llama.cpp/ggml/src/ggml-cann.cpp
slaren 2b1f616b20
ggml : reduce hash table reset cost (#8698)
* ggml : reduce hash table reset cost

* fix unreachable code warnings after GGML_ASSERT(false)

* GGML_ASSERT(false) -> GGML_ABORT("fatal error")

* GGML_ABORT use format string
2024-07-27 04:41:55 +02:00

2024 lines
70 KiB
C++

/*
* Copyright (c) 2023-2024 The ggml authors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include "ggml-cann.h"
#include <acl/acl.h>
#include <stdarg.h>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <mutex>
#include "ggml-backend-impl.h"
#include "ggml-cann/aclnn_ops.h"
#include "ggml-cann/common.h"
#define GGML_COMMON_DECL_C
#include "ggml-common.h"
/**
* @brief Default logging callback for GGML.
*
* This function is the default logging callback that logs messages to stderr.
*
* @param level The log level.
* @param msg The log message.
* @param user_data User data passed to the callback.
*/
static void ggml_cann_default_log_callback(enum ggml_log_level level,
const char* msg, void* user_data) {
GGML_UNUSED(level);
GGML_UNUSED(user_data);
fprintf(stderr, "%s", msg);
}
ggml_log_callback ggml_cann_log_callback = ggml_cann_default_log_callback;
void* ggml_cann_log_user_data = NULL;
GGML_API void ggml_backend_cann_log_set_callback(ggml_log_callback log_callback,
void* user_data) {
ggml_cann_log_callback = log_callback;
ggml_cann_log_user_data = user_data;
}
#define GGML_CANN_LOG_INFO(...) ggml_cann_log(GGML_LOG_LEVEL_INFO, __VA_ARGS__)
#define GGML_CANN_LOG_WARN(...) ggml_cann_log(GGML_LOG_LEVEL_WARN, __VA_ARGS__)
#define GGML_CANN_LOG_ERROR(...) \
ggml_cann_log(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
GGML_ATTRIBUTE_FORMAT(2, 3)
/**
* @brief Log a message using the current logging callback.
*
* This function formats a log message and passes it to the current logging
* callback.
*
* @param level The log level.
* @param format The format string for the log message.
* @param ... The arguments for the format string.
*/
static void ggml_cann_log(enum ggml_log_level level, const char* format, ...) {
if (ggml_cann_log_callback != NULL) {
va_list args;
va_start(args, format);
char buffer[128];
int len = vsnprintf(buffer, 128, format, args);
if (len < 128) {
ggml_cann_log_callback(level, buffer, ggml_cann_log_user_data);
} else {
// vsnprintf adds a null terminator
std::vector<char> buffer2(len + 1);
va_end(args);
va_start(args, format);
vsnprintf(&buffer2[0], buffer2.size(), format, args);
ggml_cann_log_callback(level, buffer2.data(),
ggml_cann_log_user_data);
}
va_end(args);
}
}
/**
* @brief Handles CANN errors by printing an error message and aborting.
*
* @param stmt The statement that caused the error.
* @param func The function in which the error occurred.
* @param file The file in which the error occurred.
* @param line The line number where the error occurred.
* @param msg The error message.
*/
[[noreturn]] void ggml_cann_error(const char* stmt, const char* func,
const char* file, int line, const char* msg) {
int32_t id = -1;
aclrtGetDevice(&id);
GGML_CANN_LOG_ERROR("CANN error: %s\n", msg);
GGML_CANN_LOG_ERROR(" current device: %d, in function %s at %s:%d\n", id, func,
file, line);
GGML_CANN_LOG_ERROR(" %s\n", stmt);
// abort with GGML_ASSERT to get a stack trace
GGML_ABORT("CANN error");
}
/**
* @brief Sets the device to be used by CANN.
*
* @param device The device ID to set.
*/
void ggml_cann_set_device(const int32_t device) {
// TODO: uncomment these lines after empty context has fixed.
// int current_device;
// ACL_CHECK(aclrtGetDevice(&current_device));
// if (device == current_device) {
// return;
// }
ACL_CHECK(aclrtSetDevice(device));
}
/**
* @brief Retrieves the current device ID.
*
* @return The current device ID.
*/
int32_t ggml_cann_get_device() {
int32_t id;
ACL_CHECK(aclrtGetDevice(&id));
return id;
}
/**
* @brief Initialize the CANN device information.
