mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-07 11:23:56 +01:00
1280 lines
48 KiB
C++
1280 lines
48 KiB
C++
#include "common.h"
|
|
#include "llama.h"
|
|
#include "build-info.h"
|
|
|
|
#ifndef NDEBUG
|
|
// crash the server in debug mode, otherwise send an http 500 error
|
|
#define CPPHTTPLIB_NO_EXCEPTIONS 1
|
|
#endif
|
|
|
|
#include "httplib.h"
|
|
#include "json.hpp"
|
|
|
|
// auto generated files (update with ./deps.sh)
|
|
#include "index.html.hpp"
|
|
#include "index.js.hpp"
|
|
#include "completion.js.hpp"
|
|
|
|
#ifndef SERVER_VERBOSE
|
|
#define SERVER_VERBOSE 1
|
|
#endif
|
|
|
|
using namespace httplib;
|
|
using json = nlohmann::json;
|
|
using ordered_json = nlohmann::ordered_json;
|
|
|
|
struct server_params {
|
|
std::string hostname = "127.0.0.1";
|
|
std::string public_path = "examples/server/public";
|
|
int32_t port = 8080;
|
|
int32_t read_timeout = 600;
|
|
int32_t write_timeout = 600;
|
|
};
|
|
|
|
// completion token output with probabilities
|
|
struct completion_token_output {
|
|
struct token_prob {
|
|
llama_token tok;
|
|
float prob;
|
|
};
|
|
|
|
std::vector<token_prob> probs;
|
|
llama_token tok;
|
|
};
|
|
|
|
static size_t common_part(const std::vector<llama_token> & a, const std::vector<llama_token> & b) {
|
|
size_t i;
|
|
for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++) {}
|
|
return i;
|
|
}
|
|
|
|
enum stop_type {
|
|
STOP_FULL,
|
|
STOP_PARTIAL,
|
|
};
|
|
|
|
static bool ends_with(const std::string & str, const std::string & suffix) {
|
|
return str.size() >= suffix.size() &&
|
|
0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix);
|
|
}
|
|
|
|
static size_t find_partial_stop_string(const std::string & stop,
|
|
const std::string & text) {
|
|
if (!text.empty() && !stop.empty()) {
|
|
const char text_last_char = text.back();
|
|
for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--) {
|
|
if (stop[char_index] == text_last_char) {
|
|
const std::string current_partial = stop.substr(0, char_index + 1);
|
|
if (ends_with(text, current_partial)) {
|
|
return text.size() - char_index - 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return std::string::npos;
|
|
}
|
|
|
|
template<class Iter>
|
|
static std::string tokens_to_str(llama_context * ctx, Iter begin, Iter end) {
|
|
std::string ret;
|
|
for (; begin != end; ++begin) {
|
|
ret += llama_token_to_str(ctx, *begin);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
#define SERVER_LOG_PRETTY 0
|
|
|
|
static void server_log(const char * level, const char * function, int line,
|
|
const char * message, const ordered_json & extra) {
|
|
|
|
#if SERVER_LOG_PRETTY == 1
|
|
fprintf(stdout, ANSI_COLOR_MAGENTA ANSI_BOLD "[%s] " ANSI_COLOR_RESET " %s@%d: %s\n", level, function, line, message);
|
|
for (auto & it : extra.items()) {
|
|
fprintf(stdout, "%s=" ANSI_COLOR_YELLOW ANSI_BOLD "%s " ANSI_COLOR_RESET, it.key().c_str(), it.value().dump().c_str());
|
|
}
|
|
fprintf(stdout, "\n\n");
|
|
#else
|
|
ordered_json log {
|
|
{ "timestamp", time(nullptr) },
|
|
{ "level", level },
|
|
{ "function", function },
|
|
{ "line", line },
|
|
{ "message", message },
|
|
};
|
|
|
|
if (!extra.empty()) {
|
|
log.merge_patch(extra);
|
|
}
|
|
|
|
const std::string str = log.dump(-1, ' ', false, json::error_handler_t::replace);
|
|
fprintf(stdout, "%.*s\n", (int)str.size(), str.data());
|
|
#endif
|
|
|
|
fflush(stdout);
|
|
}
|
|
|
|
// format incomplete utf-8 multibyte character for output
|
|
static std::string tokens_to_output_formatted_string(const llama_context * ctx, const llama_token token) {
|
|
std::string out = token == -1 ? "" : llama_token_to_str(ctx, token);
|
|
// if first bit is 1, meaning it's a partial character
|
|
if (out.size() > 0 && (out[0] & 0x80) == 0x80) {
|
|
std::stringstream ss;
|
|
ss << std::hex << (out[0] & 0xff);
|
|
std::string res(ss.str());
|
|
out = "byte: \\x" + res;
|
|
}
|
|
return out;
|
|
}
|
|
|
|
// convert a vector of completion_token_output to json
|
|
static json probs_vector_to_json(const llama_context * ctx, const std::vector<completion_token_output> probs) {
|
|
json out = json::array();
|
|
for (const auto & prob : probs) {
|
|
json probs_for_token = json::array();
|
|
for (const auto & p : prob.probs) {
|
|
std::string tok_str = tokens_to_output_formatted_string(ctx, p.tok);
|
|
probs_for_token.push_back(json {
|
|
{ "tok_str", tok_str },
|
|
{ "prob", p.prob },
|
|
});
|
|
}
|
|
std::string tok_str = tokens_to_output_formatted_string(ctx, prob.tok);
|
|
out.push_back(json {
|
|
{ "content", tok_str },
|
|
{ "probs", probs_for_token },
|
|
});
|
|
}
|
|
return out;
|
|
}
|
|
|
|
static bool server_verbose = false;
