mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-15 06:40:45 +01:00
ab336a9d5e
* coda : normalize enum names ggml-ci * code : cont * code : cont
2297 lines
84 KiB
C++
2297 lines
84 KiB
C++
#include "ggml.h"
|
|
#include "ggml-opencl.h"
|
|
#include "ggml-backend-impl.h"
|
|
|
|
#include <array>
|
|
#include <atomic>
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#include <cstring>
|
|
#include <limits>
|
|
#include <sstream>
|
|
#include <vector>
|
|
|
|
#define CL_TARGET_OPENCL_VERSION 120
|
|
#include <clblast.h>
|
|
|
|
#if defined(_MSC_VER)
|
|
#pragma warning(disable: 4244 4267) // possible loss of data
|
|
#endif
|
|
|
|
#define CL_DMMV_LOCAL_SIZE 32
|
|
|
|
#ifndef K_QUANTS_PER_ITERATION
|
|
#define K_QUANTS_PER_ITERATION 1
|
|
#else
|
|
static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2");
|
|
#endif
|
|
|
|
#define MULTILINE_QUOTE(...) #__VA_ARGS__
|
|
static std::string program_source = MULTILINE_QUOTE(
|
|
|
|
typedef char int8_t;
|
|
typedef uchar uint8_t;
|
|
typedef short int16_t;
|
|
typedef ushort uint16_t;
|
|
typedef int int32_t;
|
|
typedef uint uint32_t;
|
|
|
|
struct __attribute__ ((packed)) block_q4_0
|
|
{
|
|
half d;
|
|
uint8_t qs[QK4_0 / 2];
|
|
};
|
|
|
|
struct __attribute__ ((packed)) block_q4_1
|
|
{
|
|
half d;
|
|
half m;
|
|
uint8_t qs[QK4_1 / 2];
|
|
};
|
|
|
|
struct __attribute__ ((packed)) block_q5_0
|
|
{
|
|
half d;
|
|
uint32_t qh;
|
|
uint8_t qs[QK5_0 / 2];
|
|
};
|
|
|
|
struct __attribute__ ((packed)) block_q5_1
|
|
{
|
|
half d;
|
|
half m;
|
|
uint32_t qh;
|
|
uint8_t qs[QK5_1 / 2];
|
|
};
|
|
|
|
struct __attribute__ ((packed)) block_q8_0
|
|
{
|
|
half d;
|
|
int8_t qs[QK8_0];
|
|
};
|
|
|
|
struct __attribute__((packed)) block_q2_K
|
|
{
|
|
uint8_t scales[16];
|
|
uint8_t qs[64];
|
|
half d;
|
|
half dmin;
|
|
};
|
|
|
|
struct __attribute__((packed)) block_q3_K
|
|
{
|
|
uint8_t hmask[32];
|
|
uint8_t qs[64];
|
|
uint8_t scales[12];
|
|
half d;
|
|
};
|
|
|
|
struct __attribute__((packed)) block_q4_K
|
|
{
|
|
half d;
|
|
half dmin;
|
|
uint8_t scales[12];
|
|
uint8_t qs[128];
|
|
};
|
|
|
|
struct __attribute__((packed)) block_q5_K
|
|
{
|
|
half d;
|
|
half dmin;
|
|
uint8_t scales[12];
|
|
uint8_t qh[32];
|
|
uint8_t qs[128];
|
|
};
|
|
|
|
struct __attribute__((packed)) block_q6_K
|
|
{
|
|
uint8_t ql[128];
|
|
uint8_t qh[64];
|
|
int8_t scales[16];
|
|
half d;
|
|
};
|
|
|
|
__kernel void convert_fp16_to_fp32(__global half* x, __global float* y) {
|
|
const uint i = get_global_id(0);
|
|
|
|
y[i] = vload_half(0, &x[i]);
|
|
}
|
|
|
|
void dequantize_q4_0(__global const struct block_q4_0* x, const int ib, const int iqs, float* v0, float* v1) {
|
|
const float d = vload_half(0, &x[ib].d);
|
|
|
|
const uint8_t vui = x[ib].qs[iqs];
|
|
|
|
const int8_t vi0 = vui & 0xF;
|
|
const int8_t vi1 = vui >> 4;
|
|
|
|
*v0 = (vi0 - 8)*d;
|
|
*v1 = (vi1 - 8)*d;
|
|
}
|
|
void dequantize_q4_1(__global const struct block_q4_1* x, const int ib, const int iqs, float* v0, float* v1) {
|
|
const float d = vload_half(0, &x[ib].d);
|
|
const float m = vload_half(0, &x[ib].m);
|
|
|
|
const uint8_t vui = x[ib].qs[iqs];
|
|
|
|
const int8_t vi0 = vui & 0xF;
|
|
const int8_t vi1 = vui >> 4;
|
|
|
|
*v0 = vi0*d + m;
|
|
*v1 = vi1*d + m;
|
|
}
|
|
void dequantize_q5_0(__global const struct block_q5_0* x, const int ib, const int iqs, float* v0, float* v1) {
|
|
const float d = vload_half(0, &x[ib].d);
|
|
|
|
uint32_t qh = x[ib].qh;
|
|
|
|
const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
|
|
const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
|
|
|
|
const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0) - 16;
|
|
const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1) - 16;
|
|
|
|
*v0 = x0*d;
|
|
*v1 = x1*d;
|
|
}
|
|
void dequantize_q5_1(__global const struct block_q5_1* x, const int ib, const int iqs, float* v0, float* v1) {
|
|
const float d = vload_half(0, &x[ib].d);
|
|
const float m = vload_half(0, &x[ib].m);
|
|
|
|
uint32_t qh = x[ib].qh;
|
|
|
|
const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
|
|
const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
|
|
|
|
const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0);
|
|
const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1);
|
|
|
|
*v0 = x0*d + m;
|
|
*v1 = x1*d + m;
|
|
}
|
|
void dequantize_q8_0(__global const struct block_q8_0* x, const int ib, const int iqs, float* v0, float* v1) {
|
|
const float d = vload_half(0, &x[ib].d);
|
|
|
|
const int8_t vi0 = x[ib].qs[iqs + 0];
|
|
const int8_t vi1 = x[ib].qs[iqs + 1];
|
|
|
|
*v0 = vi0*d;
|
|
*v1 = vi1*d;
|
|
}
|
|
void convert_f16(__global half* x, const int ib, const int iqs, float* v0, float* v1){
|
|
*v0 = vload_half(0, &x[ib + 0]);
|
|
*v1 = vload_half(0, &x[ib + 1]);
|
|
}
|
|
);
|
|
|
|
static std::string k_quants_source = MULTILINE_QUOTE(
|
|
inline void get_scale_min_k4(int j, const __global uint8_t *q, uint8_t *d, uint8_t *m)
|
|
{
|
|
if (j < 4)
|
|
{
|
|
*d = q[j] & 63;
|
|
*m = q[j + 4] & 63;
|
|
}
|
|
else
|
|
{
|
|
*d = (q[j + 4] & 0xF) | ((q[j - 4] >> 6) << 4);
|
|
*m = (q[j + 4] >> 4) | ((q[j - 0] >> 6) << 4);
|
|
}
|
|
}
|
|
|
|
__kernel void dequantize_block_q2_K(__global const struct block_q2_K *x, __global float *yy)
|
|
{
|
|
const int i = get_group_id(0) + get_global_offset(0);
|
|
const int tid = get_local_id(0);
|
|
const int n = tid / 32;
|
|
const int l = tid - 32 * n;
|
|
const int is = 8 * n + l / 16;
|
|
|
|
const uint8_t q = x[i].qs[32 * n + l];
|
|
__global float *y = yy + get_group_id(0) * QK_K + 128 * n;
|
|
|
|
const float dall = vload_half(0, &x[i].d);
|
|
const float dmin = vload_half(0, &x[i].dmin);
|
|
|
|
y[l + 0] = dall * (x[i].scales[is + 0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is + 0] >> 4);
|
|
y[l + 32] = dall * (x[i].scales[is + 2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is + 2] >> 4);
|
|
y[l + 64] = dall * (x[i].scales[is + 4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is + 4] >> 4);
|
|
y[l + 96] = dall * (x[i].scales[is + 6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is + 6] >> 4);
|
|
}
|
|
|
|
__kernel void dequantize_block_q3_K(__global const struct block_q3_K *x, __global float *yy)
|
|
{
|
|
int r = get_local_id(0) / 4;
|
|
int i = get_group_id(0) + get_global_offset(0);
|
|
int tid = r / 2;
|
|
int is0 = r % 2;
|
|
int l0 = 16 * is0 + 4 * (get_local_id(0) % 4);
|
|
int n = tid / 4;
|
|
int j = tid - 4 * n;
|
|
|
|
uint8_t m = 1 << (4 * n + j);
|
|
int is = 8 * n + 2 * j + is0;
|
|
int shift = 2 * j;
|
|
|
|
int8_t us = is < 4 ? (x[i].scales[is - 0] & 0xF) | (((x[i].scales[is + 8] >> 0) & 3) << 4)
|
|
: is < 8 ? (x[i].scales[is - 0] & 0xF) | (((x[i].scales[is + 4] >> 2) & 3) << 4)
|
|
: is < 12 ? (x[i].scales[is - 8] >> 4) | (((x[i].scales[is + 0] >> 4) & 3) << 4)
|
|
: (x[i].scales[is - 8] >> 4) | (((x[i].scales[is - 4] >> 6) & 3) << 4);
|
|
float d_all = vload_half(0, &x[i].d);
|
|
float dl = d_all * (us - 32);
|
|
|
|
__global float *y = yy + get_group_id(0) * QK_K + 128 * n + 32 * j;
|
|
const __global uint8_t *q = x[i].qs + 32 * n;
|
|
const __global uint8_t *hm = x[i].hmask;
|
|
|
|
for (int l = l0; l < l0 + 4; ++l)
|
|
y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
|
|
}
|
|
|
|
__kernel void dequantize_block_q4_K(__global const struct block_q4_K *x, __global float *yy)
|
|
{
|
|
const int i = get_group_id(0) + get_global_offset(0);
|
|
const int tid = get_local_id(0);
|
|
const int il = tid / 8;
|
|
const int ir = tid % 8;
|
|
const int is = 2 * il;
|
|
const int n = 4;
|
|
|
|
__global float *y = yy + get_group_id(0) * QK_K + 64 * il + n * ir;
|
|
|
|
const float dall = vload_half(0, &x[i].d);
|
|
const float dmin = vload_half(0, &x[i].dmin);
|
|
|
|
__global const uint8_t *q = x[i].qs + 32 * il + n * ir;
|
|
|
|
uint8_t sc, m;
|
|
get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
|
|
float d1 = dall * sc;
|
|
float m1 = dmin * m;
|
|
get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
|
|
float d2 = dall * sc;
|
|
float m2 = dmin * m;
|
|
for (int l = 0; l < n; ++l)
|
|
{
|
|
y[l + 0] = d1 * (q[l] & 0xF) - m1;
|
|
y[l + 32] = d2 * (q[l] >> 4) - m2;
|
|
}
|
|
}
|
|
|
|
__kernel void dequantize_block_q5_K(__global const struct block_q5_K *x, __global float *yy)
|
|
{
|
|
const int i = get_group_id(0) + get_global_offset(0);
|
|
const int tid = get_local_id(0);
|
|
const int il = tid / 16;
|
|
const int ir = tid % 16;
|
|
const int is = 2 * il;
|
|
|
|
__global float *y = yy + get_group_id(0) * QK_K + 64 * il + 2 * ir;
|
|
|
|
const float dall = vload_half(0, &x[i].d);
|
|
const float dmin = vload_half(0, &x[i].dmin);
|
|
|
|
__global const uint8_t *ql = x[i].qs + 32 * il + 2 * ir;
|
|
__global const uint8_t *qh = x[i].qh + 2 * ir;
|
|
|
|
uint8_t sc, m;
|
|
get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
|
|
const float d1 = dall * sc;
|
|
const float m1 = dmin * m;
|
|
get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
|
|
const float d2 = dall * sc;
|
|
const float m2 = dmin * m;
|
|
|
|
uint8_t hm = 1 << (2 * il);
|
|
y[0] = d1 * ((ql[0] & 0xF) + (qh[0] & hm ? 16 : 0)) - m1;
|
|
y[1] = d1 * ((ql[1] & 0xF) + (qh[1] & hm ? 16 : 0)) - m1;
|
|
hm <<= 1;
|
|
y[32] = d2 * ((ql[0] >> 4) + (qh[0] & hm ? 16 : 0)) - m2;
|
|
y[33] = d2 * ((ql[1] >> 4) + (qh[1] & hm ? 16 : 0)) - m2;
|
|
}
|
|
|
|
__kernel void dequantize_block_q6_K(__global const struct block_q6_K *x, __global float *yy)
|
|
{
|
|
const int i = get_group_id(0) + get_global_offset(0);
|
|
const int tid = get_local_id(0);
|
|
const int ip = tid / 32;
|
|
const int il = tid - 32 * ip;
|
|
const int is = 8 * ip + il / 16;
|
|
|
|
__global float *y = yy + get_group_id(0) * QK_K + 128 * ip + il;
|
|
|
|
const float d = vload_half(0, &x[i].d);
|
|
|
|
__global const uint8_t *ql = x[i].ql + 64 * ip + il;
|
|
const uint8_t qh = x[i].qh[32 * ip + il];
|
|
__global const int8_t *sc = x[i].scales + is;
|
|
|
|
y[0] = d * sc[0] * ((int8_t)((ql[0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
