mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-21 17:19:23 +01:00
3bcd40b3c5
* rwkv6: rename to wkv6 * rwkv6: support avx2 avx512 armv8 armv9 * rwkv6: update cuda file name * rwkv6: rename params * wkv on sycl * sycl: add some ops * sycl: Enhance OP support judgment * wkv6: drop armv9 and tranfer to GGML style ggml-ci * sync : ggml * update the function to use appropriate types * fix define error * Update ggml/src/ggml-cpu.c * add appropriate asserts * move element-wise functions outside * put the declaration outside the loop * rewrite to be more inline with the common pattern for distributing threads * use recommended way GGML_TENSOR_LOCALS --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Diego Devesa <slarengh@gmail.com> Co-authored-by: Plamen Minev <pacominev@gmail.com> Co-authored-by: Yuri Khrustalev <ykhrustalev@users.noreply.github.com> Co-authored-by: Meng, Hengyu <airdldl@163.com>
666 lines
22 KiB
C++
666 lines
22 KiB
C++
//
|
|
// MIT license
|
|
// Copyright (C) 2024 Intel Corporation
|
|
// SPDX-License-Identifier: MIT
|
|
//
|
|
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
|
|
#ifndef GGML_SYCL_COMMON_HPP
|
|
#define GGML_SYCL_COMMON_HPP
|
|
|
|
#include <fstream>
|
|
#include <iostream>
|
|
|
|
#include "dpct/helper.hpp"
|
|
#include "ggml-sycl.h"
|
|
#include "presets.hpp"
|
|
#if GGML_SYCL_DNNL
|
|
#include "dnnl.hpp"
|
|
#include "dnnl_sycl.hpp"
|
|
#endif
|
|
|
|
#define GGML_COMMON_DECL_SYCL
|
|
#define GGML_COMMON_IMPL_SYCL
|
|
#include "ggml-common.h"
|
|
|
|
void* ggml_sycl_host_malloc(size_t size);
|
|
void ggml_sycl_host_free(void* ptr);
|
|
|
|
static int g_ggml_sycl_debug = 0;
|
|
#define GGML_SYCL_DEBUG(...) \
|
|
do { \
|
|
if (g_ggml_sycl_debug) \
|
|
fprintf(stderr, __VA_ARGS__); \
|
|
} while (0)
|
|
|
|
#define CHECK_TRY_ERROR(expr) \
|
|
[&]() { \
|
|
try { \
|
|
expr; \
|
|
return dpct::success; \
|
|
} catch (std::exception const& e) { \
|
|
std::cerr << e.what() << "\nException caught at file:" << __FILE__ \
|
|
<< ", line:" << __LINE__ << ", func:" << __func__ \
|
|
<< std::endl; \
|
|
return dpct::default_error; \
|
|
} \
|
|
}()
|
|
|
|
|
|
#define __SYCL_ARCH__ DPCT_COMPATIBILITY_TEMP
|
|
#define VER_4VEC 610 // todo for hardward optimize.
|
|
#define VER_GEN9 700 // todo for hardward optimize.
|
|
#define VER_GEN12 1000000 // todo for hardward optimize.
|
|
#define VER_GEN13 (VER_GEN12 + 1030) // todo for hardward optimize.
|
|
|
|
#define GGML_SYCL_MAX_NODES 8192 // TODO: adapt to hardwares
|
|
|
|
// define for XMX in Intel GPU
|
|
// TODO: currently, it's not used for XMX really.