|
|
|
|
#if SERVER_VERBOSE != 1
|
|
# define LOG_VERBOSE(MSG, ...)
|
|
#else
|
|
# define LOG_VERBOSE(MSG, ...) \
|
|
do { \
|
|
if (server_verbose) { \
|
|
server_log("VERBOSE", __func__, __LINE__, MSG, __VA_ARGS__); \
|
|
} \
|
|
} while (0)
|
|
#endif
|
|
|
|
#define LOG_ERROR(MSG, ...) server_log("ERROR", __func__, __LINE__, MSG, __VA_ARGS__)
|
|
#define LOG_WARNING(MSG, ...) server_log("WARNING", __func__, __LINE__, MSG, __VA_ARGS__)
|
|
#define LOG_INFO(MSG, ...) server_log("INFO", __func__, __LINE__, MSG, __VA_ARGS__)
|
|
|
|
// helper class to manage prompt loading and truncation
|
|
struct prompt_evaluator {
|
|
llama_context * ctx;
|
|
size_t n_ctx = 0;
|
|
std::vector<llama_token> embd;
|
|
std::vector<llama_token> last_n_tokens;
|
|
size_t num_prompt_tokens = 0;
|
|
size_t repeat_last_n = 0;
|
|
size_t n_past = 0;
|
|
size_t n_keep = 0;
|
|
bool truncated = false;
|
|
|
|
void set_context(llama_context * ctx) {
|
|
this->ctx = ctx;
|
|
this->n_ctx = llama_n_ctx(ctx);
|
|
}
|
|
|
|
~prompt_evaluator() {
|
|
if (ctx) {
|
|
llama_free(ctx);
|
|
ctx = nullptr;
|
|
}
|
|
}
|
|
|
|
void rewind() {
|
|
num_prompt_tokens = 0;
|
|
//num_tokens_predicted = 0;
|
|
truncated = false;
|
|
//n_remain = 0;
|
|
n_past = 0;
|
|
}
|
|
|
|
void load_prompt(std::string &prompt, int keep, size_t n_last) {
|
|
prompt.insert(0, 1, ' '); // always add a first space
|
|
std::vector<llama_token> prompt_tokens = ::llama_tokenize(ctx, prompt, true);
|
|
num_prompt_tokens = prompt_tokens.size();
|
|
|
|
if (keep < 0) {
|
|
keep = (int)num_prompt_tokens;
|
|
}
|
|
n_keep = std::min(n_ctx - 4, (size_t)keep);
|
|
|
|
// if input prompt is too big, truncate like normal
|
|
if (num_prompt_tokens >= n_ctx) {
|
|
const size_t n_left = (n_ctx - n_keep) / 2;
|
|
std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + n_keep);
|
|
const size_t erased_blocks = (num_prompt_tokens - n_keep - n_left - 1) / n_left;
|
|
new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + n_keep + erased_blocks * n_left, prompt_tokens.end());
|
|
|
|
LOG_VERBOSE("input truncated", {
|
|
{ "n_ctx", n_ctx },
|
|
{ "n_keep", n_keep },
|
|
{ "n_left", n_left },
|
|
{ "new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend()) },
|
|
});
|
|
|
|
truncated = true;
|
|
prompt_tokens = new_tokens;
|
|
}
|
|
|
|
// fill the last n tokens from the input even if context is truncated
|
|
repeat_last_n = n_last;
|
|
last_n_tokens.clear();
|
|
if (n_last > 0) {
|
|
last_n_tokens.insert(last_n_tokens.begin(),
|
|
std::max(prompt_tokens.begin(), prompt_tokens.end() - n_last), prompt_tokens.end());
|
|
}
|
|
|
|
// compare the evaluated prompt with the new prompt
|
|
n_past = common_part(embd, prompt_tokens);
|
|
embd = prompt_tokens;
|
|
if (n_past == num_prompt_tokens) {
|
|
// we have to evaluate at least 1 token to generate logits.
|
|
n_past--;
|
|
}
|
|
|
|
LOG_VERBOSE("prompt ingested", {
|
|
{ "n_past", n_past },
|
|
{ "cached", tokens_to_str(ctx, embd.cbegin(), embd.cbegin() + n_past) },
|
|
{ "to_eval", tokens_to_str(ctx, embd.cbegin() + n_past, embd.cend()) },
|
|
});
|
|
}
|
|
|
|
bool evaluate(size_t n_threads, size_t n_batch) {
|
|
if (embd.size() >= n_ctx) {
|
|
// Reset context
|
|
const size_t n_left = (n_ctx - n_keep) / 2;
|
|
|
|
std::vector<llama_token> new_tokens(embd.begin(), embd.begin() + n_keep);
|
|
new_tokens.insert(new_tokens.end(), embd.end() - n_left, embd.end());
|
|
embd = new_tokens;
|
|
n_past = n_keep;
|
|
truncated = true;
|
|
LOG_VERBOSE("input truncated", {
|
|
{ "n_ctx", n_ctx },
|
|
{ "n_keep", n_keep },
|
|
{ "n_left", n_left },
|
|
{ "new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend()) },
|
|
});
|
|
}
|
|
|
|
while (n_past < embd.size()) {
|
|
size_t n_eval = embd.size() - n_past;
|
|
if (n_eval > n_batch) {
|
|
n_eval = n_batch;
|
|
}
|
|
|
|
//LOG_VERBOSE("eval", {
|
|
// { "n_eval", n_eval },
|
|
// { "n_past", n_past },
|
|
// { "n_threads", n_threads },
|
|
// { "embd", tokens_to_str(ctx, embd.cbegin() + n_past, embd.cend()) },
|
|
//});
|
|
|
|
if (llama_eval(ctx, &embd[n_past], n_eval, n_past, n_threads)) {
|
|
LOG_ERROR("failed to eval", {
|
|
{ "n_eval", n_eval },
|
|
{ "n_past", n_past },
|
|
{ "n_threads", n_threads },
|
|
{ "embd", tokens_to_str(ctx, embd.cbegin() + n_past, embd.cend()) },
|
|
});
|
|
return false;
|
|
}
|
|
n_past += n_eval;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void append_token(llama_token id) {
|
|
if (repeat_last_n > 0) {
|
|
if (last_n_tokens.size() >= repeat_last_n) {
|
|
last_n_tokens.erase(last_n_tokens.begin());
|
|
}
|
|
last_n_tokens.push_back(id);
|
|
}
|
|
embd.push_back(id);
|
|
}
|
|
};
|
|
|
|
struct llama_server_context {
|
|
bool stream = false;
|
|
bool has_next_token = false;
|
|
std::string generated_text;
|
|
std::vector<completion_token_output> generated_token_probs;
|
|
|
|
size_t num_tokens_predicted = 0;
|
|
int n_keep_guidance = 0;
|
|
size_t n_remain = 0;
|
|
bool cfg_enabled = false;
|
|
|
|
llama_model * model = nullptr;
|
|
llama_context * ctx = nullptr;
|
|
gpt_params params;
|
|
|
|
prompt_evaluator evaluator;
|
|
prompt_evaluator evaluator_guidance;
|
|
|
|
bool stopped_eos = false;
|
|
bool stopped_word = false;
|
|
bool stopped_limit = false;
|
|
std::string stopping_word;
|
|
int32_t multibyte_pending = 0;
|
|
|
|
std::mutex mutex;
|
|
|
|
std::unique_lock<std::mutex> lock() {
|
|
return std::unique_lock<std::mutex>(mutex);
|
|
}
|
|
|
|