|
|
y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32);
|
|
y[64] = d * sc[4] * ((int8_t)((ql[0] >> 4) | (((qh >> 4) & 3) << 4)) - 32);
|
|
y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32);
|
|
}
|
|
|
|
__kernel void dequantize_mul_mat_vec_q2_K(__global const struct block_q2_K * xx, __local float* tmp, __global float* yy, __global float* dst, const int ncols) {
|
|
|
|
const int row = get_group_id(0);
|
|
|
|
const int num_blocks_per_row = ncols / QK_K;
|
|
const int ib0 = row*num_blocks_per_row + get_global_offset(0);
|
|
|
|
__global const struct block_q2_K * x = xx + ib0;
|
|
|
|
const int tid = get_local_id(0)/K_QUANTS_PER_ITERATION; // 0...31 or 0...15
|
|
const int ix = get_local_id(0)%K_QUANTS_PER_ITERATION; // 0 or 0,1
|
|
|
|
const int step = 16/K_QUANTS_PER_ITERATION;
|
|
|
|
const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
|
|
const int in = tid - step*im; // 0...15 or 0...7
|
|
|
|
const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15 or 0...14 in steps of 2
|
|
const int q_offset = 32*im + l0;
|
|
const int s_offset = 8*im;
|
|
const int y_offset = 128*im + l0;
|
|
|
|
tmp[16 * ix + tid] = 0;
|
|
|
|
uint32_t aux[4];
|
|
const uint8_t * d = (const uint8_t *)aux;
|
|
const uint8_t * m = (const uint8_t *)(aux + 2);
|
|
|
|
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
|
|
|
__global const float * y = yy + i * QK_K + y_offset;
|
|
__global const uint8_t * q = x[i].qs + q_offset;
|
|
|
|
const float dall = vload_half(0, &x[i].d);
|
|
const float dmin = vload_half(0, &x[i].dmin);
|
|
|
|
__global const uint32_t * a = (__global const uint32_t *)(x[i].scales + s_offset);
|
|
aux[0] = a[0] & 0x0f0f0f0f;
|
|
aux[1] = a[1] & 0x0f0f0f0f;
|
|
aux[2] = (a[0] >> 4) & 0x0f0f0f0f;
|
|
aux[3] = (a[1] >> 4) & 0x0f0f0f0f;
|
|
|
|
float sum1 = 0, sum2 = 0;
|
|
for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
|
|
sum1 += y[l+ 0] * d[0] * ((q[l+ 0] >> 0) & 3)
|
|
+ y[l+32] * d[2] * ((q[l+ 0] >> 2) & 3)
|
|
+ y[l+64] * d[4] * ((q[l+ 0] >> 4) & 3)
|
|
+ y[l+96] * d[6] * ((q[l+ 0] >> 6) & 3)
|
|
+ y[l+16] * d[1] * ((q[l+16] >> 0) & 3)
|
|
+ y[l+48] * d[3] * ((q[l+16] >> 2) & 3)
|
|
+ y[l+80] * d[5] * ((q[l+16] >> 4) & 3)
|
|
+y[l+112] * d[7] * ((q[l+16] >> 6) & 3);
|
|
sum2 += y[l+ 0] * m[0] + y[l+32] * m[2] + y[l+64] * m[4] + y[ l+96] * m[6]
|
|
+ y[l+16] * m[1] + y[l+48] * m[3] + y[l+80] * m[5] + y[l+112] * m[7];
|
|
|
|
}
|
|
tmp[16 * ix + tid] += dall * sum1 - dmin * sum2;
|
|
|
|
}
|
|
|
|
// sum up partial sums and write back result
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
for (int s=16; s>0; s>>=1) {
|
|
if (tid < s) {
|
|
tmp[tid] += tmp[tid + s];
|
|
}
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
}
|
|
if (tid == 0) {
|
|
dst[row] = tmp[0];
|
|
}
|
|
}
|
|
|
|
__kernel void dequantize_mul_mat_vec_q3_K(__global const struct block_q3_K * xx, __local float* tmp, __global float* yy, __global float* dst, const int ncols) {
|
|
const uint16_t kmask1 = 0x0303;
|
|
const uint16_t kmask2 = 0x0f0f;
|
|
|
|
const int row = get_group_id(0);
|
|
|
|
const int num_blocks_per_row = ncols / QK_K;
|
|
const int ib0 = row*num_blocks_per_row + get_global_offset(0);
|
|
|
|
__global const struct block_q3_K * x = xx + ib0;
|
|
|
|
const int tid = get_local_id(0)/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
|
|
const int ix = get_local_id(0)%K_QUANTS_PER_ITERATION; // 0 or 0,1
|
|
|
|
const int n = K_QUANTS_PER_ITERATION; // iterations in the inner loop
|
|
const int step = 16/K_QUANTS_PER_ITERATION;
|
|
const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
|
|
const int in = tid - step*im; // 0....15 or 0...7
|
|
|
|
const uint8_t m = 1 << (4*im);
|
|
|
|
const int l0 = n*in; // 0...15 or 0...14 in steps of 2
|
|
const int q_offset = 32*im + l0;
|
|
const int y_offset = 128*im + l0;
|
|
|
|
uint16_t utmp[4];
|
|
const int8_t * s = (const int8_t *)utmp;
|
|
|
|
const uint16_t s_shift = 4*im;
|
|
|
|
tmp[16 * ix + tid] = 0;
|
|
|
|
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
|
|
|
__global const float * y = yy + i * QK_K + y_offset;
|
|
__global const uint8_t * q = x[i].qs + q_offset;
|
|
__global const uint8_t * h = x[i].hmask + l0;
|
|
|
|
__global const uint16_t * a = (__global const uint16_t *)x[i].scales;
|
|
utmp[0] = ((a[0] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 0)) & kmask1) << 4);
|
|
utmp[1] = ((a[1] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 0)) & kmask1) << 4);
|
|
utmp[2] = ((a[2] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 2)) & kmask1) << 4);
|
|
utmp[3] = ((a[3] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 2)) & kmask1) << 4);
|
|
|
|
const float d = vload_half(0, &x[i].d);
|
|
|
|
float sum = 0;
|
|
for (int l = 0; l < n; ++l) {
|
|
sum += y[l+ 0] * (s[0] - 32) * (((q[l] >> 0) & 3) - (h[l] & (m << 0) ? 0 : 4))
|
|
+ y[l+32] * (s[2] - 32) * (((q[l] >> 2) & 3) - (h[l] & (m << 1) ? 0 : 4))
|
|
+ y[l+64] * (s[4] - 32) * (((q[l] >> 4) & 3) - (h[l] & (m << 2) ? 0 : 4))
|
|
+ y[l+96] * (s[6] - 32) * (((q[l] >> 6) & 3) - (h[l] & (m << 3) ? 0 : 4));
|
|
sum += y[l+16] * (s[1] - 32) * (((q[l+16] >> 0) & 3) - (h[l+16] & (m << 0) ? 0 : 4))
|
|
+ y[l+48] * (s[3] - 32) * (((q[l+16] >> 2) & 3) - (h[l+16] & (m << 1) ? 0 : 4))
|
|
+ y[l+80] * (s[5] - 32) * (((q[l+16] >> 4) & 3) - (h[l+16] & (m << 2) ? 0 : 4))
|
|
+ y[l+112] * (s[7] - 32) * (((q[l+16] >> 6) & 3) - (h[l+16] & (m << 3) ? 0 : 4));
|
|
}
|
|
tmp[16 * ix + tid] += d * sum;
|
|
|
|
}
|
|
|
|
// sum up partial sums and write back result
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
for (int s=16; s>0; s>>=1) {
|
|
if (tid < s) {
|
|
tmp[tid] += tmp[tid + s];
|
|
}
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
}
|
|
if (tid == 0) {
|
|
dst[row] = tmp[0];
|
|
}
|
|
}
|
|
|
|
__kernel void dequantize_mul_mat_vec_q4_K(__global const struct block_q4_K * xx, __local float* tmp, __global float* yy, __global float* dst, const int ncols) {
|
|
|
|
//to rename it later, just to test now
|
|
const uint16_t kmask1 = 0x3f3f;
|
|
const uint16_t kmask2 = 0x0f0f;
|
|
const uint16_t kmask3 = 0xc0c0;
|
|
|
|
const int row = get_group_id(0);
|
|
const int num_blocks_per_row = ncols / QK_K;
|
|
const int ib0 = row*num_blocks_per_row + get_global_offset(0);
|
|
|
|
const int tid = get_local_id(0)/K_QUANTS_PER_ITERATION; // 0...15
|
|
const int ix = get_local_id(0)%K_QUANTS_PER_ITERATION;
|
|
|
|
const int step = 8/K_QUANTS_PER_ITERATION;
|
|
|
|
const int il = tid/step; // 0...3
|
|
const int ir = tid - step*il;// 0...3
|
|
const int n = 2*K_QUANTS_PER_ITERATION;
|
|
|
|
const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
|
|
const int in = il%2;
|
|
|
|
const int l0 = n*(2*ir + in);
|
|
const int q_offset = 32*im + l0;
|
|
const int y_offset = 64*im + l0;
|
|
|
|
uint16_t aux[4];
|
|
const uint8_t * sc = (const uint8_t *)aux;
|
|
|
|
__global const struct block_q4_K * x = xx + ib0;
|
|
|
|
tmp[16 * ix + tid] = 0;
|
|
|
|
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
|
|
|
__global const uint8_t * q1 = x[i].qs + q_offset;
|
|
__global const uint8_t * q2 = q1 + 64;
|
|
__global const float * y1 = yy + i*QK_K + y_offset;
|
|
__global const float * y2 = y1 + 128;
|
|
|
|
const float dall = vload_half(0, &x[i].d);
|
|
const float dmin = vload_half(0, &x[i].dmin);
|
|
|
|
__global const uint16_t * a = (__global const uint16_t *)x[i].scales;
|
|
aux[0] = a[im+0] & kmask1;
|
|
aux[1] = a[im+2] & kmask1;
|
|
aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
|
|
aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
|
|
|
|
float4 s = (float4)(0.f);
|
|
float smin = 0;
|
|
for (int l = 0; l < n; ++l) {
|
|
s.x += y1[l] * (q1[l] & 0xF); s.y += y1[l+32] * (q1[l] >> 4);
|
|
s.z += y2[l] * (q2[l] & 0xF); s.w += y2[l+32] * (q2[l] >> 4);
|
|
smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
|
|
}
|
|
tmp[16 * ix + tid] += dall * (s.x * sc[0] + s.y * sc[1] + s.z * sc[4] + s.w * sc[5]) - dmin * smin;
|
|
|
|
}
|
|
|
|
// sum up partial sums and write back result
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
for (int s=16; s>0; s>>=1) {
|
|
if (tid < s) {
|
|
tmp[tid] += tmp[tid + s];
|
|
}
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
}
|
|
if (tid == 0) {
|
|
dst[row] = tmp[0];
|
|
}
|
|
}
|
|
|
|
__kernel void dequantize_mul_mat_vec_q5_K(__global const struct block_q5_K * xx, __local float* tmp, __global float* yy, __global float* dst, const int ncols) {
|
|
|
|
const uint16_t kmask1 = 0x3f3f;
|
|
const uint16_t kmask2 = 0x0f0f;
|
|
const uint16_t kmask3 = 0xc0c0;
|
|
|
|
const int row = get_group_id(0);
|
|
const int num_blocks_per_row = ncols / QK_K;
|
|
const int ib0 = row*num_blocks_per_row + get_global_offset(0);
|
|
|
|
const int tid = get_local_id(0)/2; // 0...15
|
|
const int ix = get_local_id(0)%2;
|
|
|
|
const int il = tid/4; // 0...3
|
|
const int ir = tid - 4*il;// 0...3
|
|
const int n = 2;
|
|
|
|
const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
|
|
const int in = il%2;
|
|
|
|
const int l0 = n*(2*ir + in);
|
|
const int q_offset = 32*im + l0;
|
|
const int y_offset = 64*im + l0;
|
|
|
|
const uint8_t hm1 = 1 << (2*im);
|
|
const uint8_t hm2 = hm1 << 4;
|
|
|
|
uint16_t aux[4];
|
|
const uint8_t * sc = (const uint8_t *)aux;
|
|
|
|
__global const struct block_q5_K * x = xx + ib0;
|
|
|
|
tmp[16 * ix + tid] = 0;
|
|
|
|
for (int i = ix; i < num_blocks_per_row; i += 2) {
|
|
|
|
__global const uint8_t * ql1 = x[i].qs + q_offset;
|
|
__global const uint8_t * ql2 = ql1 + 64;
|
|
__global const uint8_t * qh = x[i].qh + l0;
|
|
__global const float * y1 = yy + i*QK_K + y_offset;
|
|
__global const float * y2 = y1 + 128;
|
|
|
|
const float dall = vload_half(0, &x[i].d);
|
|
const float dmin = vload_half(0, &x[i].dmin);
|
|
|
|
__global const uint16_t * a = (__global const uint16_t *)x[i].scales;
|
|
aux[0] = a[im+0] & kmask1;
|
|
aux[1] = a[im+2] & kmask1;
|
|
aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
|
|
aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
|
|
|
|
float4 sum = (float4)(0.f);
|
|
float smin = 0;
|
|
for (int l = 0; l < n; ++l) {
|
|
sum.x += y1[l+ 0] * ((ql1[l+ 0] & 0xF) + (qh[l+ 0] & (hm1 << 0) ? 16 : 0))
|
|
+ y1[l+16] * ((ql1[l+16] & 0xF) + (qh[l+16] & (hm1 << 0) ? 16 : 0));
|
|
sum.y += y1[l+32] * ((ql1[l+ 0] >> 4) + (qh[l+ 0] & (hm1 << 1) ? 16 : 0))
|
|
+ y1[l+48] * ((ql1[l+16] >> 4) + (qh[l+16] & (hm1 << 1) ? 16 : 0));
|
|
sum.z += y2[l+ 0] * ((ql2[l+ 0] & 0xF) + (qh[l+ 0] & (hm2 << 0) ? 16 : 0))
|
|
+ y2[l+16] * ((ql2[l+16] & 0xF) + (qh[l+16] & (hm2 << 0) ? 16 : 0));
|
|
sum.w += y2[l+32] * ((ql2[l+ 0] >> 4) + (qh[l+ 0] & (hm2 << 1) ? 16 : 0))
|
|
+ y2[l+48] * ((ql2[l+16] >> 4) + (qh[l+16] & (hm2 << 1) ? 16 : 0));
|
|
smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3]
|
|
+ (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7];
|
|
}
|
|
tmp[16 * ix + tid] += dall * (sum.x * sc[0] + sum.y * sc[1] + sum.z * sc[4] + sum.w * sc[5]) - dmin * smin;
|
|
|
|
}
|
|
|
|
// sum up partial sums and write back result
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
for (int s=16; s>0; s>>=1) {
|
|
if (tid < s) {
|
|
tmp[tid] += tmp[tid + s];
|
|
}
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
}
|
|
if (tid == 0) {
|
|
dst[row] = tmp[0];
|
|
}
|
|
}
|
|
|
|
__kernel void dequantize_mul_mat_vec_q6_K(__global const struct block_q6_K * xx, __local float* tmp, __global const float * yy, __global float * dst, const int ncols) {
|
|
|
|
const int row = get_group_id(0);
|
|
|
|
const int num_blocks_per_row = ncols / QK_K;
|
|
const int ib0 = row*num_blocks_per_row + get_global_offset(0);
|
|
|
|
__global const struct block_q6_K * x = xx + ib0;
|
|
|
|
const int tid = get_local_id(0)/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
|
|
const int ix = get_local_id(0)%K_QUANTS_PER_ITERATION; // 0 or 0, 1
|
|
|
|
const int step = 16/K_QUANTS_PER_ITERATION; // 16 or 8
|
|
|
|
const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
|
|
const int in = tid - step*im; // 0...15 or 0...7
|
|
|
|
\n#if K_QUANTS_PER_ITERATION == 1\n
|
|
const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15
|
|
const int is = 0;
|
|
|
|
\n#else\n
|
|
|
|
const int l0 = 4 * in; // 0, 4, 8, ..., 28
|
|
const int is = in / 4;
|
|
|
|
\n#endif\n
|
|
|
|
const int ql_offset = 64*im + l0;
|
|
const int qh_offset = 32*im + l0;
|
|
const int s_offset = 8*im + is;
|
|
const int y_offset = 128*im + l0;
|
|
|
|
tmp[16 * ix + tid] = 0; // partial sum for thread in warp
|
|
|
|
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
|
|
|
__global const float * y = yy + i * QK_K + y_offset;
|
|
__global const uint8_t * ql = x[i].ql + ql_offset;
|
|
__global const uint8_t * qh = x[i].qh + qh_offset;
|
|
__global const int8_t * s = x[i].scales + s_offset;
|
|
|
|
const float d = vload_half(0, &x[i].d);
|
|
|
|
\n#if K_QUANTS_PER_ITERATION == 1\n
|
|
float sum = y[ 0] * s[0] * d * ((int8_t)((ql[ 0] & 0xF) | ((qh[ 0] & 0x03) << 4)) - 32)
|
|
+ y[16] * s[1] * d * ((int8_t)((ql[16] & 0xF) | ((qh[16] & 0x03) << 4)) - 32)
|
|
+ y[32] * s[2] * d * ((int8_t)((ql[32] & 0xF) | ((qh[ 0] & 0x0c) << 2)) - 32)
|
|
+ y[48] * s[3] * d * ((int8_t)((ql[48] & 0xF) | ((qh[16] & 0x0c) << 2)) - 32)
|
|
+ y[64] * s[4] * d * ((int8_t)((ql[ 0] >> 4) | ((qh[ 0] & 0x30) >> 0)) - 32)
|
|
+ y[80] * s[5] * d * ((int8_t)((ql[16] >> 4) | ((qh[16] & 0x30) >> 0)) - 32)
|
|
+ y[96] * s[6] * d * ((int8_t)((ql[32] >> 4) | ((qh[ 0] & 0xc0) >> 2)) - 32)
|
|
+y[112] * s[7] * d * ((int8_t)((ql[48] >> 4) | ((qh[16] & 0xc0) >> 2)) - 32);
|
|
tmp[16 * ix + tid] += sum;
|
|
\n#else\n
|
|
float sum = 0;
|
|
for (int l = 0; l < 4; ++l) {
|
|
sum += y[l+ 0] * s[0] * d * ((int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32)
|
|
+ y[l+32] * s[2] * d * ((int8_t)((ql[l+32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32)
|
|
+ y[l+64] * s[4] * d * ((int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32)
|
|
+ y[l+96] * s[6] * d * ((int8_t)((ql[l+32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32);
|
|
}
|
|
tmp[16 * ix + tid] += sum;
|
|
\n#endif\n
|
|
|
|
}
|
|
|
|
// sum up partial sums and write back result
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
for (int s=16; s>0; s>>=1) {
|
|
if (tid < s) {
|
|
tmp[tid] += tmp[tid + s];
|
|
}
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
}
|
|
if (tid == 0) {
|
|
dst[row] = tmp[0];
|
|
}
|
|
}
|
|
);
|
|
|
|
|
|
std::string dequant_template = MULTILINE_QUOTE(
|
|
__kernel void KERNEL_NAME(__global X_TYPE* x, __global float* y) {
|
|
const int i = get_group_id(0)*get_local_size(0) + get_local_id(0)*2;
|
|
|
|
if (i >= get_global_size(0)) {
|
|
return;
|
|
}
|
|
|
|
const uint qk = QUANT_K;
|
|
const uint qr = QUANT_R;
|
|
|
|
const int ib = i/qk + get_global_offset(0); // block index
|
|
const int iqs = (i%qk)/qr; // quant index
|
|
const int iybs = i - i%qk; // y block start index
|
|
const int y_offset = qr == 1 ? 1 : qk/2;
|
|
|
|
// dequantize
|
|
float v0, v1;
|
|
DEQUANT_FUNC(x, ib, iqs, &v0, &v1);
|
|
y[iybs + iqs + 0] = v0;
|
|
y[iybs + iqs + y_offset] = v1;
|
|
}
|
|
);
|
|
|
|
std::string dequant_mul_mat_vec_template = MULTILINE_QUOTE(
|
|
__kernel void KERNEL_NAME(__global X_TYPE* x, __local float* tmp, __global float* y, __global float* dst, const int ncols) {
|
|
const int local_size = get_local_size(0);
|
|
const int row = get_group_id(0);
|
|
const int tid = get_local_id(0);
|
|
|
|
const uint qk = QUANT_K;
|
|
const uint qr = QUANT_R;
|
|
|
|
const int col_step = local_size * 2;
|
|
const int y_offset = qr == 1 ? 1 : qk/2;
|
|
|
|
x += get_global_offset(0);
|
|
|
|
tmp[tid] = 0;
|
|
|
|
for (int col = tid*2; col < ncols; col += col_step) {
|
|
const int ib = (row*ncols + col)/qk; // block index
|
|
const int iqs = (col%qk)/qr; // quant index
|
|
const int iybs = col - col%qk; // y block start index
|
|
|
|
// dequantize
|
|
float v0, v1;
|
|
DEQUANT_FUNC(x, ib, iqs, &v0, &v1);
|
|
|
|
// matrix multiplication
|
|
tmp[tid] += v0 * y[iybs + iqs + 0];
|
|
tmp[tid] += v1 * y[iybs + iqs + y_offset];
|
|
}
|
|
|
|
// sum up partial sums and write back result
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
for (int s=local_size/2; s>0; s>>=1) {
|
|
if (tid < s) {
|
|
tmp[tid] += tmp[tid + s];
|
|
}
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
}
|
|
if (tid == 0) {
|
|
dst[row] = tmp[0];
|
|
}
|
|
}
|
|
|
|
);
|
|
|
|
|
|
std::string mul_template = MULTILINE_QUOTE(
|
|
__kernel void KERNEL_NAME(__global TYPE* x, const int x_offset, __global TYPE* y, const int y_offset, __global TYPE* dst, const int dst_offset, const int ky) {
|
|
const int i = get_group_id(0)*get_local_size(0) + get_local_id(0);
|
|
|
|
if (i >= get_global_size(0)) {
|
|
return;
|
|
}
|
|
|
|
dst[dst_offset + i] = x[x_offset + i] * y[y_offset + i%ky];
|
|
}
|
|
);
|
|
|
|
std::string add_template = MULTILINE_QUOTE(
|
|
__kernel void add_f32(__global float * x, const int x_offset, __global float * y, const int y_offset, __global float * dst, const int dst_offset, const int ky) {
|
|
const int i = get_group_id(0)*get_local_size(0) + get_local_id(0);
|
|
|
|
if (i >= get_global_size(0)) {
|
|
return;
|
|
}
|
|
|
|
dst[dst_offset + i] = x[x_offset + i] + y[y_offset + i%ky];
|
|
}
|
|
);
|
|
|
|
#define CL_CHECK(err) \
|
|
do { \
|
|
cl_int err_ = (err); \
|
|
if (err_ != CL_SUCCESS) { \
|
|
fprintf(stderr, "ggml_opencl: %s error %d at %s:%d\n", \
|
|
#err, err_, __FILE__, __LINE__); \
|
|
exit(1); \
|
|
} \
|
|
} while (0)
|
|
|
|
#define CLBLAST_CHECK(err) \
|
|
do { \
|
|
CLBlastStatusCode err_ = (err); \
|
|
if (err_ != CLBlastSuccess) { \
|
|
fprintf(stderr, "ggml_opencl: %s error %d at %s:%d\n", \
|
|
#err, err_, __FILE__, __LINE__); \
|
|
exit(1); \
|
|
} \
|
|
} while (0)
|
|
|
|
std::array<std::string, 5> dequant_str_keys = {
|
|
"KERNEL_NAME", "X_TYPE", "QUANT_K", "QUANT_R", "DEQUANT_FUNC"
|
|
};
|
|
|
|
std::array<std::string, 30> dequant_str_values = {
|
|
"dequantize_row_q4_0", "struct block_q4_0", "QK4_0", "QR4_0", "dequantize_q4_0",
|
|
"dequantize_row_q4_1", "struct block_q4_1", "QK4_1", "QR4_1", "dequantize_q4_1",
|
|
"dequantize_row_q5_0", "struct block_q5_0", "QK5_0", "QR5_0", "dequantize_q5_0",
|
|
"dequantize_row_q5_1", "struct block_q5_1", "QK5_1", "QR5_1", "dequantize_q5_1",
|
|
"dequantize_row_q8_0", "struct block_q8_0", "QK8_0", "QR8_0", "dequantize_q8_0",
|
|
"convert_row_f16", "half", "1", "1", "convert_f16"
|
|
};
|
|
|
|
std::array<std::string, 30> dequant_mul_mat_vec_str_values = {
|
|
"dequantize_mul_mat_vec_q4_0", "struct block_q4_0", "QK4_0", "QR4_0", "dequantize_q4_0",
|
|
"dequantize_mul_mat_vec_q4_1", "struct block_q4_1", "QK4_1", "QR4_1", "dequantize_q4_1",
|
|
"dequantize_mul_mat_vec_q5_0", "struct block_q5_0", "QK5_0", "QR5_0", "dequantize_q5_0",
|
|
"dequantize_mul_mat_vec_q5_1", "struct block_q5_1", "QK5_1", "QR5_1", "dequantize_q5_1",
|
|
"dequantize_mul_mat_vec_q8_0", "struct block_q8_0", "QK8_0", "QR8_0", "dequantize_q8_0",
|
|
"convert_mul_mat_vec_f16", "half", "1", "1", "convert_f16"
|
|
};
|
|
|
|
std::array<std::string, 2> mul_str_keys = {
|
|
"KERNEL_NAME", "TYPE"
|
|
};
|
|
std::array<std::string, 2> mul_str_values = {
|
|
"mul_f32", "float"
|
|
};
|
|
|
|
static std::string& replace(std::string& s, const std::string& from, const std::string& to) {
|
|
size_t pos = 0;
|
|
while ((pos = s.find(from, pos)) != std::string::npos) {
|
|
s.replace(pos, from.length(), to);
|
|
pos += to.length();
|
|
}
|
|
return s;
|
|
}
|
|
|
|
static std::string generate_kernels() {
|
|
std::stringstream src;
|
|
src << program_source << '\n';
|
|
src << k_quants_source << '\n';
|
|
for (size_t i = 0; i < dequant_str_values.size(); i += dequant_str_keys.size()) {
|
|
std::string dequant_kernel = dequant_template;
|
|
std::string dmmv_kernel = dequant_mul_mat_vec_template;
|
|
for (size_t j = 0; j < dequant_str_keys.size(); j++) {
|
|
replace(dequant_kernel, dequant_str_keys[j], dequant_str_values[i + j]);
|
|