*
* This function initializes the CANN device information by obtaining the
* device count and setting the memory allocation granularity for each device.
*
* @return A structure containing the device information.
*/
static ggml_cann_device_info ggml_cann_init() {
ggml_cann_device_info info = {};
aclError err = aclrtGetDeviceCount((uint32_t*)&info.device_count);
if (err != ACL_SUCCESS) {
GGML_CANN_LOG_ERROR("%s: failed to initialize CANN: %s\n",
__func__, aclGetRecentErrMsg());
return info;
}
GGML_ASSERT(info.device_count <= GGML_CANN_MAX_DEVICES);
for (int id = 0; id < info.device_count; ++id) {
aclrtPhysicalMemProp prop = {};
prop.handleType = ACL_MEM_HANDLE_TYPE_NONE;
prop.allocationType = ACL_MEM_ALLOCATION_TYPE_PINNED;
prop.memAttr = ACL_HBM_MEM_HUGE;
prop.location.type = ACL_MEM_LOCATION_TYPE_DEVICE;
prop.location.id = id;
prop.reserve = 0;
ACL_CHECK(aclrtMemGetAllocationGranularity(
&prop, ACL_RT_MEM_ALLOC_GRANULARITY_RECOMMENDED,
&info.devices[id].vmm_granularity));
}
// TODO: add more device info later.
return info;
}
/**
* @brief Retrieve the CANN device information.
*
* This function returns a reference to a structure containing the CANN device
* information. The device information is initialized once and reused on
* subsequent calls.
*
* @return A reference to the structure containing the device information.
*/
const ggml_cann_device_info& ggml_cann_info() {
static ggml_cann_device_info info = ggml_cann_init();
return info;
}
//#define DEBUG_CANN_MALLOC
/**
* @brief A pool of CANN buffers(legacy).
*
* This class manages a pool of CANN buffers for a specific device.
*/
struct ggml_cann_pool_leg : public ggml_cann_pool {
/**
* @brief The maximum number of buffers in the pool.
*/
static const int MAX_BUFFERS = 256;
/**
* @brief The device ID associated with this buffer pool.
*/
int device;
/**
* @brief Structure representing a CANN buffer.
*/
struct ggml_cann_buffer {
void* ptr = nullptr; ///< Pointer to the buffer memory.
size_t size = 0; ///< Size of the buffer.
};
/**
* @brief Array of CANN buffers in the pool.
*/
ggml_cann_buffer buffer_pool[MAX_BUFFERS] = {};
/**
* @brief Total size of all buffers in the pool.
*/
size_t pool_size = 0;
/**
* @brief Constructor to initialize the buffer pool for a specific device.
*
* @param device The device ID to associate with this buffer pool.
*/
explicit ggml_cann_pool_leg(int device) : device(device) {}
/**
* @brief Destructor to free all buffers in the pool.
*/
~ggml_cann_pool_leg() {
ggml_cann_set_device(device);
for (int i = 0; i < MAX_BUFFERS; ++i) {
ggml_cann_buffer& b = buffer_pool[i];
if (b.ptr != nullptr) {
ACL_CHECK(aclrtFree(b.ptr));
pool_size -= b.size;
}
}
GGML_ASSERT(pool_size == 0);
}
/**
* @brief Allocate a buffer of the given size.
*
* @param size The size of the buffer to allocate.
* @param actual_size A pointer to a variable to receive the actual size of
* the allocated buffer.
* @return A pointer to the allocated buffer.
*/
void* alloc(size_t size, size_t* actual_size) override {
#ifdef DEBUG_CANN_MALLOC
int nnz = 0;
size_t max_size = 0;
#endif
size_t best_diff = 1ull << 36;
int ibest = -1;
for (int i = 0; i < MAX_BUFFERS; ++i) {
ggml_cann_buffer& b = buffer_pool[i];
if (b.ptr != nullptr) {
#ifdef DEBUG_CANN_MALLOC
++nnz;
if (b.size > max_size) max_size = b.size;
#endif
if (b.size >= size) {
size_t diff = b.size - size;
if (diff < best_diff) {
best_diff = diff;
ibest = i;
if (!best_diff) {
void* ptr = b.ptr;
*actual_size = b.size;
b.ptr = nullptr;
b.size = 0;
return ptr;
}
}
}
}
}
if (ibest >= 0) {
ggml_cann_buffer& b = buffer_pool[ibest];
void* ptr = b.ptr;
*actual_size = b.size;
b.ptr = nullptr;
b.size = 0;
return ptr;
}
void* ptr;
size_t look_ahead_size = (size_t)(1.05 * size);
look_ahead_size = 256 * ((look_ahead_size + 255) / 256);
ggml_cann_set_device(device);
ACL_CHECK(
aclrtMalloc(&ptr, look_ahead_size, ACL_MEM_MALLOC_HUGE_FIRST));
*actual_size = look_ahead_size;
pool_size += look_ahead_size;
#ifdef DEBUG_CANN_MALLOC
GGML_CANN_LOG_INFO(
"%s[%d]: %d buffers, max_size = %u MB, pool_size = %u MB, "
"requested %u MB\n",
__func__, device, nnz, (uint32_t)(max_size / 1024 / 1024),
(uint32_t)(pool_size / 1024 / 1024),
(uint32_t)(size / 1024 / 1024));
#endif
return ptr;
}
/**
* @brief Free a buffer and return it to the pool.