~llama_server_context() {
|
|
if (model) {
|
|
llama_free_model(model);
|
|
model = nullptr;
|
|
}
|
|
}
|
|
|
|
void rewind() {
|
|
params.antiprompt.clear();
|
|
num_tokens_predicted = 0;
|
|
generated_text = "";
|
|
generated_text.reserve(params.n_ctx);
|
|
generated_token_probs.clear();
|
|
stopped_eos = false;
|
|
stopped_word = false;
|
|
stopped_limit = false;
|
|
stopping_word = "";
|
|
multibyte_pending = 0;
|
|
|
|
n_remain = 0;
|
|
cfg_enabled = false;
|
|
evaluator.rewind();
|
|
evaluator_guidance.rewind();
|
|
}
|
|
|
|
bool loadModel(const gpt_params & params_) {
|
|
params = params_;
|
|
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
|
if (model == nullptr) {
|
|
LOG_ERROR("unable to load model", {{ "model", params_.model }});
|
|
return false;
|
|
}
|
|
evaluator.set_context(ctx);
|
|
|
|
struct llama_context_params lparams = llama_context_params_from_gpt_params(params);
|
|
llama_context * ctx_guidance = llama_new_context_with_model(model, lparams);
|
|
evaluator_guidance.set_context(ctx_guidance);
|
|
|
|
return true;
|
|
}
|
|
|
|
void loadPrompt() {
|
|
evaluator.load_prompt(params.prompt, params.n_keep, params.repeat_last_n);
|
|
has_next_token = true;
|
|
}
|
|
|
|
void loadGuidancePrompt() {
|
|
evaluator_guidance.load_prompt(params.cfg_negative_prompt, n_keep_guidance, 0);
|
|
}
|
|
|
|
void beginCompletion() {
|
|
// number of tokens to keep when resetting context
|
|
n_remain = params.n_predict;
|
|
llama_set_rng_seed(ctx, params.seed);
|
|
}
|
|
|
|
completion_token_output nextToken() {
|
|
completion_token_output result;
|
|
result.tok = -1;
|
|
|
|
evaluator.evaluate(params.n_threads, params.n_batch);
|
|
|
|
if (cfg_enabled) {
|
|
evaluator_guidance.evaluate(params.n_threads, params.n_batch);
|
|
}
|
|
|
|
if (params.n_predict == 0) {
|
|
has_next_token = false;
|
|
return result;
|
|
}
|
|
|
|
// out of user input, sample next token
|
|
const float temp = params.temp;
|
|
const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k;
|
|
const float top_p = params.top_p;
|
|
const float tfs_z = params.tfs_z;
|
|
const float typical_p = params.typical_p;
|
|
const float repeat_penalty = params.repeat_penalty;
|
|
const float alpha_presence = params.presence_penalty;
|
|
const float alpha_frequency = params.frequency_penalty;
|
|
const int mirostat = params.mirostat;
|
|
const float mirostat_tau = params.mirostat_tau;
|
|
const float mirostat_eta = params.mirostat_eta;
|
|
const bool penalize_nl = params.penalize_nl;
|
|
const int32_t n_probs = params.n_probs;
|
|
|
|
{
|
|
auto logits = llama_get_logits(ctx);
|
|
auto n_vocab = llama_n_vocab(ctx);
|
|
|
|
// Apply params.logit_bias map
|
|
for (const auto & it : params.logit_bias) {
|
|
logits[it.first] += it.second;
|
|
}
|
|
|
|
std::vector<llama_token_data> candidates;
|
|
candidates.reserve(n_vocab);
|
|
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
|
candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
|
|
}
|
|
|
|
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
|
|
|
if (cfg_enabled) {
|
|
llama_sample_classifier_free_guidance(
|
|
ctx, &candidates_p, evaluator_guidance.ctx, params.cfg_scale);
|
|
}
|
|
|
|
// Apply penalties
|
|
float nl_logit = logits[llama_token_nl()];
|
|
llama_sample_repetition_penalty(ctx, &candidates_p,
|
|
evaluator.last_n_tokens.data(), evaluator.last_n_tokens.size(),
|
|
repeat_penalty);
|
|
llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
|
|
evaluator.last_n_tokens.data(), evaluator.last_n_tokens.size(),
|
|
alpha_frequency, alpha_presence);
|
|
if (!penalize_nl) {
|
|
logits[llama_token_nl()] = nl_logit;
|
|
}
|
|
|
|
if (temp <= 0) {
|
|
// Greedy sampling
|
|
result.tok = llama_sample_token_greedy(ctx, &candidates_p);
|
|
if (n_probs > 0) {
|
|
llama_sample_softmax(ctx, &candidates_p);
|
|
}
|
|
} else {
|
|
if (mirostat == 1) {
|
|
static float mirostat_mu = 2.0f * mirostat_tau;
|
|
const int mirostat_m = 100;
|
|
llama_sample_temperature(ctx, &candidates_p, temp);
|
|
result.tok = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
|
|
} else if (mirostat == 2) {
|
|
static float mirostat_mu = 2.0f * mirostat_tau;
|
|
llama_sample_temperature(ctx, &candidates_p, temp);
|
|
result.tok = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
|
|
} else {
|
|
// Temperature sampling
|
|
size_t min_keep = std::max(1, n_probs);
|
|
llama_sample_top_k(ctx, &candidates_p, top_k, min_keep);
|
|
llama_sample_tail_free(ctx, &candidates_p, tfs_z, min_keep);
|
|
llama_sample_typical(ctx, &candidates_p, typical_p, min_keep);
|
|
llama_sample_top_p(ctx, &candidates_p, top_p, min_keep);
|
|
llama_sample_temperature(ctx, &candidates_p, temp);
|
|
result.tok = llama_sample_token(ctx, &candidates_p);
|
|
}
|
|
}
|
|
|
|
for (size_t i = 0; i < std::min(candidates_p.size, (size_t) n_probs); ++i) {
|
|
result.probs.push_back({candidates_p.data[i].id, candidates_p.data[i].p});
|
|
}
|
|
num_tokens_predicted++;
|
|
}
|
|
|
|
// add it to the context
|
|
evaluator.append_token(result.tok);
|
|
if (cfg_enabled) {
|
|
evaluator_guidance.append_token(result.tok);
|
|
}
|
|
// decrement remaining sampling budget
|
|
--n_remain;
|
|
|
|
if (result.tok == llama_token_eos()) {
|
|
stopping_word = "";
|
|
has_next_token = false;
|
|
stopped_eos = true;
|
|
LOG_VERBOSE("eos token found", {});
|
|
return result;
|
|
}
|
|
|
|
has_next_token = params.n_predict == -1 || n_remain != 0;
|
|
return result;
|
|
}
|
|
|
|