replace(dmmv_kernel, dequant_str_keys[j], dequant_mul_mat_vec_str_values[i + j]);
|
|
}
|
|
src << dequant_kernel << '\n';
|
|
src << dmmv_kernel << '\n';
|
|
}
|
|
for (size_t i = 0; i < mul_str_values.size(); i += mul_str_keys.size()) {
|
|
std::string mul_kernel = mul_template;
|
|
for (size_t j = 0; j < mul_str_keys.size(); j++) {
|
|
replace(mul_kernel, mul_str_keys[j], mul_str_values[i + j]);
|
|
}
|
|
src << mul_kernel << '\n';
|
|
}
|
|
src << add_template << '\n';
|
|
|
|
return src.str();
|
|
}
|
|
|
|
static cl_platform_id platform;
|
|
static cl_device_id device;
|
|
static cl_context context;
|
|
static cl_command_queue queue;
|
|
static cl_program program;
|
|
static cl_kernel convert_row_f16_cl;
|
|
static cl_kernel dequantize_row_q4_0_cl, dequantize_row_q4_1_cl, dequantize_row_q5_0_cl, dequantize_row_q5_1_cl, dequantize_row_q8_0_cl;
|
|
static cl_kernel dequantize_mul_mat_vec_q4_0_cl, dequantize_mul_mat_vec_q4_1_cl, dequantize_mul_mat_vec_q5_0_cl, dequantize_mul_mat_vec_q5_1_cl, dequantize_mul_mat_vec_q8_0_cl, convert_mul_mat_vec_f16_cl;
|
|
static cl_kernel dequantize_block_q2_k_cl, dequantize_block_q3_k_cl, dequantize_block_q4_k_cl, dequantize_block_q5_k_cl, dequantize_block_q6_k_cl;
|
|
static cl_kernel dequantize_mul_mat_vec_q2_K_cl, dequantize_mul_mat_vec_q3_K_cl, dequantize_mul_mat_vec_q4_K_cl, dequantize_mul_mat_vec_q5_K_cl, dequantize_mul_mat_vec_q6_K_cl;
|
|
static cl_kernel mul_f32_cl;
|
|
static cl_kernel add_f32_cl;
|
|
static bool fp16_support;
|
|
|
|
static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer) {
|
|
cl_program p;
|
|
char *program_log;
|
|
size_t program_size;
|
|
size_t log_size;
|
|
int err;
|
|
|
|
program_size = strlen(program_buffer);
|
|
|
|
p = clCreateProgramWithSource(ctx, 1, (const char**)&program_buffer, &program_size, &err);
|
|
if(err < 0) {
|
|
fprintf(stderr, "OpenCL error creating program");
|
|
exit(1);
|
|
}
|
|
|
|
std::string compile_opts = "-cl-mad-enable -cl-unsafe-math-optimizations -cl-finite-math-only -cl-fast-relaxed-math "
|
|
"-DQK4_0=32 -DQR4_0=2 -DQK4_1=32 -DQR4_1=2 -DQK5_0=32 -DQR5_0=2 -DQK5_1=32 -DQR5_1=2 -DQK8_0=32 -DQR8_0=1 "
|
|
"-DQK_K=256 -DK_QUANTS_PER_ITERATION=" + std::to_string(K_QUANTS_PER_ITERATION);
|
|
|
|
err = clBuildProgram(p, 0, NULL, compile_opts.c_str(), NULL, NULL);
|
|
if(err < 0) {
|
|
|
|
clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
|
|
program_log = (char*) malloc(log_size + 1);
|
|
program_log[log_size] = '\0';
|
|
clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, log_size + 1, program_log, NULL);
|
|
fprintf(stderr, "ggml_opencl: kernel compile error:\n\n%s\n", program_log);
|
|
free(program_log);
|
|
exit(1);
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
void ggml_cl_init(void) {
|
|
static bool initialized = false;
|
|
if (initialized) {
|
|
return;
|
|
}
|
|
initialized = true;
|
|
|
|
cl_int err;
|
|
|
|
struct cl_device;
|
|
struct cl_platform {
|
|
cl_platform_id id;
|
|
unsigned number;
|
|
char name[128];
|
|
char vendor[128];
|
|
struct cl_device * devices;
|
|
unsigned n_devices;
|
|
struct cl_device * default_device;
|
|
};
|
|
|
|
struct cl_device {
|
|
struct cl_platform * platform;
|
|
cl_device_id id;
|
|
unsigned number;
|
|
cl_device_type type;
|
|
char name[128];
|
|
};
|
|
|
|
enum { NPLAT = 16, NDEV = 16 };
|
|
|
|
struct cl_platform platforms[NPLAT];
|
|
unsigned n_platforms = 0;
|
|
struct cl_device devices[NDEV];
|
|
unsigned n_devices = 0;
|
|
struct cl_device * default_device = NULL;
|
|
|
|
platform = NULL;
|
|
device = NULL;
|
|
|
|
cl_platform_id platform_ids[NPLAT];
|
|
CL_CHECK(clGetPlatformIDs(NPLAT, platform_ids, &n_platforms));
|
|
|
|
for (unsigned i = 0; i < n_platforms; i++) {
|
|
struct cl_platform * p = &platforms[i];
|
|
p->number = i;
|
|
p->id = platform_ids[i];
|
|
CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_NAME, sizeof(p->name), &p->name, NULL));
|
|
CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_VENDOR, sizeof(p->vendor), &p->vendor, NULL));
|
|
|
|
cl_device_id device_ids[NDEV];
|
|
cl_int clGetDeviceIDsError = clGetDeviceIDs(p->id, CL_DEVICE_TYPE_ALL, NDEV, device_ids, &p->n_devices);
|
|
if (clGetDeviceIDsError == CL_DEVICE_NOT_FOUND) {
|
|
p->n_devices = 0;
|
|
} else {
|
|
CL_CHECK(clGetDeviceIDsError);
|
|
}
|
|
p->devices = p->n_devices > 0 ? &devices[n_devices] : NULL;
|
|
p->default_device = NULL;
|
|
|
|
for (unsigned j = 0; j < p->n_devices; j++) {
|
|
struct cl_device * d = &devices[n_devices];
|
|
d->number = n_devices++;
|
|
d->id = device_ids[j];
|
|
d->platform = p;
|
|
CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_NAME, sizeof(d->name), &d->name, NULL));
|
|
CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_TYPE, sizeof(d->type), &d->type, NULL));
|
|
|
|
if (p->default_device == NULL && d->type == CL_DEVICE_TYPE_GPU) {
|
|
p->default_device = d;
|
|
}
|
|
}
|
|
|
|
if (default_device == NULL && p->default_device != NULL) {
|
|
default_device = p->default_device;
|
|
}
|
|
}
|
|
|
|
if (n_devices == 0) {
|
|
fprintf(stderr, "ggml_opencl: could find any OpenCL devices.\n");
|
|
exit(1);
|
|
}
|
|
|
|
char * user_platform_string = getenv("GGML_OPENCL_PLATFORM");
|
|
char * user_device_string = getenv("GGML_OPENCL_DEVICE");
|
|
int user_platform_number = -1;
|
|
int user_device_number = -1;
|
|
|
|
unsigned n;
|
|
if (user_platform_string != NULL && sscanf(user_platform_string, " %u", &n) == 1 && n < n_platforms) {
|
|
user_platform_number = (int)n;
|
|
}
|
|
if (user_device_string != NULL && sscanf(user_device_string, " %u", &n) == 1 && n < n_devices) {
|
|
user_device_number = (int)n;
|
|
}
|
|
if (user_platform_number != -1 && user_device_number != -1) {
|
|
cl_platform* platform = &platforms[user_platform_number];
|
|
if ((unsigned)user_device_number >= platform->n_devices) {
|
|
fprintf(stderr, "ggml_opencl: invalid device number %d\n", user_device_number);
|
|
exit(1);
|
|
}
|
|
default_device = &platform->devices[user_device_number];
|
|
} else {
|
|
|
|
struct cl_device * selected_devices = devices;
|
|
unsigned n_selected_devices = n_devices;
|
|
|
|
if (user_platform_number == -1 && user_platform_string != NULL && user_platform_string[0] != 0) {
|
|
for (unsigned i = 0; i < n_platforms; i++) {
|
|
struct cl_platform * p = &platforms[i];
|
|
if (strstr(p->name, user_platform_string) != NULL ||
|
|
strstr(p->vendor, user_platform_string) != NULL) {
|
|
user_platform_number = (int)i;
|
|
break;
|
|
}
|
|
}
|
|
if (user_platform_number == -1) {
|
|
fprintf(stderr, "ggml_opencl: no platform matching '%s' was found.\n", user_platform_string);
|
|
exit(1);
|
|
}
|
|
}
|
|
if (user_platform_number != -1) {
|
|
struct cl_platform * p = &platforms[user_platform_number];
|
|
selected_devices = p->devices;
|
|
n_selected_devices = p->n_devices;
|
|
default_device = p->default_device;
|
|
if (n_selected_devices == 0) {
|
|
fprintf(stderr, "ggml_opencl: selected platform '%s' does not have any devices.\n", p->name);
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
if (user_device_number == -1 && user_device_string != NULL && user_device_string[0] != 0) {
|
|
for (unsigned i = 0; i < n_selected_devices; i++) {
|
|
struct cl_device * d = &selected_devices[i];
|
|
if (strstr(d->name, user_device_string) != NULL) {
|
|
user_device_number = d->number;
|
|
break;
|
|
}
|
|
}
|
|
if (user_device_number == -1) {
|
|
fprintf(stderr, "ggml_opencl: no device matching '%s' was found.\n", user_device_string);
|
|
exit(1);
|
|
}
|
|
}
|
|
if (user_device_number != -1) {
|
|
selected_devices = &devices[user_device_number];
|
|
n_selected_devices = 1;
|
|
default_device = &selected_devices[0];
|
|
}
|
|
|
|
GGML_ASSERT(n_selected_devices > 0);
|
|
|
|
if (default_device == NULL) {
|
|
default_device = &selected_devices[0];
|
|
}
|
|
}
|
|
|
|
fprintf(stderr, "ggml_opencl: selecting platform: '%s'\n", default_device->platform->name);
|
|
fprintf(stderr, "ggml_opencl: selecting device: '%s'\n", default_device->name);
|
|
if (default_device->type != CL_DEVICE_TYPE_GPU) {
|
|
fprintf(stderr, "ggml_opencl: warning, not a GPU: '%s'.\n", default_device->name);
|
|
}
|
|
|
|
platform = default_device->platform->id;
|
|
device = default_device->id;
|
|
|
|
size_t ext_str_size;
|
|
clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, 0, NULL, &ext_str_size);
|
|
char *ext_buffer = (char *)alloca(ext_str_size + 1);
|
|
clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, ext_str_size, ext_buffer, NULL);
|
|
ext_buffer[ext_str_size] = '\0'; // ensure it is null terminated
|
|
// Disabled due to faulty outputs
|
|
// Check if ext_buffer contains cl_khr_fp16
|
|
fp16_support = false; // strstr(ext_buffer, "cl_khr_fp16") != NULL;
|
|
// fprintf(stderr, "ggml_opencl: device FP16 support: %s\n", fp16_support ? "true" : "false");
|
|
|
|
cl_context_properties properties[] = {
|
|
(intptr_t)CL_CONTEXT_PLATFORM, (intptr_t)platform, 0
|
|
};
|
|
|
|
CL_CHECK((context = clCreateContext(properties, 1, &device, NULL, NULL, &err), err));
|
|
|
|
CL_CHECK((queue = clCreateCommandQueue(context, device, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err),
|
|
(err != CL_INVALID_QUEUE_PROPERTIES && err != CL_INVALID_VALUE ? err :
|
|
(queue = clCreateCommandQueue(context, device, 0, &err), err)
|
|
)));
|
|
|
|
const std::string kernel_src = generate_kernels();
|
|
|
|
program = build_program_from_source(context, device, kernel_src.c_str());
|
|
|
|
// FP16 to FP32 kernel
|
|
CL_CHECK((convert_row_f16_cl = clCreateKernel(program, "convert_row_f16", &err), err));
|
|
|
|
// Dequantize kernels
|
|
CL_CHECK((dequantize_row_q4_0_cl = clCreateKernel(program, "dequantize_row_q4_0", &err), err));
|
|
CL_CHECK((dequantize_row_q4_1_cl = clCreateKernel(program, "dequantize_row_q4_1", &err), err));
|
|
CL_CHECK((dequantize_row_q5_0_cl = clCreateKernel(program, "dequantize_row_q5_0", &err), err));
|
|
CL_CHECK((dequantize_row_q5_1_cl = clCreateKernel(program, "dequantize_row_q5_1", &err), err));
|
|