*
* @param ptr Pointer to the buffer to free.
* @param size Size of the buffer to free.
*/
void free(void* ptr, size_t size) override {
for (int i = 0; i < MAX_BUFFERS; ++i) {
ggml_cann_buffer& b = buffer_pool[i];
if (b.ptr == nullptr) {
b.ptr = ptr;
b.size = size;
return;
}
}
// memory should always buffered. these memory may still needed by
// tasks in stream.
// TODO, fix me.
GGML_ABORT("Cann buffer pool full, increase MAX_CANN_BUFFERS\n");
}
};
/**
* @brief A pool of CANN buffers with virtual memory.
*
* This class manages a pool of CANN buffers with virtual memory for a specific
* device.
*/
struct ggml_cann_pool_vmm : public ggml_cann_pool {
/**
* @brief The maximum size of the virtual memory pool (32 GB).
*/
static const size_t CANN_POOL_VMM_MAX_SIZE = 1ull << 35; // 32 GB
/**
* @brief The device ID associated with this buffer pool.
*/
int device;
/**
* @brief Pointer to the start of the virtual memory pool.
*/
void* pool_addr = 0;
/**
* @brief Amount of virtual memory used in the pool.
*/
size_t pool_used = 0;
/**
* @brief Total size of the virtual memory pool.
*/
size_t pool_size = 0;
/**
* @brief Allocation granularity for the virtual memory pool.
*/
size_t granularity;
/**
* @brief Handles for the physical memory allocated.
*/
std::vector<aclrtDrvMemHandle> handles;
/**
* @brief Offsets for the mapped memory regions.
*/
std::vector<void*> map_offsets;
/**
* @brief Constructor to initialize the buffer pool with virtual memory for
* a specific device.
*
* @param device The device ID to associate with this buffer pool.
*/
explicit ggml_cann_pool_vmm(int device)
: device(device),
granularity(ggml_cann_info().devices[device].vmm_granularity) {}
/**
* @brief Destructor to free all buffers in the virtual memory pool.
*/
~ggml_cann_pool_vmm() {
if (pool_addr != 0) {
for (auto& offset : map_offsets) {
ACL_CHECK(aclrtUnmapMem(offset));
}
for (auto& handle : handles) {
ACL_CHECK(aclrtFreePhysical(handle));
}
ACL_CHECK(aclrtReleaseMemAddress(pool_addr));
}
}
/**
* @brief Allocate a buffer of the given size in the virtual memory pool.
*
* @param size The size of the buffer to allocate.
* @param actual_size A pointer to a variable to receive the actual size of
* the allocated buffer.
* @return A pointer to the allocated buffer.