|
|
#if !defined(GGML_SYCL_FORCE_MMQ)
|
|
#define SYCL_USE_XMX
|
|
#endif
|
|
|
|
// max batch size to use MMQ kernels when tensor cores are available
|
|
#define MMQ_MAX_BATCH_SIZE 32
|
|
|
|
#if defined(_MSC_VER)
|
|
#pragma warning(disable : 4244 4267) // possible loss of data
|
|
#endif
|
|
|
|
// dmmv = dequantize_mul_mat_vec
|
|
#ifndef GGML_SYCL_DMMV_X
|
|
#define GGML_SYCL_DMMV_X 32
|
|
#endif
|
|
#ifndef GGML_SYCL_MMV_Y
|
|
#define GGML_SYCL_MMV_Y 1
|
|
#endif
|
|
|
|
typedef sycl::queue *queue_ptr;
|
|
|
|
enum ggml_sycl_backend_gpu_mode {
|
|
SYCL_UNSET_GPU_MODE = -1,
|
|
SYCL_SINGLE_GPU_MODE = 0,
|
|
SYCL_MUL_GPU_MODE
|
|
};
|
|
|
|
static_assert(sizeof(sycl::half) == sizeof(ggml_fp16_t), "wrong fp16 size");
|
|
|
|
static void crash() {
|
|
int* ptr = NULL;
|
|
*ptr = 0;
|
|
}
|
|
|
|
[[noreturn]] static void ggml_sycl_error(
|
|
const char* stmt,
|
|
const char* func,
|
|
const char* file,
|
|
const int line,
|
|
const char* msg) {
|
|
fprintf(stderr, "SYCL error: %s: %s\n", stmt, msg);
|
|
fprintf(stderr, " in function %s at %s:%d\n", func, file, line);
|
|
GGML_ABORT("SYCL error");
|
|
}
|
|
|
|
#define SYCL_CHECK(err) \
|
|
do { \
|
|
auto err_ = (err); \
|
|
if (err_ != 0) \
|
|
ggml_sycl_error( \
|
|
#err, \
|
|
__func__, \
|
|
__FILE__, \
|
|
__LINE__, \
|
|
"Meet error in this line code!"); \
|
|
} while (0)
|
|
|
|
#if DPCT_COMPAT_RT_VERSION >= 11100
|
|
#define GGML_SYCL_ASSUME(x) __builtin_assume(x)
|
|
#else
|
|
#define GGML_SYCL_ASSUME(x)
|
|
#endif // DPCT_COMPAT_RT_VERSION >= 11100
|
|
|
|
#ifdef GGML_SYCL_F16
|
|
typedef sycl::half dfloat; // dequantize float
|
|
typedef sycl::half2 dfloat2;
|
|
#else
|
|
typedef float dfloat; // dequantize float
|
|
typedef sycl::float2 dfloat2;
|
|
#endif // GGML_SYCL_F16
|
|
|
|
#define MMVQ_MAX_BATCH_SIZE 8
|
|
|
|
static const int8_t kvalues_iq4nl[16]={-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
|
|
|
|
static int g_all_sycl_device_count = -1;
|
|
static bool g_ggml_backend_sycl_buffer_type_initialized = false;
|
|
|
|
static ggml_sycl_backend_gpu_mode g_ggml_sycl_backend_gpu_mode =
|
|
SYCL_UNSET_GPU_MODE;
|
|
|
|
static void* g_scratch_buffer = nullptr;
|
|
static size_t g_scratch_size = 0; // disabled by default
|
|
static size_t g_scratch_offset = 0;
|
|
|
|
[[noreturn]] static inline void bad_arch(const sycl::stream& stream_ct1) {
|
|
stream_ct1 << "ERROR: ggml-sycl was compiled without support for the "
|
|
"current GPU architecture.\n";
|
|
// __trap();
|
|
std::exit(1);
|
|
|
|
(void)bad_arch; // suppress unused function warning
|
|
}
|
|
|
|
int get_current_device_id();
|
|
|
|
inline dpct::err0 ggml_sycl_set_device(const int device) try {
|
|
|
|
int current_device_id;
|
|
SYCL_CHECK(CHECK_TRY_ERROR(current_device_id = get_current_device_id()));
|
|
|
|
// GGML_SYCL_DEBUG("ggml_sycl_set_device device_id=%d,
|
|
// current_device_id=%d\n", device, current_device);
|
|
if (device == current_device_id) {
|
|
return 0;
|
|
}
|
|
|
|
return CHECK_TRY_ERROR(dpct::select_device(device));
|
|
} catch (sycl::exception const& exc) {
|
|
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