size_t findStoppingStrings(const std::string & text, const size_t last_token_size,
|
|
const stop_type type) {
|
|
size_t stop_pos = std::string::npos;
|
|
for (const std::string & word : params.antiprompt) {
|
|
size_t pos;
|
|
if (type == STOP_FULL) {
|
|
const size_t tmp = word.size() + last_token_size;
|
|
const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
|
|
pos = text.find(word, from_pos);
|
|
}
|
|
else {
|
|
pos = find_partial_stop_string(word, text);
|
|
}
|
|
if (pos != std::string::npos &&
|
|
(stop_pos == std::string::npos || pos < stop_pos)) {
|
|
if (type == STOP_FULL) {
|
|
stopping_word = word;
|
|
stopped_word = true;
|
|
has_next_token = false;
|
|
}
|
|
stop_pos = pos;
|
|
}
|
|
}
|
|
return stop_pos;
|
|
}
|
|
|
|
completion_token_output doCompletion() {
|
|
const completion_token_output token_with_probs = nextToken();
|
|
|
|
const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_str(ctx, token_with_probs.tok);
|
|
generated_text += token_text;
|
|
|
|
if (params.n_probs > 0) {
|
|
generated_token_probs.push_back(token_with_probs);
|
|
}
|
|
|
|
if (multibyte_pending > 0) {
|
|
multibyte_pending -= token_text.size();
|
|
} else if (token_text.size() == 1) {
|
|
const char c = token_text[0];
|
|
// 2-byte characters: 110xxxxx 10xxxxxx
|
|
if ((c & 0xE0) == 0xC0) {
|
|
multibyte_pending = 1;
|
|
// 3-byte characters: 1110xxxx 10xxxxxx 10xxxxxx
|
|
} else if ((c & 0xF0) == 0xE0) {
|
|
multibyte_pending = 2;
|
|
// 4-byte characters: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
|
|
} else if ((c & 0xF8) == 0xF0) {
|
|
multibyte_pending = 3;
|
|
} else {
|
|
multibyte_pending = 0;
|
|
}
|
|
}
|
|
|
|
if (multibyte_pending > 0 && !has_next_token) {
|
|
has_next_token = true;
|
|
n_remain++;
|
|
}
|
|
|
|
if (!has_next_token && n_remain == 0) {
|
|
stopped_limit = true;
|
|
}
|
|
|
|
LOG_VERBOSE("next token", {
|
|
{ "token", token_with_probs.tok },
|
|
{ "token_text", tokens_to_output_formatted_string(ctx, token_with_probs.tok) },
|
|
{ "n_past", evaluator.n_past },
|
|
{ "has_next_token", has_next_token },
|
|
{ "n_remain", n_remain },
|
|
{ "num_tokens_predicted", num_tokens_predicted },
|
|
{ "stopped_eos", stopped_eos },
|
|
{ "stopped_word", stopped_word },
|
|
{ "stopped_limit", stopped_limit },
|
|
{ "stopping_word", stopping_word },
|
|
});
|
|
|
|
return token_with_probs;
|
|
}
|
|
|
|
std::vector<float> getEmbedding() {
|
|
static const int n_embd = llama_n_embd(ctx);
|
|
if (!params.embedding) {
|
|
LOG_WARNING("embedding disabled", {
|
|
{ "params.embedding", params.embedding },
|
|
});
|
|
return std::vector<float>(n_embd, 0.0f);
|
|
}
|
|
const float * data = llama_get_embeddings(ctx);
|
|
std::vector<float> embedding(data, data + n_embd);
|
|
return embedding;
|
|
}
|
|
};
|
|
|
|
static void server_print_usage(const char *argv0, const gpt_params ¶ms,
|
|
const server_params &sparams)
|
|
{
|
|
fprintf(stdout, "usage: %s [options]\n", argv0);
|
|
fprintf(stdout, "\n");
|
|
fprintf(stdout, "options:\n");
|
|
fprintf(stdout, " -h, --help show this help message and exit\n");
|
|
fprintf(stdout, " -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled");
|
|
fprintf(stdout, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
|
|
fprintf(stdout, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
|
|
fprintf(stdout, " -gqa N, --gqa N grouped-query attention factor (TEMP!!! use 8 for LLaMAv2 70B) (default: %d)\n", params.n_gqa);
|
|
fprintf(stdout, " -eps N, --rms-norm-eps N rms norm eps (TEMP!!! use 1e-5 for LLaMAv2) (default: %.1e)\n", params.rms_norm_eps);
|
|
fprintf(stdout, " --rope-freq-base N RoPE base frequency (default: %.1f)\n", params.rope_freq_base);
|
|
fprintf(stdout, " --rope-freq-scale N RoPE frequency scaling factor (default: %g)\n", params.rope_freq_scale);
|
|
fprintf(stdout, " -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
|
fprintf(stdout, " --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
|
|
fprintf(stdout, " not recommended: doubles context memory required and no measurable increase in quality\n");
|
|
if (llama_mlock_supported()) {
|
|
fprintf(stdout, " --mlock force system to keep model in RAM rather than swapping or compressing\n");
|
|
}
|
|
if (llama_mmap_supported()) {
|
|
fprintf(stdout, " --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
|
|
}
|
|
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
|
|
fprintf(stdout, " -ngl N, --n-gpu-layers N\n");
|
|
fprintf(stdout, " number of layers to store in VRAM\n");
|
|
fprintf(stdout, " -ts SPLIT --tensor-split SPLIT\n");
|
|
fprintf(stdout, " how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
|
|
fprintf(stdout, " how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
|
|
fprintf(stdout, " -mg i, --main-gpu i the GPU to use for scratch and small tensors\n");
|
|
fprintf(stdout, " -lv, --low-vram don't allocate VRAM scratch buffer\n");
|
|
fprintf(stdout, " -mmq, --mul-mat-q use experimental mul_mat_q CUDA kernels instead of cuBLAS. TEMP!!!\n" );
|
|
fprintf(stdout, " Reduces VRAM usage by 700/970/1430 MiB for 7b/13b/33b but prompt processing speed\n" );
|
|
fprintf(stdout, " is still suboptimal, especially q2_K, q3_K, q5_K, and q6_K.\n" );
|
|
#endif
|
|
fprintf(stdout, " -m FNAME, --model FNAME\n");
|
|
fprintf(stdout, " model path (default: %s)\n", params.model.c_str());
|
|
fprintf(stdout, " -a ALIAS, --alias ALIAS\n");
|
|
fprintf(stdout, " set an alias for the model, will be added as `model` field in completion response\n");
