32(params, src0, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_concat
static void ggml_compute_forward_concat_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
GGML_ASSERT(src0->nb[0] == sizeof(float));
const int ith = params->ith;
GGML_TENSOR_BINARY_OP_LOCALS;
// TODO: support for transposed / permuted tensors
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb00 == sizeof(float));
GGML_ASSERT(nb10 == sizeof(float));
for (int i3 = 0; i3 < ne3; i3++) {
for (int i2 = ith; i2 < ne2; i2++) {
if (i2 < ne02) { // src0
for (int i1 = 0; i1 < ne1; i1++) {
for (int i0 = 0; i0 < ne0; i0++) {
const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
*y = *x;
}
}
} // src1
else {
for (int i1 = 0; i1 < ne1; i1++) {
for (int i0 = 0; i0 < ne0; i0++) {
const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
*y = *x;
}
}
}
}
}
}
static void ggml_compute_forward_concat(
const struct ggml_compute_params* params,
const struct ggml_tensor* src0,
const struct ggml_tensor* src1,
struct ggml_tensor* dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_concat_f32(params, src0, src1, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_abs
static void ggml_compute_forward_abs_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
assert(params->ith == 0);
assert(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
assert(dst->nb[0] == sizeof(float));
assert(src0->nb[0] == sizeof(float));
for (int i = 0; i < n; i++) {
ggml_vec_abs_f32(nc,
(float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1])));
}
}
static void ggml_compute_forward_abs(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_abs_f32(params, src0, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_sgn
static void ggml_compute_forward_sgn_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
assert(params->ith == 0);
assert(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
assert(dst->nb[0] == sizeof(float));
assert(src0->nb[0] == sizeof(float));
for (int i = 0; i < n; i++) {
ggml_vec_sgn_f32(nc,
(float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1])));
}
}
static void ggml_compute_forward_sgn(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_sgn_f32(params, src0, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_neg
static void ggml_compute_forward_neg_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
assert(params->ith == 0);
assert(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
assert(dst->nb[0] == sizeof(float));
assert(src0->nb[0] == sizeof(float));
for (int i = 0; i < n; i++) {
ggml_vec_neg_f32(nc,
(float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1])));
}
}
static void ggml_compute_forward_neg(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_neg_f32(params, src0, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_step
static void ggml_compute_forward_step_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
assert(params->ith == 0);
assert(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
assert(dst->nb[0] == sizeof(float));
assert(src0->nb[0] == sizeof(float));
for (int i = 0; i < n; i++) {
ggml_vec_step_f32(nc,
(float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1])));
}
}
static void ggml_compute_forward_step(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_step_f32(params, src0, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_tanh
static void ggml_compute_forward_tanh_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
assert(params->ith == 0);
assert(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
assert(dst->nb[0] == sizeof(float));
assert(src0->nb[0] == sizeof(float));
for (int i = 0; i < n; i++) {
ggml_vec_tanh_f32(nc,
(float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1])));
}
}
static void ggml_compute_forward_tanh(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_tanh_f32(params, src0, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_elu
static void ggml_compute_forward_elu_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
assert(params->ith == 0);
assert(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
assert(dst->nb[0] == sizeof(float));
assert(src0->nb[0] == sizeof(float));
for (int i = 0; i < n; i++) {
ggml_vec_elu_f32(nc,
(float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1])));
}
}
static void ggml_compute_forward_elu(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_elu_f32(params, src0, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_relu
static void ggml_compute_forward_relu_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
assert(params->ith == 0);
assert(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
assert(dst->nb[0] == sizeof(float));
assert(src0->nb[0] == sizeof(float));
for (int i = 0; i < n; i++) {
ggml_vec_relu_f32(nc,
(float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1])));
}
}
static void ggml_compute_forward_relu(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_relu_f32(params, src0, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_gelu
static void ggml_compute_forward_gelu_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
GGML_ASSERT(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
const int ith = params->ith;
const int nth = params->nth;
const int nc = src0->ne[0];
const int nr = ggml_nrows(src0);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int i1 = ir0; i1 < ir1; i1++) {
ggml_vec_gelu_f32(nc,
(float *) ((char *) dst->data + i1*( dst->nb[1])),
(float *) ((char *) src0->data + i1*(src0->nb[1])));
#ifndef NDEBUG
for (int k = 0; k < nc; k++) {
const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
UNUSED(x);
assert(!isnan(x));
assert(!isinf(x));
}
#endif
}
}
static void ggml_compute_forward_gelu(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_gelu_f32(params, src0, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_gelu_quick
static void ggml_compute_forward_gelu_quick_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
GGML_ASSERT(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
const int ith = params->ith;
const int nth = params->nth;
const int nc = src0->ne[0];
const int nr = ggml_nrows(src0);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int i1 = ir0; i1 < ir1; i1++) {
ggml_vec_gelu_quick_f32(nc,
(float *) ((char *) dst->data + i1*( dst->nb[1])),
(float *) ((char *) src0->data + i1*(src0->nb[1])));
#ifndef NDEBUG
for (int k = 0; k < nc; k++) {
const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
UNUSED(x);
assert(!isnan(x));
assert(!isinf(x));
}
#endif
}
}
static void ggml_compute_forward_gelu_quick(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_gelu_quick_f32(params, src0, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_silu
static void ggml_compute_forward_silu_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
GGML_ASSERT(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
const int ith = params->ith;
const int nth = params->nth;
const int nc = src0->ne[0];
const int nr = ggml_nrows(src0);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int i1 = ir0; i1 < ir1; i1++) {
ggml_vec_silu_f32(nc,
(float *) ((char *) dst->data + i1*( dst->nb[1])),
(float *) ((char *) src0->data + i1*(src0->nb[1])));
#ifndef NDEBUG
for (int k = 0; k < nc; k++) {
const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
UNUSED(x);
assert(!isnan(x));
assert(!isinf(x));
}
#endif
}
}
static void ggml_compute_forward_silu(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_silu_f32(params, src0, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_silu_back
static void ggml_compute_forward_silu_back_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * grad,
struct ggml_tensor * dst) {
GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
GGML_ASSERT(ggml_are_same_shape(src0, dst));
GGML_ASSERT(ggml_are_same_shape(src0, grad));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
const int ith = params->ith;
const int nth = params->nth;
const int nc = src0->ne[0];
const int nr = ggml_nrows(src0);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int i1 = ir0; i1 < ir1; i1++) {
ggml_vec_silu_backward_f32(nc,
(float *) ((char *) dst->data + i1*( dst->nb[1])),
(float *) ((char *) src0->data + i1*(src0->nb[1])),
(float *) ((char *) grad->data + i1*(grad->nb[1])));
#ifndef NDEBUG
for (int k = 0; k < nc; k++) {
const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
UNUSED(x);
assert(!isnan(x));
assert(!isinf(x));
}
#endif
}
}
static void ggml_compute_forward_silu_back(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * grad,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_norm
static void ggml_compute_forward_norm_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
GGML_ASSERT(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
GGML_ASSERT(src0->nb[0] == sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
GGML_TENSOR_UNARY_OP_LOCALS;
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
// TODO: optimize
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
ggml_float sum = 0.0;
for (int64_t i00 = 0; i00 < ne00; i00++) {
sum += (ggml_float)x[i00];
}
float mean = sum/ne00;
float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
ggml_float sum2 = 0.0;
for (int64_t i00 = 0; i00 < ne00; i00++) {
float v = x[i00] - mean;
y[i00] = v;
sum2 += (ggml_float)(v*v);
}
float variance = sum2/ne00;
const float scale = 1.0f/sqrtf(variance + eps);
ggml_vec_scale_f32(ne00, y, scale);
}
}
}
}
static void ggml_compute_forward_norm(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_norm_f32(params, src0, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_group_rms_norm
static void ggml_compute_forward_rms_norm_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
GGML_ASSERT(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
GGML_ASSERT(src0->nb[0] == sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
GGML_TENSOR_UNARY_OP_LOCALS;
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
// TODO: optimize
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
ggml_float sum = 0.0;
for (int64_t i00 = 0; i00 < ne00; i00++) {
sum += (ggml_float)(x[i00] * x[i00]);
}
const float mean = sum/ne00;
float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
memcpy(y, x, ne00 * sizeof(float));
// for (int i00 = 0; i00 < ne00; i00++) {
// y[i00] = x[i00];
// }
const float scale = 1.0f/sqrtf(mean + eps);
ggml_vec_scale_f32(ne00, y, scale);
}
}
}
}
static void ggml_compute_forward_rms_norm(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_rms_norm_f32(params, src0, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
static void ggml_compute_forward_rms_norm_back_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
GGML_ASSERT(src0->nb[0] == sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
GGML_TENSOR_BINARY_OP_LOCALS;
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
// TODO: optimize
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
// src1 is same shape as src0 => same indices
const int64_t i11 = i01;
const int64_t i12 = i02;
const int64_t i13 = i03;
const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
ggml_float sum_xx = 0.0;
ggml_float sum_xdz = 0.0;
for (int64_t i00 = 0; i00 < ne00; i00++) {
sum_xx += (ggml_float)(x[i00] * x[i00]);
sum_xdz += (ggml_float)(x[i00] * dz[i00]);
}
//const float mean = (float)(sum_xx)/ne00;
const float mean_eps = (float)(sum_xx)/ne00 + eps;
const float sum_eps = (float)(sum_xx) + eps*ne00;
//const float mean_xdz = (float)(sum_xdz)/ne00;
// we could cache rms from forward pass to improve performance.
// to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
//const float rms = sqrtf(mean_eps);
const float rrms = 1.0f / sqrtf(mean_eps);
//const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
{
// z = rms_norm(x)
//
// rms_norm(src0) =
// scale(
// src0,
// div(
// 1,
// sqrt(
// add(
// scale(
// sum(
// sqr(
// src0)),
// (1.0/N)),
// eps))));
// postorder:
// ## op args grad
// 00 param src0 grad[#00]
// 01 const 1
// 02 sqr (#00) grad[#02]
// 03 sum (#02) grad[#03]
// 04 const 1/N
// 05 scale (#03, #04) grad[#05]
// 06 const eps
// 07 add (#05, #06) grad[#07]
// 08 sqrt (#07) grad[#08]
// 09 div (#01,#08) grad[#09]
// 10 scale (#00,#09) grad[#10]
//
// backward pass, given grad[#10]
// #10: scale
// grad[#00] += scale(grad[#10],#09)
// grad[#09] += sum(mul(grad[#10],#00))
// #09: div
// grad[#08] += neg(mul(grad[#09], div(#09,#08)))
// #08: sqrt
// grad[#07] += mul(grad[#08], div(0.5, #08))
// #07: add
// grad[#05] += grad[#07]
// #05: scale
// grad[#03] += scale(grad[#05],#04)
// #03: sum
// grad[#02] += repeat(grad[#03], #02)
// #02:
// grad[#00] += scale(mul(#00, grad[#02]), 2.0)
//
// substitute and simplify:
// grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
// grad[#02] = repeat(grad[#03], #02)
// grad[#02] = repeat(scale(grad[#05],#04), #02)
// grad[#02] = repeat(scale(grad[#07],#04), #02)
// grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
// grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
// grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
// grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
// grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
// grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
// grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
// grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
// grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
// grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
// grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
// grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
// grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
// grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
// grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
// grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
// grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
// grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
// grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
// a = b*c + d*e
// a = b*c*f/f + d*e*f/f
// a = (b*c*f + d*e*f)*(1/f)
// a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
// a = (b + d*e/c)*c
// b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
// a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
// a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
// a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
// a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
// a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
// a = (dz + x*div(-mean_xdz,mean_eps))*rrms
// grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
// grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
// dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
}
// dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
// post-order:
// dx := x
// dx := scale(dx,-mean_xdz/mean_eps)
// dx := add(dx, dz)
// dx := scale(dx, rrms)
float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
ggml_vec_cpy_f32 (ne00, dx, x);
// ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
ggml_vec_acc_f32 (ne00, dx, dz);
ggml_vec_scale_f32(ne00, dx, rrms);
}
}
}
}
static void ggml_compute_forward_rms_norm_back(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_group_norm
static void ggml_compute_forward_group_norm_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
GGML_ASSERT(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
GGML_ASSERT(src0->nb[0] == sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
GGML_TENSOR_UNARY_OP_LOCALS;
const float eps = 1e-6f; // TODO: make this a parameter
// TODO: optimize
int n_channels = src0->ne[2];
int n_groups = dst->op_params[0];
int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
for (int i = ith; i < n_groups; i+=nth) {
int start = i * n_channels_per_group;
int end = start + n_channels_per_group;
if (end > n_channels) {
end = n_channels;
}
int step = end - start;
for (int64_t i03 = 0; i03 < ne03; i03++) {
ggml_float sum = 0.0;
for (int64_t i02 = start; i02 < end; i02++) {
for (int64_t i01 = 0; i01 < ne01; i01++) {
const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
for (int64_t i00 = 0; i00 < ne00; i00++) {
sum += (ggml_float)x[i00];
}
}
}
float mean = sum / (ne00 * ne01 * step);
ggml_float sum2 = 0.0;
for (int64_t i02 = start; i02 < end; i02++) {
for (int64_t i01 = 0; i01 < ne01; i01++) {
const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
for (int64_t i00 = 0; i00 < ne00; i00++) {
float v = x[i00] - mean;
y[i00] = v;
sum2 += (ggml_float)(v * v);
}
}
}
float variance = sum2 / (ne00 * ne01 * step);
const float scale = 1.0f / sqrtf(variance + eps);
for (int64_t i02 = start; i02 < end; i02++) {
for (int64_t i01 = 0; i01 < ne01; i01++) {
float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
ggml_vec_scale_f32(ne00, y, scale);
}
}
}
}
}
static void ggml_compute_forward_group_norm(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_group_norm_f32(params, src0, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_mul_mat
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
// helper function to determine if it is better to use BLAS or not
// for large matrices, BLAS is faster
static bool ggml_compute_forward_mul_mat_use_blas(
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
//const int64_t ne00 = src0->ne[0];
//const int64_t ne01 = src0->ne[1];
const int64_t ne10 = src1->ne[0];
const int64_t ne0 = dst->ne[0];
const int64_t ne1 = dst->ne[1];
// TODO: find the optimal values for these
if (ggml_is_contiguous(src0) &&
ggml_is_contiguous(src1) &&
(ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
/*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
return true;
}
return false;
}
#endif
static void ggml_compute_forward_mul_mat(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
int64_t t0 = ggml_perf_time_us();
UNUSED(t0);
GGML_TENSOR_BINARY_OP_LOCALS;
const int ith = params->ith;
const int nth = params->nth;
const enum ggml_type type = src0->type;
const bool src1_cont = ggml_is_contiguous(src1);
ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
GGML_ASSERT(ne0 == ne01);
GGML_ASSERT(ne1 == ne11);
GGML_ASSERT(ne2 == ne12);
GGML_ASSERT(ne3 == ne13);
// we don't support permuted src0 or src1
GGML_ASSERT(nb00 == ggml_type_size(type));
GGML_ASSERT(nb10 == sizeof(float));
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb0 <= nb1);
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
// broadcast factors
const int64_t r2 = ne12/ne02;
const int64_t r3 = ne13/ne03;
// nb01 >= nb00 - src0 is not transposed
// compute by src0 rows
#if defined(GGML_USE_CLBLAST)
if (ggml_cl_can_mul_mat(src0, src1, dst)) {
// TODO: handle case when src0 is broadcast-able into src1 across 2nd,3rd dimension
// ref: https://github.com/ggerganov/ggml/pull/224
GGML_ASSERT(ne02 == ne12);
GGML_ASSERT(ne03 == ne13);
if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
}
return;
}
#endif
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
if (params->ith != 0) {
return;
}
if (params->type == GGML_TASK_INIT) {
return;
}
if (params->type == GGML_TASK_FINALIZE) {
return;
}
for (int64_t i13 = 0; i13 < ne13; i13++) {
for (int64_t i12 = 0; i12 < ne12; i12++) {
// broadcast src0 into src1 across 2nd,3rd dimension
const int64_t i03 = i13/r3;
const int64_t i02 = i12/r2;
const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
if (type != GGML_TYPE_F32) {
float * const wdata = params->wdata;
ggml_to_float_t const to_float = type_traits[type].to_float;
size_t id = 0;
for (int64_t i01 = 0; i01 < ne01; ++i01) {
to_float((const char *) x + i01*nb01, wdata + id, ne00);
id += ne00;
}
assert(id*sizeof(float) <= params->wsize);
x = wdata;
}
cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
ne11, ne01, ne10,
1.0f, y, ne10,
x, ne00,
0.0f, d, ne01);
}
}
//printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
return;
}
#endif
if (params->type == GGML_TASK_INIT) {
if (src1->type != vec_dot_type) {
char * wdata = params->wdata;
const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
for (int64_t i13 = 0; i13 < ne13; ++i13) {
for (int64_t i12 = 0; i12 < ne12; ++i12) {
for (int64_t i11 = 0; i11 < ne11; ++i11) {
from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
wdata += row_size;
}
}
}
}
return;
}
if (params->type == GGML_TASK_FINALIZE) {
return;
}
const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
const int64_t nr0 = ne01; // src0 rows
const int64_t nr1 = ne11*ne12*ne13; // src1 rows
//printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
// distribute the thread work across the inner or outer loop based on which one is larger
const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
const int64_t ith0 = ith % nth0;
const int64_t ith1 = ith / nth0;
const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
const int64_t ir010 = dr0*ith0;
const int64_t ir011 = MIN(ir010 + dr0, nr0);
const int64_t ir110 = dr1*ith1;
const int64_t ir111 = MIN(ir110 + dr1, nr1);
//printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
// threads with no work simply yield (not sure if it helps)
if (ir010 >= ir011 || ir110 >= ir111) {
sched_yield();
return;
}
assert(ne12 % ne02 == 0);
assert(ne13 % ne03 == 0);
// block-tiling attempt
const int64_t blck_0 = 16;
const int64_t blck_1 = 16;
// attempt to reduce false-sharing (does not seem to make a difference)
float tmp[16];
for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
const int64_t i13 = (ir1/(ne12*ne11));
const int64_t i12 = (ir1 - i13*ne12*ne11)/ne11;
const int64_t i11 = (ir1 - i13*ne12*ne11 - i12*ne11);
// broadcast src0 into src1
const int64_t i03 = i13/r3;
const int64_t i02 = i12/r2;
const int64_t i1 = i11;
const int64_t i2 = i12;
const int64_t i3 = i13;
const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
// desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
// if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
// the original src1 data pointer, so we should index using the indices directly
// TODO: this is a bit of a hack, we should probably have a better way to handle this
const char * src1_col = (const char *) wdata +
(src1_cont || src1->type != vec_dot_type
? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
: (i11*nb11 + i12*nb12 + i13*nb13));
float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
//for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
// vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
//}
for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
}
memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
}
}
}
}
// ggml_compute_forward_out_prod
static void ggml_compute_forward_out_prod_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
int64_t t0 = ggml_perf_time_us();
UNUSED(t0);
GGML_TENSOR_BINARY_OP_LOCALS;
const int ith = params->ith;
const int nth = params->nth;
GGML_ASSERT(ne02 == ne12);
GGML_ASSERT(ne03 == ne13);
GGML_ASSERT(ne2 == ne12);
GGML_ASSERT(ne3 == ne13);
// we don't support permuted src0 or src1
GGML_ASSERT(nb00 == sizeof(float));
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
// GGML_ASSERT(nb0 <= nb1);
// GGML_ASSERT(nb1 <= nb2);
// GGML_ASSERT(nb2 <= nb3);
GGML_ASSERT(ne0 == ne00);
GGML_ASSERT(ne1 == ne10);
GGML_ASSERT(ne2 == ne02);
GGML_ASSERT(ne3 == ne03);
// nb01 >= nb00 - src0 is not transposed
// compute by src0 rows
// TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
// TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
if (params->type == GGML_TASK_INIT) {
ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
return;
}
if (params->type == GGML_TASK_FINALIZE) {
return;
}
// parallelize by last three dimensions
// total rows in dst
const int64_t nr = ne1*ne2*ne3;
// rows per thread
const int64_t dr = (nr + nth - 1)/nth;
// row range for this thread
const int64_t ir0 = dr*ith;
const int64_t ir1 = MIN(ir0 + dr, nr);
// dst[:,:,:,:] = 0
// for i2,i3:
// for i1:
// for i01:
// for i0:
// dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
for (int64_t ir = ir0; ir < ir1; ++ir) {
// dst indices
const int64_t i3 = ir/(ne2*ne1);
const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
const int64_t i02 = i2;
const int64_t i03 = i3;
//const int64_t i10 = i1;
const int64_t i12 = i2;
const int64_t i13 = i3;
for (int64_t i01 = 0; i01 < ne01; ++i01) {
const int64_t i11 = i01;
float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
ggml_vec_mad_f32(ne0, d, s0, *s1);
// for (int64_t i0 = 0; i0 < ne0; ++i0) {
// d[i0] += s0[i0] * s1[i1];
// }
}
}
//int64_t t1 = ggml_perf_time_us();
//static int64_t acc = 0;
//acc += t1 - t0;
//if (t1 - t0 > 10) {
// printf("\n");
// printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
// printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
// printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
// printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
// printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
//}
}
static void ggml_compute_forward_out_prod(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q8_1:
{
GGML_ASSERT(false); // todo
// ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
} break;
case GGML_TYPE_F16:
{
GGML_ASSERT(false); // todo
// ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
} break;
case GGML_TYPE_F32:
{
ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_scale
static void ggml_compute_forward_scale_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(ggml_is_contiguous(dst));
GGML_ASSERT(ggml_are_same_shape(src0, dst));
GGML_ASSERT(ggml_is_scalar(src1));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
// scale factor
const float v = *(float *) src1->data;
const int ith = params->ith;
const int nth = params->nth;
const int nc = src0->ne[0];
const int nr = ggml_nrows(src0);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
const size_t nb01 = src0->nb[1];
const size_t nb1 = dst->nb[1];
for (int i1 = ir0; i1 < ir1; i1++) {
if (dst->data != src0->data) {
// src0 is same shape as dst => same indices
memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
}
ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
}
}
static void ggml_compute_forward_scale(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_scale_f32(params, src0, src1, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_set
static void ggml_compute_forward_set_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
GGML_ASSERT(ggml_are_same_shape(src0, dst));
GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
// view src0 and dst with these strides and data offset inbytes during set
// nb0 is implicitely element_size because src0 and dst are contiguous
size_t nb1 = ((int32_t *) dst->op_params)[0];
size_t nb2 = ((int32_t *) dst->op_params)[1];
size_t nb3 = ((int32_t *) dst->op_params)[2];
size_t offset = ((int32_t *) dst->op_params)[3];
bool inplace = (bool) ((int32_t *) dst->op_params)[4];
if (!inplace && (params->type == GGML_TASK_INIT)) {
// memcpy needs to be synchronized across threads to avoid race conditions.