CL_CHECK((dequantize_row_q8_0_cl = clCreateKernel(program, "dequantize_row_q8_0", &err), err));
|
|
CL_CHECK((dequantize_row_q8_0_cl = clCreateKernel(program, "dequantize_row_q8_0", &err), err));
|
|
CL_CHECK((dequantize_block_q2_k_cl = clCreateKernel(program, "dequantize_block_q2_K", &err), err));
|
|
CL_CHECK((dequantize_block_q3_k_cl = clCreateKernel(program, "dequantize_block_q3_K", &err), err));
|
|
CL_CHECK((dequantize_block_q4_k_cl = clCreateKernel(program, "dequantize_block_q4_K", &err), err));
|
|
CL_CHECK((dequantize_block_q5_k_cl = clCreateKernel(program, "dequantize_block_q5_K", &err), err));
|
|
CL_CHECK((dequantize_block_q6_k_cl = clCreateKernel(program, "dequantize_block_q6_K", &err), err));
|
|
|
|
// dequant mul mat kernel
|
|
CL_CHECK((dequantize_mul_mat_vec_q4_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_0", &err), err));
|
|
CL_CHECK((dequantize_mul_mat_vec_q4_1_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_1", &err), err));
|
|
CL_CHECK((dequantize_mul_mat_vec_q5_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_0", &err), err));
|
|
CL_CHECK((dequantize_mul_mat_vec_q5_1_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_1", &err), err));
|
|
CL_CHECK((dequantize_mul_mat_vec_q8_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q8_0", &err), err));
|
|
CL_CHECK((convert_mul_mat_vec_f16_cl = clCreateKernel(program, "convert_mul_mat_vec_f16", &err), err));
|
|
CL_CHECK((dequantize_mul_mat_vec_q2_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q2_K", &err), err));
|
|
CL_CHECK((dequantize_mul_mat_vec_q3_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q3_K", &err), err));
|
|
CL_CHECK((dequantize_mul_mat_vec_q4_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_K", &err), err));
|
|
CL_CHECK((dequantize_mul_mat_vec_q5_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_K", &err), err));
|
|
CL_CHECK((dequantize_mul_mat_vec_q6_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q6_K", &err), err));
|
|
|
|
// mul kernel
|
|
CL_CHECK((mul_f32_cl = clCreateKernel(program, "mul_f32", &err), err));
|
|
|
|
CL_CHECK((add_f32_cl = clCreateKernel(program, "add_f32", &err), err));
|
|
}
|
|
|
|
static cl_kernel* ggml_get_to_fp32_cl(ggml_type type) {
|
|
switch (type) {
|
|
case GGML_TYPE_Q4_0:
|
|
return &dequantize_row_q4_0_cl;
|
|
case GGML_TYPE_Q4_1:
|
|
return &dequantize_row_q4_1_cl;
|
|
case GGML_TYPE_Q5_0:
|
|
return &dequantize_row_q5_0_cl;
|
|
case GGML_TYPE_Q5_1:
|
|
return &dequantize_row_q5_1_cl;
|
|
case GGML_TYPE_Q8_0:
|
|
return &dequantize_row_q8_0_cl;
|
|
case GGML_TYPE_Q2_K:
|
|
return &dequantize_block_q2_k_cl;
|
|
case GGML_TYPE_Q3_K:
|
|
return &dequantize_block_q3_k_cl;
|
|
case GGML_TYPE_Q4_K:
|
|
return &dequantize_block_q4_k_cl;
|
|
case GGML_TYPE_Q5_K:
|
|
return &dequantize_block_q5_k_cl;
|
|
case GGML_TYPE_Q6_K:
|
|
return &dequantize_block_q6_k_cl;
|
|
case GGML_TYPE_F16:
|
|
return &convert_row_f16_cl;
|
|
default:
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
static size_t ggml_cl_global_denom(ggml_type type) {
|
|
switch (type) {
|
|
case GGML_TYPE_Q4_0:
|
|
case GGML_TYPE_Q4_1:
|
|
case GGML_TYPE_Q5_0:
|
|
case GGML_TYPE_Q5_1:
|
|
case GGML_TYPE_Q8_0:
|
|
return 1;
|
|
case GGML_TYPE_Q2_K:
|
|
case GGML_TYPE_Q3_K:
|
|
return 4;
|
|
case GGML_TYPE_Q4_K:
|
|
return 8;
|
|
case GGML_TYPE_Q5_K:
|
|
case GGML_TYPE_Q6_K:
|
|
return 4;
|
|
case GGML_TYPE_F16:
|
|
default:
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
static size_t ggml_cl_local_size(ggml_type type) {
|
|
switch (type) {
|
|
case GGML_TYPE_Q4_0:
|
|
case GGML_TYPE_Q4_1:
|
|
case GGML_TYPE_Q5_0:
|
|
case GGML_TYPE_Q5_1:
|
|
case GGML_TYPE_Q8_0:
|
|
return 0;
|
|
case GGML_TYPE_Q2_K:
|
|
case GGML_TYPE_Q3_K:
|
|
return 64;
|
|
case GGML_TYPE_Q4_K:
|
|
return 32;
|
|
case GGML_TYPE_Q5_K:
|
|
case GGML_TYPE_Q6_K:
|
|
return 64;
|
|
case GGML_TYPE_F16:
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static cl_kernel* ggml_get_dequantize_mul_mat_vec_cl(ggml_type type) {
|
|
switch (type) {
|
|
case GGML_TYPE_Q4_0:
|
|
return &dequantize_mul_mat_vec_q4_0_cl;
|
|
case GGML_TYPE_Q4_1:
|
|
return &dequantize_mul_mat_vec_q4_1_cl;
|
|
case GGML_TYPE_Q5_0:
|
|
return &dequantize_mul_mat_vec_q5_0_cl;
|
|
case GGML_TYPE_Q5_1:
|
|
return &dequantize_mul_mat_vec_q5_1_cl;
|
|
case GGML_TYPE_Q8_0:
|
|
return &dequantize_mul_mat_vec_q8_0_cl;
|
|
case GGML_TYPE_F16:
|
|
return &convert_mul_mat_vec_f16_cl;
|
|
case GGML_TYPE_Q2_K:
|
|
return &dequantize_mul_mat_vec_q2_K_cl;
|
|
case GGML_TYPE_Q3_K:
|
|
return &dequantize_mul_mat_vec_q3_K_cl;
|
|
case GGML_TYPE_Q4_K:
|
|
return &dequantize_mul_mat_vec_q4_K_cl;
|
|
case GGML_TYPE_Q5_K:
|
|
return &dequantize_mul_mat_vec_q5_K_cl;
|
|
case GGML_TYPE_Q6_K:
|
|
return &dequantize_mul_mat_vec_q6_K_cl;
|
|
default:
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// buffer pool for cl
|
|
#define MAX_CL_BUFFERS 256
|
|
|
|
struct scoped_spin_lock {
|
|
std::atomic_flag& lock;
|
|
scoped_spin_lock(std::atomic_flag& lock) : lock(lock) {
|
|
while (lock.test_and_set(std::memory_order_acquire)) {
|
|
; // spin
|
|
}
|
|
}
|
|
~scoped_spin_lock() {
|
|
lock.clear(std::memory_order_release);
|
|
}
|
|
scoped_spin_lock(const scoped_spin_lock&) = delete;
|
|
scoped_spin_lock& operator=(const scoped_spin_lock&) = delete;
|
|
};
|
|
|
|
struct cl_buffer {
|
|
cl_mem mem;
|
|
size_t size = 0;
|
|
};
|
|
|
|
static cl_buffer g_cl_buffer_pool[MAX_CL_BUFFERS];
|
|
static std::atomic_flag g_cl_pool_lock = ATOMIC_FLAG_INIT;
|
|
|
|
static cl_mem ggml_cl_pool_malloc(size_t size, size_t * actual_size) {
|
|
scoped_spin_lock lock(g_cl_pool_lock);
|
|
cl_int err;
|
|
|
|
int best_i = -1;
|
|
size_t best_size = std::numeric_limits<size_t>::max(); //smallest unused buffer that fits our needs
|
|
int worst_i = -1;
|
|
size_t worst_size = 0; //largest unused buffer seen so far
|
|
for (int i = 0; i < MAX_CL_BUFFERS; ++i) {
|
|
cl_buffer &b = g_cl_buffer_pool[i];
|
|
if (b.size > 0 && b.size >= size && b.size < best_size)
|
|
{
|
|
best_i = i;
|
|
best_size = b.size;
|
|
}
|
|
if (b.size > 0 && b.size > worst_size)
|
|
{
|
|
worst_i = i;
|
|
worst_size = b.size;
|
|
}
|
|
}
|
|
if(best_i!=-1) //found the smallest buffer that fits our needs
|
|
{
|
|
cl_buffer& b = g_cl_buffer_pool[best_i];
|
|
cl_mem mem = b.mem;
|
|
*actual_size = b.size;
|
|
b.size = 0;
|
|
return mem;
|
|
}
|
|
if(worst_i!=-1) //no buffer that fits our needs, resize largest one to save memory
|
|
{
|
|
cl_buffer& b = g_cl_buffer_pool[worst_i];
|
|
cl_mem mem = b.mem;
|
|
b.size = 0;
|
|
clReleaseMemObject(mem);
|
|
}
|
|
cl_mem mem;
|
|
CL_CHECK((mem = clCreateBuffer(context, CL_MEM_READ_WRITE, size, NULL, &err), err));
|
|
*actual_size = size;
|
|
return mem;
|
|
}
|
|
|
|
static void ggml_cl_pool_free(cl_mem mem, size_t size) {
|
|
scoped_spin_lock lock(g_cl_pool_lock);
|
|
|
|
for (int i = 0; i < MAX_CL_BUFFERS; ++i) {
|
|
cl_buffer& b = g_cl_buffer_pool[i];
|
|
if (b.size == 0) {
|
|
b.mem = mem;
|
|
b.size = size;
|
|
return;
|
|
}
|
|
}
|
|
fprintf(stderr, "WARNING: cl buffer pool full, increase MAX_CL_BUFFERS\n");
|
|
clReleaseMemObject(mem);
|
|
}
|
|
|
|
void ggml_cl_free_data(const struct ggml_tensor* tensor) {
|
|
if (tensor->backend != GGML_BACKEND_TYPE_GPU) {
|
|
return;
|
|
}
|
|
|
|
cl_mem mem = (cl_mem)tensor->extra;
|
|
clReleaseMemObject(mem);
|
|
}
|
|
|
|
static cl_int ggml_cl_h2d_tensor_2d(cl_command_queue queue, cl_mem dst, size_t offset, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cl_event* ev) {
|
|
cl_int err;
|
|
const uint64_t ne0 = src->ne[0];
|
|
const uint64_t ne1 = src->ne[1];
|
|
const uint64_t nb0 = src->nb[0];
|
|
const uint64_t nb1 = src->nb[1];
|
|
const uint64_t nb2 = src->nb[2];
|
|
const uint64_t nb3 = src->nb[3];
|
|
const enum ggml_type type = src->type;
|
|
const size_t ts = ggml_type_size(type);
|
|
const size_t bs = ggml_blck_size(type);
|
|
const uint64_t row_size = ts*ne0/bs;
|
|
|
|
const char * x = (const char *) src->data + i2*nb2 + i3*nb3;
|
|
if (nb0 == ts && nb1 == row_size) {
|
|
return clEnqueueWriteBuffer(queue, dst, CL_FALSE, offset, ne1*row_size, x, 0, NULL, ev);
|
|
}
|
|
if (nb0 == ts) {
|
|
const size_t buffer_origin[3] = { offset, 0, 0 };
|
|
const size_t host_origin[3] = { 0, 0, 0 };
|
|
const size_t region[3] = { row_size, ne1, 1 };
|
|
return clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, row_size, 0, nb1, 0, x, 0, NULL, ev);
|
|
}
|
|
std::vector<cl_event> events;
|
|
if (ev && ne1>1) events.reserve(ne1-1);
|
|
for (uint64_t i1 = 0; i1 < ne1; i1++) {
|
|
// pretend the row is a matrix with cols=1
|
|
const size_t buffer_origin[3] = { offset + i1*row_size, 0, 0 };
|
|
const size_t host_origin[3] = { 0, 0, 0 };
|
|
const size_t region[3] = { ts, ne0/bs, 1 };
|
|
// if an event is requested, make the last write wait for all previous writes to complete
|
|
if (ev && i1) {
|
|
events.push_back(*ev);
|
|
}
|
|
cl_uint nevents = i1 == ne1-1 ? events.size() : 0U;
|
|
err = clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, ts, 0, nb0, 0, x + i1*nb1, nevents, nevents ? events.data() : nullptr, ev);
|
|
if (err != CL_SUCCESS) {
|
|
for (auto event : events) {
|
|
clReleaseEvent(event);
|
|
}
|
|
return err;
|
|
}
|
|
}
|
|
for (auto event : events) {
|
|
CL_CHECK(clReleaseEvent(event));
|
|
}
|
|
return CL_SUCCESS;
|
|
}
|
|
|
|
static void ggml_cl_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_ASSERT(src1->backend == GGML_BACKEND_TYPE_GPU);
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int64_t ne02 = src0->ne[2];
|
|
const int64_t ne03 = src0->ne[3];
|
|
const int64_t ne10 = src1->ne[0];
|
|
const int64_t ne11 = src1->ne[1];
|
|
const int64_t ne12 = src1->ne[2];
|
|
const int64_t ne13 = src1->ne[3];
|
|
const int nb2 = dst->nb[2];
|
|
const int nb3 = dst->nb[3];
|
|
size_t x_size;
|
|
size_t d_size;
|
|
|
|
cl_mem d_X = ggml_cl_pool_malloc(ne00 * ne01 * sizeof(float), &x_size); // src0
|
|
cl_mem d_Y = (cl_mem) src1->extra; // src1 is already on device, broadcasted.