|
|
fprintf(stdout, " --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
|
|
fprintf(stdout, " --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
|
|
fprintf(stdout, " --host ip address to listen (default (default: %s)\n", sparams.hostname.c_str());
|
|
fprintf(stdout, " --port PORT port to listen (default (default: %d)\n", sparams.port);
|
|
fprintf(stdout, " --path PUBLIC_PATH path from which to serve static files (default %s)\n", sparams.public_path.c_str());
|
|
fprintf(stdout, " -to N, --timeout N server read/write timeout in seconds (default: %d)\n", sparams.read_timeout);
|
|
fprintf(stdout, " --embedding enable embedding vector output (default: %s)\n", params.embedding ? "enabled" : "disabled");
|
|
fprintf(stdout, "\n");
|
|
}
|
|
|
|
static void server_params_parse(int argc, char ** argv, server_params & sparams,
|
|
gpt_params & params) {
|
|
gpt_params default_params;
|
|
server_params default_sparams;
|
|
std::string arg;
|
|
bool invalid_param = false;
|
|
|
|
for (int i = 1; i < argc; i++) {
|
|
arg = argv[i];
|
|
if (arg == "--port") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
sparams.port = std::stoi(argv[i]);
|
|
} else if (arg == "--host") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
sparams.hostname = argv[i];
|
|
} else if (arg == "--path") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
sparams.public_path = argv[i];
|
|
} else if (arg == "--timeout" || arg == "-to") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
sparams.read_timeout = std::stoi(argv[i]);
|
|
sparams.write_timeout = std::stoi(argv[i]);
|
|
} else if (arg == "-m" || arg == "--model") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.model = argv[i];
|
|
} else if (arg == "-a" || arg == "--alias") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.model_alias = argv[i];
|
|
} else if (arg == "-h" || arg == "--help") {
|
|
server_print_usage(argv[0], default_params, default_sparams);
|
|
exit(0);
|
|
} else if (arg == "-c" || arg == "--ctx-size" || arg == "--ctx_size") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.n_ctx = std::stoi(argv[i]);
|
|
} else if (arg == "-gqa" || arg == "--gqa") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.n_gqa = std::stoi(argv[i]);
|
|
} else if (arg == "-eps" || arg == "--rms-norm-eps") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.rms_norm_eps = std::stof(argv[i]);
|
|
} else if (arg == "--rope-freq-base") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.rope_freq_base = std::stof(argv[i]);
|
|
} else if (arg == "--rope-freq-scale") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.rope_freq_scale = std::stof(argv[i]);
|
|
} else if (arg == "--memory-f32" || arg == "--memory_f32") {
|
|
params.memory_f16 = false;
|
|
} else if (arg == "--threads" || arg == "-t") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.n_threads = std::stoi(argv[i]);
|
|
} else if (arg == "-b" || arg == "--batch-size") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.n_batch = std::stoi(argv[i]);
|
|
params.n_batch = std::min(512, params.n_batch);
|
|
} else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
|
|
params.n_gpu_layers = std::stoi(argv[i]);
|
|
#else
|
|
LOG_WARNING("Not compiled with GPU offload support, --n-gpu-layers option will be ignored. "
|
|
"See main README.md for information on enabling GPU BLAS support",
|
|
{{ "n_gpu_layers", params.n_gpu_layers }});
|
|
#endif
|
|
} else if (arg == "--tensor-split" || arg == "-ts") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
#ifdef GGML_USE_CUBLAS
|
|
std::string arg_next = argv[i];
|
|
|
|
// split string by , and /
|
|
const std::regex regex{ R"([,/]+)" };
|
|
std::sregex_token_iterator it{ arg_next.begin(), arg_next.end(), regex, -1 };
|
|
std::vector<std::string> split_arg{ it, {} };
|
|
GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
|
|
|
|
for (size_t i_device = 0; i_device < LLAMA_MAX_DEVICES; ++i_device) {
|
|
if (i_device < split_arg.size()) {
|
|
params.tensor_split[i_device] = std::stof(split_arg[i_device]);
|
|
} else {
|
|
params.tensor_split[i_device] = 0.0f;
|
|
}
|
|
}
|
|
#else
|
|
LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n", {});
|
|
#endif // GGML_USE_CUBLAS
|
|
} else if (arg == "--low-vram" || arg == "-lv") {
|
|
#ifdef GGML_USE_CUBLAS
|
|
params.low_vram = true;
|
|
#else
|
|
LOG_WARNING("warning: llama.cpp was compiled without cuBLAS. It is not possible to set lower vram usage.\n", {});
|
|
#endif // GGML_USE_CUBLAS
|
|
} else if (arg == "--mul-mat-q" || arg == "-mmq") {
|
|
#ifdef GGML_USE_CUBLAS
|
|
params.mul_mat_q = true;
|
|
#else
|
|
LOG_WARNING("warning: llama.cpp was compiled without cuBLAS. It is not possible to use mul_mat_q kernels.\n", {});
|
|
#endif // GGML_USE_CUBLAS
|
|
} else if (arg == "--main-gpu" || arg == "-mg") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
#ifdef GGML_USE_CUBLAS
|
|
params.main_gpu = std::stoi(argv[i]);
|
|
#else
|
|
LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.", {});
|
|
#endif
|
|
} else if (arg == "--lora") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.lora_adapter = argv[i];
|
|
params.use_mmap = false;
|
|
} else if (arg == "--lora-base") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.lora_base = argv[i];
|
|
} else if (arg == "-v" || arg == "--verbose") {
|
|
#if SERVER_VERBOSE != 1
|
|
LOG_WARNING("server.cpp is not built with verbose logging.", {});