|
<< ", line:" << __LINE__ << std::endl;
|
|
crash();
|
|
std::exit(1);
|
|
}
|
|
|
|
//////////////////////
|
|
|
|
struct ggml_sycl_device_info {
|
|
int device_count;
|
|
|
|
struct sycl_device_info {
|
|
int cc; // compute capability
|
|
// int nsm; // number of streaming multiprocessors
|
|
// size_t smpb; // max. shared memory per block
|
|
bool vmm; // virtual memory support
|
|
size_t total_vram;
|
|
};
|
|
|
|
sycl_device_info devices[GGML_SYCL_MAX_DEVICES] = {};
|
|
|
|
std::array<float, GGML_SYCL_MAX_DEVICES> default_tensor_split = {};
|
|
|
|
int max_work_group_sizes[GGML_SYCL_MAX_DEVICES] = {0};
|
|
};
|
|
|
|
const ggml_sycl_device_info & ggml_sycl_info();
|
|
|
|
struct ggml_sycl_pool {
|
|
virtual ~ggml_sycl_pool() = default;
|
|
|
|
virtual void * alloc(size_t size, size_t * actual_size) = 0;
|
|
virtual void free(void * ptr, size_t size) = 0;
|
|
};
|
|
|
|
template<typename T>
|
|
struct ggml_sycl_pool_alloc {
|
|
ggml_sycl_pool * pool = nullptr;
|
|
T * ptr = nullptr;
|
|
size_t actual_size = 0;
|
|
|
|
explicit ggml_sycl_pool_alloc(ggml_sycl_pool & pool) : pool(&pool) {
|
|
}
|
|
|
|
ggml_sycl_pool_alloc(ggml_sycl_pool & pool, size_t size) : pool(&pool) {
|
|
alloc(size);
|
|
}
|
|
|
|
~ggml_sycl_pool_alloc() {
|
|
if (ptr != nullptr) {
|
|
pool->free(ptr, actual_size);
|
|
}
|
|
}
|
|
|
|
// size is in number of elements
|
|
T * alloc(size_t size) {
|
|
GGML_ASSERT(pool != nullptr);
|
|
GGML_ASSERT(ptr == nullptr);
|
|
ptr = (T *) pool->alloc(size * sizeof(T), &this->actual_size);
|
|
return ptr;
|
|
}
|
|
|
|
T * alloc(ggml_sycl_pool & pool, size_t size) {
|
|
this->pool = &pool;
|
|
return alloc(size);
|
|
}
|
|
|
|
T * get() {
|
|
return ptr;
|
|
}
|
|
|
|
ggml_sycl_pool_alloc() = default;
|
|
ggml_sycl_pool_alloc(const ggml_sycl_pool_alloc &) = delete;
|
|
ggml_sycl_pool_alloc(ggml_sycl_pool_alloc &&) = delete;
|
|
ggml_sycl_pool_alloc& operator=(const ggml_sycl_pool_alloc &) = delete;
|
|
ggml_sycl_pool_alloc& operator=(ggml_sycl_pool_alloc &&) = delete;
|
|
};
|
|
|
|
// backend interface
|
|
|
|
struct ggml_tensor_extra_gpu {
|
|
void* data_device[GGML_SYCL_MAX_DEVICES]; // 1 pointer for each device for split
|
|
// tensors
|
|
dpct::event_ptr events[GGML_SYCL_MAX_DEVICES]
|
|
[GGML_SYCL_MAX_STREAMS]; // events for synchronizing multiple GPUs
|
|
};
|
|
|
|
struct ggml_backend_sycl_context {
|
|
int device;
|
|
std::string name;
|
|
|
|
queue_ptr qptrs[GGML_SYCL_MAX_DEVICES][GGML_SYCL_MAX_STREAMS] = { { nullptr } };
|
|
|
|
explicit ggml_backend_sycl_context(int device) :
|
|
device(device),
|
|
name(GGML_SYCL_NAME + std::to_string(device)) {
|
|
}
|
|
|
|
queue_ptr stream(int device, int stream) {
|
|
if (qptrs[device][stream] == nullptr) {
|
|
qptrs[device][stream] = &(dpct::get_device(device).default_queue());
|
|
}
|
|
return qptrs[device][stream];
|
|
}
|
|
|
|
queue_ptr stream() {
|
|
return stream(device, 0);
|
|
}
|
|
|
|
#if GGML_SYCL_DNNL
|
|
dnnl::engine make_engine(sycl::queue* q) {
|
|
// Get the device associated with the queue
|
|
sycl::device dev = q->get_device();
|
|
// Get the context associated with the queue