// => do it in INIT phase
memcpy(
((char *) dst->data),
((char *) src0->data),
ggml_nbytes(dst));
}
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(src1);
const int nc = src1->ne[0];
GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
// src0 and dst as viewed during set
const size_t nb0 = ggml_element_size(src0);
const int im0 = (ne10 == 0 ? 0 : ne10-1);
const int im1 = (ne11 == 0 ? 0 : ne11-1);
const int im2 = (ne12 == 0 ? 0 : ne12-1);
const int im3 = (ne13 == 0 ? 0 : ne13-1);
GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
GGML_ASSERT(nb10 == sizeof(float));
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int ir = ir0; ir < ir1; ++ir) {
// src0 and dst are viewed with shape of src1 and offset
// => same indices
const int i3 = ir/(ne12*ne11);
const int i2 = (ir - i3*ne12*ne11)/ne11;
const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
ggml_vec_cpy_f32(nc,
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
(float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
}
}
static void ggml_compute_forward_set(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_set_f32(params, src0, src1, dst);
} break;
case GGML_TYPE_F16:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q8_1:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_cpy
static void ggml_compute_forward_cpy(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
ggml_compute_forward_dup(params, src0, dst);
}
// ggml_compute_forward_cont
static void ggml_compute_forward_cont(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
ggml_compute_forward_dup(params, src0, dst);
}
// ggml_compute_forward_reshape
static void ggml_compute_forward_reshape(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
// NOP
UNUSED(params);
UNUSED(src0);
UNUSED(dst);
}
// ggml_compute_forward_view
static void ggml_compute_forward_view(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0) {
// NOP
UNUSED(params);
UNUSED(src0);
}
// ggml_compute_forward_permute
static void ggml_compute_forward_permute(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0) {
// NOP
UNUSED(params);
UNUSED(src0);
}
// ggml_compute_forward_transpose
static void ggml_compute_forward_transpose(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0) {
// NOP
UNUSED(params);
UNUSED(src0);
}
// ggml_compute_forward_get_rows
static void ggml_compute_forward_get_rows_q(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
assert(params->ith == 0);
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
const int nc = src0->ne[0];
const int nr = ggml_nelements(src1);
const enum ggml_type type = src0->type;
ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
assert( dst->ne[0] == nc);
assert( dst->ne[1] == nr);
assert(src0->nb[0] == ggml_type_size(type));
for (int i = 0; i < nr; ++i) {
const int r = ((int32_t *) src1->data)[i];
dequantize_row_q(
(const void *) ((char *) src0->data + r*src0->nb[1]),
(float *) ((char *) dst->data + i*dst->nb[1]), nc);
}
}
static void ggml_compute_forward_get_rows_f16(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
assert(params->ith == 0);
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
const int nc = src0->ne[0];
const int nr = ggml_nelements(src1);
assert( dst->ne[0] == nc);
assert( dst->ne[1] == nr);
assert(src0->nb[0] == sizeof(ggml_fp16_t));
for (int i = 0; i < nr; ++i) {
const int r = ((int32_t *) src1->data)[i];
for (int j = 0; j < nc; ++j) {
ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
}
}
}
static void ggml_compute_forward_get_rows_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
assert(params->ith == 0);
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
const int nc = src0->ne[0];
const int nr = ggml_nelements(src1);
assert( dst->ne[0] == nc);
assert( dst->ne[1] == nr);
assert(src0->nb[0] == sizeof(float));
for (int i = 0; i < nr; ++i) {
const int r = ((int32_t *) src1->data)[i];
ggml_vec_cpy_f32(nc,
(float *) ((char *) dst->data + i*dst->nb[1]),
(float *) ((char *) src0->data + r*src0->nb[1]));
}
}
static void ggml_compute_forward_get_rows(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q8_1:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
{
ggml_compute_forward_get_rows_q(params, src0, src1, dst);
} break;
case GGML_TYPE_F16:
{
ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
} break;
case GGML_TYPE_F32:
{
ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
//static bool first = true;
//printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
//if (first) {
// first = false;
//} else {
// for (int k = 0; k < dst->ne[1]; ++k) {
// for (int j = 0; j < dst->ne[0]/16; ++j) {
// for (int i = 0; i < 16; ++i) {
// printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
// }
// printf("\n");
// }
// printf("\n");
// }
// printf("\n");
// exit(0);
//}
}
// ggml_compute_forward_get_rows_back
static void ggml_compute_forward_get_rows_back_f32_f16(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
const struct ggml_tensor * opt0,
struct ggml_tensor * dst) {
GGML_ASSERT(params->ith == 0);
GGML_ASSERT(ggml_are_same_shape(opt0, dst));
GGML_ASSERT(ggml_is_contiguous(opt0));
GGML_ASSERT(ggml_is_contiguous(dst));
ggml_compute_forward_dup_same_cont(params, opt0, dst);
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
const int nc = src0->ne[0];
const int nr = ggml_nelements(src1);
GGML_ASSERT( dst->ne[0] == nc);
GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
for (int i = 0; i < nr; ++i) {
const int r = ((int32_t *) src1->data)[i];
for (int j = 0; j < nc; ++j) {
ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
}
}
}
static void ggml_compute_forward_get_rows_back_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
const struct ggml_tensor * opt0,
struct ggml_tensor * dst) {
GGML_ASSERT(params->ith == 0);
GGML_ASSERT(ggml_are_same_shape(opt0, dst));
GGML_ASSERT(ggml_is_contiguous(opt0));
GGML_ASSERT(ggml_is_contiguous(dst));
// ggml_compute_forward_dup_same_cont(params, opt0, dst);
if (params->type == GGML_TASK_INIT) {
memset(dst->data, 0, ggml_nbytes(dst));
}
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
const int nc = src0->ne[0];
const int nr = ggml_nelements(src1);
GGML_ASSERT( dst->ne[0] == nc);
GGML_ASSERT(src0->nb[0] == sizeof(float));
for (int i = 0; i < nr; ++i) {
const int r = ((int32_t *) src1->data)[i];
ggml_vec_add_f32(nc,
(float *) ((char *) dst->data + r*dst->nb[1]),
(float *) ((char *) dst->data + r*dst->nb[1]),
(float *) ((char *) src0->data + i*src0->nb[1]));
}
}
static void ggml_compute_forward_get_rows_back(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
const struct ggml_tensor * opt0,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F16:
{
ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
} break;
case GGML_TYPE_F32:
{
ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
//static bool first = true;
//printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
//if (first) {
// first = false;
//} else {
// for (int k = 0; k < dst->ne[1]; ++k) {
// for (int j = 0; j < dst->ne[0]/16; ++j) {
// for (int i = 0; i < 16; ++i) {
// printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
// }
// printf("\n");
// }
// printf("\n");
// }
// printf("\n");
// exit(0);
//}
}
// ggml_compute_forward_diag
static void ggml_compute_forward_diag_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
GGML_ASSERT(params->ith == 0);
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
// TODO: handle transposed/permuted matrices
GGML_TENSOR_UNARY_OP_LOCALS;
GGML_ASSERT(ne00 == ne0);
GGML_ASSERT(ne00 == ne1);
GGML_ASSERT(ne01 == 1);
GGML_ASSERT(ne02 == ne2);
GGML_ASSERT(ne03 == ne3);
GGML_ASSERT(nb00 == sizeof(float));
GGML_ASSERT(nb0 == sizeof(float));
for (int i3 = 0; i3 < ne3; i3++) {
for (int i2 = 0; i2 < ne2; i2++) {
for (int i1 = 0; i1 < ne1; i1++) {
float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
for (int i0 = 0; i0 < i1; i0++) {
d[i0] = 0;
}
d[i1] = s[i1];
for (int i0 = i1+1; i0 < ne0; i0++) {
d[i0] = 0;
}
}
}
}
}
static void ggml_compute_forward_diag(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_diag_f32(params, src0, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_diag_mask_inf
static void ggml_compute_forward_diag_mask_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst,
const float value) {
const int ith = params->ith;
const int nth = params->nth;
const int n_past = ((int32_t *) dst->op_params)[0];
const bool inplace = src0->data == dst->data;
GGML_ASSERT(n_past >= 0);
if (!inplace && (params->type == GGML_TASK_INIT)) {
// memcpy needs to be synchronized across threads to avoid race conditions.
// => do it in INIT phase
GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
memcpy(
((char *) dst->data),
((char *) src0->data),
ggml_nbytes(dst));
}
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
// TODO: handle transposed/permuted matrices
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
const int nr = src0->ne[1];
const int nz = n/nr;
GGML_ASSERT( dst->nb[0] == sizeof(float));
GGML_ASSERT(src0->nb[0] == sizeof(float));
for (int k = 0; k < nz; k++) {
for (int j = ith; j < nr; j += nth) {
for (int i = n_past; i < nc; i++) {
if (i > n_past + j) {
*(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
}
}
}
}
}
static void ggml_compute_forward_diag_mask_inf(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
static void ggml_compute_forward_diag_mask_zero(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_soft_max
static void ggml_compute_forward_soft_max_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(ggml_is_contiguous(dst));
GGML_ASSERT(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
// TODO: handle transposed/permuted matrices
const int ith = params->ith;
const int nth = params->nth;
const int nc = src0->ne[0];
const int nr = ggml_nrows(src0);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int i1 = ir0; i1 < ir1; i1++) {
float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
#ifndef NDEBUG
for (int i = 0; i < nc; ++i) {
//printf("p[%d] = %f\n", i, p[i]);
assert(!isnan(sp[i]));
}
#endif
float max = -INFINITY;
ggml_vec_max_f32(nc, &max, sp);
ggml_float sum = 0.0;
uint16_t scvt;
for (int i = 0; i < nc; i++) {
if (sp[i] == -INFINITY) {
dp[i] = 0.0f;
} else {
// const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
memcpy(&scvt, &s, sizeof(scvt));
const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
sum += (ggml_float)val;
dp[i] = val;
}
}
assert(sum > 0.0);
sum = 1.0/sum;
ggml_vec_scale_f32(nc, dp, sum);
#ifndef NDEBUG
for (int i = 0; i < nc; ++i) {
assert(!isnan(dp[i]));
assert(!isinf(dp[i]));
}
#endif
}
}
static void ggml_compute_forward_soft_max(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_soft_max_f32(params, src0, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_soft_max_back
static void ggml_compute_forward_soft_max_back_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(ggml_is_contiguous(src1));
GGML_ASSERT(ggml_is_contiguous(dst));
GGML_ASSERT(ggml_are_same_shape(src0, dst));
GGML_ASSERT(ggml_are_same_shape(src1, dst));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
// TODO: handle transposed/permuted matrices
const int ith = params->ith;
const int nth = params->nth;
const int nc = src0->ne[0];
const int nr = ggml_nrows(src0);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int i1 = ir0; i1 < ir1; i1++) {
float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
#ifndef NDEBUG
for (int i = 0; i < nc; ++i) {
//printf("p[%d] = %f\n", i, p[i]);
assert(!isnan(dy[i]));
assert(!isnan(y[i]));
}
#endif
// Jii = yi - yi*yi
// Jij = -yi*yj
// J = diag(y)-y.T*y
// dx = J * dy
// dxk = sum_i(Jki * dyi)
// dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
// dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
// dxk = sum_i(-yk*yi * dyi) + yk*dyk
// dxk = -yk * sum_i(yi * dyi) + yk*dyk
// dxk = -yk * dot(y, dy) + yk*dyk
// dxk = yk * (- dot(y, dy) + dyk)
// dxk = yk * (dyk - dot(y, dy))
//
// post-order:
// dot_y_dy := dot(y, dy)
// dx := dy
// dx := dx - dot_y_dy
// dx := dx * y
// linear runtime, no additional memory
float dot_y_dy = 0;
ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
ggml_vec_cpy_f32 (nc, dx, dy);
ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
ggml_vec_mul_f32 (nc, dx, dx, y);
#ifndef NDEBUG
for (int i = 0; i < nc; ++i) {
assert(!isnan(dx[i]));
assert(!isinf(dx[i]));
}
#endif
}
}
static void ggml_compute_forward_soft_max_back(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_alibi
static void ggml_compute_forward_alibi_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
assert(params->ith == 0);
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
const int n_past = ((int32_t *) dst->op_params)[0];
const int n_head = ((int32_t *) dst->op_params)[1];
float max_bias;
memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
assert(n_past >= 0);
const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
const int ne1 = src0->ne[1]; // seq_len_without_past
const int ne2 = src0->ne[2]; // n_head -> this is k
//const int ne3 = src0->ne[3]; // 1 -> bsz
const int n = ggml_nrows(src0);
const int ne2_ne3 = n/ne1; // ne2*ne3
const int nb0 = src0->nb[0];
const int nb1 = src0->nb[1];
const int nb2 = src0->nb[2];
//const int nb3 = src0->nb[3];
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(ne1 + n_past == ne0);
GGML_ASSERT(n_head == ne2);
// add alibi to src0 (KQ_scaled)
const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
for (int i = 0; i < ne0; i++) {
for (int j = 0; j < ne1; j++) {
for (int k = 0; k < ne2_ne3; k++) {
float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
// TODO: k*nb2 or k*nb3
float m_k;
if (k < n_heads_log2_floor) {
m_k = powf(m0, k + 1);
} else {
m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
}
pdst[0] = i * m_k + src[0];
}
}
}
}
static void ggml_compute_forward_alibi_f16(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
assert(params->ith == 0);
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
const int n_past = ((int32_t *) dst->op_params)[0];
const int n_head = ((int32_t *) dst->op_params)[1];
float max_bias;
memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
assert(n_past >= 0);
const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
const int ne1 = src0->ne[1]; // seq_len_without_past
const int ne2 = src0->ne[2]; // n_head -> this is k
//const int ne3 = src0->ne[3]; // 1 -> bsz
const int n = ggml_nrows(src0);
const int ne2_ne3 = n/ne1; // ne2*ne3
const int nb0 = src0->nb[0];
const int nb1 = src0->nb[1];
const int nb2 = src0->nb[2];
//const int nb3 = src0->nb[3];
GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
GGML_ASSERT(n_head == ne2);
// add alibi to src0 (KQ_scaled)
const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
for (int i = 0; i < ne0; i++) {
for (int j = 0; j < ne1; j++) {
for (int k = 0; k < ne2_ne3; k++) {
ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
// TODO: k*nb2 or k*nb3
float m_k;
if (k < n_heads_log2_floor) {
m_k = powf(m0, k + 1);
} else {
m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
}
// we return F32
pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
}
}
}
}
static void ggml_compute_forward_alibi(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F16:
{
ggml_compute_forward_alibi_f16(params, src0, dst);
} break;
case GGML_TYPE_F32:
{
ggml_compute_forward_alibi_f32(params, src0, dst);
} break;
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q8_1:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
case GGML_TYPE_Q8_K:
case GGML_TYPE_I8:
case GGML_TYPE_I16:
case GGML_TYPE_I32:
case GGML_TYPE_COUNT:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_clamp
static void ggml_compute_forward_clamp_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
assert(params->ith == 0);
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
float min;
float max;
memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
const size_t nb00 = src0->nb[0];
const size_t nb01 = src0->nb[1];
const size_t nb0 = dst->nb[0];
const size_t nb1 = dst->nb[1];
GGML_ASSERT( nb0 == sizeof(float));
GGML_ASSERT(nb00 == sizeof(float));
for (int j = ith; j < n; j += nth) {
float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
for (int i = 0; i < nc; i++) {
dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
}
}
}
static void ggml_compute_forward_clamp(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_clamp_f32(params, src0, dst);
} break;
case GGML_TYPE_F16:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q8_1:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
case GGML_TYPE_Q8_K:
case GGML_TYPE_I8:
case GGML_TYPE_I16:
case GGML_TYPE_I32:
case GGML_TYPE_COUNT:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_rope
static void ggml_compute_forward_rope_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
float freq_base;
float freq_scale;
// these two only relevant for xPos RoPE:
float xpos_base;
bool xpos_down;
const int n_past = ((int32_t *) dst->op_params)[0];
const int n_dims = ((int32_t *) dst->op_params)[1];
const int mode = ((int32_t *) dst->op_params)[2];
const int n_ctx = ((int32_t *) dst->op_params)[3];
memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
memcpy(&xpos_base, (int32_t *) dst->op_params + 6, sizeof(float));
memcpy(&xpos_down, (int32_t *) dst->op_params + 7, sizeof(bool));
assert(n_past >= 0);
GGML_TENSOR_UNARY_OP_LOCALS;
//printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
//printf("n_past = %d, ne2 = %d\n", n_past, ne2);
GGML_ASSERT(nb00 == sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(dst);
GGML_ASSERT(n_dims <= ne0);
GGML_ASSERT(n_dims % 2 == 0);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
// row index used to determine which thread to use
int ir = 0;
const float theta_scale = powf(freq_base, -2.0f/n_dims);
const bool is_neox = mode & 2;
const bool is_glm = mode & 4;
for (int64_t i3 = 0; i3 < ne3; i3++) {
for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
for (int64_t i1 = 0; i1 < ne1; i1++) {
if (ir++ < ir0) continue;
if (ir > ir1) break;
float theta = freq_scale * (float)p;
if (is_glm) {
theta = MIN(p, n_ctx - 2);
float block_theta = MAX(p - (n_ctx - 2), 0);
for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
const float cos_theta = cosf(theta);
const float sin_theta = sinf(theta);
const float cos_block_theta = cosf(block_theta);
const float sin_block_theta = sinf(block_theta);
theta *= theta_scale;
block_theta *= theta_scale;
const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
const float x0 = src[0];
const float x1 = src[n_dims/2];
const float x2 = src[n_dims];
const float x3 = src[n_dims/2*3];
dst_data[0] = x0*cos_theta - x1*sin_theta;
dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
}
} else if (!is_neox) {
for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
const float cos_theta = cosf(theta);
const float sin_theta = sinf(theta);
// zeta scaling for xPos only:
float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), (n_past + i2) / xpos_base) : 1.0f;
if (xpos_down) zeta = 1.0f / zeta;
theta *= theta_scale;
const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
const float x0 = src[0];
const float x1 = src[1];
dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
}
} else {
// TODO: this might be wrong for ne0 != n_dims - need double check
// ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
for (int64_t ic = 0; ic < n_dims; ic += 2) {
const float cos_theta = cosf(theta);
const float sin_theta = sinf(theta);
theta *= theta_scale;
const int64_t i0 = ib*n_dims + ic/2;
const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
const float x0 = src[0];
const float x1 = src[n_dims/2];
dst_data[0] = x0*cos_theta - x1*sin_theta;
dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
}
}
}
}
}
}
}
static void ggml_compute_forward_rope_f16(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
float freq_base;
float freq_scale;
const int n_past = ((int32_t *) dst->op_params)[0];
const int n_dims = ((int32_t *) dst->op_params)[1];
const int mode = ((int32_t *) dst->op_params)[2];
const int n_ctx = ((int32_t *) dst->op_params)[3];
memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
assert(n_past >= 0);
GGML_TENSOR_UNARY_OP_LOCALS;
//printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
//printf("n_past = %d, ne2 = %d\n", n_past, ne2);
GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(dst);
GGML_ASSERT(n_dims <= ne0);
GGML_ASSERT(n_dims % 2 == 0);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
// row index used to determine which thread to use
int ir = 0;
const float theta_scale = powf(freq_base, -2.0f/n_dims);
const bool is_neox = mode & 2;
const bool is_glm = mode & 4;
for (int64_t i3 = 0; i3 < ne3; i3++) {
for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
for (int64_t i1 = 0; i1 < ne1; i1++) {
if (ir++ < ir0) continue;
if (ir > ir1) break;
float theta = freq_scale * (float)p;
if (is_glm) {
theta = MIN(p, n_ctx - 2);
float block_theta = MAX(p - (n_ctx - 2), 0);
for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
const float cos_theta = cosf(theta);
const float sin_theta = sinf(theta);
const float cos_block_theta = cosf(block_theta);
const float sin_block_theta = sinf(block_theta);
theta *= theta_scale;
block_theta *= theta_scale;
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
const float x0 = GGML_FP16_TO_FP32(src[0]);
const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
}
} if (!is_neox) {
for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
const float cos_theta = cosf(theta);
const float sin_theta = sinf(theta);
theta *= theta_scale;
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
const float x0 = GGML_FP16_TO_FP32(src[0]);
const float x1 = GGML_FP16_TO_FP32(src[1]);
dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
}
} else {
// TODO: this might be wrong for ne0 != n_dims - need double check
// ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
for (int64_t ic = 0; ic < n_dims; ic += 2) {
const float cos_theta = cosf(theta);
const float sin_theta = sinf(theta);
theta *= theta_scale;
const int64_t i0 = ib*n_dims + ic/2;
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
const float x0 = GGML_FP16_TO_FP32(src[0]);
const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
}
}
}
}
}
}
}
static void ggml_compute_forward_rope(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F16:
{
ggml_compute_forward_rope_f16(params, src0, dst);
} break;
case GGML_TYPE_F32:
{
ggml_compute_forward_rope_f32(params, src0, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_rope_back
static void ggml_compute_forward_rope_back_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
// y = rope(x, src1)
// dx = rope_back(dy, src1)
// src0 is dy, src1 contains options
float freq_base;
float freq_scale;
// these two only relevant for xPos RoPE:
float xpos_base;
bool xpos_down;
const int n_past = ((int32_t *) dst->op_params)[0];
const int n_dims = ((int32_t *) dst->op_params)[1];
const int mode = ((int32_t *) dst->op_params)[2];
const int n_ctx = ((int32_t *) dst->op_params)[3]; UNUSED(n_ctx);
memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
memcpy(&xpos_base, (int32_t *) dst->op_params + 6, sizeof(float));
memcpy(&xpos_down, (int32_t *) dst->op_params + 7, sizeof(bool));
assert(n_past >= 0);
GGML_TENSOR_UNARY_OP_LOCALS;
//printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
//printf("n_past = %d, ne2 = %d\n", n_past, ne2);
assert(nb0 == sizeof(float));
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(dst);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
// row index used to determine which thread to use
int ir = 0;
const float theta_scale = powf(freq_base, -2.0f/n_dims);
const bool is_neox = mode & 2;
for (int64_t i3 = 0; i3 < ne3; i3++) {
for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
for (int64_t i1 = 0; i1 < ne1; i1++) {
if (ir++ < ir0) continue;
if (ir > ir1) break;
float theta = freq_scale * (float)p;
if (!is_neox) {
for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
const float cos_theta = cosf(theta);
const float sin_theta = sinf(theta);
// zeta scaling for xPos only:
float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), (n_past + i2) / xpos_base) : 1.0f;
if (xpos_down) zeta = 1.0f / zeta;
theta *= theta_scale;
const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
const float dy0 = dy[0];
const float dy1 = dy[1];
dx[0] = dy0*cos_theta*zeta + dy1*sin_theta*zeta;
dx[1] = - dy0*sin_theta*zeta + dy1*cos_theta*zeta;
}
} else {
for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
for (int64_t ic = 0; ic < n_dims; ic += 2) {
const float cos_theta = cosf(theta);
const float sin_theta = sinf(theta);
theta *= theta_scale;
const int64_t i0 = ib*n_dims + ic/2;
const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
const float dy0 = dy[0];
const float dy1 = dy[n_dims/2];
dx[0] = dy0*cos_theta + dy1*sin_theta;
dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
}
}
}
}
}
}
}
static void ggml_compute_forward_rope_back_f16(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
// y = rope(x, src1)
// dx = rope_back(dy, src1)
// src0 is dy, src1 contains options
const int n_past = ((int32_t *) dst->op_params)[0];
const int n_dims = ((int32_t *) dst->op_params)[1];
const int mode = ((int32_t *) dst->op_params)[2];
assert(n_past >= 0);
GGML_TENSOR_UNARY_OP_LOCALS;
//printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
//printf("n_past = %d, ne2 = %d\n", n_past, ne2);
assert(nb0 == sizeof(ggml_fp16_t));
const int ith = params->ith;
const int nth = params->nth;
const int nr = ggml_nrows(dst);
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
// row index used to determine which thread to use
int ir = 0;
const float theta_scale = powf(10000.0, -2.0f/n_dims);
const bool is_neox = mode & 2;
for (int64_t i3 = 0; i3 < ne3; i3++) {
for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
for (int64_t i1 = 0; i1 < ne1; i1++) {
if (ir++ < ir0) continue;
if (ir > ir1) break;
float theta = (float)p;
if (!is_neox) {
for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
const float cos_theta = cosf(theta);
const float sin_theta = sinf(theta);
theta *= theta_scale;
const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
const float dy0 = GGML_FP16_TO_FP32(dy[0]);
const float dy1 = GGML_FP16_TO_FP32(dy[1]);
dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
}
} else {
for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
for (int64_t ic = 0; ic < n_dims; ic += 2) {
const float cos_theta = cosf(theta);
const float sin_theta = sinf(theta);
theta *= theta_scale;
const int64_t i0 = ib*n_dims + ic/2;
const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
const float dy0 = GGML_FP16_TO_FP32(dy[0]);
const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
}
}
}
}
}
}
}
static void ggml_compute_forward_rope_back(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F16:
{
ggml_compute_forward_rope_back_f16(params, src0, dst);
} break;
case GGML_TYPE_F32:
{
ggml_compute_forward_rope_back_f32(params, src0, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_conv_1d
static void ggml_compute_forward_conv_1d_s1_ph_f16_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
int64_t t0 = ggml_perf_time_us();
UNUSED(t0);
GGML_TENSOR_BINARY_OP_LOCALS;
const int ith = params->ith;
const int nth = params->nth;
const int nk = ne00;
const int nh = nk/2;
const int ew0 = ggml_up32(ne01);
GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
GGML_ASSERT(nb10 == sizeof(float));
if (params->type == GGML_TASK_INIT) {
// TODO: fix this memset (wsize is overestimated)
memset(params->wdata, 0, params->wsize);
// prepare kernel data (src0)
{
ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = 0; i01 < ne01; i01++) {
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
for (int64_t i00 = 0; i00 < ne00; i00++) {
dst_data[i00*ew0 + i01] = src[i00];
}
}
}
}
// prepare source data (src1)
{
ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
for (int64_t i11 = 0; i11 < ne11; i11++) {
const float * const src = (float *)((char *) src1->data + i11*nb11);
ggml_fp16_t * dst_data = wdata;
for (int64_t i10 = 0; i10 < ne10; i10++) {
dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
}
}
}
return;
}
if (params->type == GGML_TASK_FINALIZE) {
return;
}
// total rows in dst
const int nr = ne02;