*/
void* alloc(size_t size, size_t* actual_size) override {
// round up the allocation size to the alignment to ensure that all
// allocations are aligned for all data types
const size_t alignment = 128;
size = alignment * ((size + alignment - 1) / alignment);
size_t avail = pool_size - pool_used;
if (size > avail) {
// round up to the next multiple of the granularity
size_t reserve_size = size - avail;
reserve_size =
granularity * ((reserve_size + granularity - 1) / granularity);
GGML_ASSERT(pool_size + reserve_size <= CANN_POOL_VMM_MAX_SIZE);
// allocate more physical memory
aclrtPhysicalMemProp prop = {};
prop.handleType = ACL_MEM_HANDLE_TYPE_NONE;
prop.allocationType = ACL_MEM_ALLOCATION_TYPE_PINNED;
prop.memAttr = ACL_HBM_MEM_HUGE;
prop.location.type = ACL_MEM_LOCATION_TYPE_DEVICE;
prop.location.id = device;
prop.reserve = 0;
aclrtDrvMemHandle handle;
ACL_CHECK(aclrtMallocPhysical(&handle, reserve_size, &prop, 0));
// reserve virtual address space (if not already reserved)
if (pool_addr == 0) {
ACL_CHECK(aclrtReserveMemAddress(
&pool_addr, CANN_POOL_VMM_MAX_SIZE, 0, NULL, 1));
}
// map at the end of the pool
ACL_CHECK(aclrtMapMem((char*)pool_addr + pool_size, reserve_size, 0,
handle, 0));
handles.push_back(handle);
map_offsets.push_back((char*)pool_addr + pool_size);
// add to the pool
pool_size += reserve_size;
// GGML_CANN_LOG_INFO("cann pool[%d]: size increased to %llu MB (
// reserved %llu MB)\n",
// device, (unsigned long long) (pool_size/1024/1024),
// (unsigned long long) (reserve_size/1024/1024));
}
GGML_ASSERT(pool_addr != 0);
void* ptr = (void*)((char*)pool_addr + pool_used);
*actual_size = size;
pool_used += size;
#ifdef DEBUG_CANN_MALLOC
GGML_CANN_LOG_INFO("cann pool[%d]: allocated %llu bytes at %llx\n", device,
(unsigned long long)size, (unsigned long long)ptr);
#endif
return ptr;
}
/**
* @brief Free a buffer and return it to the virtual memory pool.
*
* @param ptr Pointer to the buffer to free.
* @param size Size of the buffer to free.
*/
void free(void* ptr, size_t size) override {
#ifdef DEBUG_CANN_MALLOC
GGML_CANN_LOG_INFO("cann pool[%d]: freed %llu bytes at %llx\n", device,
(unsigned long long)size, (unsigned long long)ptr);
#endif
pool_used -= size;
// all deallocations must be in reverse order of the allocations
GGML_ASSERT(ptr == (void*)((char*)pool_addr + pool_used));
}
};
/**
* @brief Create a new CANN pool for a specific device.
*
* Factory method to create a new CANN pool object based on the device type.
*
* @param device The device ID for which to create the pool.
* @return A unique pointer to the created CANN pool.
*/
std::unique_ptr<ggml_cann_pool> ggml_backend_cann_context::new_pool_for_device(
int device) {
// return std::unique_ptr<ggml_cann_pool>(new ggml_cann_pool_leg(device));
return std::unique_ptr<ggml_cann_pool>(new ggml_cann_pool_vmm(device));
}
// cann buffer
/**
* @brief Context for managing a CANN buffer associated with a specific device.
*
* This structure holds information about a CANN buffer, including the device
* ID, device pointer, and a name derived from GGML_CANN_NAME and the device ID.
*/
struct ggml_backend_cann_buffer_context {
int32_t device; ///< The device ID associated with this buffer context.
void* dev_ptr =
nullptr; ///< Pointer to the device memory allocated for the buffer.
/**
* @brief Constructor to initialize the CANN buffer context.
*
* @param device The device ID associated with this buffer context.
* @param dev_ptr Pointer to the device memory allocated for the buffer.
*/
ggml_backend_cann_buffer_context(int32_t device, void* dev_ptr)
: device(device),
dev_ptr(dev_ptr) {}
/**
* @brief Destructor to free the device memory allocated for the buffer.
*/
~ggml_backend_cann_buffer_context() { ACL_CHECK(aclrtFree(dev_ptr)); }
};
/**
* @brief Retrieve the name associated with a CANN buffer.
*
* This function returns the name of a CANN buffer, which is stored in the
* context of the buffer.
*
* @param buffer The CANN buffer whose name is to be retrieved.
* @return A pointer to a C-string containing the name of the buffer.
*/
GGML_CALL static const char* ggml_backend_cann_buffer_get_name(
ggml_backend_buffer_t buffer) {
return "CANN";
GGML_UNUSED(buffer);
}
/**
* @brief Check if a buffer is a CANN buffer.
*
* This function checks if a given buffer is a CANN buffer by comparing its
* `get_name` function pointer to `ggml_backend_cann_buffer_get_name`.
*
* @param buffer The buffer to check.
* @return true if the buffer is a CANN buffer, false otherwise.