|
|
#else
|
|
server_verbose = true;
|
|
#endif
|
|
} else if (arg == "--mlock") {
|
|
params.use_mlock = true;
|
|
} else if (arg == "--no-mmap") {
|
|
params.use_mmap = false;
|
|
} else if (arg == "--embedding") {
|
|
params.embedding = true;
|
|
} else {
|
|
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
|
server_print_usage(argv[0], default_params, default_sparams);
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
if (invalid_param) {
|
|
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
|
|
server_print_usage(argv[0], default_params, default_sparams);
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
static json format_generation_settings(llama_server_context & llama) {
|
|
const auto eos_bias = llama.params.logit_bias.find(llama_token_eos());
|
|
const bool ignore_eos = eos_bias != llama.params.logit_bias.end() &&
|
|
eos_bias->second < 0.0f && std::isinf(eos_bias->second);
|
|
|
|
return json {
|
|
{ "seed", llama.params.seed },
|
|
{ "temp", llama.params.temp },
|
|
{ "top_k", llama.params.top_k },
|
|
{ "top_p", llama.params.top_p },
|
|
{ "tfs_z", llama.params.tfs_z },
|
|
{ "typical_p", llama.params.typical_p },
|
|
{ "repeat_last_n", llama.params.repeat_last_n },
|
|
{ "repeat_penalty", llama.params.repeat_penalty },
|
|
{ "presence_penalty", llama.params.presence_penalty },
|
|
{ "frequency_penalty", llama.params.frequency_penalty },
|
|
{ "mirostat", llama.params.mirostat },
|
|
{ "mirostat_tau", llama.params.mirostat_tau },
|
|
{ "mirostat_eta", llama.params.mirostat_eta },
|
|
{ "penalize_nl", llama.params.penalize_nl },
|
|
{ "stop", llama.params.antiprompt },
|
|
{ "n_predict", llama.params.n_predict },
|
|
{ "n_keep", llama.params.n_keep },
|
|
{ "ignore_eos", ignore_eos },
|
|
{ "stream", llama.stream },
|
|
{ "logit_bias", llama.params.logit_bias },
|
|
{ "n_probs", llama.params.n_probs },
|
|
{ "cfg_scale", llama.params.cfg_scale },
|
|
{ "cfg_n_keep", llama.n_keep_guidance },
|
|
};
|
|
}
|
|
|
|
static json format_embedding_response(llama_server_context & llama) {
|
|
return json {
|
|
{ "embedding", llama.getEmbedding() },
|
|
};
|
|
}
|
|
|
|
static json format_timings(llama_server_context & llama) {
|
|
const auto timings = llama_get_timings(llama.ctx);
|
|
|
|
//assert(timings.n_eval == llama.num_tokens_predicted);
|
|
|
|
return json {
|
|
{ "prompt_n", timings.n_eval },
|
|
{ "prompt_ms", timings.t_p_eval_ms },
|
|
{ "prompt_per_token_ms", timings.t_p_eval_ms / timings.n_p_eval },
|
|
{ "prompt_per_second", 1e3 / timings.t_p_eval_ms * timings.n_p_eval },
|
|
|
|
{ "predicted_n", timings.n_eval },
|
|
{ "predicted_ms", timings.t_eval_ms },
|
|
{ "predicted_per_token_ms", timings.t_eval_ms / timings.n_eval },
|
|
{ "predicted_per_second", 1e3 / timings.t_eval_ms * timings.n_eval },
|
|
};
|
|
}
|
|
|
|
static json format_final_response(llama_server_context & llama, const std::string & content, const std::vector<completion_token_output> & probs) {
|
|
|
|
json res = json {
|
|
{ "content", content },
|
|
{ "stop", true },
|
|
{ "model", llama.params.model_alias },
|
|
{ "tokens_predicted", llama.num_tokens_predicted },
|
|
{ "tokens_evaluated", llama.evaluator.num_prompt_tokens },
|
|
{ "generation_settings", format_generation_settings(llama) },
|
|
{ "prompt", llama.params.prompt },
|
|
{ "cfg_negative_prompt", llama.params.cfg_negative_prompt },
|
|
{ "truncated", llama.evaluator.truncated },
|
|
{ "stopped_eos", llama.stopped_eos },
|
|
{ "stopped_word", llama.stopped_word },
|
|
{ "stopped_limit", llama.stopped_limit },
|
|
{ "stopping_word", llama.stopping_word },
|
|
{ "tokens_cached", llama.evaluator.n_past },
|
|
{ "timings", format_timings(llama) },
|
|
};
|
|
|
|
if (llama.params.n_probs > 0) {
|
|
res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs);
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
static json format_partial_response(llama_server_context & llama, const std::string & content, const std::vector<completion_token_output> & probs) {
|
|
json res = json {
|
|
{ "content", content },
|
|
{ "stop", false },
|
|
};
|
|
|
|
if (llama.params.n_probs > 0) {
|
|
res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs);
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
static json format_tokenizer_response(const std::vector<llama_token> & tokens) {
|
|
return json {
|
|
{ "tokens", tokens }
|
|
};
|
|
}
|
|
|
|
static void parse_options_completion(const json & body, llama_server_context & llama) {
|
|
gpt_params default_params;
|
|
|
|
llama.stream = body.value("stream", false);
|
|
llama.params.n_predict = body.value("n_predict", default_params.n_predict);
|
|
llama.params.top_k = body.value("top_k", default_params.top_k);
|
|
llama.params.top_p = body.value("top_p", default_params.top_p);
|
|
llama.params.tfs_z = body.value("tfs_z", default_params.tfs_z);
|
|
llama.params.typical_p = body.value("typical_p", default_params.typical_p);
|
|
llama.params.repeat_last_n = body.value("repeat_last_n", default_params.repeat_last_n);
|
|
llama.params.temp = body.value("temperature", default_params.temp);
|
|
llama.params.repeat_penalty = body.value("repeat_penalty", default_params.repeat_penalty);
|
|
llama.params.presence_penalty = body.value("presence_penalty", default_params.presence_penalty);
|
|
llama.params.frequency_penalty = body.value("frequency_penalty", default_params.frequency_penalty);
|
|