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int i1 = ir0; i1 < ir1; i1++) {
float * dst_data = (float *)((char *) dst->data + i1*nb1);
for (int64_t i0 = 0; i0 < ne10; ++i0) {
dst_data[i0] = 0;
for (int k = -nh; k <= nh; k++) {
float v = 0.0f;
ggml_vec_dot_f16(ew0, &v,
(ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
(ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
dst_data[i0] += v;
}
}
}
}
static void ggml_compute_forward_conv_1d_s1_ph_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
int64_t t0 = ggml_perf_time_us();
UNUSED(t0);
GGML_TENSOR_BINARY_OP_LOCALS;
const int ith = params->ith;
const int nth = params->nth;
const int nk = ne00;
const int nh = nk/2;
const int ew0 = ggml_up32(ne01);
GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
GGML_ASSERT(nb00 == sizeof(float));
GGML_ASSERT(nb10 == sizeof(float));
if (params->type == GGML_TASK_INIT) {
// TODO: fix this memset (wsize is overestimated)
memset(params->wdata, 0, params->wsize);
// prepare kernel data (src0)
{
float * const wdata = (float *) params->wdata + 0;
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = 0; i01 < ne01; i01++) {
const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
float * dst_data = wdata + i02*ew0*ne00;
for (int64_t i00 = 0; i00 < ne00; i00++) {
dst_data[i00*ew0 + i01] = src[i00];
}
}
}
}
// prepare source data (src1)
{
float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
for (int64_t i11 = 0; i11 < ne11; i11++) {
const float * const src = (float *)((char *) src1->data + i11*nb11);
float * dst_data = wdata;
for (int64_t i10 = 0; i10 < ne10; i10++) {
dst_data[(i10 + nh)*ew0 + i11] = src[i10];
}
}
}
return;
}
if (params->type == GGML_TASK_FINALIZE) {
return;
}
// total rows in dst
const int nr = ne02;
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int i1 = ir0; i1 < ir1; i1++) {
float * dst_data = (float *)((char *) dst->data + i1*nb1);
for (int64_t i0 = 0; i0 < ne10; ++i0) {
dst_data[i0] = 0;
for (int k = -nh; k <= nh; k++) {
float v = 0.0f;
ggml_vec_dot_f32(ew0, &v,
(float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
(float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
dst_data[i0] += v;
}
}
}
}
static void ggml_compute_forward_conv_1d_s1_ph(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F16:
{
ggml_compute_forward_conv_1d_s1_ph_f16_f32(params, src0, src1, dst);
} break;
case GGML_TYPE_F32:
{
ggml_compute_forward_conv_1d_s1_ph_f32(params, src0, src1, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
static void ggml_compute_forward_conv_1d_s2_ph_f16_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
int64_t t0 = ggml_perf_time_us();
UNUSED(t0);
GGML_TENSOR_BINARY_OP_LOCALS;
const int ith = params->ith;
const int nth = params->nth;
const int nk = ne00;
const int nh = nk/2;
const int ew0 = ggml_up32(ne01);
GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
GGML_ASSERT(nb10 == sizeof(float));
if (params->type == GGML_TASK_INIT) {
// TODO: fix this memset (wsize is overestimated)
memset(params->wdata, 0, params->wsize);
// prepare kernel data (src0)
{
ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = 0; i01 < ne01; i01++) {
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
for (int64_t i00 = 0; i00 < ne00; i00++) {
dst_data[i00*ew0 + i01] = src[i00];
}
}
}
}
// prepare source data (src1)
{
ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
for (int64_t i11 = 0; i11 < ne11; i11++) {
const float * const src = (float *)((char *) src1->data + i11*nb11);
ggml_fp16_t * dst_data = wdata;
for (int64_t i10 = 0; i10 < ne10; i10++) {
dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
}
}
}
return;
}
if (params->type == GGML_TASK_FINALIZE) {
return;
}
// total rows in dst
const int nr = ne02;
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int i1 = ir0; i1 < ir1; i1++) {
float * dst_data = (float *)((char *) dst->data + i1*nb1);
for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
dst_data[i0/2] = 0;
for (int k = -nh; k <= nh; k++) {
float v = 0.0f;
ggml_vec_dot_f16(ew0, &v,
(ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
(ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
dst_data[i0/2] += v;
}
}
}
}
static void ggml_compute_forward_conv_1d_s2_ph_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
int64_t t0 = ggml_perf_time_us();
UNUSED(t0);
GGML_TENSOR_BINARY_OP_LOCALS;
const int ith = params->ith;
const int nth = params->nth;
const int nk = ne00;
const int nh = nk/2;
const int ew0 = ggml_up32(ne01);
GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
GGML_ASSERT(nb00 == sizeof(float));
GGML_ASSERT(nb10 == sizeof(float));
if (params->type == GGML_TASK_INIT) {
// TODO: fix this memset (wsize is overestimated)
memset(params->wdata, 0, params->wsize);
// prepare kernel data (src0)
{
float * const wdata = (float *) params->wdata + 0;
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = 0; i01 < ne01; i01++) {
const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
float * dst_data = wdata + i02*ew0*ne00;
for (int64_t i00 = 0; i00 < ne00; i00++) {
dst_data[i00*ew0 + i01] = src[i00];
}
}
}
}
// prepare source data (src1)
{
float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
for (int64_t i11 = 0; i11 < ne11; i11++) {
const float * const src = (float *)((char *) src1->data + i11*nb11);
float * dst_data = wdata;
for (int64_t i10 = 0; i10 < ne10; i10++) {
dst_data[(i10 + nh)*ew0 + i11] = src[i10];
}
}
}
return;
}
if (params->type == GGML_TASK_FINALIZE) {
return;
}
// total rows in dst
const int nr = ne02;
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int i1 = ir0; i1 < ir1; i1++) {
float * dst_data = (float *)((char *) dst->data + i1*nb1);
for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
dst_data[i0/2] = 0;
for (int k = -nh; k <= nh; k++) {
float v = 0.0f;
ggml_vec_dot_f32(ew0, &v,
(float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
(float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
dst_data[i0/2] += v;
}
}
}
}
static void ggml_compute_forward_conv_1d_s2_ph(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F16:
{
ggml_compute_forward_conv_1d_s2_ph_f16_f32(params, src0, src1, dst);
} break;
case GGML_TYPE_F32:
{
ggml_compute_forward_conv_1d_s2_ph_f32(params, src0, src1, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_conv_1d
static void ggml_compute_forward_conv_1d(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
GGML_ASSERT(d0 == 1); // dilation not supported
GGML_ASSERT(p0 == src0->ne[0]/2); // only half padding supported
if (s0 == 1) {
ggml_compute_forward_conv_1d_s1_ph(params, src0, src1, dst);
} else if (s0 == 2) {
ggml_compute_forward_conv_1d_s2_ph(params, src0, src1, dst);
} else {
GGML_ASSERT(false); // only stride 1 and 2 supported
};
}
// ggml_compute_forward_conv_2d
static void ggml_compute_forward_conv_2d_f16_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
int64_t t0 = ggml_perf_time_us();
UNUSED(t0);
GGML_TENSOR_BINARY_OP_LOCALS;
const int ith = params->ith;
const int nth = params->nth;
const int nk0 = ne00;
const int nk1 = ne01;
// size of the convolution row - the kernel size unrolled across all channels
const int ew0 = nk0*nk1*ne02;
const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
GGML_ASSERT(nb10 == sizeof(float));
if (params->type == GGML_TASK_INIT) {
memset(params->wdata, 0, params->wsize);
// prepare source data (src1)
{
ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
for (int i12 = 0; i12 < ne12; i12++) {
const float * const src = (float *)((char *) src1->data + i12*nb12);
ggml_fp16_t * dst_data = wdata;
for (int i1 = 0; i1 < ne1; i1++) {
for (int i0 = 0; i0 < ne0; i0++) {
for (int ik1 = 0; ik1 < nk1; ik1++) {
for (int ik0 = 0; ik0 < nk0; ik0++) {
const int idx0 = i0*s0 + ik0*d0 - p0;
const int idx1 = i1*s1 + ik1*d1 - p1;
if (!(idx1 < 0 || idx1 >= ne11 || idx0 < 0 || idx0 >= ne10)) {
dst_data[(i1*ne0 + i0)*ew0 + i12*(nk0*nk1) + ik1*nk0 + ik0] =
GGML_FP32_TO_FP16(src[idx1*ne10 + idx0]);
}
}
}
}
}
}
}
return;
}
if (params->type == GGML_TASK_FINALIZE) {
return;
}
// total patches in dst
const int np = ne2;
// patches per thread
const int dp = (np + nth - 1)/nth;
// patch range for this thread
const int ip0 = dp*ith;
const int ip1 = MIN(ip0 + dp, np);
ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
for (int i3 = 0; i3 < ne3; i3++) {
for (int i2 = ip0; i2 < ip1; i2++) {
float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2);
for (int i1 = 0; i1 < ne1; ++i1) {
for (int i0 = 0; i0 < ne0; ++i0) {
ggml_vec_dot_f16(ew0, dst_data + i1*ne0 + i0,
(ggml_fp16_t *) ((char *) src0->data + i2*nb03),
(ggml_fp16_t *) wdata + i3*nb3 + (i1*ne0 + i0)*ew0);
}
}
}
}
}
static void ggml_compute_forward_conv_2d(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F16:
{
ggml_compute_forward_conv_2d_f16_f32(params, src0, src1, dst);
} break;
case GGML_TYPE_F32:
{
//ggml_compute_forward_conv_2d_f32(params, src0, src1, dst);
GGML_ASSERT(false);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_conv_transpose_2d
static void ggml_compute_forward_conv_transpose_2d(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
int64_t t0 = ggml_perf_time_us();
UNUSED(t0);
GGML_TENSOR_BINARY_OP_LOCALS;
const int ith = params->ith;
const int nth = params->nth;
const int nk = ne00*ne01*ne02*ne03;
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
GGML_ASSERT(nb10 == sizeof(float));
if (params->type == GGML_TASK_INIT) {
memset(params->wdata, 0, params->wsize);
// permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
{
ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
for (int64_t i01 = 0; i01 < ne01; i01++) {
for (int64_t i00 = 0; i00 < ne00; i00++) {
dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
}
}
}
}
}
// permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
{
ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
for (int i12 = 0; i12 < ne12; i12++) {
for (int i11 = 0; i11 < ne11; i11++) {
const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
for (int i10 = 0; i10 < ne10; i10++) {
dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
}
}
}
}
return;
}
if (params->type == GGML_TASK_FINALIZE) {
return;
}
const int32_t stride = ggml_get_op_params_i32(dst, 0);
// total patches in dst
const int np = ne2;
// patches per thread
const int dp = (np + nth - 1)/nth;
// patch range for this thread
const int ip0 = dp*ith;
const int ip1 = MIN(ip0 + dp, np);
ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
ggml_fp16_t * const wdata_src = wdata + nk;
for (int i2 = ip0; i2 < ip1; i2++) { // Cout
float * dst_data = (float *)((char *) dst->data + i2*nb2);
ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
for (int i11 = 0; i11 < ne11; i11++) {
for (int i10 = 0; i10 < ne10; i10++) {
const int i1n = i11*ne10*ne12 + i10*ne12;
for (int i01 = 0; i01 < ne01; i01++) {
for (int i00 = 0; i00 < ne00; i00++) {
float v = 0;
ggml_vec_dot_f16(ne03, &v,
wdata_src + i1n,
wdata_kernel + i01*ne00*ne03 + i00*ne03);
dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
}
}
}
}
}
}
// ggml_compute_forward_pool_1d_sk_p0
static void ggml_compute_forward_pool_1d_sk_p0(
const struct ggml_compute_params * params,
const enum ggml_op_pool op,
const struct ggml_tensor * src,
const int k,
struct ggml_tensor * dst) {
assert(src->type == GGML_TYPE_F32);
assert(params->ith == 0);
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
const char * cdata = (const char *)src->data;
const char * const data_end = cdata + ggml_nbytes(src);
float * drow = (float *)dst->data;
const int64_t rs = dst->ne[0];
while (cdata < data_end) {
const float * const srow = (const float *)cdata;
int j = 0;
for (int64_t i = 0; i < rs; ++i) {
switch (op) {
case GGML_OP_POOL_AVG: drow[i] = 0; break;
case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
}
for (int ki = 0; ki < k; ++ki) {
switch (op) {
case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
}
++j;
}
switch (op) {
case GGML_OP_POOL_AVG: drow[i] /= k; break;
case GGML_OP_POOL_MAX: break;
case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
}
}
cdata += src->nb[1];
drow += rs;
}
}
// ggml_compute_forward_pool_1d
static void ggml_compute_forward_pool_1d(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
const int32_t * opts = (const int32_t *)dst->op_params;
enum ggml_op_pool op = opts[0];
const int k0 = opts[1];
const int s0 = opts[2];
const int p0 = opts[3];
GGML_ASSERT(p0 == 0); // padding not supported
GGML_ASSERT(k0 == s0); // only s = k supported
ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
}
// ggml_compute_forward_pool_2d_sk_p0
static void ggml_compute_forward_pool_2d_sk_p0(
const struct ggml_compute_params * params,
const enum ggml_op_pool op,
const struct ggml_tensor * src,
const int k0,
const int k1,
struct ggml_tensor * dst) {
assert(src->type == GGML_TYPE_F32);
assert(params->ith == 0);
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
const char * cdata = (const char*)src->data;
const char * const data_end = cdata + ggml_nbytes(src);
const int64_t px = dst->ne[0];
const int64_t py = dst->ne[1];
const int64_t pa = px * py;
float * dplane = (float *)dst->data;
const int ka = k0 * k1;
while (cdata < data_end) {
for (int oy = 0; oy < py; ++oy) {
float * const drow = dplane + oy * px;
for (int ox = 0; ox < px; ++ox) {
float * const out = drow + ox;
switch (op) {
case GGML_OP_POOL_AVG: *out = 0; break;
case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
}
const int ix = ox * k0;
const int iy = oy * k1;
for (int ky = 0; ky < k1; ++ky) {
const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
for (int kx = 0; kx < k0; ++kx) {
int j = ix + kx;
switch (op) {
case GGML_OP_POOL_AVG: *out += srow[j]; break;
case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
}
}
}
switch (op) {
case GGML_OP_POOL_AVG: *out /= ka; break;
case GGML_OP_POOL_MAX: break;
case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
}
}
}
cdata += src->nb[2];
dplane += pa;
}
}
// ggml_compute_forward_pool_2d
static void ggml_compute_forward_pool_2d(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
const int32_t * opts = (const int32_t *)dst->op_params;
enum ggml_op_pool op = opts[0];
const int k0 = opts[1];
const int k1 = opts[2];
const int s0 = opts[3];
const int s1 = opts[4];
const int p0 = opts[5];
const int p1 = opts[6];
GGML_ASSERT(p0 == 0);
GGML_ASSERT(p1 == 0); // padding not supported
GGML_ASSERT(k0 == s0);
GGML_ASSERT(k1 == s1); // only s = k supported
ggml_compute_forward_pool_2d_sk_p0(params, op, src0, k0, k1, dst);
}
// ggml_compute_forward_upscale
static void ggml_compute_forward_upscale_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
GGML_ASSERT(src0->nb[0] == sizeof(float));
const int ith = params->ith;
GGML_TENSOR_UNARY_OP_LOCALS;
const int scale_factor = dst->op_params[0];
// TODO: optimize
for (int i03 = 0; i03 < ne03; i03++) {
for (int i02 = ith; i02 < ne02; i02++) {
for (int m = 0; m < dst->ne[1]; m++) {
int i01 = m / scale_factor;
for (int n = 0; n < dst->ne[0]; n++) {
int i00 = n / scale_factor;
const float * x = (float *)((char *) src0->data + i00 * nb00 +i01 * nb01 + i02 * nb02 + i03 * nb03);
float * y = (float *)((char *) dst->data + n * dst->nb[0] + m * dst->nb[1] + i02 * dst->nb[2] + i03 * dst->nb[3]);
*y = *x;
}
}
}
}
}
static void ggml_compute_forward_upscale(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_upscale_f32(params, src0, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_flash_attn
static void ggml_compute_forward_flash_attn_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * q,
const struct ggml_tensor * k,
const struct ggml_tensor * v,
const bool masked,
struct ggml_tensor * dst) {
int64_t t0 = ggml_perf_time_us();
UNUSED(t0);
GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
const int ith = params->ith;
const int nth = params->nth;
const int64_t D = neq0;
const int64_t N = neq1;
const int64_t P = nek1 - N;
const int64_t M = P + N;
const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
GGML_ASSERT(ne0 == D);
GGML_ASSERT(ne1 == N);
GGML_ASSERT(P >= 0);
GGML_ASSERT(nbq0 == sizeof(float));
GGML_ASSERT(nbk0 == sizeof(float));
GGML_ASSERT(nbv0 == sizeof(float));
GGML_ASSERT(neq0 == D);
GGML_ASSERT(nek0 == D);
GGML_ASSERT(nev1 == D);
GGML_ASSERT(neq1 == N);
GGML_ASSERT(nek1 == N + P);
GGML_ASSERT(nev1 == D);
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb0 <= nb1);
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
if (params->type == GGML_TASK_INIT) {
return;
}
if (params->type == GGML_TASK_FINALIZE) {
return;
}
// parallelize by q rows using ggml_vec_dot_f32
// total rows in q
const int nr = neq1*neq2*neq3;
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
const float scale = 1.0f/sqrtf(D);
//printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
for (int ir = ir0; ir < ir1; ++ir) {
// q indices
const int iq3 = ir/(neq2*neq1);
const int iq2 = (ir - iq3*neq2*neq1)/neq1;
const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
for (int i = M; i < Mup; ++i) {
S[i] = -INFINITY;
}
for (int64_t ic = 0; ic < nek1; ++ic) {
// k indices
const int ik3 = iq3;
const int ik2 = iq2;
const int ik1 = ic;
// S indices
const int i1 = ik1;
ggml_vec_dot_f32(neq0,
S + i1,
(float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
(float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
}
// scale
ggml_vec_scale_f32(nek1, S, scale);
if (masked) {
for (int64_t i = P; i < M; i++) {
if (i > P + iq1) {
S[i] = -INFINITY;
}
}
}
// softmax
{
float max = -INFINITY;
ggml_vec_max_f32(M, &max, S);
ggml_float sum = 0.0;
{
#ifdef GGML_SOFT_MAX_ACCELERATE
max = -max;
vDSP_vsadd(S, 1, &max, S, 1, Mup);
vvexpf(S, S, &Mup);
ggml_vec_sum_f32(Mup, &sum, S);
#else
uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
float * SS = S + i;
for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
if (SS[j] == -INFINITY) {
SS[j] = 0.0f;
} else {
#ifndef GGML_FLASH_ATTN_EXP_FP16
const float val = expf(SS[j] - max);
#else
ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
memcpy(&scvt[j], &s, sizeof(uint16_t));
const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
#endif
sump[j] += (ggml_float)val;
SS[j] = val;
}
}
}
for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
sum += sump[i];
}
#endif
}
assert(sum > 0.0);
sum = 1.0/sum;
ggml_vec_scale_f32(M, S, sum);
#ifndef NDEBUG
for (int i = 0; i < M; ++i) {
assert(!isnan(S[i]));
assert(!isinf(S[i]));
}
#endif
}
for (int64_t ic = 0; ic < nev1; ++ic) {
// dst indices
const int i1 = iq1;
const int i2 = iq2;
const int i3 = iq3;
ggml_vec_dot_f32(nek1,
(float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
(float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
S);
}
}
}
static void ggml_compute_forward_flash_attn_f16(
const struct ggml_compute_params * params,
const struct ggml_tensor * q,
const struct ggml_tensor * k,
const struct ggml_tensor * v,
const bool masked,
struct ggml_tensor * dst) {
int64_t t0 = ggml_perf_time_us();
UNUSED(t0);
GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
const int ith = params->ith;
const int nth = params->nth;
const int64_t D = neq0;
const int64_t N = neq1;
const int64_t P = nek1 - N;
const int64_t M = P + N;
const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
GGML_ASSERT(ne0 == D);
GGML_ASSERT(ne1 == N);
GGML_ASSERT(P >= 0);
GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
GGML_ASSERT(neq0 == D);
GGML_ASSERT(nek0 == D);
GGML_ASSERT(nev1 == D);
GGML_ASSERT(neq1 == N);
GGML_ASSERT(nek1 == N + P);
GGML_ASSERT(nev1 == D);
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb0 <= nb1);
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
if (params->type == GGML_TASK_INIT) {
return;
}
if (params->type == GGML_TASK_FINALIZE) {
return;
}
// parallelize by q rows using ggml_vec_dot_f32
// total rows in q
const int nr = neq1*neq2*neq3;
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
const float scale = 1.0f/sqrtf(D);
//printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
for (int ir = ir0; ir < ir1; ++ir) {
// q indices
const int iq3 = ir/(neq2*neq1);
const int iq2 = (ir - iq3*neq2*neq1)/neq1;
const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
for (int i = M; i < Mup; ++i) {
S[i] = -INFINITY;
}
if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
for (int64_t ic = 0; ic < nek1; ++ic) {
// k indices
const int ik3 = iq3;
const int ik2 = iq2;
const int ik1 = ic;
// S indices
const int i1 = ik1;
ggml_vec_dot_f16(neq0,
S + i1,
(ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
(ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
}
} else {
for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
// k indices
const int ik3 = iq3;
const int ik2 = iq2;
const int ik1 = ic;
// S indices
const int i1 = ik1;
ggml_vec_dot_f16_unroll(neq0, nbk1,
S + i1,
((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
(ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
}
}
// scale
ggml_vec_scale_f32(nek1, S, scale);
if (masked) {
for (int64_t i = P; i < M; i++) {
if (i > P + iq1) {
S[i] = -INFINITY;
}
}
}
// softmax
{
float max = -INFINITY;
ggml_vec_max_f32(M, &max, S);
ggml_float sum = 0.0;
{
#ifdef GGML_SOFT_MAX_ACCELERATE
max = -max;
vDSP_vsadd(S, 1, &max, S, 1, Mup);
vvexpf(S, S, &Mup);
ggml_vec_sum_f32(Mup, &sum, S);
#else
uint16_t scvt[GGML_SOFT_MAX_UNROLL];
ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
float * SS = S + i;
for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
if (SS[j] == -INFINITY) {
SS[j] = 0.0f;
} else {
ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
memcpy(&scvt[j], &s, sizeof(uint16_t));
const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
sump[j] += (ggml_float)val;
SS[j] = val;
}
}
}
for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
sum += sump[i];
}
#endif
}
assert(sum > 0.0);
sum = 1.0/sum;
ggml_vec_scale_f32(M, S, sum);
#ifndef NDEBUG
for (int i = 0; i < M; ++i) {
assert(!isnan(S[i]));
assert(!isinf(S[i]));
}
#endif
}
ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
for (int64_t i = 0; i < M; i++) {
S16[i] = GGML_FP32_TO_FP16(S[i]);
}
if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
for (int64_t ic = 0; ic < nev1; ++ic) {
// dst indices
const int i1 = iq1;
const int i2 = iq2;
const int i3 = iq3;
ggml_vec_dot_f16(nek1,
(float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
(ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
S16);
}
} else {
for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
// dst indices
const int i1 = iq1;
const int i2 = iq2;
const int i3 = iq3;
ggml_vec_dot_f16_unroll(nek1, nbv1,
(float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
S16);
}
}
}
}
static void ggml_compute_forward_flash_attn(
const struct ggml_compute_params * params,
const struct ggml_tensor * q,
const struct ggml_tensor * k,
const struct ggml_tensor * v,
const bool masked,
struct ggml_tensor * dst) {
switch (q->type) {
case GGML_TYPE_F16:
{
ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
} break;
case GGML_TYPE_F32:
{
ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_flash_ff
static void ggml_compute_forward_flash_ff_f16(
const struct ggml_compute_params * params,
const struct ggml_tensor * a, // F16
const struct ggml_tensor * b0, // F16 fc_w
const struct ggml_tensor * b1, // F32 fc_b
const struct ggml_tensor * c0, // F16 proj_w
const struct ggml_tensor * c1, // F32 proj_b
struct ggml_tensor * dst) {
int64_t t0 = ggml_perf_time_us();
UNUSED(t0);
GGML_TENSOR_LOCALS(int64_t, nea, a, ne);
GGML_TENSOR_LOCALS(size_t, nba, a, nb);
GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne);
GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb);
GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne);
GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb);
GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne);
GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb);
GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne);
GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb);
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
const int ith = params->ith;
const int nth = params->nth;
const int64_t D = nea0;
//const int64_t N = nea1;
const int64_t M = neb01;
GGML_ASSERT(ne0 == nea0);
GGML_ASSERT(ne1 == nea1);
GGML_ASSERT(ne2 == nea2);
GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
GGML_ASSERT(nbb10 == sizeof(float));
GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
GGML_ASSERT(nbc10 == sizeof(float));
GGML_ASSERT(neb00 == D);
GGML_ASSERT(neb01 == M);
GGML_ASSERT(neb10 == M);
GGML_ASSERT(neb11 == 1);
GGML_ASSERT(nec00 == M);
GGML_ASSERT(nec01 == D);
GGML_ASSERT(nec10 == D);
GGML_ASSERT(nec11 == 1);
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb0 <= nb1);
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
if (params->type == GGML_TASK_INIT) {
return;
}
if (params->type == GGML_TASK_FINALIZE) {
return;
}
// parallelize by a rows using ggml_vec_dot_f32
// total rows in a
const int nr = nea1*nea2*nea3;
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int ir = ir0; ir < ir1; ++ir) {
// a indices
const int ia3 = ir/(nea2*nea1);
const int ia2 = (ir - ia3*nea2*nea1)/nea1;
const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
for (int64_t ic = 0; ic < neb01; ++ic) {
// b0 indices
const int ib03 = ia3;
const int ib02 = ia2;
const int ib01 = ic;
// S indices
const int i1 = ib01;
ggml_vec_dot_f16(nea0,
S + i1,
(ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
(ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
}
ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
//ggml_vec_gelu_f32(neb01, S, S);
ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
for (int64_t i = 0; i < M; i++) {
S16[i] = GGML_FP32_TO_FP16(S[i]);
}
ggml_vec_gelu_f16(neb01, S16, S16);
{
// dst indices
const int i1 = ia1;
const int i2 = ia2;
const int i3 = ia3;
for (int64_t ic = 0; ic < nec01; ++ic) {
ggml_vec_dot_f16(neb01,
(float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
(ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
S16);
}
ggml_vec_add_f32(nec01,
(float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
(float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
(float *) c1->data);
}
}
}
static void ggml_compute_forward_flash_ff(
const struct ggml_compute_params * params,
const struct ggml_tensor * a,
const struct ggml_tensor * b0,
const struct ggml_tensor * b1,
const struct ggml_tensor * c0,
const struct ggml_tensor * c1,
struct ggml_tensor * dst) {
switch (b0->type) {
case GGML_TYPE_F16:
{
ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
} break;
case GGML_TYPE_F32:
{
GGML_ASSERT(false); // TODO
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_flash_attn_back
static void ggml_compute_forward_flash_attn_back_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * q,
const struct ggml_tensor * k,
const struct ggml_tensor * v,
const struct ggml_tensor * d,
const bool masked,
struct ggml_tensor * dst) {
int64_t t0 = ggml_perf_time_us();
UNUSED(t0);
GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
GGML_TENSOR_LOCALS(int64_t, ned, d, ne);
GGML_TENSOR_LOCALS(size_t, nbd, d, nb);
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
const int ith = params->ith;
const int nth = params->nth;
const int64_t D = neq0;
const int64_t N = neq1;
const int64_t P = nek1 - N;
const int64_t M = P + N;
const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
const int mxDM = MAX(D, Mup);
// GGML_ASSERT(ne0 == D);
// GGML_ASSERT(ne1 == N);
GGML_ASSERT(P >= 0);
GGML_ASSERT(nbq0 == sizeof(float));
GGML_ASSERT(nbk0 == sizeof(float));
GGML_ASSERT(nbv0 == sizeof(float));
GGML_ASSERT(neq0 == D);
GGML_ASSERT(nek0 == D);
GGML_ASSERT(nev1 == D);
GGML_ASSERT(ned0 == D);
GGML_ASSERT(neq1 == N);
GGML_ASSERT(nek1 == N + P);
GGML_ASSERT(nev1 == D);
GGML_ASSERT(ned1 == N);
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb0 <= nb1);
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
if (params->type == GGML_TASK_INIT) {
if (ith == 0) {
memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
}
return;
}
if (params->type == GGML_TASK_FINALIZE) {
return;
}
// parallelize by q rows using ggml_vec_dot_f32
// total rows in q
const int nr = neq2*neq3;
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
const float scale = 1.0f/sqrtf(D);
//printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
for (int ir = ir0; ir < ir1; ++ir) {
// q indices
const int iq3 = ir/(neq2);
const int iq2 = ir - iq3*neq2;
for ( int iq1 = 0; iq1 < neq1; ++iq1) {
// not sure about CACHE_LINE_SIZE_F32..
// - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
for (int i = M; i < Mup; ++i) {
S[i] = -INFINITY;
}
for (int64_t ic = 0; ic < nek1; ++ic) {
// k indices
const int ik3 = iq3;
const int ik2 = iq2;
const int ik1 = ic;
// S indices
const int i1 = ik1;
ggml_vec_dot_f32(neq0,
S + i1,
(float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
(float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
}
// scale
ggml_vec_scale_f32(nek1, S, scale);
if (masked) {
for (int64_t i = P; i < M; i++) {
if (i > P + iq1) {
S[i] = -INFINITY;
}
}
}
// softmax
{
float max = -INFINITY;
ggml_vec_max_f32(M, &max, S);
ggml_float sum = 0.0;
{
#ifdef GGML_SOFT_MAX_ACCELERATE
max = -max;
vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
vvexpf(SM, SM, &Mup);
ggml_vec_sum_f32(Mup, &sum, SM);
#else
uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
float * SR = S + i;
float * SW = SM + i;
for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
if (SR[j] == -INFINITY) {
SW[j] = 0.0f;
} else {
#ifndef GGML_FLASH_ATTN_EXP_FP16
const float val = expf(SR[j] - max);
#else
ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
memcpy(&scvt[j], &s, sizeof(uint16_t));
const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
#endif
sump[j] += (ggml_float)val;
SW[j] = val;
}
}
}
for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
sum += sump[i];
}
#endif
}
assert(sum > 0.0);
sum = 1.0/sum;
ggml_vec_scale_f32(M, SM, sum);
}
// step-by-step explanation
{
// forward-process shape grads from backward process
// parallel_for iq2,iq3:
// k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,iq2,iq3] += grad[kcur]
// q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
// v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iq2,iq3] += grad[vcur]
// for iq1:
// kcur = k[:D,:M,iq2,iq3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
// qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
// vcur = v[:M,:D,iq2,iq3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
// S0 = -Inf [D,1,1,1]
// ~S1[i] = dot(kcur[:D,i], qcur)
// S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
// S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
// S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
// S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
// ~S5[i] = dot(vcur[:,i], S4)
// S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,iq1,iq2,iq3]
// ~dst[i,iq1,iq2,iq3] = S5[i] ^
// dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,iq1,iq2,iq3]
// dst backward-/ grad[dst] = d
//
// output gradients with their dependencies:
//
// grad[kcur] = grad[S1].T @ qcur
// grad[S1] = diag_mask_zero(grad[S3], P) * scale
// grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
// grad[S4] = grad[S5] @ vcur
// grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
// grad[qcur] = grad[S1] @ kcur
// grad[vcur] = grad[S5].T @ S4
// grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
//
// in post-order:
//
// S1 = qcur @ kcur.T
// S2 = S1 * scale
// S3 = diag_mask_inf(S2, P)
// S4 = softmax(S3)
// grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
// grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
// grad[S1] = diag_mask_zero(grad[S3], P) * scale
// grad[qcur] = grad[S1] @ kcur
// grad[kcur] = grad[S1].T @ qcur
// grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
//
// using less variables (SM=S4):
//
// S = diag_mask_inf(qcur @ kcur.T * scale, P)
// SM = softmax(S)
// S = d[:D,iq1,iq2,iq3] @ vcur
// dot_SM_gradSM = dot(SM, S)
// S = SM * (S - dot(SM, S))
// S = diag_mask_zero(S, P) * scale
//
// grad[q][:D,iq1,iq2,iq3] += S @ kcur
// grad[k][:D,:M,iq2,iq3] += S.T @ qcur
// grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
}
// S = gradSM = d[:D,iq1,iq2,iq3] @ vcur
// S = d[:D,iq1,iq2,iq3] @ vcur
// S[:M] += vcur[:M,ic] * d[ic,iq1,iq2,iq3]
ggml_vec_set_f32(M, S, 0);
for (int64_t ic = 0; ic < D; ++ic) {
// dst indices
const int i1 = iq1;
const int i2 = iq2;
const int i3 = iq3;
ggml_vec_mad_f32(M,
S,
(float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
*(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
}
// S = SM * (S - dot(SM, S))
float dot_SM_gradSM = 0;
ggml_vec_dot_f32 (M, &dot_SM_gradSM, SM, S);
ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
ggml_vec_mul_f32 (M, S, S, SM);
// S = diag_mask_zero(S, P) * scale
if (masked) {
// for (int64_t i = P + iq1 + 1; i < M; i++) {
// S[i] = 0;
// }
for (int64_t i = P; i < M; i++) {
if (i > P + iq1) {
S[i] = 0;
}
}
}
ggml_vec_scale_f32(M, S, scale);
void * grad_q = (char *) dst->data;
void * grad_k = (char *) dst->data + nb0*D*N*neq2*neq3;
void * grad_v = (char *) dst->data + nb0*D*N*neq2*neq3 + nb0*D*M*neq2*neq3;
const size_t nbgq1 = nb0*neq0;
const size_t nbgq2 = nb0*neq0*neq1;
const size_t nbgq3 = nb0*neq0*neq1*neq2;
const size_t nbgk1 = nb0*nek0;
const size_t nbgk2 = nb0*nek0*nek1;
const size_t nbgk3 = nb0*nek0*nek1*neq2;
const size_t nbgv1 = nb0*nev0;
const size_t nbgv2 = nb0*nev0*nev1;
const size_t nbgv3 = nb0*nev0*nev1*neq2;
// S shape [M,1]
// SM shape [M,1]
// kcur shape [D,M]
// qcur shape [D,1]
// vcur shape [M,D]
//
// grad[q][:D,iq1,iq2,iq3] += S @ kcur
// grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
// grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic]
//
//// grad[q][ic,iq1,iq2,iq3] += dot(kcur[:,ic],S.T)
//// grad[q][ic,iq1,iq2,iq3] += dot(k[:D,ic,iq2,iq3],S.T)
for (int64_t ic = 0; ic < M; ++ic) {
// dst indices
const int i1 = iq1;
const int i2 = iq2;
const int i3 = iq3;
ggml_vec_mad_f32(D,
(float *) ((char *) grad_q + (i1*nbgq1 + i2*nbgq2 + i3*nbgq3)),
(float *) ((char *) k->data + (ic*nbk1 + i2*nbk2 + i3*nbk3)),
S[ic]);
}
// grad[k][:D,:M,iq2,iq3] += S.T @ qcur
// grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
// grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
for (int64_t ic = 0; ic < M; ++ic) {
// dst indices
const int i1 = iq1;
const int i2 = iq2;
const int i3 = iq3;
// ggml_vec_set_f32(D,
// (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
// 0);
ggml_vec_mad_f32(D,
(float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
(float *) ((char *) q->data + (i1*nbq1 + i2*nbq2 + i3*nbq3)),
S[ic]);
}
// grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
// grad[v][:M,ic,iq2,iq3] += d[:D,iq1,iq2,iq3].T[0,ic] * SM[:M]
// grad[v][:M,ic,iq2,iq3] += d[ic,iq1,iq2,iq3] * SM[:M]
for (int64_t ic = 0; ic < D; ++ic) {
// dst indices
const int i1 = iq1;
const int i2 = iq2;
const int i3 = iq3;
// ggml_vec_set_f32(M,
// (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
// 0);
ggml_vec_mad_f32(M,
(float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
SM,
*(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
}
}
}
}
static void ggml_compute_forward_flash_attn_back(
const struct ggml_compute_params * params,
const struct ggml_tensor * q,
const struct ggml_tensor * k,
const struct ggml_tensor * v,
const struct ggml_tensor * d,
const bool masked,
struct ggml_tensor * dst) {
switch (q->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_win_part
static void ggml_compute_forward_win_part_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
const int32_t w = ((const int32_t *)(dst->op_params))[2];
assert(ne00 == ne0);
assert(ne3 == nep0*nep1);
// TODO: optimize / multi-thread
for (int py = 0; py < nep1; ++py) {
for (int px = 0; px < nep0; ++px) {
const int64_t i3 = py*nep0 + px;
for (int64_t i2 = 0; i2 < ne2; ++i2) {
for (int64_t i1 = 0; i1 < ne1; ++i1) {
for (int64_t i0 = 0; i0 < ne0; ++i0) {
const int64_t i02 = py*w + i2;
const int64_t i01 = px*w + i1;
const int64_t i00 = i0;
const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
((float *) dst->data)[i] = 0.0f;
} else {
((float *) dst->data)[i] = ((float *) src0->data)[j];
}
}
}
}
}
}
}
static void ggml_compute_forward_win_part(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_win_part_f32(params, src0, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_win_unpart
static void ggml_compute_forward_win_unpart_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
const int32_t w = ((const int32_t *)(dst->op_params))[0];
// padding
const int px = (w - ne1%w)%w;
//const int py = (w - ne2%w)%w;
const int npx = (px + ne1)/w;
//const int npy = (py + ne2)/w;
assert(ne0 == ne00);
// TODO: optimize / multi-thread
for (int64_t i2 = 0; i2 < ne2; ++i2) {
for (int64_t i1 = 0; i1 < ne1; ++i1) {
for (int64_t i0 = 0; i0 < ne0; ++i0) {
const int ip2 = i2/w;
const int ip1 = i1/w;
const int64_t i02 = i2%w;
const int64_t i01 = i1%w;
const int64_t i00 = i0;
const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
((float *) dst->data)[j] = ((float *) src0->data)[i];
}
}
}
}
static void ggml_compute_forward_win_unpart(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_win_unpart_f32(params, src0, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
//gmml_compute_forward_unary
static void ggml_compute_forward_unary(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
const enum ggml_unary_op op = ggml_get_unary_op(dst);
switch (op) {
case GGML_UNARY_OP_ABS:
{
ggml_compute_forward_abs(params, src0, dst);
} break;
case GGML_UNARY_OP_SGN:
{
ggml_compute_forward_sgn(params, src0, dst);
} break;
case GGML_UNARY_OP_NEG:
{
ggml_compute_forward_neg(params, src0, dst);
} break;
case GGML_UNARY_OP_STEP:
{
ggml_compute_forward_step(params, src0, dst);
} break;
case GGML_UNARY_OP_TANH:
{
ggml_compute_forward_tanh(params, src0, dst);
} break;
case GGML_UNARY_OP_ELU:
{
ggml_compute_forward_elu(params, src0, dst);
} break;
case GGML_UNARY_OP_RELU:
{
ggml_compute_forward_relu(params, src0, dst);
} break;
case GGML_UNARY_OP_GELU:
{
ggml_compute_forward_gelu(params, src0, dst);
} break;
case GGML_UNARY_OP_GELU_QUICK:
{
ggml_compute_forward_gelu_quick(params, src0, dst);
} break;
case GGML_UNARY_OP_SILU:
{
ggml_compute_forward_silu(params, src0, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_get_rel_pos
static void ggml_compute_forward_get_rel_pos_f16(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
// ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
GGML_TENSOR_UNARY_OP_LOCALS;
const int64_t w = ne1;
ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
for (int64_t i2 = 0; i2 < ne2; ++i2) {
for (int64_t i1 = 0; i1 < ne1; ++i1) {
const int64_t pos = (w - i1 - 1) + i2;
for (int64_t i0 = 0; i0 < ne0; ++i0) {
dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
}
}
}
}
static void ggml_compute_forward_get_rel_pos(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F16:
{
ggml_compute_forward_get_rel_pos_f16(params, src0, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_add_rel_pos
static void ggml_compute_forward_add_rel_pos_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
const struct ggml_tensor * src2,
struct ggml_tensor * dst) {
const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
if (!inplace && params->type == GGML_TASK_INIT) {
memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
return;
}
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
int64_t t0 = ggml_perf_time_us();
UNUSED(t0);
// ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
float * src1_data = (float *) src1->data;
float * src2_data = (float *) src2->data;
float * dst_data = (float *) dst->data;
const int64_t ne10 = src1->ne[0];
const int64_t ne11 = src1->ne[1];
const int64_t ne12 = src1->ne[2];
const int64_t ne13 = src1->ne[3];
const int ith = params->ith;
const int nth = params->nth;
// total patches in dst
const int np = ne13;
// patches per thread
const int dp = (np + nth - 1)/nth;
// patch range for this thread
const int ip0 = dp*ith;
const int ip1 = MIN(ip0 + dp, np);
for (int64_t i13 = ip0; i13 < ip1; ++i13) {
for (int64_t i12 = 0; i12 < ne12; ++i12) {
for (int64_t i11 = 0; i11 < ne11; ++i11) {
const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
for (int64_t i10 = 0; i10 < ne10; ++i10) {
const int64_t jp0 = jp1 + i10;
const float src1_e = src1_data[jp0];
const float src2_e = src2_data[jp0];
const int64_t jdh = jp0 * ne10;
const int64_t jdw = jdh - (ne10 - 1) * i10;
for (int64_t j = 0; j < ne10; ++j) {
dst_data[jdh + j ] += src2_e;
dst_data[jdw + j*ne10] += src1_e;
}
}
}
}
}
}
static void ggml_compute_forward_add_rel_pos(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
const struct ggml_tensor * src2,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_map_unary
static void ggml_compute_forward_map_unary_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst,
const ggml_unary_op_f32_t fun) {
GGML_ASSERT(ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
assert( dst->nb[0] == sizeof(float));
assert(src0->nb[0] == sizeof(float));
for (int i = 0; i < n; i++) {
fun(nc,
(float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1])));
}
}
static void ggml_compute_forward_map_unary(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst,
const ggml_unary_op_f32_t fun) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_map_binary
static void ggml_compute_forward_map_binary_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst,
const ggml_binary_op_f32_t fun) {
assert(params->ith == 0);
assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
const int n = ggml_nrows(src0);
const int nc = src0->ne[0];
assert( dst->nb[0] == sizeof(float));
assert(src0->nb[0] == sizeof(float));
assert(src1->nb[0] == sizeof(float));
for (int i = 0; i < n; i++) {
fun(nc,
(float *) ((char *) dst->data + i*( dst->nb[1])),
(float *) ((char *) src0->data + i*(src0->nb[1])),
(float *) ((char *) src1->data + i*(src1->nb[1])));
}
}
static void ggml_compute_forward_map_binary(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst,
const ggml_binary_op_f32_t fun) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_map_custom1
static void ggml_compute_forward_map_custom1_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * a,
struct ggml_tensor * dst,
const ggml_custom1_op_f32_t fun) {
assert(params->ith == 0);
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
fun(dst, a);
}
// ggml_compute_forward_map_custom2
static void ggml_compute_forward_map_custom2_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * a,
const struct ggml_tensor * b,
struct ggml_tensor * dst,
const ggml_custom2_op_f32_t fun) {
assert(params->ith == 0);
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
fun(dst, a, b);
}
// ggml_compute_forward_map_custom3
static void ggml_compute_forward_map_custom3_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * a,
const struct ggml_tensor * b,
const struct ggml_tensor * c,
struct ggml_tensor * dst,
const ggml_custom3_op_f32_t fun) {
assert(params->ith == 0);
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
fun(dst, a, b, c);
}
// ggml_compute_forward_map_custom1
static void ggml_compute_forward_map_custom1(
const struct ggml_compute_params * params,
const struct ggml_tensor * a,
struct ggml_tensor * dst) {
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
p->fun(dst, a, params->ith, params->nth, p->userdata);
}
// ggml_compute_forward_map_custom2
static void ggml_compute_forward_map_custom2(
const struct ggml_compute_params * params,
const struct ggml_tensor * a,
const struct ggml_tensor * b,
struct ggml_tensor * dst) {
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
p->fun(dst, a, b, params->ith, params->nth, p->userdata);
}
// ggml_compute_forward_map_custom3
static void ggml_compute_forward_map_custom3(
const struct ggml_compute_params * params,
const struct ggml_tensor * a,
const struct ggml_tensor * b,
const struct ggml_tensor * c,
struct ggml_tensor * dst) {
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
}
// ggml_compute_forward_cross_entropy_loss
static void ggml_compute_forward_cross_entropy_loss_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(ggml_is_contiguous(src1));
GGML_ASSERT(ggml_is_scalar(dst));
GGML_ASSERT(ggml_are_same_shape(src0, src1));
const int ith = params->ith;
const int nth = params->nth;
float * sums = (float *) params->wdata;
// TODO: handle transposed/permuted matrices
const int nc = src0->ne[0];
const int nr = ggml_nrows(src0);
GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
if (params->type == GGML_TASK_INIT) {
if (ith == 0) {
memset(sums, 0, sizeof(float) * (nth + nth * nc));
}
return;
}
if (params->type == GGML_TASK_FINALIZE) {
if (ith == 0) {
float * dp = (float *) dst->data;
ggml_vec_sum_f32(nth, dp, sums);
dp[0] *= -1.0f / (float) nr;
}
return;
}
const double eps = 1e-9;
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int i1 = ir0; i1 < ir1; i1++) {
float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
float * st = ((float *) params->wdata) + nth + ith*nc;
#ifndef NDEBUG
for (int i = 0; i < nc; ++i) {
//printf("p[%d] = %f\n", i, p[i]);
assert(!isnan(s0[i]));
assert(!isnan(s1[i]));
}
#endif
// soft_max
ggml_float sum = 0.0;
{
float max = -INFINITY;
ggml_vec_max_f32(nc, &max, s0);
uint16_t scvt; UNUSED(scvt);
for (int i = 0; i < nc; i++) {
if (s0[i] == -INFINITY) {
st[i] = 0.0f;
} else {
#ifndef GGML_CROSS_ENTROPY_EXP_FP16
const float s = s0[i] - max;
const float val = expf(s);
#else
ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
memcpy(&scvt, &s, sizeof(scvt));
const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
#endif
sum += (ggml_float)val;
st[i] = val;
}
}
assert(sum > 0.0);
// sum = 1.0/sum;
}
// avoid log(0) by rescaling from [0..1] to [eps..1]
sum = (1.0 - eps) / sum;
ggml_vec_scale_f32(nc, st, sum);
ggml_vec_add1_f32(nc, st, st, eps);
ggml_vec_log_f32(nc, st, st);
ggml_vec_mul_f32(nc, st, st, s1);
float st_sum = 0;
ggml_vec_sum_f32(nc, &st_sum, st);
sums[ith] += st_sum;
#ifndef NDEBUG
for (int i = 0; i < nc; ++i) {
assert(!isnan(st[i]));
assert(!isinf(st[i]));
}
#endif
}
}
static void ggml_compute_forward_cross_entropy_loss(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_cross_entropy_loss_back
static void ggml_compute_forward_cross_entropy_loss_back_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
const struct ggml_tensor * opt0,
struct ggml_tensor * dst) {
GGML_ASSERT(ggml_is_contiguous(dst));
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(ggml_is_contiguous(src1));
GGML_ASSERT(ggml_is_contiguous(opt0));
GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
const int64_t ith = params->ith;
const int64_t nth = params->nth;
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
return;
}
const double eps = 1e-9;
// TODO: handle transposed/permuted matrices
const int64_t nc = src0->ne[0];
const int64_t nr = ggml_nrows(src0);
// rows per thread
const int64_t dr = (nr + nth - 1)/nth;
// row range for this thread
const int64_t ir0 = dr*ith;
const int64_t ir1 = MIN(ir0 + dr, nr);
float * d = (float *) opt0->data;
for (int64_t i1 = ir0; i1 < ir1; i1++) {
float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
#ifndef NDEBUG
for (int i = 0; i < nc; ++i) {
//printf("p[%d] = %f\n", i, p[i]);
assert(!isnan(s0[i]));
assert(!isnan(s1[i]));
}
#endif
// soft_max
ggml_float sum = 0.0;
{
float max = -INFINITY;
ggml_vec_max_f32(nc, &max, s0);
uint16_t scvt; UNUSED(scvt);
for (int i = 0; i < nc; i++) {
if (s0[i] == -INFINITY) {
ds0[i] = 0.0f;
} else {
#ifndef GGML_CROSS_ENTROPY_EXP_FP16
const float s = s0[i] - max;
const float val = expf(s);
#else
ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
memcpy(&scvt, &s, sizeof(scvt));
const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
#endif
sum += (ggml_float)val;
ds0[i] = val;
}
}
assert(sum > 0.0);
sum = (1.0 - eps)/sum;
}
// grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
ggml_vec_scale_f32(nc, ds0, sum);
ggml_vec_add1_f32(nc, ds0, ds0, eps);
ggml_vec_sub_f32(nc, ds0, ds0, s1);
ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
#ifndef NDEBUG
for (int i = 0; i < nc; ++i) {
assert(!isnan(ds0[i]));
assert(!isinf(ds0[i]));
}
#endif
}
}
static void ggml_compute_forward_cross_entropy_loss_back(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
const struct ggml_tensor * opt0,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
/////////////////////////////////
static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
GGML_ASSERT(params);
#ifdef GGML_USE_CUBLAS
bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
if (skip_cpu) {
return;
}
GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
#endif // GGML_USE_CUBLAS
switch (tensor->op) {
case GGML_OP_DUP:
{
ggml_compute_forward_dup(params, tensor->src[0], tensor);
} break;
case GGML_OP_ADD:
{
ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
} break;
case GGML_OP_ADD1:
{
ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
} break;
case GGML_OP_ACC:
{
ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
} break;
case GGML_OP_SUB:
{
ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
} break;
case GGML_OP_MUL:
{
ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
} break;
case GGML_OP_DIV:
{
ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
} break;
case GGML_OP_SQR:
{
ggml_compute_forward_sqr(params, tensor->src[0], tensor);
} break;
case GGML_OP_SQRT:
{
ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
} break;
case GGML_OP_LOG:
{
ggml_compute_forward_log(params, tensor->src[0], tensor);
} break;
case GGML_OP_SUM:
{
ggml_compute_forward_sum(params, tensor->src[0], tensor);
} break;
case GGML_OP_SUM_ROWS:
{
ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
} break;
case GGML_OP_MEAN:
{
ggml_compute_forward_mean(params, tensor->src[0], tensor);
} break;
case GGML_OP_ARGMAX:
{
ggml_compute_forward_argmax(params, tensor->src[0], tensor);
} break;
case GGML_OP_REPEAT:
{
ggml_compute_forward_repeat(params, tensor->src[0], tensor);
} break;
case GGML_OP_REPEAT_BACK:
{
ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
} break;
case GGML_OP_CONCAT:
{
ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor);
} break;
case GGML_OP_SILU_BACK:
{
ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
} break;
case GGML_OP_NORM:
{
ggml_compute_forward_norm(params, tensor->src[0], tensor);
} break;
case GGML_OP_RMS_NORM:
{
ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
} break;
case GGML_OP_RMS_NORM_BACK:
{
ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
} break;
case GGML_OP_GROUP_NORM:
{
ggml_compute_forward_group_norm(params, tensor->src[0], tensor);
} break;
case GGML_OP_MUL_MAT:
{
ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
} break;
case GGML_OP_OUT_PROD:
{
ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
} break;
case GGML_OP_SCALE:
{
ggml_compute_forward_scale(params, tensor->src[0], tensor->src[1], tensor);
} break;
case GGML_OP_SET:
{
ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
} break;
case GGML_OP_CPY:
{
ggml_compute_forward_cpy(params, tensor->src[0], tensor);
} break;
case GGML_OP_CONT:
{
ggml_compute_forward_cont(params, tensor->src[0], tensor);
} break;
case GGML_OP_RESHAPE:
{
ggml_compute_forward_reshape(params, tensor->src[0], tensor);
} break;
case GGML_OP_VIEW:
{
ggml_compute_forward_view(params, tensor->src[0]);
} break;
case GGML_OP_PERMUTE:
{
ggml_compute_forward_permute(params, tensor->src[0]);
} break;
case GGML_OP_TRANSPOSE:
{
ggml_compute_forward_transpose(params, tensor->src[0]);
} break;
case GGML_OP_GET_ROWS:
{
ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
} break;
case GGML_OP_GET_ROWS_BACK:
{
ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
} break;
case GGML_OP_DIAG:
{
ggml_compute_forward_diag(params, tensor->src[0], tensor);
} break;
case GGML_OP_DIAG_MASK_INF:
{
ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
} break;
case GGML_OP_DIAG_MASK_ZERO:
{
ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
} break;
case GGML_OP_SOFT_MAX:
{
ggml_compute_forward_soft_max(params, tensor->src[0], tensor);
} break;
case GGML_OP_SOFT_MAX_BACK:
{
ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
} break;
case GGML_OP_ROPE:
{
ggml_compute_forward_rope(params, tensor->src[0], tensor);
} break;
case GGML_OP_ROPE_BACK:
{
ggml_compute_forward_rope_back(params, tensor->src[0], tensor);
} break;
case GGML_OP_ALIBI:
{
ggml_compute_forward_alibi(params, tensor->src[0], tensor);
} break;
case GGML_OP_CLAMP:
{
ggml_compute_forward_clamp(params, tensor->src[0], tensor);
} break;
case GGML_OP_CONV_1D:
{
ggml_compute_forward_conv_1d(params, tensor->src[0], tensor->src[1], tensor);
} break;
case GGML_OP_CONV_2D:
{
ggml_compute_forward_conv_2d(params, tensor->src[0], tensor->src[1], tensor);
} break;
case GGML_OP_CONV_TRANSPOSE_2D:
{
ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor);
} break;
case GGML_OP_POOL_1D:
{
ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
} break;
case GGML_OP_POOL_2D:
{
ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
} break;
case GGML_OP_UPSCALE:
{
ggml_compute_forward_upscale(params, tensor->src[0], tensor);
} break;
case GGML_OP_FLASH_ATTN:
{
const int32_t t = ggml_get_op_params_i32(tensor, 0);
GGML_ASSERT(t == 0 || t == 1);
const bool masked = t != 0;
ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
} break;
case GGML_OP_FLASH_FF:
{
ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
} break;