*/
GGML_CALL static bool ggml_backend_buffer_is_cann(
ggml_backend_buffer_t buffer) {
return buffer->iface.get_name == ggml_backend_cann_buffer_get_name;
}
/**
* @brief Free resources associated with a CANN buffer.
*
* This function frees the resources associated with a CANN buffer, including
* its context.
*
* @param buffer The CANN buffer to free.
*/
GGML_CALL static void ggml_backend_cann_buffer_free_buffer(
ggml_backend_buffer_t buffer) {
ggml_backend_cann_buffer_context* ctx =
(ggml_backend_cann_buffer_context*)buffer->context;
delete ctx;
}
/**
* @brief Retrieve the base pointer of a CANN buffer.
*
* This function returns the base pointer of a CANN buffer, which points to the
* device memory allocated for the buffer.
*
* @param buffer The CANN buffer whose base pointer is to be retrieved.
* @return A pointer to the base of the device memory allocated for the buffer.
*/
GGML_CALL static void* ggml_backend_cann_buffer_get_base(
ggml_backend_buffer_t buffer) {
ggml_backend_cann_buffer_context* ctx =
(ggml_backend_cann_buffer_context*)buffer->context;
return ctx->dev_ptr;
}
/**
* @brief Transform quantized Q4.0 tensor data into a format suitable for CANN
* processing.
*
* This function transforms quantized Q4.0 tensor data into a format suitable
* for CANN processing. It extracts quantization values and scales from the
* source data and prepares them in a format expected by CANN operations.
*
* @param tensor Pointer to the tensor information.
* @param src Pointer to the source data in Q4.0 format.
* @param dst Pointer to the destination buffer where transformed data will be
* stored.
*/
GGML_CALL static void ggml_backend_cann_transform_q4_0(ggml_tensor* tensor,
const void* src,
void* dst) {
GGML_ASSERT(tensor->op == GGML_OP_NONE);
int64_t n_elems = ggml_nelements(tensor);
int64_t groups = n_elems / QK4_0;
size_t quant_bytes = n_elems * sizeof(uint8_t) / 2;
uint8_t* quant_offset = (uint8_t*)dst;
uint16_t* scale_offset = (uint16_t*)((char*)dst + quant_bytes);
for (int i = 0; i < groups; i++) {
const block_q4_0* group =
(const block_q4_0*)((const char*)src + i * sizeof(block_q4_0));
*scale_offset = group->d;
scale_offset++;
// 0-15
for (int j = 0; j < QK4_0 / 2; j += 2) {
(*quant_offset) = (group->qs[j] & 0x0F);
(*quant_offset) |= ((group->qs[j + 1] << 4));
quant_offset++;
}
// 16-31
for (int j = 0; j < QK4_0 / 2; j += 2) {
(*quant_offset) = (group->qs[j] >> 4);
(*quant_offset) |= (group->qs[j + 1] & 0xF0);
quant_offset++;
}
}
// put (uint4b_t -8) into int4b_t
for (quant_offset = (uint8_t*)dst;
quant_offset < (uint8_t*)dst + quant_bytes; quant_offset++) {
(*quant_offset) ^= 0x88;
}
}
/**
* @brief Transform CANN processed data back into quantized Q4.0 format.
*
* This function transforms CANN processed data back into quantized Q4.0 format.
* It reverses the transformation performed by
* ggml_backend_cann_transform_q4_0(), converting the data back into its
* original quantized form.
*
* @param tensor Pointer to the tensor information.
* @param src Pointer to the source buffer containing transformed data.
* @param dst Pointer to the destination buffer where the Q4.0 formatted data
* will be stored.
*/
GGML_CALL static void ggml_backend_cann_transform_back_q4_0(
const ggml_tensor* tensor, void* src, void* dst) {
GGML_ASSERT(tensor->op == GGML_OP_NONE);
int64_t n_elems = ggml_nelements(tensor);
int64_t groups = n_elems / QK4_0;
size_t quant_bytes = n_elems * sizeof(uint8_t) / 2;
uint8_t* quant_offset = (uint8_t*)src;
uint16_t* scale_offset = (uint16_t*)((char*)src + quant_bytes);
for (; quant_offset < (uint8_t*)src + quant_bytes; quant_offset++) {
(*quant_offset) ^= 0x88;
}
quant_offset = (uint8_t*)src;
for (int i = 0; i < groups; i++) {
block_q4_0* group = (block_q4_0*)((char*)dst + i * sizeof(block_q4_0));
group->d = *scale_offset;
scale_offset++;
// 0-15
for (int j = 0; j < QK4_0 / 2; j += 2) {
group->qs[j] = ((*quant_offset) & 0x0F);
group->qs[j + 1] = ((*quant_offset) >> 4);
quant_offset++;
}
// 16-31
for (int j = 0; j < QK4_0 / 2; j += 2) {
group->qs[j] |= ((*quant_offset) << 4);
group->qs[j + 1] |= ((*quant_offset) & 0xF0);
quant_offset++;
}
}
}
/**
* @brief Transform quantized Q8.0 tensor data into a format suitable for CANN
* processing.