|
|
cl_mem d_D = ggml_cl_pool_malloc(ne00 * ne01 * sizeof(float), &d_size); // dst
|
|
|
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
cl_event ev;
|
|
|
|
// copy src0 to device
|
|
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, &ev));
|
|
|
|
const int64_t i13 = i03%ne13;
|
|
const int64_t i12 = i02%ne12;
|
|
const int i1 = i13*ne12*ne11 + i12*ne11;
|
|
|
|
cl_int x_offset = 0;
|
|
cl_int y_offset = i1*ne10;
|
|
cl_int d_offset = 0;
|
|
|
|
size_t global = ne00 * ne01;
|
|
cl_int ky = ne10 * ne11;
|
|
|
|
CL_CHECK(clSetKernelArg(mul_f32_cl, 0, sizeof(cl_mem), &d_X));
|
|
CL_CHECK(clSetKernelArg(mul_f32_cl, 1, sizeof(cl_int), &x_offset));
|
|
CL_CHECK(clSetKernelArg(mul_f32_cl, 2, sizeof(cl_mem), &d_Y));
|
|
CL_CHECK(clSetKernelArg(mul_f32_cl, 3, sizeof(cl_int), &y_offset));
|
|
CL_CHECK(clSetKernelArg(mul_f32_cl, 4, sizeof(cl_mem), &d_D));
|
|
CL_CHECK(clSetKernelArg(mul_f32_cl, 5, sizeof(cl_int), &d_offset));
|
|
CL_CHECK(clSetKernelArg(mul_f32_cl, 6, sizeof(cl_int), &ky));
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, mul_f32_cl, 1, NULL, &global, NULL, 1, &ev, NULL));
|
|
|
|
CL_CHECK(clReleaseEvent(ev));
|
|
CL_CHECK(clFinish(queue));
|
|
|
|
// copy dst to host
|
|
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
|
|
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * ne00*ne01, d, 0, NULL, NULL));
|
|
}
|
|
}
|
|
ggml_cl_pool_free(d_X, x_size);
|
|
ggml_cl_pool_free(d_D, d_size);
|
|
}
|
|
|
|
void ggml_cl_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
|
|
ggml_cl_mul_f32(src0, src1, dst);
|
|
}
|
|
|
|
static void ggml_cl_add_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_ASSERT(src1->backend == GGML_BACKEND_TYPE_GPU);
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int64_t ne02 = src0->ne[2];
|
|
const int64_t ne03 = src0->ne[3];
|
|
const int64_t ne10 = src1->ne[0];
|
|
const int64_t ne11 = src1->ne[1];
|
|
const int64_t ne12 = src1->ne[2];
|
|
const int64_t ne13 = src1->ne[3];
|
|
const int nb2 = dst->nb[2];
|
|
const int nb3 = dst->nb[3];
|
|
size_t x_size;
|
|
size_t d_size;
|
|
|
|
cl_mem d_X = ggml_cl_pool_malloc(ne00 * ne01 * sizeof(float), &x_size); // src0
|
|
cl_mem d_Y = (cl_mem) src1->extra; // src1 is already on device, broadcasted.
|
|
cl_mem d_D = ggml_cl_pool_malloc(ne00 * ne01 * sizeof(float), &d_size); // dst
|
|
|
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
cl_event ev;
|
|
|
|
// copy src0 to device
|
|
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, &ev));
|
|
|
|
const int64_t i13 = i03%ne13;
|
|
const int64_t i12 = i02%ne12;
|
|
const int i1 = i13*ne12*ne11 + i12*ne11;
|
|
|
|
cl_int x_offset = 0;
|
|
cl_int y_offset = i1*ne10;
|
|
cl_int d_offset = 0;
|
|
|
|
size_t global = ne00 * ne01;
|
|
cl_int ky = ne10 * ne11;
|
|
|
|
CL_CHECK(clSetKernelArg(add_f32_cl, 0, sizeof(cl_mem), &d_X));
|
|
CL_CHECK(clSetKernelArg(add_f32_cl, 1, sizeof(cl_int), &x_offset));
|
|
CL_CHECK(clSetKernelArg(add_f32_cl, 2, sizeof(cl_mem), &d_Y));
|
|
CL_CHECK(clSetKernelArg(add_f32_cl, 3, sizeof(cl_int), &y_offset));
|
|
CL_CHECK(clSetKernelArg(add_f32_cl, 4, sizeof(cl_mem), &d_D));
|
|
CL_CHECK(clSetKernelArg(add_f32_cl, 5, sizeof(cl_int), &d_offset));
|
|
CL_CHECK(clSetKernelArg(add_f32_cl, 6, sizeof(cl_int), &ky));
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, add_f32_cl, 1, NULL, &global, NULL, 1, &ev, NULL));
|
|
|
|
CL_CHECK(clReleaseEvent(ev));
|
|
CL_CHECK(clFinish(queue));
|
|
|
|
// copy dst to host
|
|
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
|
|
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * ne00*ne01, d, 0, NULL, NULL));
|
|
}
|
|
}
|
|
ggml_cl_pool_free(d_X, x_size);
|
|
ggml_cl_pool_free(d_D, d_size);
|
|
}
|
|
|
|
void ggml_cl_add(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
|
|
ggml_cl_add_f32(src0, src1, dst);
|
|
}
|
|
|
|
static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int64_t ne02 = src0->ne[2];
|
|
const int64_t ne03 = src0->ne[3];
|
|
|
|
const int64_t ne10 = src1->ne[0];
|
|
const int64_t ne11 = src1->ne[1];
|
|
const int64_t ne12 = src1->ne[2];
|
|
const int64_t ne13 = src1->ne[3];
|
|
|
|
const int nb2 = dst->nb[2];
|
|
const int nb3 = dst->nb[3];
|
|
|
|
const int64_t r2 = ne12 / ne02;
|
|
const int64_t r3 = ne13 / ne03;
|
|
|
|
const float alpha = 1.0f;
|
|
const float beta = 0.0f;
|
|
const int x_ne = ne01 * ne00;
|
|
const int y_ne = ne11 * ne10;
|
|
const int d_ne = ne11 * ne01;
|
|
|
|
size_t x_size;
|
|
size_t y_size;
|
|
size_t d_size;
|
|
cl_mem d_X;
|
|
if (src0->backend == GGML_BACKEND_TYPE_GPU) { // NOLINT
|
|
d_X = (cl_mem) src0->extra;
|
|
} else {
|
|
d_X = ggml_cl_pool_malloc(sizeof(float) * x_ne, &x_size);
|
|
}
|
|
cl_mem d_Y = src1->backend == GGML_BACKEND_TYPE_GPU ? (cl_mem) src1->extra : ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size);
|
|
cl_mem d_D = dst->backend == GGML_BACKEND_TYPE_GPU ? (cl_mem) dst->extra : ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
|
|
|
|
size_t x_offset = 0;
|
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
// TODO: copy src0 here when r3>1
|
|
for (int64_t i13 = i03 * r3, e13 = i13 + r3; i13 < e13; i13++) {
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
if (src0->backend == GGML_BACKEND_TYPE_GPU) {
|
|
x_offset = (i03 * ne02 + i02) * x_ne;
|
|
} else {
|
|
// copy src0 to device
|
|
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
|
|
}
|
|
|
|
for (int64_t i12 = i02 * r2, e12 = i12 + r2; i12 < e12; i12++) {
|
|
// copy src1 to device
|
|
if (src1->backend == GGML_BACKEND_TYPE_CPU) {
|
|
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, NULL));
|
|
}
|
|
|
|
CL_CHECK(clFinish(queue));
|
|
|
|
// compute
|
|
cl_event ev_sgemm;
|
|
clblast::StatusCode status = clblast::Gemm<cl_float>(clblast::Layout::kColMajor,
|
|
clblast::Transpose::kYes, clblast::Transpose::kNo,
|
|
ne01, ne11, ne10,
|
|
alpha,
|
|
d_X, x_offset, ne00,
|
|
d_Y, 0, ne10,
|
|
beta,
|
|
d_D, 0, ne01,
|
|
&queue, &ev_sgemm);
|
|
|
|
if (status != clblast::StatusCode::kSuccess) {
|
|
GGML_ASSERT(false);
|
|
}
|
|
|
|
// copy dst to host
|
|
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
|
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
|
|
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (src0->backend != GGML_BACKEND_TYPE_GPU) {
|
|
ggml_cl_pool_free(d_X, x_size);
|
|
}
|
|
if (src1->backend != GGML_BACKEND_TYPE_GPU) {
|
|
ggml_cl_pool_free(d_Y, y_size);
|
|
}
|
|
if (dst->backend != GGML_BACKEND_TYPE_GPU) {
|
|
ggml_cl_pool_free(d_D, d_size);
|
|
}
|
|
}
|
|
|
|
static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t wsize) {
|
|
GGML_ASSERT(fp16_support);
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int64_t ne02 = src0->ne[2];
|
|
const int64_t ne03 = src0->ne[3];
|
|
|
|
const int64_t ne10 = src1->ne[0];
|
|
const int64_t ne11 = src1->ne[1];
|
|
const int64_t ne12 = src1->ne[2];
|
|
const int64_t ne13 = src1->ne[3];
|
|
|
|
const int nb10 = src1->nb[0];
|
|
const int nb11 = src1->nb[1];
|
|
const int nb12 = src1->nb[2];
|
|
const int nb13 = src1->nb[3];
|
|
|
|
const int nb2 = dst->nb[2];
|
|
const int nb3 = dst->nb[3];
|
|
|
|
const int64_t r2 = ne12 / ne02;
|
|
const int64_t r3 = ne13 / ne03;
|
|
|
|
const ggml_fp16_t alpha = ggml_fp32_to_fp16(1.0f);
|
|
const ggml_fp16_t beta = ggml_fp32_to_fp16(0.0f);
|
|
const int x_ne = ne01 * ne00;
|
|
const int y_ne = ne11 * ne10;
|
|
const int d_ne = ne11 * ne01;
|
|
|
|
GGML_ASSERT(wsize >= sizeof(ggml_fp16_t) * y_ne);
|
|
GGML_ASSERT(wsize >= sizeof(ggml_fp16_t) * d_ne);
|
|
ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata;
|
|
|
|
size_t x_size;
|
|
size_t y_size;
|
|
size_t d_size;
|
|
cl_mem d_X;
|
|
if (src0->backend == GGML_BACKEND_TYPE_GPU) { // NOLINT
|
|
d_X = (cl_mem) src0->extra;
|
|
} else {
|
|
d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size);
|
|
}
|
|
cl_mem d_Y = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * y_ne, &y_size);
|
|
cl_mem d_D = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * d_ne, &d_size);
|
|
|
|
bool src1_cont_rows = nb10 == sizeof(float);
|
|
bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float);
|
|
|
|
size_t x_offset = 0;
|
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
// TODO: copy src0 here when r3>1
|
|
for (int64_t i13 = i03 * r3, e13 = i13 + r3; i13 < e13; i13++) {
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
if (src0->backend == GGML_BACKEND_TYPE_GPU) {
|
|
x_offset = (i03 * ne02 + i02) * x_ne;
|
|
} else {
|
|
// copy src0 to device
|
|
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
|
|
}
|
|
|
|
// FIXME: convert on device
|
|
|
|
for (int64_t i12 = i02 * r2, e12 = i12 + r2; i12 < e12; i12++) {
|
|
// convert src1 to fp16
|
|
// TODO: use multiple threads
|
|
char * src1i = (char *) src1->data + i13*nb13 + i12*nb12;
|
|
if (src1_cont_rows) {
|
|
if (src1_cont_cols) {
|
|
ggml_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11);
|
|
}
|
|
else {
|
|
for (int64_t i11 = 0; i11 < ne11; i11++) {
|
|
ggml_fp32_to_fp16_row((float *) (src1i + i11*nb11), tmp + i11*ne10, ne10);
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
for (int64_t i11 = 0; i11 < ne11; i11++) {
|
|
for (int64_t i10 = 0; i10 < ne10; i10++) {
|
|
// very slow due to no inlining
|
|
tmp[i11*ne10 + i10] = ggml_fp32_to_fp16(*(float *) (src1i + i11*nb11 + i10*nb10));
|
|
}
|
|
}
|
|
}
|
|
|
|
// copy src1 to device
|
|
CL_CHECK(clEnqueueWriteBuffer(queue, d_Y, false, 0, sizeof(ggml_fp16_t) * y_ne, tmp, 0, NULL, NULL));
|
|
|
|
CL_CHECK(clFinish(queue));
|
|
|
|