|
|
sycl::context ctx = q->get_context();
|
|
const dnnl::engine eng = dnnl::sycl_interop::make_engine(dev, ctx);
|
|
return eng;
|
|
}
|
|
|
|
std::unordered_map<sycl::queue*, dnnl::stream> stream_map;
|
|
std::unordered_map<sycl::queue*, dnnl::engine> engine_map;
|
|
dnnl::stream stream_dnnl(int device, int _stream) {
|
|
auto q = stream(device, _stream);
|
|
return stream_dnnl(q);
|
|
}
|
|
dnnl::engine engine_dnnl(sycl::queue* qptr) {
|
|
auto it = engine_map.find(qptr);
|
|
if (it == engine_map.end()) {
|
|
auto eng = make_engine(qptr);
|
|
engine_map[qptr] = eng;
|
|
return eng;
|
|
}
|
|
else
|
|
{
|
|
return it->second;
|
|
}
|
|
}
|
|
dnnl::stream stream_dnnl(sycl::queue* qptr) {
|
|
auto it = stream_map.find(qptr);
|
|
if (it == stream_map.end()) {
|
|
auto eng = engine_dnnl(qptr);
|
|
auto stream = dnnl::sycl_interop::make_stream(eng, *qptr);
|
|
stream_map[qptr] = stream;
|
|
return stream;
|
|
}
|
|
else
|
|
{
|
|
return it->second;
|
|
}
|
|
}
|
|
dnnl::stream stream_dnnl() {
|
|
return stream_dnnl(device, 0);
|
|
}
|
|
#endif
|
|
|
|
// pool
|
|
std::unique_ptr<ggml_sycl_pool> pools[GGML_SYCL_MAX_DEVICES];
|
|
|
|
static std::unique_ptr<ggml_sycl_pool> new_pool_for_device(queue_ptr qptr, int device);
|
|
|
|
ggml_sycl_pool & pool(int device) {
|
|
if (pools[device] == nullptr) {
|
|
pools[device] = new_pool_for_device(stream(device,0), device);
|
|
}
|
|
return *pools[device];
|
|
}
|
|
|
|
ggml_sycl_pool & pool() {
|
|
return pool(device);
|
|
}
|
|
};
|
|
|
|
// common device functions
|
|
|
|
static __dpct_inline__ float warp_reduce_sum(float x,
|
|
const sycl::nd_item<3>& item_ct1) {
|
|
#pragma unroll
|
|
for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
|
|
/*
|
|
DPCT1096:98: The right-most dimension of the work-group used in the SYCL
|
|
kernel that calls this function may be less than "32". The function
|
|
"dpct::permute_sub_group_by_xor" may return an unexpected result on the
|
|
CPU device. Modify the size of the work-group to ensure that the value
|
|
of the right-most dimension is a multiple of "32".
|
|
*/
|
|
x += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), x, mask);
|
|
}
|
|
return x;
|
|
}
|
|
|
|
static __dpct_inline__ sycl::float2
|
|
warp_reduce_sum(sycl::float2 a, const sycl::nd_item<3>& item_ct1) {
|
|
#pragma unroll
|
|
for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
|
|
a.x() += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), a.x(),
|
|
mask);
|
|
a.y() += dpct::permute_sub_group_by_xor(item_ct1.get_sub_group(), a.y(),
|
|
mask);
|
|
}
|
|
return a;
|
|
}
|
|
|
|
static __dpct_inline__ float warp_reduce_max(float x,
|
|
const sycl::nd_item<3>& item_ct1) {
|
|
#pragma unroll
|
|
for (int mask = WARP_SIZE / 2; mask > 0; mask >>= 1) {
|
|
/*
|
|
DPCT1096:97: The right-most dimension of the work-group used in the SYCL
|
|
kernel that calls this function may be less than "32". The function
|
|
"dpct::permute_sub_group_by_xor" may return an unexpected result on the
|
|
CPU device. Modify the size of the work-group to ensure that the value
|
|
of the right-most dimension is a multiple of "32".