llama.params.mirostat = body.value("mirostat", default_params.mirostat);
|
|
llama.params.mirostat_tau = body.value("mirostat_tau", default_params.mirostat_tau);
|
|
llama.params.mirostat_eta = body.value("mirostat_eta", default_params.mirostat_eta);
|
|
llama.params.penalize_nl = body.value("penalize_nl", default_params.penalize_nl);
|
|
llama.params.n_keep = body.value("n_keep", default_params.n_keep);
|
|
llama.params.seed = body.value("seed", default_params.seed);
|
|
llama.params.prompt = body.value("prompt", default_params.prompt);
|
|
llama.params.cfg_negative_prompt = body.value("cfg_negative_prompt", default_params.cfg_negative_prompt);
|
|
llama.params.cfg_scale = body.value("cfg_scale", default_params.cfg_scale);
|
|
llama.n_keep_guidance = body.value("cfg_n_keep", 0);
|
|
llama.params.n_probs = body.value("n_probs", default_params.n_probs);
|
|
|
|
llama.params.logit_bias.clear();
|
|
if (body.value("ignore_eos", false)) {
|
|
llama.params.logit_bias[llama_token_eos()] = -INFINITY;
|
|
}
|
|
|
|
const auto & logit_bias = body.find("logit_bias");
|
|
if (logit_bias != body.end() && logit_bias->is_array()) {
|
|
const int n_vocab = llama_n_vocab(llama.ctx);
|
|
for (const auto & el : *logit_bias) {
|
|
if (el.is_array() && el.size() == 2 && el[0].is_number_integer()) {
|
|
llama_token tok = el[0].get<llama_token>();
|
|
if (tok >= 0 && tok < n_vocab) {
|
|
if (el[1].is_number()) {
|
|
llama.params.logit_bias[tok] = el[1].get<float>();
|
|
} else if (el[1].is_boolean() && !el[1].get<bool>()) {
|
|
llama.params.logit_bias[tok] = -INFINITY;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
llama.params.antiprompt.clear();
|
|
const auto & stop = body.find("stop");
|
|
if (stop != body.end() && stop->is_array()) {
|
|
for (const auto & word : *stop) {
|
|
if (!word.empty()) {
|
|
llama.params.antiprompt.push_back(word);
|
|
}
|
|
}
|
|
}
|
|
|
|
LOG_VERBOSE("completion parameters parsed", format_generation_settings(llama));
|
|
}
|
|
|
|
static void log_server_request(const Request & req, const Response & res) {
|
|
LOG_INFO("request", {
|
|
{ "remote_addr", req.remote_addr },
|
|
{ "remote_port", req.remote_port },
|
|
{ "status", res.status },
|
|
{ "method", req.method },
|
|
{ "path", req.path },
|
|
{ "params", req.params },
|
|
});
|
|
|
|
LOG_VERBOSE("request", {
|
|
{ "request", req.body },
|
|
{ "response", res.body },
|
|
});
|
|
}
|
|
|
|
int main(int argc, char ** argv) {
|
|
// own arguments required by this example
|
|
gpt_params params;
|
|
server_params sparams;
|
|
|
|
// struct that contains llama context and inference
|
|
llama_server_context llama;
|
|
|
|
server_params_parse(argc, argv, sparams, params);
|
|
|
|
if (params.model_alias == "unknown") {
|
|
params.model_alias = params.model;
|
|
}
|
|
|
|
llama_backend_init(params.numa);
|
|
|
|
LOG_INFO("build info", {
|
|
{ "build", BUILD_NUMBER },
|
|
{ "commit", BUILD_COMMIT },
|
|
});
|
|
LOG_INFO("system info", {
|
|
{ "n_threads", params.n_threads },
|
|
{ "total_threads", std::thread::hardware_concurrency() },
|
|
{ "system_info", llama_print_system_info() },
|
|
});
|
|
|
|
// load the model
|
|
if (!llama.loadModel(params)) {
|
|
return 1;
|
|
}
|
|
|
|
Server svr;
|
|
|
|
svr.set_default_headers({
|
|
{ "Server", "llama.cpp" },
|
|
{ "Access-Control-Allow-Origin", "*" },
|
|
{ "Access-Control-Allow-Headers", "content-type" },
|
|
});
|
|
|
|
// this is only called if no index.html is found in the public --path
|
|
svr.Get("/", [](const Request &, Response & res) {
|
|
res.set_content(reinterpret_cast<const char *>(&index_html), index_html_len, "text/html");
|
|
return false;
|
|
});
|
|
|
|
// this is only called if no index.js is found in the public --path
|
|
svr.Get("/index.js", [](const Request &, Response & res) {
|
|
res.set_content(reinterpret_cast<const char *>(&index_js), index_js_len, "text/javascript");
|
|
return false;
|
|
});
|
|
|
|
// this is only called if no index.html is found in the public --path
|
|
svr.Get("/completion.js", [](const Request &, Response & res) {
|
|
res.set_content(reinterpret_cast<const char *>(&completion_js), completion_js_len, "application/javascript");
|
|
return false;
|
|
});
|
|
|
|
svr.Post("/completion", [&llama](const Request & req, Response & res) {
|
|
auto lock = llama.lock();
|
|
|
|
llama.rewind();
|
|
|
|
llama_reset_timings(llama.ctx);
|
|
|
|
parse_options_completion(json::parse(req.body), llama);
|
|
|
|
llama.loadPrompt();
|
|
llama.beginCompletion();
|
|
|
|
if (llama.params.cfg_scale > 1.0f && llama.params.cfg_negative_prompt.size() > 0) {
|
|
llama.cfg_enabled = true;
|
|
llama.loadGuidancePrompt();
|
|
}
|
|
|
|
if (!llama.stream) {
|
|
size_t stop_pos = std::string::npos;
|
|
|
|
while (llama.has_next_token) {
|
|
const completion_token_output token_with_probs = llama.doCompletion();
|
|
const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_str(llama.ctx, token_with_probs.tok);
|
|
|
|
stop_pos = llama.findStoppingStrings(llama.generated_text,
|
|
token_text.size(), STOP_FULL);
|
|
}
|
|
|
|
if (stop_pos == std::string::npos) {
|
|
stop_pos = llama.findStoppingStrings(llama.generated_text, 0, STOP_PARTIAL);
|
|
}
|
|
if (stop_pos != std::string::npos) {
|
|
llama.generated_text.erase(llama.generated_text.begin() + stop_pos,
|
|
llama.generated_text.end());
|
|
}
|
|
|
|
const json data = format_final_response(llama, llama.generated_text, llama.generated_token_probs);
|
|
|
|
llama_print_timings(llama.ctx);