*
* This function transforms quantized Q8.0 tensor data into a format suitable
* for CANN processing. It extracts quantization values and scales from the
* source data and prepares them in a format expected by CANN operations.
*
* @param tensor Pointer to the tensor information.
* @param src Pointer to the source data in Q8.0 format.
* @param dst Pointer to the destination buffer where transformed data will be
* stored.
*/
GGML_CALL static void ggml_backend_cann_transform_q8_0(ggml_tensor* tensor,
const void* src,
void* dst) {
int64_t n_elems = ggml_nelements(tensor);
int64_t groups = n_elems / QK8_0;
size_t quant_bytes = n_elems * sizeof(uint8_t);
uint8_t* quant_offset = (uint8_t*)dst;
uint16_t* scale_offset = (uint16_t*)((char*)dst + quant_bytes);
for (int i = 0; i < groups; i++) {
const block_q8_0* group =
(const block_q8_0*)((const char*)src + i * sizeof(block_q8_0));
*scale_offset = group->d;
scale_offset++;
size_t group_quant_size = QK8_0 * sizeof(uint8_t);
memcpy(quant_offset, group->qs, group_quant_size);
quant_offset += group_quant_size;
}
}
/**
* @brief Transform CANN processed data back into quantized Q8.0 format.
*
* This function transforms CANN processed data back into quantized Q8.0 format.
* It reverses the transformation performed by
* ggml_backend_cann_transform_q8_0(), converting the data back into its
* original quantized form.
*
* @param tensor Pointer to the tensor information.
* @param src Pointer to the source buffer containing transformed data.
* @param dst Pointer to the destination buffer where the Q8.0 formatted data
* will be stored.
*/
GGML_CALL static void ggml_backend_cann_transform_back_q8_0(
const ggml_tensor* tensor, const void* src, void* dst) {
int64_t n_elems = ggml_nelements(tensor);
int64_t groups = n_elems / QK8_0;
size_t quant_bytes = n_elems * sizeof(uint8_t);
const uint8_t* quant_offset = (const uint8_t*)src;
const uint16_t* scale_offset =
(const uint16_t*)((const char*)src + quant_bytes);
for (int i = 0; i < groups; i++) {
block_q8_0* group = (block_q8_0*)((char*)dst + i * sizeof(block_q8_0));
group->d = *scale_offset;
scale_offset++;
size_t group_quant_size = QK8_0 * sizeof(uint8_t);
memcpy(group->qs, quant_offset, group_quant_size);
quant_offset += group_quant_size;
}
}
/**
* @brief Transform tensor data based on its type for CANN processing.
*
* This function transforms tensor data based on its quantization type for CANN
* processing. It dispatches the transformation based on the tensor's type to
* specialized functions handling Q4.0 and Q8.0 formats.
*
* @param tensor Pointer to the tensor information.
* @param src Pointer to the source data to be transformed.
* @param dst Pointer to the destination buffer where transformed data will be
* stored.
*/
GGML_CALL static void ggml_backend_cann_transform(ggml_tensor* tensor,
const void* src, void* dst) {
switch (tensor->type) {
case GGML_TYPE_Q4_0:
ggml_backend_cann_transform_q4_0(tensor, src, dst);
break;
case GGML_TYPE_Q8_0:
ggml_backend_cann_transform_q8_0(tensor, src, dst);
break;
default:
break;
}
}
/**
* @brief Transform CANN processed data back into tensor data based on its type.
*
* This function transforms CANN processed data back into tensor data based on
* its quantization type for Q4.0 and Q8.0 formats. It dispatches the
* transformation based on the tensor's type to specialized functions.
*
* @param tensor Pointer to the tensor information.
* @param src Pointer to the source data containing CANN processed data.
* @param dst Pointer to the destination buffer where transformed tensor data
* will be stored.