|
|
*/
|
|
x = sycl::fmax(x, dpct::permute_sub_group_by_xor(
|
|
item_ct1.get_sub_group(), x, mask));
|
|
}
|
|
return x;
|
|
}
|
|
|
|
// Helper for vec loading aligned data
|
|
template <typename Tp, int n>
|
|
inline sycl::vec<Tp, n> vec_aligned_load(const Tp* aligned_ptr) {
|
|
return *reinterpret_cast<const sycl::vec<Tp, n>*>(aligned_ptr);
|
|
}
|
|
|
|
// Helper for accessing pointers with no warnings
|
|
template <typename Tp, int dim>
|
|
static __dpct_inline__ Tp* get_pointer(sycl::local_accessor<Tp, dim> acc) {
|
|
return acc.template get_multi_ptr<sycl::access::decorated::no>().get();
|
|
}
|
|
|
|
int64_t downsample_sycl_global_range(int64_t accumulate_block_num, int64_t block_size);
|
|
|
|
typedef void (*ggml_sycl_op_flatten_t)(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
|
|
const ggml_tensor *src1,
|
|
ggml_tensor *dst, const float *src0_dd,
|
|
const float *src1_dd, float *dst_dd,
|
|
const queue_ptr &main_stream);
|
|
|
|
template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
|
|
static void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst_t * dst,
|
|
int ne0, int ne1, int ne2, int ne3,
|
|
int ne10, int ne11, int ne12, int ne13,
|
|
/*int s0, */ int s1, int s2, int s3,
|
|
/*int s10,*/ int s11, int s12, int s13,
|
|
const sycl::nd_item<3> &item_ct1) {
|
|
const int i0s = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
|
item_ct1.get_local_id(2);
|
|
const int i1 = (item_ct1.get_local_range(1) * item_ct1.get_group(1) +
|
|
item_ct1.get_local_id(1));
|
|
const int i2 = (item_ct1.get_local_range(0) * item_ct1.get_group(0) +
|
|
item_ct1.get_local_id(0)) /
|
|
ne3;
|
|
const int i3 = (item_ct1.get_local_range(0) * item_ct1.get_group(0) +
|
|
item_ct1.get_local_id(0)) %
|
|
ne3;
|
|
|
|
if (i0s >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
|
|
return;
|
|
}
|
|
|
|
const int i11 = i1 % ne11;
|
|
const int i12 = i2 % ne12;
|
|
const int i13 = i3 % ne13;
|
|
|
|
const size_t i_src0 = i3*s3 + i2*s2 + i1*s1;
|
|
const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
|
|
const size_t i_dst = i_src0;
|
|
|
|
const src0_t * src0_row = src0 + i_src0;
|
|
const src1_t * src1_row = src1 + i_src1;
|
|
dst_t * dst_row = dst + i_dst;
|
|
|
|
for (int i0 = i0s; i0 < ne0;
|
|
i0 += item_ct1.get_local_range(2) * item_ct1.get_group_range(2)) {
|
|
const int i10 = i0 % ne10;
|
|
dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
|
|
}
|
|
}
|
|
|
|
template<float (*bin_op)(const float, const float), typename src0_t, typename src1_t, typename dst_t>
|
|
static void k_bin_bcast_unravel(const src0_t * src0, const src1_t * src1, dst_t * dst,
|
|
int ne0, int ne1, int ne2, int ne3,
|
|
int ne10, int ne11, int ne12, int ne13,
|
|
/*int s0, */ int s1, int s2, int s3,
|
|
/*int s10,*/ int s11, int s12, int s13,
|
|
const sycl::nd_item<3> &item_ct1) {
|
|
|
|
const int i = item_ct1.get_local_range(2) * item_ct1.get_group(2) +
|
|
item_ct1.get_local_id(2);
|
|
|
|
const int i3 = i/(ne2*ne1*ne0);
|
|
const int i2 = (i/(ne1*ne0)) % ne2;
|
|
const int i1 = (i/ne0) % ne1;
|
|
const int i0 = i % ne0;
|