case GGML_OP_FLASH_ATTN_BACK:
{
int32_t t = ggml_get_op_params_i32(tensor, 0);
GGML_ASSERT(t == 0 || t == 1);
bool masked = t != 0;
ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
} break;
case GGML_OP_WIN_PART:
{
ggml_compute_forward_win_part(params, tensor->src[0], tensor);
} break;
case GGML_OP_WIN_UNPART:
{
ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
} break;
case GGML_OP_UNARY:
{
ggml_compute_forward_unary(params, tensor->src[0], tensor);
} break;
case GGML_OP_GET_REL_POS:
{
ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor);
} break;
case GGML_OP_ADD_REL_POS:
{
ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
} break;
case GGML_OP_MAP_UNARY:
{
ggml_unary_op_f32_t fun;
memcpy(&fun, tensor->op_params, sizeof(fun));
ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
}
break;
case GGML_OP_MAP_BINARY:
{
ggml_binary_op_f32_t fun;
memcpy(&fun, tensor->op_params, sizeof(fun));
ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
}
break;
case GGML_OP_MAP_CUSTOM1_F32:
{
ggml_custom1_op_f32_t fun;
memcpy(&fun, tensor->op_params, sizeof(fun));
ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
}
break;
case GGML_OP_MAP_CUSTOM2_F32:
{
ggml_custom2_op_f32_t fun;
memcpy(&fun, tensor->op_params, sizeof(fun));
ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
}
break;
case GGML_OP_MAP_CUSTOM3_F32:
{
ggml_custom3_op_f32_t fun;
memcpy(&fun, tensor->op_params, sizeof(fun));
ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
}
break;
case GGML_OP_MAP_CUSTOM1:
{
ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
}
break;
case GGML_OP_MAP_CUSTOM2:
{
ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
}
break;
case GGML_OP_MAP_CUSTOM3:
{
ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
}
break;
case GGML_OP_CROSS_ENTROPY_LOSS:
{
ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
}
break;
case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
{
ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
}
break;
case GGML_OP_NONE:
{
// nop
} break;
case GGML_OP_COUNT:
{
GGML_ASSERT(false);
} break;
}
}
////////////////////////////////////////////////////////////////////////////////
static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
struct ggml_tensor * src0 = tensor->src[0];
struct ggml_tensor * src1 = tensor->src[1];
switch (tensor->op) {
case GGML_OP_DUP:
{
if (src0->grad) {
src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
}
} break;
case GGML_OP_ADD:
{
if (src0->grad) {
src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
}
if (src1->grad) {
src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
}
} break;
case GGML_OP_ADD1:
{
if (src0->grad) {
src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
}
if (src1->grad) {
src1->grad = ggml_add_impl(ctx,
src1->grad,
ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
inplace);
}
} break;
case GGML_OP_ACC:
{
if (src0->grad) {
src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
}
if (src1->grad) {
const size_t nb1 = ((int32_t *) tensor->op_params)[0];
const size_t nb2 = ((int32_t *) tensor->op_params)[1];
const size_t nb3 = ((int32_t *) tensor->op_params)[2];
const size_t offset = ((int32_t *) tensor->op_params)[3];
struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
tensor->grad,
src1->grad->ne[0],
src1->grad->ne[1],
src1->grad->ne[2],
src1->grad->ne[3],
nb1, nb2, nb3, offset);
src1->grad =
ggml_add_impl(ctx,
src1->grad,
ggml_reshape(ctx,
ggml_cont(ctx, tensor_grad_view),
src1->grad),
inplace);
}
} break;
case GGML_OP_SUB:
{
if (src0->grad) {
src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
}
if (src1->grad) {
src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
}
} break;
case GGML_OP_MUL:
{
if (src0->grad) {
src0->grad =
ggml_add_impl(ctx,
src0->grad,
ggml_mul(ctx, src1, tensor->grad),
inplace);
}
if (src1->grad) {
src1->grad =
ggml_add_impl(ctx,
src1->grad,
ggml_mul(ctx, src0, tensor->grad),
inplace);
}
} break;
case GGML_OP_DIV:
{
if (src0->grad) {
src0->grad =
ggml_add_impl(ctx,
src0->grad,
ggml_div(ctx, tensor->grad, src1),
inplace);
}
if (src1->grad) {
src1->grad =
ggml_sub_impl(ctx,
src1->grad,
ggml_mul(ctx,
tensor->grad,
ggml_div(ctx, tensor, src1)),
inplace);
}
} break;
case GGML_OP_SQR:
{
if (src0->grad) {
src0->grad =
ggml_add_impl(ctx,
src0->grad,
ggml_scale(ctx,
ggml_mul(ctx, src0, tensor->grad),
ggml_new_f32(ctx, 2.0f)),
inplace);
}
} break;
case GGML_OP_SQRT:
{
if (src0->grad) {
src0->grad =
ggml_add_impl(ctx,
src0->grad,
ggml_scale(ctx,
ggml_div(ctx,
tensor->grad,
tensor),
ggml_new_f32(ctx, 0.5f)),
inplace);
}
} break;
case GGML_OP_LOG:
{
if (src0->grad) {
src0->grad =
ggml_add_impl(ctx,
src0->grad,
ggml_div(ctx,
tensor->grad,
src0),
inplace);
}
} break;
case GGML_OP_SUM:
{
if (src0->grad) {
src0->grad =
ggml_add1_impl(ctx,
src0->grad,
tensor->grad,
inplace);
}
} break;
case GGML_OP_SUM_ROWS:
{
if (src0->grad) {
src0->grad =
ggml_add_impl(ctx,
src0->grad,
ggml_repeat(ctx,
tensor->grad,
src0->grad),
inplace);
}
} break;
case GGML_OP_MEAN:
case GGML_OP_ARGMAX:
{
GGML_ASSERT(false); // TODO: implement
} break;
case GGML_OP_REPEAT:
{
// necessary for llama
if (src0->grad) {
src0->grad = ggml_add_impl(ctx,
src0->grad,
ggml_repeat_back(ctx, tensor->grad, src0->grad),
inplace);
}
} break;
case GGML_OP_REPEAT_BACK:
{
if (src0->grad) {
// TODO: test this
src0->grad = ggml_add_impl(ctx,
src0->grad,
ggml_repeat(ctx, tensor->grad, src0->grad),
inplace);
}
} break;
case GGML_OP_CONCAT:
{
GGML_ASSERT(false); // TODO: implement
} break;
case GGML_OP_SILU_BACK:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_NORM:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_RMS_NORM:
{
// necessary for llama
if (src0->grad) {
float eps;
memcpy(&eps, tensor->op_params, sizeof(float));
src0->grad = ggml_add_impl(ctx,
src0->grad,
ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
inplace);
}
} break;
case GGML_OP_RMS_NORM_BACK:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_GROUP_NORM:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_MUL_MAT:
{
// https://cs231n.github.io/optimization-2/#staged
// # forward pass
// s0 = np.random.randn(5, 10)
// s1 = np.random.randn(10, 3)
// t = s0.dot(s1)
// # now suppose we had the gradient on t from above in the circuit
// dt = np.random.randn(*t.shape) # same shape as t
// ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
// ds1 = t.T.dot(dt)
// tensor.shape [m,p]
// src0.shape [n,m]
// src1.shape [n,p]
// necessary for llama
if (src0->grad) {
src0->grad =
ggml_add_impl(ctx,
src0->grad,
ggml_out_prod(ctx, // [n,m]
src1, // [n,p]
tensor->grad), // [m,p]
inplace);
}
if (src1->grad) {
src1->grad =
ggml_add_impl(ctx,
src1->grad,
// ggml_mul_mat(ctx, // [n,p]
// ggml_cont(ctx, // [m,n]
// ggml_transpose(ctx, src0)), // [m,n]
// tensor->grad), // [m,p]
// // when src0 is bigger than tensor->grad (this is mostly the case in llama),
// // avoid transpose of src0, rather transpose smaller tensor->grad
// // and then use ggml_out_prod
ggml_out_prod(ctx, // [n,p]
src0, // [n,m]
ggml_transpose(ctx, // [p,m]
tensor->grad)), // [m,p]
inplace);
}
} break;
case GGML_OP_OUT_PROD:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_SCALE:
{
// necessary for llama
if (src0->grad) {
src0->grad =
ggml_add_impl(ctx,
src0->grad,
ggml_scale_impl(ctx, tensor->grad, src1, false),
inplace);
}
if (src1->grad) {
src1->grad =
ggml_add_impl(ctx,
src1->grad,
ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
inplace);
}
} break;
case GGML_OP_SET:
{
const size_t nb1 = ((int32_t *) tensor->op_params)[0];
const size_t nb2 = ((int32_t *) tensor->op_params)[1];
const size_t nb3 = ((int32_t *) tensor->op_params)[2];
const size_t offset = ((int32_t *) tensor->op_params)[3];
struct ggml_tensor * tensor_grad_view = NULL;
if (src0->grad || src1->grad) {
GGML_ASSERT(src0->type == tensor->type);
GGML_ASSERT(tensor->grad->type == tensor->type);
GGML_ASSERT(tensor->grad->type == src1->grad->type);
tensor_grad_view = ggml_view_4d(ctx,
tensor->grad,
src1->grad->ne[0],
src1->grad->ne[1],
src1->grad->ne[2],
src1->grad->ne[3],
nb1, nb2, nb3, offset);
}
if (src0->grad) {
src0->grad = ggml_add_impl(ctx,
src0->grad,
ggml_acc_impl(ctx,
tensor->grad,
ggml_neg(ctx, tensor_grad_view),
nb1, nb2, nb3, offset, false),
inplace);
}
if (src1->grad) {
src1->grad =
ggml_add_impl(ctx,
src1->grad,
ggml_reshape(ctx,
ggml_cont(ctx, tensor_grad_view),
src1->grad),
inplace);
}
} break;
case GGML_OP_CPY:
{
// necessary for llama
// cpy overwrites value of src1 by src0 and returns view(src1)
// the overwriting is mathematically equivalent to:
// tensor = src0 * 1 + src1 * 0
if (src0->grad) {
// dsrc0 = dtensor * 1
src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
}
if (src1->grad) {
// dsrc1 = dtensor * 0 -> noop
}
} break;
case GGML_OP_CONT:
{
// same as cpy
if (src0->grad) {
GGML_ASSERT(ggml_is_contiguous(src0->grad));
GGML_ASSERT(ggml_is_contiguous(tensor->grad));
src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
}
} break;
case GGML_OP_RESHAPE:
{
// necessary for llama
if (src0->grad) {
src0->grad =
ggml_add_impl(ctx, src0->grad,
ggml_reshape(ctx, tensor->grad, src0->grad),
inplace);
}
} break;
case GGML_OP_VIEW:
{
// necessary for llama
if (src0->grad) {
size_t offset;
memcpy(&offset, tensor->op_params, sizeof(offset));
size_t nb1 = tensor->nb[1];
size_t nb2 = tensor->nb[2];
size_t nb3 = tensor->nb[3];
if (src0->type != src0->grad->type) {
// gradient is typically F32, but src0 could be other type
size_t ng = ggml_element_size(src0->grad);
size_t n0 = ggml_element_size(src0);
GGML_ASSERT(offset % n0 == 0);
GGML_ASSERT(nb1 % n0 == 0);
GGML_ASSERT(nb2 % n0 == 0);
GGML_ASSERT(nb3 % n0 == 0);
offset = (offset / n0) * ng;
nb1 = (nb1 / n0) * ng;
nb2 = (nb2 / n0) * ng;
nb3 = (nb3 / n0) * ng;
}
src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
}
} break;
case GGML_OP_PERMUTE:
{
// necessary for llama
if (src0->grad) {
int32_t * axes = (int32_t *) tensor->op_params;
int axis0 = axes[0] & 0x3;
int axis1 = axes[1] & 0x3;
int axis2 = axes[2] & 0x3;
int axis3 = axes[3] & 0x3;
int axes_backward[4] = {0,0,0,0};
axes_backward[axis0] = 0;
axes_backward[axis1] = 1;
axes_backward[axis2] = 2;
axes_backward[axis3] = 3;
src0->grad =
ggml_add_impl(ctx, src0->grad,
ggml_permute(ctx,
tensor->grad,
axes_backward[0],
axes_backward[1],
axes_backward[2],
axes_backward[3]),
inplace);
}
} break;
case GGML_OP_TRANSPOSE:
{
// necessary for llama
if (src0->grad) {
src0->grad =
ggml_add_impl(ctx, src0->grad,
ggml_transpose(ctx, tensor->grad),
inplace);
}
} break;
case GGML_OP_GET_ROWS:
{
// necessary for llama (only for tokenizer)
if (src0->grad) {
src0->grad =
ggml_add_impl(ctx, src0->grad,
ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
inplace);
}
if (src1->grad) {
// noop
}
} break;
case GGML_OP_GET_ROWS_BACK:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_DIAG:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_DIAG_MASK_INF:
{
// necessary for llama
if (src0->grad) {
const int n_past = ((int32_t *) tensor->op_params)[0];
src0->grad =
ggml_add_impl(ctx, src0->grad,
ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
inplace);
}
} break;
case GGML_OP_DIAG_MASK_ZERO:
{
// necessary for llama
if (src0->grad) {
const int n_past = ((int32_t *) tensor->op_params)[0];
src0->grad =
ggml_add_impl(ctx, src0->grad,
ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
inplace);
}
} break;
case GGML_OP_SOFT_MAX:
{
// necessary for llama
if (src0->grad) {
src0->grad =
ggml_add_impl(ctx, src0->grad,
ggml_soft_max_back(ctx, tensor->grad, tensor),
inplace);
}
} break;
case GGML_OP_SOFT_MAX_BACK:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_ROPE:
{
// necessary for llama
if (src0->grad) {
const int n_past = ((int32_t *) tensor->op_params)[0];
const int n_dims = ((int32_t *) tensor->op_params)[1];
const int mode = ((int32_t *) tensor->op_params)[2];
const int n_ctx = ((int32_t *) tensor->op_params)[3];
float freq_base;
float freq_scale;
float xpos_base;
bool xpos_down;
memcpy(&freq_base, (int32_t *) tensor->op_params + 4, sizeof(float));
memcpy(&freq_scale, (int32_t *) tensor->op_params + 5, sizeof(float));
memcpy(&xpos_base, (int32_t *) tensor->op_params + 6, sizeof(float));
memcpy(&xpos_down, (int32_t *) tensor->op_params + 7, sizeof(bool));
src0->grad = ggml_add_impl(ctx,
src0->grad,
ggml_rope_back(ctx,
tensor->grad,
n_past,
n_dims,
mode,
n_ctx,
freq_base,
freq_scale,
xpos_base,
xpos_down),
inplace);
}
} break;
case GGML_OP_ROPE_BACK:
{
if (src0->grad) {
const int n_past = ((int32_t *) tensor->op_params)[0];
const int n_dims = ((int32_t *) tensor->op_params)[1];
const int mode = ((int32_t *) tensor->op_params)[2];
const int n_ctx = ((int32_t *) tensor->op_params)[3];
float freq_base;
float freq_scale;
float xpos_base;
bool xpos_down;
memcpy(&freq_base, (int32_t *) tensor->op_params + 4, sizeof(float));
memcpy(&freq_scale, (int32_t *) tensor->op_params + 5, sizeof(float));
memcpy(&xpos_base, (int32_t *) tensor->op_params + 6, sizeof(float));
memcpy(&xpos_down, (int32_t *) tensor->op_params + 7, sizeof(bool));
src0->grad = ggml_add_impl(ctx,
src0->grad,
ggml_rope_impl(ctx,
tensor->grad,
n_past,
n_dims,
mode,
n_ctx,
freq_base,
freq_scale,
xpos_base,
xpos_down,
false),
inplace);
}
} break;
case GGML_OP_ALIBI:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_CLAMP:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_CONV_1D:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_CONV_2D:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_CONV_TRANSPOSE_2D:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_POOL_1D:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_POOL_2D:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_UPSCALE:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_FLASH_ATTN:
{
struct ggml_tensor * flash_grad = NULL;
if (src0->grad || src1->grad || tensor->src[2]->grad) {
int32_t t = ggml_get_op_params_i32(tensor, 0);
GGML_ASSERT(t == 0 || t == 1);
bool masked = t != 0;
flash_grad =
ggml_flash_attn_back(ctx,
src0,
src1,
tensor->src[2],
tensor->grad,
masked);
}
if (src0->grad) {
struct ggml_tensor * grad_q = NULL;
const size_t nb0 = flash_grad->nb[0];
const size_t offset = 0;
switch(src0->n_dims) {
case 2:
{
grad_q = ggml_view_2d(ctx,
flash_grad,
src0->ne[0],
src0->ne[1],
nb0*src0->ne[0],
offset);
} break;
case 3:
{
grad_q = ggml_view_3d(ctx,
flash_grad,
src0->ne[0],
src0->ne[1],
src0->ne[2],
nb0*src0->ne[0],
nb0*src0->ne[0]*src0->ne[1],
offset);
} break;
case 4:
{
grad_q = ggml_view_4d(ctx,
flash_grad,
src0->ne[0],
src0->ne[1],
src0->ne[2],
src0->ne[3],
nb0*src0->ne[0],
nb0*src0->ne[0]*src0->ne[1],
nb0*src0->ne[0]*src0->ne[1]*src0->ne[2],
offset);
} break;
}
src0->grad = ggml_add_impl(ctx,
src0->grad,
grad_q,
inplace);
}
if (src1->grad) {
struct ggml_tensor * grad_k = NULL;
const size_t nb0 = flash_grad->nb[0];
const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3];
switch(src1->n_dims) {
case 2:
{
grad_k = ggml_view_2d(ctx,
flash_grad,
src1->ne[0],
src1->ne[1],
nb0*src1->ne[0],
offset);
} break;
case 3:
{
grad_k = ggml_view_3d(ctx,
flash_grad,
src1->ne[0],
src1->ne[1],
src1->ne[2],
nb0*src1->ne[0],
nb0*src1->ne[0]*src1->ne[1],
offset);
} break;
case 4:
{
grad_k = ggml_view_4d(ctx,
flash_grad,
src1->ne[0],
src1->ne[1],
src1->ne[2],
src1->ne[3],
nb0*src1->ne[0],
nb0*src1->ne[0]*src1->ne[1],
nb0*src1->ne[0]*src1->ne[1]*src1->ne[2],
offset);
} break;
}
src1->grad = ggml_add_impl(ctx,
src1->grad,
grad_k,
inplace);
}
struct ggml_tensor * opt0 = tensor->src[2];
if (opt0->grad) {
struct ggml_tensor * grad_v = NULL;
const size_t nb0 = flash_grad->nb[0];
const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3]
+ nb0*src1->ne[0]*src1->ne[1]*src1->ne[2]*src1->ne[3];
switch(opt0->n_dims) {
case 2:
{
grad_v = ggml_view_2d(ctx,
flash_grad,
opt0->ne[0],
opt0->ne[1],
nb0*opt0->ne[0],
offset);
} break;
case 3:
{
grad_v = ggml_view_3d(ctx,
flash_grad,
opt0->ne[0],
opt0->ne[1],
opt0->ne[2],
nb0*opt0->ne[0],
nb0*opt0->ne[0]*opt0->ne[1],
offset);
} break;
case 4:
{
grad_v = ggml_view_4d(ctx,
flash_grad,
opt0->ne[0],
opt0->ne[1],
opt0->ne[2],
opt0->ne[3],
nb0*opt0->ne[0],
nb0*opt0->ne[0]*opt0->ne[1],
nb0*opt0->ne[0]*opt0->ne[1]*opt0->ne[2],
offset);
} break;
}
opt0->grad = ggml_add_impl(ctx,
opt0->grad,
grad_v,
inplace);
}
} break;
case GGML_OP_FLASH_FF:
{
GGML_ASSERT(false); // not supported
} break;
case GGML_OP_FLASH_ATTN_BACK:
{
GGML_ASSERT(false); // not supported
} break;
case GGML_OP_WIN_PART:
case GGML_OP_WIN_UNPART:
case GGML_OP_UNARY:
{
switch (ggml_get_unary_op(tensor)) {
case GGML_UNARY_OP_ABS:
{
if (src0->grad) {
src0->grad =
ggml_add_impl(ctx,
src0->grad,
ggml_mul(ctx,
ggml_sgn(ctx, src0),
tensor->grad),
inplace);
}
} break;
case GGML_UNARY_OP_SGN:
{
if (src0->grad) {
// noop
}
} break;
case GGML_UNARY_OP_NEG:
{
if (src0->grad) {
src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
}
} break;
case GGML_UNARY_OP_STEP:
{
if (src0->grad) {
// noop
}
} break;
case GGML_UNARY_OP_TANH:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_UNARY_OP_ELU:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_UNARY_OP_RELU:
{
if (src0->grad) {
src0->grad = ggml_add_impl(ctx,
src0->grad,
ggml_mul(ctx,
ggml_step(ctx, src0),
tensor->grad),
inplace);
}
} break;
case GGML_UNARY_OP_GELU:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_UNARY_OP_GELU_QUICK:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_UNARY_OP_SILU:
{
// necessary for llama
if (src0->grad) {
src0->grad = ggml_add_impl(ctx,
src0->grad,
ggml_silu_back(ctx, src0, tensor->grad),
inplace);
}
} break;
default:
GGML_ASSERT(false);
}
} break;
case GGML_OP_GET_REL_POS:
case GGML_OP_ADD_REL_POS:
case GGML_OP_MAP_UNARY:
case GGML_OP_MAP_BINARY:
case GGML_OP_MAP_CUSTOM1_F32:
case GGML_OP_MAP_CUSTOM2_F32:
case GGML_OP_MAP_CUSTOM3_F32:
case GGML_OP_MAP_CUSTOM1:
case GGML_OP_MAP_CUSTOM2:
case GGML_OP_MAP_CUSTOM3:
{
GGML_ASSERT(false); // not supported
} break;
case GGML_OP_CROSS_ENTROPY_LOSS:
{
if (src0->grad) {
src0->grad = ggml_add_impl(ctx,
src0->grad,
ggml_cross_entropy_loss_back(ctx,
src0,
src1,
tensor->grad),
inplace);
}
} break;
case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
{
GGML_ASSERT(false); // not supported
} break;
case GGML_OP_NONE:
{
// nop
} break;
case GGML_OP_COUNT:
{
GGML_ASSERT(false);
} break;
}
}
static_assert(GGML_GRAPH_HASHTABLE_SIZE > GGML_MAX_NODES * 2, "GGML_GRAPH_HT_SIZE is too small");
static size_t hash(void * p) {
return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE;
}
static bool hash_insert(void * hash_table[], void * p) {
size_t h = hash(p);
// linear probing
size_t i = h;
while (hash_table[i] != NULL && hash_table[i] != p) {
i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE;
if (i == h) {
// hash table is full
GGML_ASSERT(false);
}
}
if (hash_table[i] == p) {
return true;
}
// insert
hash_table[i] = p;
return false;
}
static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
if (node->grad == NULL) {
// this usually happens when we generate intermediate nodes from constants in the backward pass
// it can also happen during forward pass, if the user performs computations with constants
if (node->op != GGML_OP_NONE) {
//GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
}
}
// check if already visited
if (hash_insert(cgraph->visited_hash_table, node)) {
return;
}
for (int i = 0; i < GGML_MAX_SRC; ++i) {
if (node->src[i]) {
ggml_visit_parents(cgraph, node->src[i]);
}
}
if (node->op == GGML_OP_NONE && node->grad == NULL) {
// reached a leaf node, not part of the gradient graph (e.g. a constant)
GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
if (strlen(node->name) == 0) {
ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
}
cgraph->leafs[cgraph->n_leafs] = node;
cgraph->n_leafs++;
} else {
GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
if (strlen(node->name) == 0) {
ggml_format_name(node, "node_%d", cgraph->n_nodes);
}
cgraph->nodes[cgraph->n_nodes] = node;
cgraph->grads[cgraph->n_nodes] = node->grad;
cgraph->n_nodes++;
}
}
static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
if (!expand) {
cgraph->n_nodes = 0;
cgraph->n_leafs = 0;
}
const int n0 = cgraph->n_nodes;
UNUSED(n0);
ggml_visit_parents(cgraph, tensor);
const int n_new = cgraph->n_nodes - n0;
GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
if (n_new > 0) {
// the last added node should always be starting point
GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
}
}
void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
ggml_build_forward_impl(cgraph, tensor, true);
}
struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
struct ggml_cgraph result = {
/*.n_nodes =*/ 0,
/*.n_leafs =*/ 0,
/*.nodes =*/ { NULL },
/*.grads =*/ { NULL },
/*.leafs =*/ { NULL },
/*.hash_table =*/ { NULL },
/*.perf_runs =*/ 0,
/*.perf_cycles =*/ 0,
/*.perf_time_us =*/ 0,
};
ggml_build_forward_impl(&result, tensor, false);
return result;
}
void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
GGML_ASSERT(gf->n_nodes > 0);
// if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
if (keep) {
for (int i = 0; i < gf->n_nodes; i++) {
struct ggml_tensor * node = gf->nodes[i];
if (node->grad) {
node->grad = ggml_dup_tensor(ctx, node);
gf->grads[i] = node->grad;
}
}
}
for (int i = gf->n_nodes - 1; i >= 0; i--) {
struct ggml_tensor * node = gf->nodes[i];
// because we detached the grad nodes from the original graph, we can afford inplace operations
if (node->grad) {
ggml_compute_backward(ctx, node, keep);
}
}
for (int i = 0; i < gf->n_nodes; i++) {
struct ggml_tensor * node = gf->nodes[i];
if (node->is_param) {
GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
ggml_build_forward_expand(gb, node->grad);
}
}
}
struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
struct ggml_cgraph result = *gf;
ggml_build_backward_expand(ctx, gf, &result, keep);
return result;
}
struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, GGML_GRAPH_SIZE);
struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
*cgraph = (struct ggml_cgraph) {
/*.n_nodes =*/ 0,
/*.n_leafs =*/ 0,
/*.nodes =*/ { NULL },
/*.grads =*/ { NULL },
/*.leafs =*/ { NULL },
/*.hash_table =*/ { NULL },
/*.perf_runs =*/ 0,
/*.perf_cycles =*/ 0,
/*.perf_time_us =*/ 0,
};
return cgraph;
}
struct ggml_cgraph * ggml_build_forward_ctx(struct ggml_context * ctx, struct ggml_tensor * tensor) {
struct ggml_cgraph * cgraph = ggml_new_graph(ctx);
ggml_build_forward_impl(cgraph, tensor, false);
return cgraph;
}
size_t ggml_graph_overhead(void) {
return GGML_OBJECT_SIZE + GGML_PAD(GGML_GRAPH_SIZE, GGML_MEM_ALIGN);
}
//
// thread data
//
// synchronization is done via busy loops
// I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
//
#ifdef __APPLE__
//#include <os/lock.h>
//
//typedef os_unfair_lock ggml_lock_t;
//
//#define ggml_lock_init(x) UNUSED(x)
//#define ggml_lock_destroy(x) UNUSED(x)
//#define ggml_lock_lock os_unfair_lock_lock
//#define ggml_lock_unlock os_unfair_lock_unlock
//
//#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
typedef int ggml_lock_t;
#define ggml_lock_init(x) UNUSED(x)
#define ggml_lock_destroy(x) UNUSED(x)
#define ggml_lock_lock(x) UNUSED(x)
#define ggml_lock_unlock(x) UNUSED(x)
#define GGML_LOCK_INITIALIZER 0
typedef pthread_t ggml_thread_t;
#define ggml_thread_create pthread_create
#define ggml_thread_join pthread_join
#else
//typedef pthread_spinlock_t ggml_lock_t;
//#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
//#define ggml_lock_destroy pthread_spin_destroy
//#define ggml_lock_lock pthread_spin_lock
//#define ggml_lock_unlock pthread_spin_unlock
typedef int ggml_lock_t;
#define ggml_lock_init(x) UNUSED(x)
#define ggml_lock_destroy(x) UNUSED(x)
#if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
#define ggml_lock_lock(x) _mm_pause()
#else
#define ggml_lock_lock(x) UNUSED(x)
#endif
#define ggml_lock_unlock(x) UNUSED(x)
#define GGML_LOCK_INITIALIZER 0
typedef pthread_t ggml_thread_t;
#define ggml_thread_create pthread_create
#define ggml_thread_join pthread_join
#endif
// Android's libc implementation "bionic" does not support setting affinity
#if defined(__linux__) && !defined(__BIONIC__)
static void set_numa_thread_affinity(int thread_n, int n_threads) {
if (!ggml_is_numa()) {
return;
}
// run thread on node_num thread_n / (threads per node)
const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
CPU_ZERO_S(setsize, cpus);
for (size_t i = 0; i < node->n_cpus; ++i) {
CPU_SET_S(node->cpus[i], setsize, cpus);
}
int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
if (rv) {
fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
strerror(rv));
}
CPU_FREE(cpus);
}
static void clear_numa_thread_affinity(void) {
if (!ggml_is_numa()) {
return;
}
size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
CPU_ZERO_S(setsize, cpus);
for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
CPU_SET_S(i, setsize, cpus);
}
int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
if (rv) {
fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
strerror(rv));
}
CPU_FREE(cpus);
}
#else
// TODO: Windows etc.