*/
GGML_CALL static void ggml_backend_cann_transform_back(
const ggml_tensor* tensor, void* src, void* dst) {
switch (tensor->type) {
case GGML_TYPE_Q4_0:
ggml_backend_cann_transform_back_q4_0(tensor, src, dst);
break;
case GGML_TYPE_Q8_0:
ggml_backend_cann_transform_back_q8_0(tensor, src, dst);
break;
default:
break;
}
}
/**
* @brief Check if transformation is needed for a given tensor type.
*
* This function checks if transformation is needed for a given tensor type
* to prepare data for CANN processing.
*
* @param type The tensor type to check.
* @return true if transformation is needed, false otherwise.
*/
GGML_CALL static bool need_transform(ggml_type type) {
switch (type) {
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q8_0:
return true;
default:
return false;
}
}
/**
* @brief Initialize a tensor using data from a CANN buffer.
*
* This function initializes a tensor using data from a CANN buffer.
* It handles special cases such as views and quantization.
*
* @param buffer The CANN buffer from which to initialize the tensor.
* @param tensor Pointer to the tensor to be initialized.
*/
GGML_CALL static void ggml_backend_cann_buffer_init_tensor(
ggml_backend_buffer_t buffer, ggml_tensor* tensor) {
if (tensor->view_src != NULL && tensor->view_offs == 0) {
GGML_ASSERT(tensor->view_src->buffer->buft == buffer->buft);
return;
}
// TODO: can backend doesn't support quantized yet. Just leave the code
// here.
if (ggml_is_quantized(tensor->type)) {
// Initialize padding to 0 to avoid possible NaN values
size_t original_size = ggml_nbytes(tensor);
size_t padded_size =
ggml_backend_buft_get_alloc_size(buffer->buft, tensor);
if (padded_size > original_size && tensor->view_src == nullptr) {
size_t memset_size = padded_size - original_size;
ACL_CHECK(aclrtMemset((char*)tensor->data + original_size,
memset_size, 0, memset_size));
}
}
}
// TODO: need handle tensor which has paddings.
/**
* @brief Set tensor data in a CANN buffer.
*
* This function sets tensor data in a CANN buffer, handling transformations
* if needed based on the tensor's type.
*
* @param buffer The CANN buffer where the tensor data will be set.
* @param tensor Pointer to the tensor whose data will be set.
* @param data Pointer to the source data to be copied into the tensor.
* @param offset Offset in the source data from where to start copying.
* @param size Size of the data to be copied, in bytes.
*/
GGML_CALL static void ggml_backend_cann_buffer_set_tensor(
ggml_backend_buffer_t buffer, ggml_tensor* tensor, const void* data,
size_t offset, size_t size) {
// GGML_ASSERT(size == ggml_nbytes(tensor));
ggml_backend_cann_buffer_context* ctx =
(ggml_backend_cann_buffer_context*)buffer->context;
ggml_cann_set_device(ctx->device);
// TODO: refer to cann(#6017), it use thread's default stream.
// For acl, synchronous functions use this default stream.
// Why aclrtSynchronizeDevice?
if (!need_transform(tensor->type)) {
ACL_CHECK(aclrtMemcpy(tensor->data, size, (const char*)data + offset,
size, ACL_MEMCPY_HOST_TO_DEVICE));
} else {
void* transform_buffer = malloc(size);
ggml_backend_cann_transform(tensor, (const char*)data + offset,
transform_buffer);
#ifndef NDEBUG
void* check_buffer = malloc(size);
ggml_backend_cann_transform_back(tensor, transform_buffer,
check_buffer);
GGML_ASSERT(memcmp((const char*)data + offset, check_buffer, size) ==
0);
free(check_buffer);
#endif
ACL_CHECK(aclrtMemcpy(tensor->data, size, transform_buffer, size,
ACL_MEMCPY_HOST_TO_DEVICE));
free(transform_buffer);
}
}
/**
* @brief Get tensor data from a CANN buffer.
*
* This function retrieves tensor data from a CANN buffer, handling
* transformations if needed based on the tensor's type.
*
* @param buffer The CANN buffer from which to retrieve tensor data.
* @param tensor Pointer to the tensor whose data will be retrieved.
* @param data Pointer to the destination buffer where the tensor data will be
* copied.
* @param offset Offset in the destination buffer where to start copying.
* @param size Size of the data to be copied, in bytes.