|
|
|
if (i0 >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) {
|
|
return;
|
|
}
|
|
|
|
const int i11 = i1 % ne11;
|
|
const int i12 = i2 % ne12;
|
|
const int i13 = i3 % ne13;
|
|
|
|
const size_t i_src0 = i3*s3 + i2*s2 + i1*s1;
|
|
const size_t i_src1 = i13*s13 + i12*s12 + i11*s11;
|
|
const size_t i_dst = i_src0;
|
|
|
|
const src0_t * src0_row = src0 + i_src0;
|
|
const src1_t * src1_row = src1 + i_src1;
|
|
dst_t * dst_row = dst + i_dst;
|
|
|
|
const int i10 = i0 % ne10;
|
|
dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]);
|
|
}
|
|
|
|
|
|
template<float (*bin_op)(const float, const float)>
|
|
struct bin_bcast_sycl {
|
|
template <typename src0_t, typename src1_t, typename dst_t>
|
|
void operator()(ggml_backend_sycl_context & ctx,
|
|
const struct ggml_tensor *src0,
|
|
const struct ggml_tensor *src1, struct ggml_tensor *dst,
|
|
const src0_t *src0_dd, const src1_t *src1_dd, dst_t *dst_dd,
|
|
queue_ptr stream) {
|
|
|
|
GGML_TENSOR_BINARY_OP_LOCALS
|
|
|
|
int nr0 = ne10/ne0;
|
|
int nr1 = ne11/ne1;
|
|
int nr2 = ne12/ne2;
|
|
int nr3 = ne13/ne3;
|
|
|
|
int nr[4] = { nr0, nr1, nr2, nr3 };
|
|
|
|
// collapse dimensions until first broadcast dimension
|
|
int64_t cne0[] = {ne0, ne1, ne2, ne3};
|
|
int64_t cne1[] = {ne10, ne11, ne12, ne13};
|
|
size_t cnb0[] = {nb0, nb1, nb2, nb3};
|
|
size_t cnb1[] = {nb10, nb11, nb12, nb13};
|
|
auto collapse = [](int64_t cne[]) {
|
|
cne[0] *= cne[1];
|
|
cne[1] = cne[2];
|
|
cne[2] = cne[3];
|
|
cne[3] = 1;
|
|
};
|
|
|
|
auto collapse_nb = [](size_t cnb[], int64_t cne[]) {
|
|
cnb[1] *= cne[1];
|
|
cnb[2] *= cne[2];
|
|
cnb[3] *= cne[3];
|
|
};
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
if (nr[i] != 1) {
|
|
break;
|
|
}
|
|
if (i > 0) {
|
|
collapse_nb(cnb0, cne0);
|
|
collapse_nb(cnb1, cne1);
|
|
collapse(cne0);
|
|
collapse(cne1);
|
|
}
|
|
}
|
|
{
|
|
int64_t ne0 = cne0[0];
|
|
int64_t ne1 = cne0[1];
|
|
int64_t ne2 = cne0[2];
|
|
int64_t ne3 = cne0[3];
|
|
|
|
int64_t ne10 = cne1[0];
|
|
int64_t ne11 = cne1[1];
|
|
int64_t ne12 = cne1[2];
|
|
int64_t ne13 = cne1[3];
|
|
|
|
size_t nb0 = cnb0[0];
|
|
size_t nb1 = cnb0[1];
|
|
size_t nb2 = cnb0[2];
|
|
size_t nb3 = cnb0[3];
|
|
|
|
size_t nb10 = cnb1[0];
|
|
size_t nb11 = cnb1[1];
|
|
size_t nb12 = cnb1[2];
|
|
size_t nb13 = cnb1[3];
|
|
|
|
size_t s0 = nb0 / sizeof(dst_t);
|
|
size_t s1 = nb1 / sizeof(dst_t);
|
|
size_t s2 = nb2 / sizeof(dst_t);
|
|
size_t s3 = nb3 / sizeof(dst_t);
|
|
|
|
size_t s10 = nb10 / sizeof(src1_t);
|
|
size_t s11 = nb11 / sizeof(src1_t);
|
|
size_t s12 = nb12 / sizeof(src1_t);
|
|
size_t s13 = nb13 / sizeof(src1_t);
|
|
|
|
GGML_ASSERT(s0 == 1);
|
|
GGML_ASSERT(s10 == 1);
|
|
|
|
const int block_size = 128;
|
|
|
|
int64_t hne0 = std::max(ne0/2LL, 1LL);
|
|
|
|
sycl::range<3> block_dims(1, 1, 1);
|
|
block_dims[2] = std::min<unsigned int>(hne0, block_size);
|
|
block_dims[1] = std::min<unsigned int>(
|
|
ne1, block_size / (unsigned int)block_dims[2]);
|
|
block_dims[0] = std::min(
|
|
std::min<unsigned int>(
|
|
ne2 * ne3, block_size / (unsigned int)block_dims[2] /
|
|