// (the linux implementation may also work on BSD, someone should test)
static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
static void clear_numa_thread_affinity(void) {}
#endif
struct ggml_compute_state_shared {
const struct ggml_cgraph * cgraph;
const struct ggml_cplan * cplan;
int64_t perf_node_start_cycles;
int64_t perf_node_start_time_us;
const int n_threads;
// synchronization primitives
atomic_int n_active; // num active threads
atomic_int node_n; // active graph node
bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
void * abort_callback_data;
};
struct ggml_compute_state {
ggml_thread_t thrd;
int ith;
struct ggml_compute_state_shared * shared;
};
static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
node->perf_runs++;
node->perf_cycles += cycles_cur;
node->perf_time_us += time_us_cur;
}
static thread_ret_t ggml_graph_compute_thread(void * data) {
struct ggml_compute_state * state = (struct ggml_compute_state *) data;
const struct ggml_cgraph * cgraph = state->shared->cgraph;
const struct ggml_cplan * cplan = state->shared->cplan;
const int * n_tasks_arr = cplan->n_tasks;
const int n_threads = state->shared->n_threads;
set_numa_thread_affinity(state->ith, n_threads);
int node_n = -1;
while (true) {
if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
state->shared->node_n += 1;
return (thread_ret_t) GGML_EXIT_ABORTED;
}
if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
// all other threads are finished and spinning
// do finalize and init here so we don't have synchronize again
struct ggml_compute_params params = {
/*.type =*/ GGML_TASK_FINALIZE,
/*.ith =*/ 0,
/*.nth =*/ 0,
/*.wsize =*/ cplan->work_size,
/*.wdata =*/ cplan->work_data,
};
if (node_n != -1) {
/* FINALIZE */
struct ggml_tensor * node = state->shared->cgraph->nodes[node_n];
if (GGML_OP_HAS_FINALIZE[node->op]) {
params.nth = n_tasks_arr[node_n];
ggml_compute_forward(&params, node);
}
ggml_graph_compute_perf_stats_node(node, state->shared);
}
// distribute new work or execute it direct if 1T
while (++node_n < cgraph->n_nodes) {
GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
struct ggml_tensor * node = cgraph->nodes[node_n];
const int n_tasks = n_tasks_arr[node_n];
state->shared->perf_node_start_cycles = ggml_perf_cycles();
state->shared->perf_node_start_time_us = ggml_perf_time_us();
params.nth = n_tasks;
/* INIT */
if (GGML_OP_HAS_INIT[node->op]) {
params.type = GGML_TASK_INIT;
ggml_compute_forward(&params, node);
}
if (n_tasks == 1) {
// TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
// they do something more efficient than spinning (?)
params.type = GGML_TASK_COMPUTE;
ggml_compute_forward(&params, node);
if (GGML_OP_HAS_FINALIZE[node->op]) {
params.type = GGML_TASK_FINALIZE;
ggml_compute_forward(&params, node);
}
ggml_graph_compute_perf_stats_node(node, state->shared);
} else {
break;
}
if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
break;
}
}
atomic_store(&state->shared->n_active, n_threads);
atomic_store(&state->shared->node_n, node_n);
} else {
// wait for other threads to finish
const int last = node_n;
do {
//sched_yield();
node_n = atomic_load(&state->shared->node_n);
} while (node_n == last);
}
// check if we should stop
if (node_n >= cgraph->n_nodes) break;
/* COMPUTE */
struct ggml_tensor * node = cgraph->nodes[node_n];
const int n_tasks = n_tasks_arr[node_n];
struct ggml_compute_params params = {
/*.type =*/ GGML_TASK_COMPUTE,
/*.ith =*/ state->ith,
/*.nth =*/ n_tasks,
/*.wsize =*/ cplan->work_size,
/*.wdata =*/ cplan->work_data,
};
if (state->ith < n_tasks) {
ggml_compute_forward(&params, node);
}
}
return GGML_EXIT_SUCCESS;
}
struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
if (n_threads <= 0) {
n_threads = GGML_DEFAULT_N_THREADS;
}
size_t work_size = 0;
struct ggml_cplan cplan;
memset(&cplan, 0, sizeof(struct ggml_cplan));
// thread scheduling for the different operations + work buffer size estimation
for (int i = 0; i < cgraph->n_nodes; i++) {
int n_tasks = 1;
struct ggml_tensor * node = cgraph->nodes[i];
switch (node->op) {
case GGML_OP_CPY:
case GGML_OP_DUP:
{
n_tasks = n_threads;
size_t cur = 0;
if (ggml_is_quantized(node->type)) {
cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
}
work_size = MAX(work_size, cur);
} break;
case GGML_OP_ADD:
case GGML_OP_ADD1:
{
n_tasks = n_threads;
size_t cur = 0;
if (ggml_is_quantized(node->src[0]->type)) {
cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
}
work_size = MAX(work_size, cur);
} break;
case GGML_OP_ACC:
{
n_tasks = n_threads;
size_t cur = 0;
if (ggml_is_quantized(node->src[0]->type)) {
cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
}
work_size = MAX(work_size, cur);
} break;
case GGML_OP_SUB:
case GGML_OP_DIV:
case GGML_OP_SQR:
case GGML_OP_SQRT:
case GGML_OP_LOG:
case GGML_OP_SUM:
case GGML_OP_SUM_ROWS:
case GGML_OP_MEAN:
case GGML_OP_ARGMAX:
case GGML_OP_REPEAT:
case GGML_OP_REPEAT_BACK:
{
n_tasks = 1;
} break;
case GGML_OP_UNARY:
{
switch (ggml_get_unary_op(node)) {
case GGML_UNARY_OP_ABS:
case GGML_UNARY_OP_SGN:
case GGML_UNARY_OP_NEG:
case GGML_UNARY_OP_STEP:
case GGML_UNARY_OP_TANH:
case GGML_UNARY_OP_ELU:
case GGML_UNARY_OP_RELU:
{
n_tasks = 1;
} break;
case GGML_UNARY_OP_GELU:
case GGML_UNARY_OP_GELU_QUICK:
case GGML_UNARY_OP_SILU:
{
n_tasks = n_threads;
} break;
}
} break;
case GGML_OP_SILU_BACK:
case GGML_OP_MUL:
case GGML_OP_NORM:
case GGML_OP_RMS_NORM:
case GGML_OP_RMS_NORM_BACK:
case GGML_OP_GROUP_NORM:
{
n_tasks = n_threads;
} break;
case GGML_OP_CONCAT:
case GGML_OP_MUL_MAT:
case GGML_OP_OUT_PROD:
{
n_tasks = n_threads;
// TODO: use different scheduling for different matrix sizes
//const int nr0 = ggml_nrows(node->src[0]);
//const int nr1 = ggml_nrows(node->src[1]);
//n_tasks = MIN(n_threads, MAX(1, nr0/128));
//printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
size_t cur = 0;
const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
#if defined(GGML_USE_CUBLAS)
if (ggml_cuda_can_mul_mat(node->src[0], node->src[1], node)) {
n_tasks = 1; // TODO: this actually is doing nothing
// the threads are still spinning
} else
#elif defined(GGML_USE_CLBLAST)
if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
n_tasks = 1; // TODO: this actually is doing nothing
// the threads are still spinning
cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
} else
#endif
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
n_tasks = 1; // TODO: this actually is doing nothing
// the threads are still spinning
if (node->src[0]->type != GGML_TYPE_F32) {
// here we need memory just for single 2D matrix from src0
cur = ggml_type_size(GGML_TYPE_F32)*(node->src[0]->ne[0]*node->src[0]->ne[1]);
}
} else
#endif
if (node->src[1]->type != vec_dot_type) {
cur = ggml_type_size(vec_dot_type)*ggml_nelements(node->src[1])/ggml_blck_size(vec_dot_type);
} else {
cur = 0;
}
work_size = MAX(work_size, cur);
} break;
case GGML_OP_SCALE:
{
n_tasks = 1;
} break;
case GGML_OP_SET:
case GGML_OP_CONT:
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
case GGML_OP_PERMUTE:
case GGML_OP_TRANSPOSE:
case GGML_OP_GET_ROWS:
case GGML_OP_GET_ROWS_BACK:
case GGML_OP_DIAG:
{
n_tasks = 1;
} break;
case GGML_OP_DIAG_MASK_ZERO:
case GGML_OP_DIAG_MASK_INF:
case GGML_OP_SOFT_MAX:
case GGML_OP_SOFT_MAX_BACK:
case GGML_OP_ROPE:
case GGML_OP_ROPE_BACK:
case GGML_OP_ADD_REL_POS:
{
n_tasks = n_threads;
} break;
case GGML_OP_ALIBI:
{
n_tasks = 1; //TODO
} break;
case GGML_OP_CLAMP:
{
n_tasks = 1; //TODO
} break;
case GGML_OP_CONV_1D:
{
n_tasks = n_threads;
GGML_ASSERT(node->src[0]->ne[3] == 1);
GGML_ASSERT(node->src[1]->ne[2] == 1);
GGML_ASSERT(node->src[1]->ne[3] == 1);
size_t cur = 0;
const int nk = node->src[0]->ne[0];
if (node->src[0]->type == GGML_TYPE_F16 &&
node->src[1]->type == GGML_TYPE_F32) {
cur = sizeof(ggml_fp16_t)*(
nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
);
} else if (node->src[0]->type == GGML_TYPE_F32 &&
node->src[1]->type == GGML_TYPE_F32) {
cur = sizeof(float)*(
nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
);
} else {
GGML_ASSERT(false);
}
work_size = MAX(work_size, cur);
} break;
case GGML_OP_CONV_2D:
{
n_tasks = n_threads;
const int64_t ne00 = node->src[0]->ne[0]; // W
const int64_t ne01 = node->src[0]->ne[1]; // H
const int64_t ne02 = node->src[0]->ne[2]; // C
const int64_t ne03 = node->src[0]->ne[3]; // N
const int64_t ne10 = node->src[1]->ne[0]; // W
const int64_t ne11 = node->src[1]->ne[1]; // H
const int64_t ne12 = node->src[1]->ne[2]; // C
const int64_t ne0 = node->ne[0];
const int64_t ne1 = node->ne[1];
const int64_t ne2 = node->ne[2];
const int64_t nk = ne00*ne01;
const int64_t ew0 = nk * ne02;
UNUSED(ne03);
UNUSED(ne2);
size_t cur = 0;
if (node->src[0]->type == GGML_TYPE_F16 &&
node->src[1]->type == GGML_TYPE_F32) {
cur = sizeof(ggml_fp16_t)*(ne0*ne1*ew0);
} else if (node->src[0]->type == GGML_TYPE_F32 &&
node->src[1]->type == GGML_TYPE_F32) {
cur = sizeof(float)* (ne10*ne11*ne12);
} else {
GGML_ASSERT(false);
}
work_size = MAX(work_size, cur);
} break;
case GGML_OP_CONV_TRANSPOSE_2D:
{
n_tasks = n_threads;
const int64_t ne00 = node->src[0]->ne[0]; // W
const int64_t ne01 = node->src[0]->ne[1]; // H
const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
const int64_t ne03 = node->src[0]->ne[3]; // Channels In
const int64_t ne10 = node->src[1]->ne[0]; // W
const int64_t ne11 = node->src[1]->ne[1]; // H
const int64_t ne12 = node->src[1]->ne[2]; // Channels In
size_t cur = 0;
cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
work_size = MAX(work_size, cur);
} break;
case GGML_OP_POOL_1D:
case GGML_OP_POOL_2D:
{
n_tasks = 1;
} break;
case GGML_OP_UPSCALE:
{
n_tasks = n_threads;
} break;
case GGML_OP_FLASH_ATTN:
{
n_tasks = n_threads;
size_t cur = 0;
const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
if (node->src[1]->type == GGML_TYPE_F32) {
cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
}
if (node->src[1]->type == GGML_TYPE_F16) {
cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
}
work_size = MAX(work_size, cur);
} break;
case GGML_OP_FLASH_FF:
{
n_tasks = n_threads;
size_t cur = 0;
if (node->src[1]->type == GGML_TYPE_F32) {
cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
}
if (node->src[1]->type == GGML_TYPE_F16) {
cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
}
work_size = MAX(work_size, cur);
} break;
case GGML_OP_FLASH_ATTN_BACK:
{
n_tasks = n_threads;
size_t cur = 0;
const int64_t D = node->src[0]->ne[0];
const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
if (node->src[1]->type == GGML_TYPE_F32) {
cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
}
if (node->src[1]->type == GGML_TYPE_F16) {
cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
}
work_size = MAX(work_size, cur);
} break;
case GGML_OP_WIN_PART:
case GGML_OP_WIN_UNPART:
case GGML_OP_GET_REL_POS:
case GGML_OP_MAP_UNARY:
case GGML_OP_MAP_BINARY:
case GGML_OP_MAP_CUSTOM1_F32:
case GGML_OP_MAP_CUSTOM2_F32:
case GGML_OP_MAP_CUSTOM3_F32:
{
n_tasks = 1;
} break;
case GGML_OP_MAP_CUSTOM1:
{
struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
if (p->n_tasks == GGML_N_TASKS_MAX) {
n_tasks = n_threads;
} else {
n_tasks = MIN(p->n_tasks, n_threads);
}
} break;
case GGML_OP_MAP_CUSTOM2:
{
struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
if (p->n_tasks == GGML_N_TASKS_MAX) {
n_tasks = n_threads;
} else {
n_tasks = MIN(p->n_tasks, n_threads);
}
} break;
case GGML_OP_MAP_CUSTOM3:
{
struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
if (p->n_tasks == GGML_N_TASKS_MAX) {
n_tasks = n_threads;
} else {
n_tasks = MIN(p->n_tasks, n_threads);
}
} break;
case GGML_OP_CROSS_ENTROPY_LOSS:
{
n_tasks = n_threads;
size_t cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
work_size = MAX(work_size, cur);
} break;
case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
{
n_tasks = n_threads;
} break;
case GGML_OP_NONE:
{
n_tasks = 1;
} break;
case GGML_OP_COUNT:
{
GGML_ASSERT(false);
} break;
}
cplan.n_tasks[i] = n_tasks;
}
if (work_size > 0) {
work_size += CACHE_LINE_SIZE*(n_threads - 1);
}
cplan.n_threads = n_threads;
cplan.work_size = work_size;
cplan.work_data = NULL;
return cplan;
}
int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
{
GGML_ASSERT(cplan);
GGML_ASSERT(cplan->n_threads > 0);
if (cplan->work_size > 0) {
GGML_ASSERT(cplan->work_data);
}
for (int i = 0; i < cgraph->n_nodes; ++i) {
if (cgraph->nodes[i]->op != GGML_OP_NONE) {
GGML_ASSERT(cplan->n_tasks[i] > 0);
}
}
}
const int n_threads = cplan->n_threads;
struct ggml_compute_state_shared state_shared = {
/*.cgraph =*/ cgraph,
/*.cgraph_plan =*/ cplan,
/*.perf_node_start_cycles =*/ 0,
/*.perf_node_start_time_us =*/ 0,
/*.n_threads =*/ n_threads,
/*.n_active =*/ n_threads,
/*.node_n =*/ -1,
/*.abort_callback =*/ NULL,
/*.abort_callback_data =*/ NULL,
};
struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
// create thread pool
if (n_threads > 1) {
for (int j = 1; j < n_threads; ++j) {
workers[j] = (struct ggml_compute_state) {
.thrd = 0,
.ith = j,
.shared = &state_shared,
};
const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
GGML_ASSERT(rc == 0);
UNUSED(rc);
}
}
workers[0].ith = 0;
workers[0].shared = &state_shared;
const int64_t perf_start_cycles = ggml_perf_cycles();
const int64_t perf_start_time_us = ggml_perf_time_us();
// this is a work thread too
int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
// don't leave affinity set on the main thread
clear_numa_thread_affinity();
// join or kill thread pool
if (n_threads > 1) {
for (int j = 1; j < n_threads; j++) {
const int rc = ggml_thread_join(workers[j].thrd, NULL);
GGML_ASSERT(rc == 0);
}
}
// performance stats (graph)
{
int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
cgraph->perf_runs++;
cgraph->perf_cycles += perf_cycles_cur;
cgraph->perf_time_us += perf_time_us_cur;
GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
__func__, cgraph->perf_runs,
(double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
(double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
(double) perf_time_us_cur / 1000.0,
(double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
}
return compute_status;
}
void ggml_graph_reset(struct ggml_cgraph * cgraph) {
for (int i = 0; i < cgraph->n_nodes; i++) {
struct ggml_tensor * grad = cgraph->grads[i];
if (grad) {
ggml_set_zero(grad);
}
}
}
void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
ggml_graph_compute(cgraph, &cplan);
}
struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
for (int i = 0; i < cgraph->n_leafs; i++) {
struct ggml_tensor * leaf = cgraph->leafs[i];
if (strcmp(leaf->name, name) == 0) {
return leaf;
}
}
for (int i = 0; i < cgraph->n_nodes; i++) {
struct ggml_tensor * node = cgraph->nodes[i];
if (strcmp(node->name, name) == 0) {
return node;
}
}
return NULL;
}
static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
const int64_t * ne = tensor->ne;
const size_t * nb = tensor->nb;
fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
ggml_type_name(tensor->type),
ggml_op_name (tensor->op),
tensor->n_dims,
ne[0], ne[1], ne[2], ne[3],
nb[0], nb[1], nb[2], nb[3],
tensor->data,
tensor->name);
}
static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
const int64_t * ne = tensor->ne;
const size_t * nb = tensor->nb;
fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
arg,
ggml_type_name(tensor->type),
ggml_op_name (tensor->op),
tensor->n_dims,
ne[0], ne[1], ne[2], ne[3],
nb[0], nb[1], nb[2], nb[3],
tensor->data,
tensor->name);
}
void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
uint64_t size_eval = 0;
// compute size of intermediate results
// TODO: does not take into account scratch buffers !!!!
for (int i = 0; i < cgraph->n_nodes; ++i) {
size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
}
// print
{
FILE * fout = stdout;
fprintf(fout, "\n");
fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
// header
fprintf(fout, "\n");
fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
"TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
for (int i = 0; i < cgraph->n_leafs; ++i) {
ggml_graph_export_leaf(cgraph->leafs[i], fout);
GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
}
// header
fprintf(fout, "\n");
fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
"ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
for (int i = 0; i < cgraph->n_nodes; ++i) {
ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
for (int j = 0; j < GGML_MAX_SRC; ++j) {
if (cgraph->nodes[i]->src[j]) {
ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
}
}
fprintf(fout, "\n");
}
fprintf(fout, "\n");
}
// write binary data
{
FILE * fout = fopen(fname, "wb");
if (!fout) {
fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
return;
}
// header
{
const uint32_t magic = GGML_FILE_MAGIC;
const uint32_t version = GGML_FILE_VERSION;
const uint32_t n_leafs = cgraph->n_leafs;
const uint32_t nodes = cgraph->n_nodes;
fwrite(&magic, sizeof(uint32_t), 1, fout);
fwrite(&version, sizeof(uint32_t), 1, fout);
fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
fwrite(&nodes, sizeof(uint32_t), 1, fout);
fwrite(&size_eval, sizeof(uint64_t), 1, fout);
}
// leafs
{
for (int i = 0; i < cgraph->n_leafs; ++i) {
const struct ggml_tensor * tensor = cgraph->leafs[i];
const uint32_t type = tensor->type;
const uint32_t op = tensor->op;
const uint32_t n_dims = tensor->n_dims;
fwrite(&type, sizeof(uint32_t), 1, fout);
fwrite(&op, sizeof(uint32_t), 1, fout);
fwrite(&n_dims, sizeof(uint32_t), 1, fout);
for (int j = 0; j < GGML_MAX_DIMS; ++j) {
const uint64_t ne = tensor->ne[j];
const uint64_t nb = tensor->nb[j];
fwrite(&ne, sizeof(uint64_t), 1, fout);
fwrite(&nb, sizeof(uint64_t), 1, fout);
}
fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
// dump the data
// TODO: pad this to 32 byte boundary
{
const size_t size = ggml_nbytes(tensor);
fwrite(tensor->data, sizeof(char), size, fout);
}
}
}
// nodes
{
for (int i = 0; i < cgraph->n_nodes; ++i) {
const struct ggml_tensor * tensor = cgraph->nodes[i];
const uint32_t type = tensor->type;
const uint32_t op = tensor->op;
const uint32_t n_dims = tensor->n_dims;
fwrite(&type, sizeof(uint32_t), 1, fout);
fwrite(&op, sizeof(uint32_t), 1, fout);
fwrite(&n_dims, sizeof(uint32_t), 1, fout);
for (int j = 0; j < GGML_MAX_DIMS; ++j) {
const uint64_t ne = tensor->ne[j];
const uint64_t nb = tensor->nb[j];
fwrite(&ne, sizeof(uint64_t), 1, fout);
fwrite(&nb, sizeof(uint64_t), 1, fout);
}
fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
// output the op arguments
{
struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
for (int j = 0; j < GGML_MAX_SRC; ++j) {
args[j] = tensor->src[j];
}
for (int j = 0; j < GGML_MAX_SRC; ++j) {
if (args[j]) {
int32_t idx = -1;
// check if leaf
{
for (int k = 0; k < cgraph->n_leafs; ++k) {
if (args[j] == cgraph->leafs[k]) {
idx = k;
break;
}
}
}
// check if node
if (idx == -1) {
for (int k = 0; k < cgraph->n_nodes; ++k) {
if (args[j] == cgraph->nodes[k]) {
idx = GGML_MAX_NODES + k;
break;
}
}
}
if (idx == -1) {
fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
return;
}
fwrite(&idx, sizeof(int32_t), 1, fout);
} else {
const int32_t nul = -1;
fwrite(&nul, sizeof(int32_t), 1, fout);
}
}
}
}
}
fclose(fout);
}
}
struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
assert(*ctx_data == NULL);
assert(*ctx_eval == NULL);
struct ggml_cgraph result = { 0 };
struct ggml_tensor * data = NULL;
// read file into data
{
FILE * fin = fopen(fname, "rb");
if (!fin) {
fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
return result;
}
size_t fsize = 0;
fseek(fin, 0, SEEK_END);
fsize = ftell(fin);
fseek(fin, 0, SEEK_SET);
// create the data context
{
const size_t overhead = 1*ggml_tensor_overhead();
struct ggml_init_params params = {
.mem_size = fsize + overhead,
.mem_buffer = NULL,
.no_alloc = false,
};
*ctx_data = ggml_init(params);
if (!*ctx_data) {
fprintf(stderr, "%s: failed to create ggml context\n", __func__);
fclose(fin);
return result;
}
}
data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
{
const size_t ret = fread(data->data, sizeof(char), fsize, fin);
if (ret != fsize) {
fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
fclose(fin);
return result;
}
}
fclose(fin);
}
// populate result
{
char * ptr = (char *) data->data;
const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
if (magic != GGML_FILE_MAGIC) {
fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
return result;
}
const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
if (version != GGML_FILE_VERSION) {
fprintf(stderr, "%s: invalid version number\n", __func__);
return result;
}
const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
result.n_leafs = n_leafs;
result.n_nodes = n_nodes;
// create the data context
{
const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
struct ggml_init_params params = {
.mem_size = size_eval + overhead,
.mem_buffer = NULL,
.no_alloc = true,
};
*ctx_eval = ggml_init(params);
if (!*ctx_eval) {
fprintf(stderr, "%s: failed to create ggml context\n", __func__);
return result;
}
}
// leafs
{
uint32_t type;
uint32_t op;
uint32_t n_dims;
for (uint32_t i = 0; i < n_leafs; ++i) {
type = *(const uint32_t *) ptr; ptr += sizeof(type);
op = *(const uint32_t *) ptr; ptr += sizeof(op);
n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
int64_t ne[GGML_MAX_DIMS];
size_t nb[GGML_MAX_DIMS];
for (int j = 0; j < GGML_MAX_DIMS; ++j) {
uint64_t ne_cur;
uint64_t nb_cur;
ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
ne[j] = ne_cur;
nb[j] = nb_cur;
}
struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
tensor->op = (enum ggml_op) op;
memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
tensor->data = (void *) ptr;
for (int j = 0; j < GGML_MAX_DIMS; ++j) {
tensor->nb[j] = nb[j];
}
result.leafs[i] = tensor;
ptr += ggml_nbytes(tensor);
fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
}
}
ggml_set_no_alloc(*ctx_eval, false);
// nodes
{
uint32_t type;
uint32_t op;
uint32_t n_dims;
for (uint32_t i = 0; i < n_nodes; ++i) {
type = *(const uint32_t *) ptr; ptr += sizeof(type);
op = *(const uint32_t *) ptr; ptr += sizeof(op);
n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
enum ggml_op eop = (enum ggml_op) op;
int64_t ne[GGML_MAX_DIMS];
size_t nb[GGML_MAX_DIMS];
for (int j = 0; j < GGML_MAX_DIMS; ++j) {
uint64_t ne_cur;
uint64_t nb_cur;
ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
ne[j] = ne_cur;
nb[j] = nb_cur;
}
const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
// parse args
for (int j = 0; j < GGML_MAX_SRC; ++j) {
const int32_t arg_idx = ptr_arg_idx[j];
if (arg_idx == -1) {
continue;
}
if (arg_idx < GGML_MAX_NODES) {
args[j] = result.leafs[arg_idx];
} else {
args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
}
}
// create the tensor
// "view" operations are handled differently
// TODO: handle inplace ops - currently a copy is always made
struct ggml_tensor * tensor = NULL;
switch (eop) {
// TODO: implement other view ops
case GGML_OP_RESHAPE:
{
tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
} break;
case GGML_OP_VIEW:
{
tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
size_t offs;
memcpy(&offs, ptr_op_params, sizeof(offs));
tensor->data = ((char *) tensor->data) + offs;
} break;
case GGML_OP_TRANSPOSE:
{
tensor = ggml_transpose(*ctx_eval, args[0]);
} break;
case GGML_OP_PERMUTE:
{
tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
} break;
default:
{
tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
tensor->op = eop;
} break;
}
memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
for (int j = 0; j < GGML_MAX_DIMS; ++j) {
tensor->nb[j] = nb[j];
}
for (int j = 0; j < GGML_MAX_SRC; ++j) {
tensor->src[j] = args[j];
}
result.nodes[i] = tensor;
fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
}
}
}
return result;
}
void ggml_graph_print(const struct ggml_cgraph * cgraph) {
int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
GGML_PRINT("=== GRAPH ===\n");
GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
for (int i = 0; i < cgraph->n_nodes; i++) {
struct ggml_tensor * node = cgraph->nodes[i];
perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
i,
node->ne[0], node->ne[1], node->ne[2],
ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
(double) node->perf_cycles / (double) ggml_cycles_per_ms(),
(double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
(double) node->perf_time_us / 1000.0,
(double) node->perf_time_us / 1000.0 / node->perf_runs);
}
GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
for (int i = 0; i < cgraph->n_leafs; i++) {
struct ggml_tensor * node = cgraph->leafs[i];
GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
i,
node->ne[0], node->ne[1],
ggml_op_name(node->op));
}
for (int i = 0; i < GGML_OP_COUNT; i++) {
if (perf_total_per_op_us[i] == 0) {
continue;
}
GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
}
GGML_PRINT("========================================\n");
}
// check if node is part of the graph
static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
if (cgraph == NULL) {
return true;
}
for (int i = 0; i < cgraph->n_nodes; i++) {
if (cgraph->nodes[i] == node) {
return true;
}
}
return false;
}
static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
for (int i = 0; i < cgraph->n_nodes; i++) {
struct ggml_tensor * parent = cgraph->nodes[i];
if (parent->grad == node) {
return parent;
}
}
return NULL;
}
static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
gparent0 ? (void *) gparent0 : (void *) parent,
gparent0 ? "g" : "x",