// compute
|
|
cl_event ev_sgemm;
|
|
clblast::StatusCode status = clblast::Gemm<cl_half>(clblast::Layout::kColMajor,
|
|
clblast::Transpose::kYes, clblast::Transpose::kNo,
|
|
ne01, ne11, ne10,
|
|
alpha,
|
|
d_X, x_offset, ne00,
|
|
d_Y, 0, ne10,
|
|
beta,
|
|
d_D, 0, ne01,
|
|
&queue, &ev_sgemm);
|
|
|
|
if (status != clblast::StatusCode::kSuccess) {
|
|
GGML_ASSERT(false);
|
|
}
|
|
|
|
// copy dst to host, then convert to float
|
|
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
|
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(ggml_fp16_t) * d_ne, tmp, 1, &ev_sgemm, NULL));
|
|
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
|
|
ggml_fp16_to_fp32_row(tmp, d, d_ne);
|
|
} else {
|
|
// FIXME: convert dst to fp32 on device
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (src0->backend != GGML_BACKEND_TYPE_GPU) {
|
|
ggml_cl_pool_free(d_X, x_size);
|
|
}
|
|
ggml_cl_pool_free(d_Y, y_size);
|
|
ggml_cl_pool_free(d_D, d_size);
|
|
}
|
|
|
|
static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int64_t ne02 = src0->ne[2];
|
|
const int64_t ne03 = src0->ne[3];
|
|
|
|
const int64_t ne10 = src1->ne[0];
|
|
const int64_t ne11 = src1->ne[1];
|
|
const int64_t ne12 = src1->ne[2];
|
|
const int64_t ne13 = src1->ne[3];
|
|
|
|
const int nb2 = dst->nb[2];
|
|
const int nb3 = dst->nb[3];
|
|
const ggml_type type = src0->type;
|
|
const bool mul_mat_vec = ne11 == 1 && ne00%2 == 0;
|
|
|
|
const int64_t r2 = ne12 / ne02;
|
|
const int64_t r3 = ne13 / ne03;
|
|
|
|
const float alpha = 1.0f;
|
|
const float beta = 0.0f;
|
|
const int x_ne = ne01 * ne00;
|
|
const int y_ne = ne11 * ne10;
|
|
const int d_ne = ne11 * ne01;
|
|
const int x_bps = x_ne / ggml_blck_size(type); // blocks per 2D slice
|
|
const size_t q_sz = ggml_type_size(type) * x_bps;
|
|
|
|
size_t x_size;
|
|
size_t y_size;
|
|
size_t d_size;
|
|
size_t q_size;
|
|
cl_mem d_X;
|
|
if (!mul_mat_vec) {
|
|
d_X = ggml_cl_pool_malloc(sizeof(float) * x_ne, &x_size);
|
|
}
|
|
cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size);
|
|
cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
|
|
cl_mem d_Q;
|
|
if (src0->backend == GGML_BACKEND_TYPE_CPU) {
|
|
d_Q = ggml_cl_pool_malloc(q_sz, &q_size);
|
|
}
|
|
|
|
cl_kernel* to_fp32_cl = ggml_get_to_fp32_cl(type);
|
|
cl_kernel* dmmv = ggml_get_dequantize_mul_mat_vec_cl(type);
|
|
GGML_ASSERT(to_fp32_cl != nullptr);
|
|
|
|
const size_t global_denom = ggml_cl_global_denom(type);
|
|
const size_t local = mul_mat_vec ? CL_DMMV_LOCAL_SIZE : ggml_cl_local_size(type);
|
|
|
|
size_t ev_idx = 0;
|
|
std::vector<cl_event> events;
|
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
// TODO: copy and dequantize src0 here when r3>1
|
|
for (int64_t i13 = i03 * r3, e13 = i13 + r3; i13 < e13; i13++) {
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
// copy src0 to device if necessary
|
|
if (src0->backend == GGML_BACKEND_TYPE_CPU) {
|
|
events.emplace_back();
|
|
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, events.data() + ev_idx++));
|
|
} else if (src0->backend == GGML_BACKEND_TYPE_GPU) {
|
|
d_Q = (cl_mem) src0->extra;
|
|
} else {
|
|
GGML_ASSERT(false);
|
|
}
|
|
|
|
if (!mul_mat_vec) {
|
|
// convert src0 to fp32 on device
|
|
const size_t global = x_ne / global_denom;
|
|
const size_t offset = src0->backend == GGML_BACKEND_TYPE_GPU ? (i03 * ne02 + i02) * x_bps : 0;
|
|
CL_CHECK(clSetKernelArg(*to_fp32_cl, 0, sizeof(cl_mem), &d_Q));
|
|
CL_CHECK(clSetKernelArg(*to_fp32_cl, 1, sizeof(cl_mem), &d_X));
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, &offset, &global, local > 0 ? &local : NULL, events.size(), !events.empty() ? events.data() : NULL, NULL));
|
|
}
|
|
|
|
for (int64_t i12 = i02 * r2, e12 = i12 + r2; i12 < e12; i12++) {
|
|
if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel
|
|
// copy src1 to device
|
|
events.emplace_back();
|
|
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, events.data() + ev_idx++));
|
|
|
|
// compute
|
|
const size_t global = ne01 * local;
|
|
const size_t offset = src0->backend == GGML_BACKEND_TYPE_GPU ? (i03 * ne02 + i02) * x_bps : 0;
|
|
const cl_int ncols = ne00;
|
|
events.emplace_back();
|
|
CL_CHECK(clSetKernelArg(*dmmv, 0, sizeof(cl_mem), &d_Q));
|
|
CL_CHECK(clSetKernelArg(*dmmv, 1, sizeof(float) * local, NULL));
|
|
CL_CHECK(clSetKernelArg(*dmmv, 2, sizeof(cl_mem), &d_Y));
|
|
CL_CHECK(clSetKernelArg(*dmmv, 3, sizeof(cl_mem), &d_D));
|
|
CL_CHECK(clSetKernelArg(*dmmv, 4, sizeof(cl_int), &ncols));
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, *dmmv, 1, &offset, &global, &local, events.size() - 1, events.data(), events.data() + ev_idx++));
|
|
} else { // CLBlast matrix matrix multiplication
|
|
// copy src1 to device
|
|
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, NULL));
|
|
|
|
// wait for conversion
|
|
CL_CHECK(clFinish(queue));
|
|
|
|
// compute
|
|
events.emplace_back();
|
|
clblast::StatusCode status = clblast::Gemm<cl_float>(clblast::Layout::kColMajor,
|
|
clblast::Transpose::kYes, clblast::Transpose::kNo,
|
|
ne01, ne11, ne10,
|
|
alpha,
|
|
d_X, 0, ne00,
|
|
d_Y, 0, ne10,
|
|
beta,
|
|
d_D, 0, ne01,
|
|
&queue, events.data() + ev_idx++);
|
|
|
|
if (status != clblast::StatusCode::kSuccess) {
|
|
GGML_ASSERT(false);
|
|
}
|
|
}
|
|
|
|
// copy dst to host
|
|
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
|
|
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &events[events.size() - 1], NULL));
|
|
for (auto *event : events) {
|
|
clReleaseEvent(event);
|
|
}
|
|
|
|
ev_idx = 0;
|
|
events.clear();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!mul_mat_vec) {
|
|
ggml_cl_pool_free(d_X, x_size);
|
|
}
|
|
ggml_cl_pool_free(d_Y, y_size);
|
|
ggml_cl_pool_free(d_D, d_size);
|
|
if (src0->backend == GGML_BACKEND_TYPE_CPU) {
|
|
ggml_cl_pool_free(d_Q, q_size);
|
|
}
|
|
}
|
|
|
|
|
|
bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, const struct ggml_tensor * dst) {
|
|
const int64_t ne10 = src1->ne[0];
|
|
|
|
const int64_t ne0 = dst->ne[0];
|
|
const int64_t ne1 = dst->ne[1];
|
|
|
|
// TODO: find the optimal values for these
|
|
if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
|
|
src1->type == GGML_TYPE_F32 &&
|
|
dst->type == GGML_TYPE_F32 &&
|
|
((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_TYPE_GPU)) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool ggml_cl_mul_mat_use_f16(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * /* dst */) {
|
|
// If device doesn't support FP16
|
|
if (!fp16_support) {
|
|
return false;
|
|
}
|
|
|
|
size_t src0_sz = ggml_nbytes(src0);
|
|
size_t src1_sz = ggml_nbytes(src1);
|
|
|
|
// mul_mat_q: src0 is converted to fp32 on device
|
|
size_t mul_mat_q_transfer = src0_sz + src1_sz;
|
|
|
|
// mul_mat_f16: src1 is converted to fp16 on cpu
|
|
size_t mul_mat_f16_transfer = src0_sz + sizeof(ggml_fp16_t) * ggml_nelements(src1);
|
|
|
|
// choose the smaller one to transfer to the device
|
|
// TODO: this is not always the best choice due to the overhead of converting to fp16
|
|
return mul_mat_f16_transfer < mul_mat_q_transfer;
|
|
}
|
|
|
|
void ggml_cl_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize) {
|
|
GGML_ASSERT(ggml_cl_can_mul_mat(src0, src1, dst));
|
|
|
|
if (src0->type == GGML_TYPE_F32) {
|
|
ggml_cl_mul_mat_f32(src0, src1, dst);
|
|
}
|
|
else if (src0->type == GGML_TYPE_F16) {
|
|
if (ggml_cl_mul_mat_use_f16(src0, src1, dst)) {
|
|
ggml_cl_mul_mat_f16(src0, src1, dst, wdata, wsize);
|
|
}
|
|
else {
|
|
ggml_cl_mul_mat_q_f32(src0, src1, dst);
|
|
}
|
|
}
|
|
else if (ggml_is_quantized(src0->type)) {
|
|
ggml_cl_mul_mat_q_f32(src0, src1, dst);
|
|
}
|
|
else {
|
|
GGML_ASSERT(false);
|
|
}
|
|
}
|
|
|
|
size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
|
|
if (src0->type == GGML_TYPE_F16 && ggml_cl_mul_mat_use_f16(src0, src1, dst)) {
|
|
return sizeof(ggml_fp16_t) * std::max(src1->ne[0] * src1->ne[1], dst->ne[0] * dst->ne[1]);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void ggml_cl_transform_tensor(void * data, ggml_tensor * tensor) {
|
|
const int64_t ne0 = tensor->ne[0];
|
|
const int64_t ne1 = tensor->ne[1];
|
|
const int64_t ne2 = tensor->ne[2];
|
|
const int64_t ne3 = tensor->ne[3];
|
|
|
|
const ggml_type type = tensor->type;
|
|
const size_t s_sz = ggml_type_size(type) * (size_t) (ne0 * ne1 / ggml_blck_size(type));
|
|
const size_t q_sz = s_sz * (size_t) (ne2 * ne3);
|
|
|
|
size_t q_size;
|
|
cl_mem dst = ggml_cl_pool_malloc(q_sz, &q_size);
|
|
|
|
tensor->data = data;
|
|
// copy tensor to device
|
|
size_t offset = 0;
|
|
for (int64_t i3 = 0; i3 < ne3; i3++) {
|
|
for (int64_t i2 = 0; i2 < ne2; i2++) {
|
|
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, dst, offset, tensor, i3, i2, NULL));
|
|
offset += s_sz;
|
|
}
|
|
}
|
|
|
|
CL_CHECK(clFinish(queue));
|
|
|
|
tensor->extra = dst;
|
|
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
|
|
}
|
|
|
|
// ggml-backend
|
|
|
|
// buffer
|
|
|
|
struct ggml_backend_opencl_buffer_context {
|
|
~ggml_backend_opencl_buffer_context() {
|
|
if (buffer) {
|
|
clReleaseMemObject(buffer);
|
|
}
|
|
for (auto * sub_buffer : sub_buffers) {
|
|
clReleaseMemObject(sub_buffer);
|
|
}
|
|
}
|
|
|
|
cl_mem buffer;
|
|
std::vector<cl_mem> sub_buffers;
|
|
};
|
|
|
|
static void * const cl_ptr_base = (void *)(uintptr_t) 0x1000;
|
|
|
|
static const char * ggml_backend_opencl_buffer_get_name(ggml_backend_buffer_t buffer) {
|
|
return "OpenCL";
|
|
|
|
GGML_UNUSED(buffer);
|
|
}
|
|
|
|
static void ggml_backend_opencl_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