(unsigned int)block_dims[1]),
|
|
64U);
|
|
|
|
sycl::range<3> block_nums(
|
|
(ne2 * ne3 + block_dims[0] - 1) / block_dims[0],
|
|
(ne1 + block_dims[1] - 1) / block_dims[1],
|
|
(hne0 + block_dims[2] - 1) / block_dims[2]);
|
|
|
|
if (block_nums[0] > 65535) {
|
|
// this is the maximum number of blocks in z direction, fallback to 1D grid kernel
|
|
int block_num = (ne0*ne1*ne2*ne3 + block_size - 1) / block_size;
|
|
{
|
|
dpct::has_capability_or_fail(stream->get_device(),
|
|
{sycl::aspect::fp16});
|
|
|
|
stream->parallel_for(
|
|
sycl::nd_range<3>(sycl::range<3>(1, 1, block_num) *
|
|
sycl::range<3>(1, 1, block_size),
|
|
sycl::range<3>(1, 1, block_size)),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
k_bin_bcast_unravel<bin_op>(
|
|
src0_dd, src1_dd, dst_dd, ne0, ne1, ne2, ne3,
|
|
ne10, ne11, ne12, ne13, s1, s2, s3, s11, s12,
|
|
s13, item_ct1);
|
|
});
|
|
}
|
|
} else {
|
|
/*
|
|
DPCT1049:16: The work-group size passed to the SYCL kernel may
|
|
exceed the limit. To get the device limit, query
|
|
info::device::max_work_group_size. Adjust the work-group size if
|
|
needed.
|
|
*/
|
|
dpct::has_capability_or_fail(stream->get_device(),
|
|
{sycl::aspect::fp16});
|
|
|
|
stream->parallel_for(
|
|
sycl::nd_range<3>(block_nums * block_dims, block_dims),
|
|
[=](sycl::nd_item<3> item_ct1) {
|
|
k_bin_bcast<bin_op>(src0_dd, src1_dd, dst_dd, ne0, ne1,
|
|
ne2, ne3, ne10, ne11, ne12, ne13,
|
|
s1, s2, s3, s11, s12, s13,
|
|
item_ct1);
|
|
});
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
template <class op>
|
|
inline void ggml_sycl_op_bin_bcast(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
|
|
const ggml_tensor *src1, ggml_tensor *dst,
|
|
const float *src0_dd, const float *src1_dd,
|
|
float *dst_dd,
|
|
const queue_ptr &main_stream) {
|
|
|
|
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
|
op()(ctx, src0, src1, dst, src0_dd, src1_dd, dst_dd, main_stream);
|
|
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
|
|
op()(ctx, src0, src1, dst, (const sycl::half *)src0_dd, src1_dd,
|
|
(sycl::half *)dst_dd, main_stream);
|
|
} else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
|
|
op()(ctx, src0, src1, dst, (const sycl::half *)src0_dd, src1_dd, dst_dd,
|
|
main_stream);
|
|
} else if (src0->type == GGML_TYPE_I32 && dst->type == GGML_TYPE_I32) {
|
|
op()(ctx, src0, src1, dst, (const int32_t *)src0_dd, (const int32_t *)src1_dd, (int32_t *)dst_dd,
|
|
main_stream);
|
|
} else if (src0->type == GGML_TYPE_I16 && dst->type == GGML_TYPE_I16) {
|
|
op()(ctx, src0, src1, dst, (const int16_t *)src0_dd, (const int16_t *)src1_dd, (int16_t *)dst_dd,
|
|
main_stream);
|
|
} else {
|
|
fprintf(stderr, "%s: unsupported types: dst: %s, src0: %s, src1: %s\n", __func__,
|
|
ggml_type_name(dst->type), ggml_type_name(src0->type), ggml_type_name(src1->type));
|
|
GGML_ABORT("fatal error");
|
|
}
|
|
}
|
|
|
|
|
|
void ggml_sycl_op_flatten(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
|
|
const ggml_tensor *src1, ggml_tensor *dst,
|
|
const ggml_sycl_op_flatten_t op);
|
|
|
|
#endif // GGML_SYCL_COMMON_HPP
|