gparent ? (void *) gparent : (void *) node,
gparent ? "g" : "x",
gparent ? "empty" : "vee",
gparent ? "dashed" : "solid",
label);
}
static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
(void *) parent, "x",
(void *) node, "x",
label);
}
void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
char color[16];
FILE * fp = fopen(filename, "w");
GGML_ASSERT(fp);
fprintf(fp, "digraph G {\n");
fprintf(fp, " newrank = true;\n");
fprintf(fp, " rankdir = LR;\n");
for (int i = 0; i < gb->n_nodes; i++) {
struct ggml_tensor * node = gb->nodes[i];
if (ggml_graph_get_parent(gb, node) != NULL) {
continue;
}
if (node->is_param) {
snprintf(color, sizeof(color), "yellow");
} else if (node->grad) {
if (ggml_graph_find(gf, node)) {
snprintf(color, sizeof(color), "green");
} else {
snprintf(color, sizeof(color), "lightblue");
}
} else {
snprintf(color, sizeof(color), "white");
}
fprintf(fp, " \"%p\" [ "
"style = filled; fillcolor = %s; shape = record; "
"label=\"",
(void *) node, color);
if (strlen(node->name) > 0) {
fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
} else {
fprintf(fp, "(%s)|", ggml_type_name(node->type));
}
if (node->n_dims == 2) {
fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
} else {
fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
}
if (node->grad) {
fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
} else {
fprintf(fp, "\"; ]\n");
}
}
for (int i = 0; i < gb->n_leafs; i++) {
struct ggml_tensor * node = gb->leafs[i];
snprintf(color, sizeof(color), "pink");
fprintf(fp, " \"%p\" [ "
"style = filled; fillcolor = %s; shape = record; "
"label=\"<x>",
(void *) node, color);
if (strlen(node->name) > 0) {
fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
} else {
fprintf(fp, "(%s)|", ggml_type_name(node->type));
}
fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
if (ggml_nelements(node) < 5) {
fprintf(fp, " | (");
for (int j = 0; j < ggml_nelements(node); j++) {
if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
fprintf(fp, "%d", ggml_get_i32_1d(node, j));
}
else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
}
else {
fprintf(fp, "#");
}
if (j < ggml_nelements(node) - 1) {
fprintf(fp, ", ");
}
}
fprintf(fp, ")");
}
fprintf(fp, "\"; ]\n");
}
for (int i = 0; i < gb->n_nodes; i++) {
struct ggml_tensor * node = gb->nodes[i];
for (int j = 0; j < GGML_MAX_SRC; j++) {
if (node->src[j]) {
char label[16];
snprintf(label, sizeof(label), "src %d", j);
ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
}
}
}
for (int i = 0; i < gb->n_leafs; i++) {
struct ggml_tensor * node = gb->leafs[i];
for (int j = 0; j < GGML_MAX_SRC; j++) {
if (node->src[j]) {
char label[16];
snprintf(label, sizeof(label), "src %d", j);
ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
}
}
}
fprintf(fp, "}\n");
fclose(fp);
GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
}
////////////////////////////////////////////////////////////////////////////////
static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
int i = 0;
for (int p = 0; p < np; ++p) {
const int64_t ne = ggml_nelements(ps[p]) ;
// TODO: add function to set tensor from array
for (int64_t j = 0; j < ne; ++j) {
ggml_set_f32_1d(ps[p], j, x[i++]);
}
}
}
static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
int i = 0;
for (int p = 0; p < np; ++p) {
const int64_t ne = ggml_nelements(ps[p]) ;
// TODO: add function to get all elements at once
for (int64_t j = 0; j < ne; ++j) {
x[i++] = ggml_get_f32_1d(ps[p], j);
}
}
}
static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
int i = 0;
for (int p = 0; p < np; ++p) {
const int64_t ne = ggml_nelements(ps[p]) ;
// TODO: add function to get all elements at once
for (int64_t j = 0; j < ne; ++j) {
g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
}
}
}
//
// ADAM
//
// ref: https://arxiv.org/pdf/1412.6980.pdf
//
static enum ggml_opt_result ggml_opt_adam(
struct ggml_context * ctx,
struct ggml_opt_context * opt,
struct ggml_opt_params params,
struct ggml_tensor * f,
struct ggml_cgraph * gf,
struct ggml_cgraph * gb,
ggml_opt_callback callback,
void * callback_data) {
GGML_ASSERT(ggml_is_scalar(f));
// these will store the parameters we want to optimize
struct ggml_tensor * ps[GGML_MAX_PARAMS];
int np = 0;
int64_t nx = 0;
for (int i = 0; i < gf->n_nodes; ++i) {
if (gf->nodes[i]->is_param) {
GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
GGML_ASSERT(np < GGML_MAX_PARAMS);
ps[np++] = gf->nodes[i];
nx += ggml_nelements(gf->nodes[i]);
}
}
if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
int iter = opt->iter;
ggml_opt_init(opt->ctx, opt, params, nx);
opt->iter = iter;
}
// constants
float sched = params.adam.sched;
const float alpha = params.adam.alpha;
const float decay = params.adam.decay * alpha;
const float beta1 = params.adam.beta1;
const float beta2 = params.adam.beta2;
const float eps = params.adam.eps;
const float gclip = params.adam.gclip;
const int decay_min_ndim = params.adam.decay_min_ndim;
float * m = opt->adam.m->data; // first moment
float * v = opt->adam.v->data; // second moment
float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
if (callback) {
callback(callback_data, &sched);
}
// compute the function value
ggml_graph_reset (gf);
ggml_set_f32 (f->grad, 1.0f);
struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
ggml_graph_compute(gb, &cplan);
opt->adam.fx_prev = ggml_get_f32_1d(f, 0);
opt->adam.fx_best = opt->adam.fx_prev;
if (pf) {
pf[opt->iter % params.past] = opt->adam.fx_prev;
}
opt->loss_before = opt->adam.fx_prev;
opt->loss_after = opt->adam.fx_prev;
// initialize
if (opt->just_initialized) {
opt->adam.n_no_improvement = 0;
opt->just_initialized = false;
}
float * fx_best = &opt->adam.fx_best;
float * fx_prev = &opt->adam.fx_prev;
int * n_no_improvement = &opt->adam.n_no_improvement;
int iter0 = opt->iter;
// run the optimizer
for (int t = 0; t < params.adam.n_iter; ++t) {
opt->iter = iter0 + t + 1;
GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
for (int i = 0; i < np; ++i) {
GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
}
const int64_t t_start_wall = ggml_time_us();
const int64_t t_start_cpu = ggml_cycles();
UNUSED(t_start_wall);
UNUSED(t_start_cpu);
{
float gnorm = 1.0f;
if (gclip > 0.0f) {
// gradient clipping
ggml_float sum = 0.0;
for (int p = 0; p < np; ++p) {
const int64_t ne = ggml_nelements(ps[p]);
for (int64_t j = 0; j < ne; ++j) {
float g = ggml_get_f32_1d(ps[p]->grad, j);
sum += (ggml_float)(g*g);
}
}
ggml_float norm = sqrt(sum);
if (norm > (ggml_float) gclip) {
gnorm = (float) ((ggml_float) gclip / norm);
}
}
const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
int64_t i = 0;
for (int p = 0; p < np; ++p) {
const int64_t ne = ggml_nelements(ps[p]);
const float p_decay = ((ps[p]->n_dims >= decay_min_ndim) ? decay : 0.0f) * sched;
for (int64_t j = 0; j < ne; ++j) {
float x = ggml_get_f32_1d(ps[p], j);
float g = ggml_get_f32_1d(ps[p]->grad, j)*gnorm;
m[i] = m[i]*beta1 + g*(1.0f - beta1);
v[i] = v[i]*beta2 + g*g*(1.0f - beta2);
float mh = m[i]*beta1h;
float vh = v[i]*beta2h;
vh = sqrtf(vh) + eps;
x = x*(1.0f - p_decay) - mh/vh;
ggml_set_f32_1d(ps[p], j, x);
++i;
}
}
}
if (callback) {
callback(callback_data, &sched);
}
ggml_graph_reset (gf);
ggml_set_f32 (f->grad, 1.0f);
ggml_graph_compute(gb, &cplan);
const float fx = ggml_get_f32_1d(f, 0);
opt->loss_after = fx;
// check convergence
if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
GGML_PRINT_DEBUG("converged\n");
return GGML_OPT_OK;
}
// delta-based convergence test
if (pf != NULL) {
// need at least params.past iterations to start checking for convergence
if (params.past <= iter0 + t) {
const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
if (fabsf(rate) < params.delta) {
return GGML_OPT_OK;
}
}
pf[(iter0 + t)%params.past] = fx;
}
// check for improvement
if (params.max_no_improvement > 0) {
if (fx_best[0] > fx) {
fx_best[0] = fx;
n_no_improvement[0] = 0;
} else {
++n_no_improvement[0];
if (n_no_improvement[0] >= params.max_no_improvement) {
return GGML_OPT_OK;
}
}
}
fx_prev[0] = fx;
{
const int64_t t_end_cpu = ggml_cycles();
GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
UNUSED(t_end_cpu);
const int64_t t_end_wall = ggml_time_us();
GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
UNUSED(t_end_wall);
}
}
return GGML_OPT_DID_NOT_CONVERGE;
}
//
// L-BFGS
//
// the L-BFGS implementation below is based on the following implementation:
//
// https://github.com/chokkan/liblbfgs
//
struct ggml_lbfgs_iteration_data {
float alpha;
float ys;
float * s;
float * y;
};
static enum ggml_opt_result linesearch_backtracking(
const struct ggml_opt_params * params,
int nx,
float * x,
float * fx,
float * g,
float * d,
float * step,
const float * xp,
struct ggml_tensor * f,
struct ggml_cgraph * gf,
struct ggml_cgraph * gb,
struct ggml_cplan * cplan,
const int np,
struct ggml_tensor * ps[],
ggml_opt_callback callback,
void * callback_data) {
int count = 0;
float width = 0.0f;
float dg = 0.0f;
float finit = 0.0f;
float dginit = 0.0f;
float dgtest = 0.0f;
const float dec = 0.5f;
const float inc = 2.1f;
if (*step <= 0.f) {
return GGML_LINESEARCH_INVALID_PARAMETERS;
}
// compute the initial gradient in the search direction
ggml_vec_dot_f32(nx, &dginit, g, d);
// make sure that d points to a descent direction
if (0 < dginit) {
return GGML_LINESEARCH_FAIL;
}
// initialize local variables
finit = *fx;
dgtest = params->lbfgs.ftol*dginit;
while (true) {
if (callback) {
// LBFG-S does not support learning rate -> ignore learning schedule
float sched = 0;
callback(callback_data, &sched);
}
ggml_vec_cpy_f32(nx, x, xp);
ggml_vec_mad_f32(nx, x, d, *step);
// evaluate the function and gradient values
{
ggml_opt_set_params(np, ps, x);
ggml_graph_reset (gf);
ggml_set_f32 (f->grad, 1.0f);
ggml_graph_compute(gb, cplan);
ggml_opt_get_grad(np, ps, g);
*fx = ggml_get_f32_1d(f, 0);
}
++count;
if (*fx > finit + (*step)*dgtest) {
width = dec;
} else {
// Armijo condition is satisfied
if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
return count;
}
ggml_vec_dot_f32(nx, &dg, g, d);
// check the Wolfe condition
if (dg < params->lbfgs.wolfe * dginit) {
width = inc;
} else {
if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
// regular Wolfe conditions
return count;
}
if(dg > -params->lbfgs.wolfe*dginit) {
width = dec;
} else {
// strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
return count;
}
return count;
}
}
if (*step < params->lbfgs.min_step) {
return GGML_LINESEARCH_MINIMUM_STEP;
}
if (*step > params->lbfgs.max_step) {
return GGML_LINESEARCH_MAXIMUM_STEP;
}
if (params->lbfgs.max_linesearch <= count) {
return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
}
(*step) *= width;
}
return GGML_LINESEARCH_FAIL;
}
static enum ggml_opt_result ggml_opt_lbfgs(
struct ggml_context * ctx,
struct ggml_opt_context * opt,
struct ggml_opt_params params,
struct ggml_tensor * f,
struct ggml_cgraph * gf,
struct ggml_cgraph * gb,
ggml_opt_callback callback,
void * callback_data) {
if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
return GGML_OPT_INVALID_WOLFE;
}
}
const int m = params.lbfgs.m;
// these will store the parameters we want to optimize
struct ggml_tensor * ps[GGML_MAX_PARAMS];
int np = 0;
int nx = 0;
for (int i = 0; i < gf->n_nodes; ++i) {
if (gf->nodes[i]->is_param) {
GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
GGML_ASSERT(np < GGML_MAX_PARAMS);
ps[np++] = gf->nodes[i];
nx += ggml_nelements(gf->nodes[i]);
}
}
if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
int iter = opt->iter;
ggml_opt_init(ctx, opt, params, nx);
opt->iter = iter;
}
struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
float * x = opt->lbfgs.x->data; // current parameters
float * xp = opt->lbfgs.xp->data; // previous parameters
float * g = opt->lbfgs.g->data; // current gradient
float * gp = opt->lbfgs.gp->data; // previous gradient
float * d = opt->lbfgs.d->data; // search direction
float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
float fx = 0.0f; // cost function value
float xnorm = 0.0f; // ||x||
float gnorm = 0.0f; // ||g||
// initialize x from the graph nodes
ggml_opt_get_params(np, ps, x);
// the L-BFGS memory
float * lm_alpha = opt->lbfgs.lmal->data;
float * lm_ys = opt->lbfgs.lmys->data;
float * lm_s = opt->lbfgs.lms->data;
float * lm_y = opt->lbfgs.lmy->data;
if (callback) {
// LBFG-S does not support learning rate -> ignore learning schedule
float sched = 0;
callback(callback_data, &sched);
}
// evaluate the function value and its gradient
{
ggml_opt_set_params(np, ps, x);
ggml_graph_reset (gf);
ggml_set_f32 (f->grad, 1.0f);
ggml_graph_compute(gb, &cplan);
ggml_opt_get_grad(np, ps, g);
fx = ggml_get_f32_1d(f, 0);
opt->loss_before = fx;
opt->loss_after = fx;
}
// search direction = -gradient
ggml_vec_neg_f32(nx, d, g);
// ||x||, ||g||
ggml_vec_norm_f32(nx, &xnorm, x);
ggml_vec_norm_f32(nx, &gnorm, g);
if (xnorm < 1.0f) {
xnorm = 1.0f;
}
// already optimized
if (gnorm/xnorm <= params.lbfgs.eps) {
return GGML_OPT_OK;
}
if (opt->just_initialized) {
if (pf) {
pf[0] = fx;
}
opt->lbfgs.fx_best = fx;
// initial step
ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
opt->lbfgs.j = 0;
opt->lbfgs.k = 1;
opt->lbfgs.end = 0;
opt->lbfgs.n_no_improvement = 0;
opt->just_initialized = false;
}
float * fx_best = &opt->lbfgs.fx_best;
float * step = &opt->lbfgs.step;
int * j = &opt->lbfgs.j;
int * k = &opt->lbfgs.k;
int * end = &opt->lbfgs.end;
int * n_no_improvement = &opt->lbfgs.n_no_improvement;
int ls = 0;
int bound = 0;
float ys = 0.0f;
float yy = 0.0f;
float beta = 0.0f;
int it = 0;
while (true) {
// store the current position and gradient vectors
ggml_vec_cpy_f32(nx, xp, x);
ggml_vec_cpy_f32(nx, gp, g);
ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gf, gb, &cplan, np, ps, callback, callback_data);
if (ls < 0) {
// linesearch failed - go back to the previous point and return
ggml_vec_cpy_f32(nx, x, xp);
ggml_vec_cpy_f32(nx, g, gp);
return ls;
}
opt->loss_after = fx;
ggml_vec_norm_f32(nx, &xnorm, x);
ggml_vec_norm_f32(nx, &gnorm, g);
GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
if (xnorm < 1.0f) {
xnorm = 1.0f;
}
if (gnorm/xnorm <= params.lbfgs.eps) {
// converged
return GGML_OPT_OK;
}
// delta-based convergence test
if (pf != NULL) {
// need at least params.past iterations to start checking for convergence
if (params.past <= k[0]) {
const float rate = (pf[k[0]%params.past] - fx)/fx;
if (fabsf(rate) < params.delta) {
return GGML_OPT_OK;
}
}
pf[k[0]%params.past] = fx;
}
// check for improvement
if (params.max_no_improvement > 0) {
if (fx < fx_best[0]) {
fx_best[0] = fx;
n_no_improvement[0] = 0;
} else {
n_no_improvement[0]++;
if (n_no_improvement[0] >= params.max_no_improvement) {
return GGML_OPT_OK;
}
}
}
if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
// reached the maximum number of iterations
return GGML_OPT_DID_NOT_CONVERGE;
}
// update vectors s and y:
// s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
// y_{k+1} = g_{k+1} - g_{k}.
//
ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
// compute scalars ys and yy:
// ys = y^t \cdot s -> 1 / \rho.
// yy = y^t \cdot y.
//
ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0]*nx]);
ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
lm_ys[end[0]] = ys;
// find new search direction
// ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
bound = (m <= k[0]) ? m : k[0];
k[0]++;
it++;
end[0] = (end[0] + 1)%m;
// initialize search direction with -g
ggml_vec_neg_f32(nx, d, g);
j[0] = end[0];
for (int i = 0; i < bound; ++i) {
j[0] = (j[0] + m - 1) % m;
// \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
lm_alpha[j[0]] /= lm_ys[j[0]];
// q_{i} = q_{i+1} - \alpha_{i} y_{i}
ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
}
ggml_vec_scale_f32(nx, d, ys/yy);
for (int i = 0; i < bound; ++i) {
// \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
beta /= lm_ys[j[0]];
// \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
j[0] = (j[0] + 1)%m;
}
step[0] = 1.0;
}
return GGML_OPT_DID_NOT_CONVERGE;
}
struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
struct ggml_opt_params result;
switch (type) {
case GGML_OPT_ADAM:
{
result = (struct ggml_opt_params) {
.type = GGML_OPT_ADAM,
.n_threads = 1,
.past = 0,
.delta = 1e-5f,
.max_no_improvement = 100,
.print_forward_graph = true,
.print_backward_graph = true,
.adam = {
.n_iter = 10000,
.sched = 1.000f,
.decay = 0.0f,
.decay_min_ndim = 2,
.alpha = 0.001f,
.beta1 = 0.9f,
.beta2 = 0.999f,
.eps = 1e-8f,
.eps_f = 1e-5f,
.eps_g = 1e-3f,
.gclip = 0.0f,
},
};
} break;
case GGML_OPT_LBFGS:
{
result = (struct ggml_opt_params) {
.type = GGML_OPT_LBFGS,
.n_threads = 1,
.past = 0,
.delta = 1e-5f,
.max_no_improvement = 0,
.print_forward_graph = true,
.print_backward_graph = true,
.lbfgs = {
.m = 6,
.n_iter = 100,
.max_linesearch = 20,
.eps = 1e-5f,
.ftol = 1e-4f,
.wolfe = 0.9f,
.min_step = 1e-20f,
.max_step = 1e+20f,
.linesearch = GGML_LINESEARCH_DEFAULT,
},
};
} break;
}
return result;
}
GGML_API void ggml_opt_init(
struct ggml_context * ctx,
struct ggml_opt_context * opt,
struct ggml_opt_params params,
int64_t nx) {
opt->ctx = ctx;
opt->params = params;
opt->iter = 0;
opt->nx = nx;
opt->just_initialized = true;
switch (opt->params.type) {
case GGML_OPT_ADAM:
{
opt->adam.m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
opt->adam.v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
opt->adam.pf = params.past > 0
? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
: NULL;
ggml_set_zero(opt->adam.m);
ggml_set_zero(opt->adam.v);
if (opt->adam.pf) {
ggml_set_zero(opt->adam.pf);
}
} break;
case GGML_OPT_LBFGS:
{
opt->lbfgs.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
opt->lbfgs.xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
opt->lbfgs.g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
opt->lbfgs.gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
opt->lbfgs.d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
opt->lbfgs.pf = params.past > 0
? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
: NULL;
opt->lbfgs.lmal = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
opt->lbfgs.lmys = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
opt->lbfgs.lms = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
opt->lbfgs.lmy = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
ggml_set_zero(opt->lbfgs.x);
ggml_set_zero(opt->lbfgs.xp);
ggml_set_zero(opt->lbfgs.g);
ggml_set_zero(opt->lbfgs.gp);
ggml_set_zero(opt->lbfgs.d);
if (opt->lbfgs.pf) {
ggml_set_zero(opt->lbfgs.pf);
}
ggml_set_zero(opt->lbfgs.lmal);
ggml_set_zero(opt->lbfgs.lmys);
ggml_set_zero(opt->lbfgs.lms);
ggml_set_zero(opt->lbfgs.lmy);
} break;
}
}
enum ggml_opt_result ggml_opt(
struct ggml_context * ctx,
struct ggml_opt_params params,
struct ggml_tensor * f) {
bool free_ctx = false;
if (ctx == NULL) {
struct ggml_init_params params_ctx = {
.mem_size = 16*1024*1024,
.mem_buffer = NULL,
.no_alloc = false,
};
ctx = ggml_init(params_ctx);
if (ctx == NULL) {
return GGML_OPT_NO_CONTEXT;
}
free_ctx = true;
}
enum ggml_opt_result result = GGML_OPT_OK;
struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
ggml_opt_init(ctx, opt, params, 0);
result = ggml_opt_resume(ctx, opt, f);
if (free_ctx) {
ggml_free(ctx);
}
return result;
}
enum ggml_opt_result ggml_opt_resume(
struct ggml_context * ctx,
struct ggml_opt_context * opt,
struct ggml_tensor * f) {
// build forward + backward compute graphs
struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
*gf = ggml_build_forward (f);
*gb = ggml_build_backward(ctx, gf, true);
return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
}
enum ggml_opt_result ggml_opt_resume_g(
struct ggml_context * ctx,
struct ggml_opt_context * opt,
struct ggml_tensor * f,
struct ggml_cgraph * gf,
struct ggml_cgraph * gb,
ggml_opt_callback callback,
void * callback_data) {
// build forward + backward compute graphs
enum ggml_opt_result result = GGML_OPT_OK;
switch (opt->params.type) {
case GGML_OPT_ADAM:
{
result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
} break;
case GGML_OPT_LBFGS:
{
result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
} break;
}
if (opt->params.print_forward_graph) {
ggml_graph_print (gf);
ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
}
if (opt->params.print_backward_graph) {
ggml_graph_print (gb);
ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
}
return result;
}
////////////////////////////////////////////////////////////////////////////////
size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
assert(k % QK4_0 == 0);
const int nb = k / QK4_0;
for (int b = 0; b < n; b += k) {
block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
quantize_row_q4_0_reference(src + b, y, k);
for (int i = 0; i < nb; i++) {
for (int j = 0; j < QK4_0; j += 2) {
const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
const uint8_t vi1 = y[i].qs[j/2] >> 4;
hist[vi0]++;
hist[vi1]++;
}
}
}
return (n/QK4_0*sizeof(block_q4_0));
}
size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
assert(k % QK4_1 == 0);
const int nb = k / QK4_1;
for (int b = 0; b < n; b += k) {
block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
quantize_row_q4_1_reference(src + b, y, k);
for (int i = 0; i < nb; i++) {
for (int j = 0; j < QK4_1; j += 2) {
const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
const uint8_t vi1 = y[i].qs[j/2] >> 4;
hist[vi0]++;
hist[vi1]++;
}
}
}
return (n/QK4_1*sizeof(block_q4_1));
}
size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
assert(k % QK5_0 == 0);
const int nb = k / QK5_0;
for (int b = 0; b < n; b += k) {
block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
quantize_row_q5_0_reference(src + b, y, k);
for (int i = 0; i < nb; i++) {
uint32_t qh;
memcpy(&qh, &y[i].qh, sizeof(qh));
for (int j = 0; j < QK5_0; j += 2) {
const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
// cast to 16 bins
const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
hist[vi0]++;
hist[vi1]++;
}
}
}
return (n/QK5_0*sizeof(block_q5_0));
}
size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
assert(k % QK5_1 == 0);
const int nb = k / QK5_1;
for (int b = 0; b < n; b += k) {
block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
quantize_row_q5_1_reference(src + b, y, k);
for (int i = 0; i < nb; i++) {
uint32_t qh;
memcpy(&qh, &y[i].qh, sizeof(qh));
for (int j = 0; j < QK5_1; j += 2) {
const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
// cast to 16 bins
const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
hist[vi0]++;
hist[vi1]++;
}
}
}
return (n/QK5_1*sizeof(block_q5_1));
}
size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
assert(k % QK8_0 == 0);
const int nb = k / QK8_0;
for (int b = 0; b < n; b += k) {
block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
quantize_row_q8_0_reference(src + b, y, k);
for (int i = 0; i < nb; i++) {
for (int j = 0; j < QK8_0; ++j) {
const int8_t vi = y[i].qs[j];
hist[vi/16 + 8]++;
}
}
}
return (n/QK8_0*sizeof(block_q8_0));
}
size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
size_t result = 0;
switch (type) {
case GGML_TYPE_Q4_0:
{
GGML_ASSERT(start % QK4_0 == 0);
block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
result = ggml_quantize_q4_0(src + start, block, n, n, hist);
} break;
case GGML_TYPE_Q4_1:
{
GGML_ASSERT(start % QK4_1 == 0);
block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
result = ggml_quantize_q4_1(src + start, block, n, n, hist);
} break;
case GGML_TYPE_Q5_0:
{
GGML_ASSERT(start % QK5_0 == 0);
block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
result = ggml_quantize_q5_0(src + start, block, n, n, hist);
} break;
case GGML_TYPE_Q5_1:
{
GGML_ASSERT(start % QK5_1 == 0);
block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
result = ggml_quantize_q5_1(src + start, block, n, n, hist);
} break;
case GGML_TYPE_Q8_0:
{
GGML_ASSERT(start % QK8_0 == 0);
block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
result = ggml_quantize_q8_0(src + start, block, n, n, hist);
} break;
#ifdef GGML_USE_K_QUANTS
case GGML_TYPE_Q2_K:
{
GGML_ASSERT(start % QK_K == 0);
block_q2_K * block = (block_q2_K*)dst + start / QK_K;
result = ggml_quantize_q2_K(src + start, block, n, n, hist);
} break;
case GGML_TYPE_Q3_K:
{
GGML_ASSERT(start % QK_K == 0);
block_q3_K * block = (block_q3_K*)dst + start / QK_K;
result = ggml_quantize_q3_K(src + start, block, n, n, hist);
} break;
case GGML_TYPE_Q4_K:
{
GGML_ASSERT(start % QK_K == 0);
block_q4_K * block = (block_q4_K*)dst + start / QK_K;
result = ggml_quantize_q4_K(src + start, block, n, n, hist);
} break;
case GGML_TYPE_Q5_K:
{
GGML_ASSERT(start % QK_K == 0);
block_q5_K * block = (block_q5_K*)dst + start / QK_K;
result = ggml_quantize_q5_K(src + start, block, n, n, hist);
} break;
case GGML_TYPE_Q6_K:
{
GGML_ASSERT(start % QK_K == 0);
block_q6_K * block = (block_q6_K*)dst + start / QK_K;
result = ggml_quantize_q6_K(src + start, block, n, n, hist);
} break;
#endif
case GGML_TYPE_F16:
{
int elemsize = sizeof(ggml_fp16_t);
ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
result = n * elemsize;
} break;
case GGML_TYPE_F32:
{
int elemsize = sizeof(float);
result = n * elemsize;
memcpy((uint8_t *)dst + start * elemsize, src + start, result);
} break;
default:
assert(false);
}
return result;
}
////////////////////////////////////////////////////////////////////////////////
struct gguf_str {
uint64_t n; // GGUFv2
char * data;
};
static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
[GGUF_TYPE_UINT8] = sizeof(uint8_t),