|
|
|
|
res.set_content(data.dump(-1, ' ', false, json::error_handler_t::replace),
|
|
"application/json");
|
|
} else {
|
|
const auto chunked_content_provider = [&](size_t, DataSink & sink) {
|
|
size_t sent_count = 0;
|
|
size_t sent_token_probs_index = 0;
|
|
|
|
while (llama.has_next_token) {
|
|
const completion_token_output token_with_probs = llama.doCompletion();
|
|
const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_str(llama.ctx, token_with_probs.tok);
|
|
if (llama.multibyte_pending > 0) {
|
|
continue;
|
|
}
|
|
|
|
size_t pos = std::min(sent_count, llama.generated_text.size());
|
|
|
|
const std::string str_test = llama.generated_text.substr(pos);
|
|
size_t stop_pos =
|
|
llama.findStoppingStrings(str_test, token_text.size(), STOP_FULL);
|
|
if (stop_pos != std::string::npos) {
|
|
llama.generated_text.erase(
|
|
llama.generated_text.begin() + pos + stop_pos,
|
|
llama.generated_text.end());
|
|
pos = std::min(sent_count, llama.generated_text.size());
|
|
} else {
|
|
stop_pos = llama.findStoppingStrings(str_test, token_text.size(),
|
|
STOP_PARTIAL);
|
|
}
|
|
|
|
const std::string to_send = llama.generated_text.substr(pos, stop_pos);
|
|
sent_count += to_send.size();
|
|
|
|
std::vector<completion_token_output> probs_output = {};
|
|
|
|
if (llama.params.n_probs > 0) {
|
|
const std::vector<llama_token> to_send_toks = llama_tokenize(llama.ctx, to_send, false);
|
|
size_t probs_pos = std::min(sent_token_probs_index, llama.generated_token_probs.size());
|
|
size_t probs_stop_pos = std::min(sent_token_probs_index + to_send_toks.size(), llama.generated_token_probs.size());
|
|
if (probs_pos < probs_stop_pos) {
|
|
probs_output = std::vector<completion_token_output>(llama.generated_token_probs.begin() + probs_pos, llama.generated_token_probs.begin() + probs_stop_pos);
|
|
}
|
|
sent_token_probs_index = probs_stop_pos;
|
|
}
|
|
|
|
const json data = llama.has_next_token
|
|
? format_partial_response(llama, to_send, probs_output)
|
|
// Generation is done, send extra information.
|
|
: format_final_response(llama, to_send, llama.generated_token_probs);
|
|
|
|
const std::string str =
|
|
"data: " +
|
|
data.dump(-1, ' ', false, json::error_handler_t::replace) +
|
|
"\n\n";
|
|
|
|
LOG_VERBOSE("data stream", {
|
|
{ "to_send", str }
|
|
});
|
|
|
|
if (!sink.write(str.data(), str.size())) {
|
|
LOG_VERBOSE("stream closed", {});
|
|
llama_print_timings(llama.ctx);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
llama_print_timings(llama.ctx);
|
|
sink.done();
|
|
return true;
|
|
};
|
|
res.set_chunked_content_provider("text/event-stream", chunked_content_provider);
|
|
}
|
|
});
|
|
|
|
svr.Get("/model.json", [&llama](const Request &, Response & res) {
|
|
const json data = format_generation_settings(llama);
|
|
return res.set_content(data.dump(), "application/json");
|
|
});
|
|
|
|
svr.Options(R"(/.*)", [](const Request &, Response & res) {
|
|
return res.set_content("", "application/json");
|
|
});
|
|
|
|
svr.Post("/tokenize", [&llama](const Request & req, Response & res) {
|
|
auto lock = llama.lock();
|
|
|
|
const json body = json::parse(req.body);
|
|
const std::string content = body.value("content", "");
|
|
const std::vector<llama_token> tokens = llama_tokenize(llama.ctx, content, false);
|
|
const json data = format_tokenizer_response(tokens);
|
|
return res.set_content(data.dump(), "application/json");
|
|
});
|
|
|
|
svr.Post("/embedding", [&llama](const Request & req, Response & res) {
|
|
auto lock = llama.lock();
|
|
|
|
const json body = json::parse(req.body);
|
|
|
|
llama.rewind();
|
|
llama_reset_timings(llama.ctx);
|
|
llama.params.prompt = body.value("content", "");
|
|
llama.params.n_predict = 0;
|
|
llama.loadPrompt();
|
|
llama.beginCompletion();
|
|
llama.doCompletion();
|
|
|
|
const json data = format_embedding_response(llama);
|
|
return res.set_content(data.dump(), "application/json");
|
|
});
|
|
|
|
svr.set_logger(log_server_request);
|
|
|
|
svr.set_exception_handler([](const Request &, Response & res, std::exception_ptr ep) {
|
|
const auto * fmt = "500 Internal Server Error\n%s";
|
|
char buf[BUFSIZ];
|
|
try {
|
|
std::rethrow_exception(std::move(ep));
|
|
} catch (std::exception & e) {
|
|
snprintf(buf, sizeof(buf), fmt, e.what());
|
|
} catch (...) {
|
|
snprintf(buf, sizeof(buf), fmt, "Unknown Exception");
|
|
}
|
|
res.set_content(buf, "text/plain");
|
|
res.status = 500;
|
|
});
|
|
|
|
svr.set_error_handler([](const Request &, Response & res) {
|
|
res.set_content("File Not Found", "text/plain");
|
|
res.status = 404;
|
|
});
|
|
|
|
|
|
// set timeouts and change hostname and port
|
|
svr.set_read_timeout(sparams.read_timeout);
|
|
svr.set_write_timeout(sparams.write_timeout);
|
|
|
|
if (!svr.bind_to_port(sparams.hostname, sparams.port)) {
|
|
fprintf(stderr, "\ncouldn't bind to server socket: hostname=%s port=%d\n\n", sparams.hostname.c_str(), sparams.port);
|
|
return 1;
|
|
}
|
|
|
|
// Set the base directory for serving static files
|
|
svr.set_base_dir(sparams.public_path);
|
|
|
|
// to make it ctrl+clickable:
|
|
fprintf(stdout, "\nllama server listening at http://%s:%d\n\n", sparams.hostname.c_str(), sparams.port);
|
|
|
|
LOG_INFO("HTTP server listening", {
|
|
{ "hostname", sparams.hostname },
|
|
{ "port", sparams.port },
|
|
});
|
|
|
|
if (!svr.listen_after_bind()) {
|
|
return 1;
|
|
}
|
|
|
|
llama_backend_free();
|
|
|
|
return 0;
|
|
}
|