|
ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
|
|
delete ctx;
|
|
}
|
|
|
|
static void * ggml_backend_opencl_buffer_get_base(ggml_backend_buffer_t buffer) {
|
|
return cl_ptr_base;
|
|
|
|
GGML_UNUSED(buffer);
|
|
}
|
|
|
|
static void ggml_backend_opencl_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
|
|
if (tensor->view_src != NULL && tensor->view_offs == 0) {
|
|
tensor->extra = tensor->view_src->extra;
|
|
} else {
|
|
ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
|
|
cl_buffer_region region = {(size_t)((char *)tensor->data - (char *)cl_ptr_base), ggml_nbytes(tensor)};
|
|
cl_int err;
|
|
cl_mem sub_buffer = clCreateSubBuffer(ctx->buffer, CL_MEM_READ_WRITE, CL_BUFFER_CREATE_TYPE_REGION, ®ion, &err);
|
|
CL_CHECK(err);
|
|
ctx->sub_buffers.push_back(sub_buffer);
|
|
tensor->extra = sub_buffer;
|
|
}
|
|
tensor->backend = GGML_BACKEND_TYPE_GPU;
|
|
}
|
|
|
|
static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
|
cl_mem tensor_buffer = (cl_mem) tensor->extra;
|
|
CL_CHECK(clEnqueueWriteBuffer(queue, tensor_buffer, true, offset, size, data, 0, NULL, NULL));
|
|
CL_CHECK(clFinish(queue));
|
|
|
|
GGML_UNUSED(buffer);
|
|
}
|
|
|
|
static void ggml_backend_opencl_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
|
cl_mem tensor_buffer = (cl_mem) tensor->extra;
|
|
CL_CHECK(clEnqueueReadBuffer(queue, tensor_buffer, true, offset, size, data, 0, NULL, NULL));
|
|
CL_CHECK(clFinish(queue));
|
|
|
|
GGML_UNUSED(buffer);
|
|
}
|
|
|
|
static void ggml_backend_opencl_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
|
ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
|
|
CL_CHECK(clEnqueueFillBuffer(queue, ctx->buffer, &value, sizeof(value), 0, buffer->size, 0, NULL, NULL));
|
|
CL_CHECK(clFinish(queue));
|
|
}
|
|
|
|
static void ggml_backend_opencl_buffer_reset(ggml_backend_buffer_t buffer) {
|
|
ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
|
|
for (auto * sub_buffer : ctx->sub_buffers) {
|
|
clReleaseMemObject(sub_buffer);
|
|
}
|
|
ctx->sub_buffers.clear();
|
|
}
|
|
|
|
static ggml_backend_buffer_i ggml_backend_opencl_buffer_interface = {
|
|
/* .get_name = */ ggml_backend_opencl_buffer_get_name,
|
|
/* .free_buffer = */ ggml_backend_opencl_buffer_free_buffer,
|
|
/* .get_base = */ ggml_backend_opencl_buffer_get_base,
|
|
/* .init_tensor = */ ggml_backend_opencl_buffer_init_tensor,
|
|
/* .set_tensor = */ ggml_backend_opencl_buffer_set_tensor,
|
|
/* .get_tensor = */ ggml_backend_opencl_buffer_get_tensor,
|
|
/* .cpy_tensor = */ NULL,
|
|
/* .clear = */ ggml_backend_opencl_buffer_clear,
|
|
/* .reset = */ ggml_backend_opencl_buffer_reset,
|
|
};
|
|
|
|
// buffer type
|
|
|
|
static const char * ggml_backend_opencl_buffer_type_name(ggml_backend_buffer_type_t buffer_type) {
|
|
return "OpenCL";
|
|
|
|
GGML_UNUSED(buffer_type);
|
|
}
|
|
|
|
static ggml_backend_buffer_t ggml_backend_opencl_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buffer_type, size_t size) {
|
|
ggml_cl_init();
|
|
|
|
cl_int err;
|
|
cl_mem mem = clCreateBuffer(context, CL_MEM_READ_WRITE, size, NULL, &err);
|
|
if (err != CL_SUCCESS) {
|
|
fprintf(stderr, "%s: failed to allocate %.2f MiB\n", __func__, size / 1024.0 / 1024.0);
|
|
return nullptr;
|
|
}
|
|
|
|
ggml_backend_opencl_buffer_context * ctx = new ggml_backend_opencl_buffer_context{mem, {}};
|
|
|
|
return ggml_backend_buffer_init(buffer_type, ggml_backend_opencl_buffer_interface, ctx, size);
|
|
}
|
|
|
|
static size_t ggml_backend_opencl_buffer_type_get_alignment(ggml_backend_buffer_type_t buffer_type) {
|
|
// FIXME: not thread safe, device may not be initialized yet
|
|
static cl_uint alignment = -1;
|
|
if (alignment == (cl_uint)-1) {
|
|
ggml_cl_init();
|
|
clGetDeviceInfo(device, CL_DEVICE_MEM_BASE_ADDR_ALIGN, sizeof(cl_uint), &alignment, NULL);
|
|
}
|
|
return alignment;
|
|
|
|
GGML_UNUSED(buffer_type);
|
|
}
|
|
|
|
static size_t ggml_backend_opencl_buffer_type_get_max_size(ggml_backend_buffer_type_t buffer_type) {
|
|
static size_t max_size = -1;
|
|
if (max_size == (size_t)-1) {
|
|
ggml_cl_init();
|
|
clGetDeviceInfo(device, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof(size_t), &max_size, NULL);
|
|
}
|
|
return max_size;
|
|
}
|
|
|
|
static bool ggml_backend_opencl_buffer_type_supports_backend(ggml_backend_buffer_type_t buffer_type, ggml_backend_t backend) {
|
|
//return ggml_backend_is_opencl(backend); // opencl must be used through the cpu backend
|
|
return ggml_backend_is_cpu(backend);
|
|
|
|
GGML_UNUSED(buffer_type);
|
|
}
|
|
|
|
static ggml_backend_buffer_type_i ggml_backend_opencl_buffer_type_interface = {
|
|
/* .get_name = */ ggml_backend_opencl_buffer_type_name,
|
|
/* .alloc_buffer = */ ggml_backend_opencl_buffer_type_alloc_buffer,
|
|
/* .get_alignment = */ ggml_backend_opencl_buffer_type_get_alignment,
|
|
/* .get_max_size = */ ggml_backend_opencl_buffer_type_get_max_size,
|
|
/* .get_alloc_size = */ NULL,
|
|
/* .supports_backend = */ ggml_backend_opencl_buffer_type_supports_backend,
|
|
/* .is_host = */ NULL,
|
|
};
|
|
|
|
|
|
ggml_backend_buffer_type_t ggml_backend_opencl_buffer_type() {
|
|
static ggml_backend_buffer_type buffer_type = {
|
|
/* .iface = */ ggml_backend_opencl_buffer_type_interface,
|
|
/* .context = */ nullptr,
|
|
};
|
|
|
|
return &buffer_type;
|
|
}
|
|
|
|
#if 0
|
|
// host buffer type
|
|
|
|
static const char * ggml_backend_opencl_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
|
|
return "CL_Host";
|
|
|
|
GGML_UNUSED(buft);
|
|
}
|
|
|
|
static const char * ggml_backend_opencl_host_buffer_name(ggml_backend_buffer_t buffer) {
|
|
return "CL_Host";
|
|
|
|
GGML_UNUSED(buffer);
|
|
}
|
|
|
|
static void ggml_backend_opencl_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
|
ggml_cl_host_free(buffer->context);
|
|
}
|
|
|
|
static ggml_backend_buffer_t ggml_backend_opencl_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
|
void * ptr = ggml_cl_host_malloc(size);
|
|
|
|
if (ptr == nullptr) {
|
|
// fallback to cpu buffer
|
|
return ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size);
|
|
}
|
|
|
|
ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
|
|
buffer->buft = buft;
|
|
buffer->iface.get_name = ggml_backend_opencl_host_buffer_name;
|
|
buffer->iface.free_buffer = ggml_backend_opencl_host_buffer_free_buffer;
|
|
|
|
return buffer;
|
|
}
|
|
|
|
ggml_backend_buffer_type_t ggml_backend_opencl_host_buffer_type() {
|
|
static struct ggml_backend_buffer_type ggml_backend_opencl_buffer_type_host = {
|
|
/* .iface = */ {
|
|
/* .get_name = */ ggml_backend_opencl_host_buffer_type_name,
|
|
/* .alloc_buffer = */ ggml_backend_opencl_host_buffer_type_alloc_buffer,
|
|
/* .get_alignment = */ ggml_backend_cpu_buffer_type()->iface.get_alignment,
|
|
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
|
|
/* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
|
|
/* .supports_backend = */ ggml_backend_cpu_buffer_type()->iface.supports_backend,
|
|
/* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host,
|
|
},
|
|
/* .context = */ nullptr,
|
|
};
|
|
|
|
return &ggml_backend_opencl_buffer_type_host;
|
|
}
|
|
|
|
// backend
|
|
|
|
static const char * ggml_backend_opencl_name(ggml_backend_t backend) {
|
|
return "OpenCL";
|
|
|
|
GGML_UNUSED(backend);
|
|
}
|
|
|
|
static void ggml_backend_opencl_free(ggml_backend_t backend) {
|
|
GGML_UNUSED(backend);
|
|
}
|
|
|
|
static ggml_backend_buffer_type_t ggml_backend_opencl_get_default_buffer_type(ggml_backend_t backend) {
|
|
return ggml_backend_opencl_buffer_type();
|
|
|
|
GGML_UNUSED(backend);
|
|
}
|
|
|
|
static bool ggml_backend_opencl_graph_compute(ggml_backend_t backend, ggml_cgraph * graph) {
|
|
for (int i = 0; i < graph->n_nodes; ++i) {
|
|
ggml_tensor * node = graph->nodes[i];
|
|
switch (node->op) {
|
|
case GGML_OP_MUL_MAT:
|
|
ggml_cl_mul_mat(node->src[0], node->src[1], node, nullptr, 0);
|
|
break;
|
|
case GGML_OP_MUL:
|
|
ggml_cl_mul(node->src[0], node->src[1], node);
|
|
break;
|
|
default:
|
|
GGML_ASSERT(false);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
|
|
GGML_UNUSED(backend);
|
|
}
|
|
|
|
static bool ggml_backend_opencl_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
|
|
switch (op->op) {
|
|
case GGML_OP_MUL_MAT:
|
|
return ggml_cl_can_mul_mat(op->src[0], op->src[1], op);
|
|
case GGML_OP_MUL:
|
|
// return ggml_can_repeat_rows(op->src[1], op->src[0]);
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
GGML_UNUSED(backend);
|
|
}
|
|
|
|
static ggml_backend_i opencl_backend_i = {
|
|
/* .get_name = */ ggml_backend_opencl_name,
|
|
/* .free = */ ggml_backend_opencl_free,
|
|
/* .get_default_buffer_type = */ ggml_backend_opencl_get_default_buffer_type,
|
|
/* .set_tensor_async = */ NULL,
|
|
/* .get_tensor_async = */ NULL,
|
|
/* .cpy_tensor_from_async = */ NULL,
|
|
/* .cpy_tensor_to_async = */ NULL,
|
|
/* .synchronize = */ NULL,
|
|
/* .graph_plan_create = */ NULL,
|
|
/* .graph_plan_free = */ NULL,
|
|
/* .graph_plan_compute = */ NULL,
|
|
/* .graph_compute = */ ggml_backend_opencl_graph_compute,
|
|
/* .supports_op = */ ggml_backend_opencl_supports_op,
|
|
};
|
|
|
|
ggml_backend_t ggml_backend_opencl_init() {
|
|
ggml_backend_t backend = new ggml_backend {
|
|
/* .interface = */ opencl_backend_i,
|
|
/* .context = */ nullptr
|
|
};
|
|
|
|
return backend;
|
|
}
|
|
|
|
bool ggml_backend_is_opencl(ggml_backend_t backend) {
|
|
return backend && backend->iface.get_name == ggml_backend_opencl_name;
|
|
}
|
|
#endif
|