[GGUF_TYPE_INT8] = sizeof(int8_t),
[GGUF_TYPE_UINT16] = sizeof(uint16_t),
[GGUF_TYPE_INT16] = sizeof(int16_t),
[GGUF_TYPE_UINT32] = sizeof(uint32_t),
[GGUF_TYPE_INT32] = sizeof(int32_t),
[GGUF_TYPE_FLOAT32] = sizeof(float),
[GGUF_TYPE_BOOL] = sizeof(bool),
[GGUF_TYPE_STRING] = sizeof(struct gguf_str),
[GGUF_TYPE_UINT64] = sizeof(uint64_t),
[GGUF_TYPE_INT64] = sizeof(int64_t),
[GGUF_TYPE_FLOAT64] = sizeof(double),
[GGUF_TYPE_ARRAY] = 0, // undefined
};
static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
[GGUF_TYPE_UINT8] = "u8",
[GGUF_TYPE_INT8] = "i8",
[GGUF_TYPE_UINT16] = "u16",
[GGUF_TYPE_INT16] = "i16",
[GGUF_TYPE_UINT32] = "u32",
[GGUF_TYPE_INT32] = "i32",
[GGUF_TYPE_FLOAT32] = "f32",
[GGUF_TYPE_BOOL] = "bool",
[GGUF_TYPE_STRING] = "str",
[GGUF_TYPE_ARRAY] = "arr",
[GGUF_TYPE_UINT64] = "u64",
[GGUF_TYPE_INT64] = "i64",
[GGUF_TYPE_FLOAT64] = "f64",
};
static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
union gguf_value {
uint8_t uint8;
int8_t int8;
uint16_t uint16;
int16_t int16;
uint32_t uint32;
int32_t int32;
float float32;
uint64_t uint64;
int64_t int64;
double float64;
bool bool_;
struct gguf_str str;
struct {
enum gguf_type type;
uint64_t n; // GGUFv2
void * data;
} arr;
};
struct gguf_kv {
struct gguf_str key;
enum gguf_type type;
union gguf_value value;
};
struct gguf_header {
uint32_t magic;
uint32_t version;
uint64_t n_tensors; // GGUFv2
uint64_t n_kv; // GGUFv2
};
struct gguf_tensor_info {
struct gguf_str name;
uint32_t n_dims;
uint64_t ne[GGML_MAX_DIMS];
enum ggml_type type;
uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
// for writing API
const void * data;
size_t size;
};
struct gguf_context {
struct gguf_header header;
struct gguf_kv * kv;
struct gguf_tensor_info * infos;
size_t alignment;
size_t offset; // offset of `data` from beginning of file
size_t size; // size of `data` in bytes
//uint8_t * padding;
void * data;
};
static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
const size_t n = fread(dst, 1, size, file);
*offset += n;
return n == size;
}
// NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
static bool gguf_fread_str_cur(FILE * file, struct gguf_str * p, size_t * offset) {
p->n = 0;
p->data = NULL;
bool ok = true;
ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset); p->data = calloc(p->n + 1, 1);
ok = ok && gguf_fread_el(file, p->data, p->n, offset);
return ok;
}
static bool gguf_fread_str_v1(FILE * file, struct gguf_str * p, size_t * offset) {
p->n = 0;
p->data = NULL;
bool ok = true;
uint32_t n = 0;
ok = ok && gguf_fread_el(file, &n, sizeof(n), offset); p->data = calloc(n + 1, 1); p->n = n;
ok = ok && gguf_fread_el(file, p->data, p->n, offset);
return ok;
}
struct gguf_context * gguf_init_empty(void) {
struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
ctx->header.magic = GGUF_MAGIC;
ctx->header.version = GGUF_VERSION;
ctx->header.n_tensors = 0;
ctx->header.n_kv = 0;
ctx->kv = NULL;
ctx->infos = NULL;
ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
ctx->offset = 0;
ctx->size = 0;
ctx->data = NULL;
return ctx;
}
struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
FILE * file = fopen(fname, "rb");
if (!file) {
return NULL;
}
// offset from start of file
size_t offset = 0;
uint32_t magic = 0;
// check the magic before making allocations
{
gguf_fread_el(file, &magic, sizeof(magic), &offset);
if (magic != GGUF_MAGIC) {
fprintf(stderr, "%s: invalid magic number %08x\n", __func__, magic);
fclose(file);
return NULL;
}
}
bool ok = true;
struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
// read the header
{
ctx->header.magic = magic;
ctx->kv = NULL;
ctx->infos = NULL;
ctx->data = NULL;
ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
if (ctx->header.version == 1) {
// NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
uint32_t n_tensors = 0;
uint32_t n_kv = 0;
ok = ok && gguf_fread_el(file, &n_tensors, sizeof(n_tensors), &offset);
ok = ok && gguf_fread_el(file, &n_kv, sizeof(n_kv), &offset);
ctx->header.n_tensors = n_tensors;
ctx->header.n_kv = n_kv;
} else {
ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
}
if (!ok) {
fprintf(stderr, "%s: failed to read header\n", __func__);
fclose(file);
gguf_free(ctx);
return NULL;
}
}
// NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
bool (* gguf_fread_str)(FILE *, struct gguf_str *, size_t *) = gguf_fread_str_cur;
if (ctx->header.version == 1) {
gguf_fread_str = gguf_fread_str_v1;
}
// read the kv pairs
{
ctx->kv = malloc(ctx->header.n_kv * sizeof(struct gguf_kv));
for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
struct gguf_kv * kv = &ctx->kv[i];
//fprintf(stderr, "%s: reading kv %d\n", __func__, i);
ok = ok && gguf_fread_str(file, &kv->key, &offset);
ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
//fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
switch (kv->type) {
case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
case GGUF_TYPE_ARRAY:
{
ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
if (ctx->header.version == 1) {
// NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
uint32_t n = 0;
ok = ok && gguf_fread_el(file, &n, sizeof(n), &offset);
kv->value.arr.n = n;
} else {
ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
}
switch (kv->value.arr.type) {
case GGUF_TYPE_UINT8:
case GGUF_TYPE_INT8:
case GGUF_TYPE_UINT16:
case GGUF_TYPE_INT16:
case GGUF_TYPE_UINT32:
case GGUF_TYPE_INT32:
case GGUF_TYPE_FLOAT32:
case GGUF_TYPE_UINT64:
case GGUF_TYPE_INT64:
case GGUF_TYPE_FLOAT64:
case GGUF_TYPE_BOOL:
{
kv->value.arr.data = malloc(kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type], &offset);
} break;
case GGUF_TYPE_STRING:
{
kv->value.arr.data = malloc(kv->value.arr.n * sizeof(struct gguf_str));
for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
}
} break;
case GGUF_TYPE_ARRAY:
case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
};
} break;
case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
};
if (!ok) {
break;
}
}
if (!ok) {
fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
fclose(file);
gguf_free(ctx);
return NULL;
}
}
// read the tensor infos
{
ctx->infos = malloc(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
struct gguf_tensor_info * info = &ctx->infos[i];
for (int j = 0; j < GGML_MAX_DIMS; ++j) {
info->ne[j] = 1;
}
ok = ok && gguf_fread_str(file, &info->name, &offset);
ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
for (uint32_t j = 0; j < info->n_dims; ++j) {
if (ctx->header.version == 1) {
// NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
uint32_t t = 0;
ok = ok && gguf_fread_el(file, &t, sizeof(t), &offset);
info->ne[j] = t;
} else {
ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
}
}
ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
if (!ok) {
fprintf(stderr, "%s: failed to read tensor info\n", __func__);
fclose(file);
gguf_free(ctx);
return NULL;
}
}
}
ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
int alignment_idx = gguf_find_key(ctx, "general.alignment");
if (alignment_idx != -1) {
ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
}
// we require the data section to be aligned, so take into account any padding
{
const size_t offset_pad = offset % ctx->alignment;
if (offset_pad != 0) {
offset += ctx->alignment - offset_pad;
fseek(file, offset, SEEK_SET);
}
}
// store the current file offset - this is where the data section starts
ctx->offset = offset;
// compute the total size of the data section, taking into account the alignment
{
ctx->size = 0;
for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
struct gguf_tensor_info * info = &ctx->infos[i];
const int64_t ne =
(int64_t) info->ne[0] *
(int64_t) info->ne[1] *
(int64_t) info->ne[2] *
(int64_t) info->ne[3];
if (ne % ggml_blck_size(info->type) != 0) {
fprintf(stderr, "%s: tensor '%s' number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
__func__, info->name.data, ne, ggml_blck_size(info->type));
fclose(file);
gguf_free(ctx);
return NULL;
}
const size_t size_cur = (ne*ggml_type_size(info->type))/ggml_blck_size(info->type);
ctx->size += GGML_PAD(size_cur, ctx->alignment);
}
}
// load the tensor data only if requested
if (params.ctx != NULL) {
// if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
// otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
// the ggml_tensor structs to the appropriate locations in the binary blob
// compute the exact size needed for the new ggml_context
const size_t mem_size =
params.no_alloc ?
(ctx->header.n_tensors )*ggml_tensor_overhead() :
(ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
struct ggml_init_params pdata = {
.mem_size = mem_size,
.mem_buffer = NULL,
.no_alloc = params.no_alloc,
};
*params.ctx = ggml_init(pdata);
struct ggml_context * ctx_data = *params.ctx;
struct ggml_tensor * data = NULL;
if (params.no_alloc == false) {
data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
ok = ok && data != NULL;
// read the binary blob with the tensor data
ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
if (!ok) {
fprintf(stderr, "%s: failed to read tensor data\n", __func__);
fclose(file);
ggml_free(ctx_data);
gguf_free(ctx);
return NULL;
}
ctx->data = data->data;
}
ggml_set_no_alloc(ctx_data, true);
// create the tensors
for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
const int64_t ne[GGML_MAX_DIMS] = {
ctx->infos[i].ne[0],
ctx->infos[i].ne[1],
ctx->infos[i].ne[2],
ctx->infos[i].ne[3],
};
struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
ok = ok && cur != NULL;
ggml_set_name(cur, ctx->infos[i].name.data);
if (!ok) {
break;
}
// point the data member to the appropriate location in the binary blob using the tensor infos
if (params.no_alloc == false) {
//cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
}
}
if (!ok) {
fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
fclose(file);
ggml_free(ctx_data);
gguf_free(ctx);
return NULL;
}
ggml_set_no_alloc(ctx_data, params.no_alloc);
}
fclose(file);
return ctx;
}
void gguf_free(struct gguf_context * ctx) {
if (ctx == NULL) {
return;
}
if (ctx->kv) {
// free string memory - not great..
for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
struct gguf_kv * kv = &ctx->kv[i];
if (kv->key.data) {
free(kv->key.data);
}
if (kv->type == GGUF_TYPE_STRING) {
if (kv->value.str.data) {
free(kv->value.str.data);
}
}
if (kv->type == GGUF_TYPE_ARRAY) {
if (kv->value.arr.data) {
if (kv->value.arr.type == GGUF_TYPE_STRING) {
for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
if (str->data) {
free(str->data);
}
}
}
free(kv->value.arr.data);
}
}
}
free(ctx->kv);
}
if (ctx->infos) {
for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
struct gguf_tensor_info * info = &ctx->infos[i];
if (info->name.data) {
free(info->name.data);
}
}
free(ctx->infos);
}
GGML_ALIGNED_FREE(ctx);
}
const char * gguf_type_name(enum gguf_type type) {
return GGUF_TYPE_NAME[type];
}
int gguf_get_version(struct gguf_context * ctx) {
return ctx->header.version;
}
size_t gguf_get_alignment(struct gguf_context * ctx) {
return ctx->alignment;
}
size_t gguf_get_data_offset(struct gguf_context * ctx) {
return ctx->offset;
}
void * gguf_get_data(struct gguf_context * ctx) {
return ctx->data;
}
int gguf_get_n_kv(struct gguf_context * ctx) {
return ctx->header.n_kv;
}
int gguf_find_key(struct gguf_context * ctx, const char * key) {
// return -1 if key not found
int keyfound = -1;
const int n_kv = gguf_get_n_kv(ctx);
for (int i = 0; i < n_kv; ++i) {
if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
keyfound = i;
break;
}
}
return keyfound;
}
const char * gguf_get_key(struct gguf_context * ctx, int i) {
return ctx->kv[i].key.data;
}
enum gguf_type gguf_get_kv_type(struct gguf_context * ctx, int i) {
return ctx->kv[i].type;
}
enum gguf_type gguf_get_arr_type(struct gguf_context * ctx, int i) {
return ctx->kv[i].value.arr.type;
}
const void * gguf_get_arr_data(struct gguf_context * ctx, int i) {
return ctx->kv[i].value.arr.data;
}
const char * gguf_get_arr_str(struct gguf_context * ctx, int key_id, int i) {
struct gguf_kv * kv = &ctx->kv[key_id];
struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
return str->data;
}
int gguf_get_arr_n(struct gguf_context * ctx, int i) {
return ctx->kv[i].value.arr.n;
}
uint8_t gguf_get_val_u8(struct gguf_context * ctx, int i) {
return ctx->kv[i].value.uint8;
}
int8_t gguf_get_val_i8(struct gguf_context * ctx, int i) {
return ctx->kv[i].value.int8;
}
uint16_t gguf_get_val_u16(struct gguf_context * ctx, int i) {
return ctx->kv[i].value.uint16;
}
int16_t gguf_get_val_i16(struct gguf_context * ctx, int i) {
return ctx->kv[i].value.int16;
}
uint32_t gguf_get_val_u32(struct gguf_context * ctx, int i) {
return ctx->kv[i].value.uint32;
}
int32_t gguf_get_val_i32(struct gguf_context * ctx, int i) {
return ctx->kv[i].value.int32;
}
float gguf_get_val_f32(struct gguf_context * ctx, int i) {
return ctx->kv[i].value.float32;
}
uint64_t gguf_get_val_u64(struct gguf_context * ctx, int i) {
return ctx->kv[i].value.uint64;
}
int64_t gguf_get_val_i64(struct gguf_context * ctx, int i) {
return ctx->kv[i].value.int64;
}
double gguf_get_val_f64(struct gguf_context * ctx, int i) {
return ctx->kv[i].value.float64;
}
bool gguf_get_val_bool(struct gguf_context * ctx, int i) {
return ctx->kv[i].value.bool_;
}
const char * gguf_get_val_str (struct gguf_context * ctx, int i) {
return ctx->kv[i].value.str.data;
}
int gguf_get_n_tensors(struct gguf_context * ctx) {
return ctx->header.n_tensors;
}
int gguf_find_tensor(struct gguf_context * ctx, const char * name) {
// return -1 if tensor not found
int tensorfound = -1;
const int n_tensors = gguf_get_n_tensors(ctx);
for (int i = 0; i < n_tensors; ++i) {
if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
tensorfound = i;
break;
}
}
return tensorfound;
}
size_t gguf_get_tensor_offset(struct gguf_context * ctx, int i) {
return ctx->infos[i].offset;
}
char * gguf_get_tensor_name(struct gguf_context * ctx, int i) {
return ctx->infos[i].name.data;
}
// returns the index
static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
const int idx = gguf_find_key(ctx, key);
if (idx >= 0) {
return idx;
}
const int n_kv = gguf_get_n_kv(ctx);
ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
ctx->kv[n_kv].key.n = strlen(key);
ctx->kv[n_kv].key.data = strdup(key);
ctx->header.n_kv++;
return n_kv;
}
void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
const int idx = gguf_get_or_add_key(ctx, key);
ctx->kv[idx].type = GGUF_TYPE_UINT8;
ctx->kv[idx].value.uint8 = val;
}
void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
const int idx = gguf_get_or_add_key(ctx, key);
ctx->kv[idx].type = GGUF_TYPE_INT8;
ctx->kv[idx].value.int8 = val;
}
void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
const int idx = gguf_get_or_add_key(ctx, key);
ctx->kv[idx].type = GGUF_TYPE_UINT16;
ctx->kv[idx].value.uint16 = val;
}
void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
const int idx = gguf_get_or_add_key(ctx, key);
ctx->kv[idx].type = GGUF_TYPE_INT16;
ctx->kv[idx].value.int16 = val;
}
void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
const int idx = gguf_get_or_add_key(ctx, key);
ctx->kv[idx].type = GGUF_TYPE_UINT32;
ctx->kv[idx].value.uint32 = val;
}
void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
const int idx = gguf_get_or_add_key(ctx, key);
ctx->kv[idx].type = GGUF_TYPE_INT32;
ctx->kv[idx].value.int32 = val;
}
void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
const int idx = gguf_get_or_add_key(ctx, key);
ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
ctx->kv[idx].value.float32 = val;
}
void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
const int idx = gguf_get_or_add_key(ctx, key);
ctx->kv[idx].type = GGUF_TYPE_UINT64;
ctx->kv[idx].value.uint64 = val;
}
void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
const int idx = gguf_get_or_add_key(ctx, key);
ctx->kv[idx].type = GGUF_TYPE_INT64;
ctx->kv[idx].value.int64 = val;
}
void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
const int idx = gguf_get_or_add_key(ctx, key);
ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
ctx->kv[idx].value.float64 = val;
}
void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
const int idx = gguf_get_or_add_key(ctx, key);
ctx->kv[idx].type = GGUF_TYPE_BOOL;
ctx->kv[idx].value.bool_ = val;
}
void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
const int idx = gguf_get_or_add_key(ctx, key);
ctx->kv[idx].type = GGUF_TYPE_STRING;
ctx->kv[idx].value.str.n = strlen(val);
ctx->kv[idx].value.str.data = strdup(val);
}
void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
const int idx = gguf_get_or_add_key(ctx, key);
ctx->kv[idx].type = GGUF_TYPE_ARRAY;
ctx->kv[idx].value.arr.type = type;
ctx->kv[idx].value.arr.n = n;
ctx->kv[idx].value.arr.data = malloc(n*GGUF_TYPE_SIZE[type]);
memcpy(ctx->kv[idx].value.arr.data, data, n*GGUF_TYPE_SIZE[type]);
}
void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
const int idx = gguf_get_or_add_key(ctx, key);
ctx->kv[idx].type = GGUF_TYPE_ARRAY;
ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
ctx->kv[idx].value.arr.n = n;
ctx->kv[idx].value.arr.data = malloc(n*sizeof(struct gguf_str));
for (int i = 0; i < n; i++) {
struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
str->n = strlen(data[i]);
str->data = strdup(data[i]);
}
}
// set or add KV pairs from another context
void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
for (uint32_t i = 0; i < src->header.n_kv; i++) {
switch (src->kv[i].type) {
case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
case GGUF_TYPE_ARRAY:
{
if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
const char ** data = malloc(src->kv[i].value.arr.n*sizeof(char *));
for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
}
gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
free(data);
} else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
GGML_ASSERT(false && "nested arrays not supported");
} else {
gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
}
} break;
case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
}
}
}
void gguf_add_tensor(
struct gguf_context * ctx,
const struct ggml_tensor * tensor) {
const int idx = ctx->header.n_tensors;
ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
ctx->infos[idx].name.n = strlen(tensor->name);
ctx->infos[idx].name.data = strdup(tensor->name);
for (int i = 0; i < GGML_MAX_DIMS; ++i) {
ctx->infos[idx].ne[i] = 1;
}
ctx->infos[idx].n_dims = tensor->n_dims;
for (int i = 0; i < tensor->n_dims; i++) {
ctx->infos[idx].ne[i] = tensor->ne[i];
}
ctx->infos[idx].type = tensor->type;
ctx->infos[idx].offset = 0;
ctx->infos[idx].data = tensor->data;
ctx->infos[idx].size = ggml_nbytes(tensor);
if (ctx->header.n_tensors > 0) {
ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
}
ctx->header.n_tensors++;
}
void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
const int idx = gguf_find_tensor(ctx, name);
if (idx < 0) {
GGML_ASSERT(false && "tensor not found");
}
ctx->infos[idx].type = type;
}
void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
const int idx = gguf_find_tensor(ctx, name);
if (idx < 0) {
GGML_ASSERT(false && "tensor not found");
}
ctx->infos[idx].data = data;
ctx->infos[idx].size = size;
// update offsets
for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
}
}
//static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
// fwrite(&val->n, sizeof(val->n), 1, file);
// fwrite(val->data, sizeof(char), val->n, file);
//}
//
//static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
// fwrite(val, sizeof(char), size, file);
//}
struct gguf_buf {
void * data;
size_t size;
size_t offset;
};
static struct gguf_buf gguf_buf_init(size_t size) {
struct gguf_buf buf = {
/*buf.data =*/ size == 0 ? NULL : malloc(size),
/*buf.size =*/ size,
/*buf.offset =*/ 0,
};
return buf;
}
static void gguf_buf_free(struct gguf_buf buf) {
if (buf.data) {
free(buf.data);
}
}
static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
if (buf->offset + size > buf->size) {
buf->size = 1.5*(buf->offset + size);
if (buf->data) {
buf->data = realloc(buf->data, buf->size);
}
}
}
static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
gguf_buf_grow(buf, sizeof(val->n) + val->n);
if (buf->data) {
memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
}
buf->offset += sizeof(val->n);
if (buf->data) {
memcpy((char *) buf->data + buf->offset, val->data, val->n);
}
buf->offset += val->n;
}
static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
gguf_buf_grow(buf, el_size);
if (buf->data) {
memcpy((char *) buf->data + buf->offset, val, el_size);
}
buf->offset += el_size;
}
static void gguf_write_to_buf(struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
// write header
gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
// write key-value pairs
for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
struct gguf_kv * kv = &ctx->kv[i];
gguf_bwrite_str(buf, &kv->key);
gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
switch (kv->type) {
case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
case GGUF_TYPE_ARRAY:
{
gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
switch (kv->value.arr.type) {
case GGUF_TYPE_UINT8:
case GGUF_TYPE_INT8:
case GGUF_TYPE_UINT16:
case GGUF_TYPE_INT16:
case GGUF_TYPE_UINT32:
case GGUF_TYPE_INT32:
case GGUF_TYPE_FLOAT32:
case GGUF_TYPE_UINT64:
case GGUF_TYPE_INT64:
case GGUF_TYPE_FLOAT64:
case GGUF_TYPE_BOOL:
{
gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
} break;
case GGUF_TYPE_STRING:
{
for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
}
} break;
case GGUF_TYPE_ARRAY:
case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
};
} break;
case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
};
}
// write tensor infos
for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
struct gguf_tensor_info * info = &ctx->infos[i];
gguf_bwrite_str(buf, &info->name);
gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
for (uint32_t j = 0; j < info->n_dims; ++j) {
gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
}
gguf_bwrite_el(buf, &info->type, sizeof(info->type));
gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
}
// we require the data section to be aligned, so take into account any padding
{
const size_t offset = buf->offset;
const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
if (offset_pad != offset) {
uint8_t pad = 0;
for (size_t i = 0; i < offset_pad - offset; ++i) {
gguf_bwrite_el(buf, &pad, sizeof(pad));
}
}
}
if (only_meta) {
return;
}
size_t offset = 0;
// write tensor data
for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
struct gguf_tensor_info * info = &ctx->infos[i];
const size_t size = info->size;
const size_t size_pad = GGML_PAD(size, ctx->alignment);
gguf_bwrite_el(buf, info->data, size);
if (size_pad != size) {
uint8_t pad = 0;
for (size_t j = 0; j < size_pad - size; ++j) {
gguf_bwrite_el(buf, &pad, sizeof(pad));
}
}
GGML_ASSERT(offset == info->offset);
offset += size_pad;
}
}
void gguf_write_to_file(struct gguf_context * ctx, const char * fname, bool only_meta) {
FILE * file = fopen(fname, "wb");
if (!file) {
GGML_ASSERT(false && "failed to open file for writing");
}
struct gguf_buf buf = gguf_buf_init(16*1024);
gguf_write_to_buf(ctx, &buf, only_meta);
fwrite(buf.data, 1, buf.offset, file);
gguf_buf_free(buf);
fclose(file);
}
size_t gguf_get_meta_size(struct gguf_context * ctx) {
// no allocs - only compute size
struct gguf_buf buf = gguf_buf_init(0);
gguf_write_to_buf(ctx, &buf, true);
return buf.offset;
}
void gguf_get_meta_data(struct gguf_context * ctx, void * data) {
struct gguf_buf buf = gguf_buf_init(16*1024);
gguf_write_to_buf(ctx, &buf, true);
memcpy(data, buf.data, buf.offset);
gguf_buf_free(buf);
}
////////////////////////////////////////////////////////////////////////////////
int ggml_cpu_has_avx(void) {
#if defined(__AVX__)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_avx2(void) {
#if defined(__AVX2__)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_avx512(void) {
#if defined(__AVX512F__)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_avx512_vbmi(void) {
#if defined(__AVX512VBMI__)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_avx512_vnni(void) {
#if defined(__AVX512VNNI__)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_fma(void) {
#if defined(__FMA__)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_neon(void) {
#if defined(__ARM_NEON)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_arm_fma(void) {
#if defined(__ARM_FEATURE_FMA)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_f16c(void) {
#if defined(__F16C__)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_fp16_va(void) {
#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_wasm_simd(void) {
#if defined(__wasm_simd128__)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_blas(void) {
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_cublas(void) {
#if defined(GGML_USE_CUBLAS)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_clblast(void) {
#if defined(GGML_USE_CLBLAST)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_gpublas(void) {
return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
}
int ggml_cpu_has_sse3(void) {
#if defined(__SSE3__)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_ssse3(void) {
#if defined(__SSSE3__)
return 1;
#else
return 0;
#endif
}
int ggml_cpu_has_vsx(void) {
#if defined(__POWER9_VECTOR__)
return 1;
#else
return 0;
#endif
}
////////////////////////////////////////////////////////////////////////////////