*/
GGML_CALL static void ggml_backend_cann_buffer_get_tensor(
ggml_backend_buffer_t buffer, const ggml_tensor* tensor, void* data,
size_t offset, size_t size) {
GGML_ASSERT(size == ggml_nbytes(tensor));
ggml_backend_cann_buffer_context* ctx =
(ggml_backend_cann_buffer_context*)buffer->context;
ggml_cann_set_device(ctx->device);
if (!need_transform(tensor->type)) {
ACL_CHECK(aclrtMemcpy((char*)data + offset, size, tensor->data, size,
ACL_MEMCPY_DEVICE_TO_HOST));
} else {
void* transform_buffer = malloc(size);
ACL_CHECK(aclrtMemcpy(transform_buffer, size, tensor->data, size,
ACL_MEMCPY_DEVICE_TO_HOST));
ggml_backend_cann_transform_back(tensor, transform_buffer,
(char*)data + offset);
free(transform_buffer);
}
}
/**
* @brief Copy tensor data between CANN buffers if possible.
*
* This function copies tensor data between CANN buffers if the source and
* destination buffers are CANN buffers and they meet the necessary conditions
* (same device or devices can access each other).
*
* @param buffer The destination CANN buffer where the tensor data will be
* copied.
* @param src Pointer to the source tensor whose data will be copied.
* @param dst Pointer to the destination tensor where the data will be copied.
* @return true if the copy operation succeeded, false otherwise.
*/
GGML_CALL static bool ggml_backend_cann_buffer_cpy_tensor(
ggml_backend_buffer_t buffer, const ggml_tensor* src, ggml_tensor* dst) {
if (ggml_backend_buffer_is_cann(src->buffer)) {
ggml_backend_cann_buffer_context* src_ctx =
(ggml_backend_cann_buffer_context*)src->buffer->context;
ggml_backend_cann_buffer_context* dst_ctx =
(ggml_backend_cann_buffer_context*)buffer->context;
size_t memcpy_size = ggml_nbytes(src);
// Same device.
if (src_ctx->device == dst_ctx->device) {
ACL_CHECK(aclrtMemcpy((char*)dst->data, memcpy_size,
(const char*)src->data, memcpy_size,
ACL_MEMCPY_DEVICE_TO_DEVICE));
return true;
} else {
// Different device but can access by peer.
int32_t canAccessPeer = 0;
ACL_CHECK(aclrtDeviceCanAccessPeer(&canAccessPeer, src_ctx->device,
dst_ctx->device));
if (canAccessPeer) {
ggml_cann_set_device(src_ctx->device);
ACL_CHECK(aclrtDeviceEnablePeerAccess(dst_ctx->device, 0));
ACL_CHECK(aclrtMemcpy((char*)dst->data, memcpy_size,
(const char*)src->data, memcpy_size,
ACL_MEMCPY_DEVICE_TO_DEVICE));
return true;
}
}
}
return false;
}
/**
* @brief Clear a CANN buffer by setting all its memory to a specified value.
*
* This function clears a CANN buffer by setting all its memory to a specified
* value.
*
* @param buffer The CANN buffer to be cleared.
* @param value The value to which each byte in the buffer will be set.
*/
GGML_CALL static void ggml_backend_cann_buffer_clear(
ggml_backend_buffer_t buffer, uint8_t value) {
ggml_backend_cann_buffer_context* ctx =
(ggml_backend_cann_buffer_context*)buffer->context;
ggml_cann_set_device(ctx->device);
ACL_CHECK(aclrtMemset(ctx->dev_ptr, buffer->size, value, buffer->size));
}
/**
* @brief Interface for a CANN buffer in the backend.
*
* This structure defines function pointers to operations that can be performed
* on a CANN buffer within the backend.
*/
static ggml_backend_buffer_i ggml_backend_cann_buffer_interface = {
/* .get_name = */ ggml_backend_cann_buffer_get_name,
/* .free_buffer = */ ggml_backend_cann_buffer_free_buffer,
/* .get_base = */ ggml_backend_cann_buffer_get_base,
/* .init_tensor = */ ggml_backend_cann_buffer_init_tensor,
/* .set_tensor = */ ggml_backend_cann_buffer_set_tensor,
/* .get_tensor = */ ggml_backend_cann_buffer_get_tensor,
/* .cpy_tensor = */ ggml_backend_cann_buffer_cpy_tensor,
/* .clear = */ ggml_backend_cann_buffer_clear,
/* .reset = */ NULL,
};
// cann buffer type
/**
* @brief Structure representing context information for a specific backend
* buffer type.
*/
struct ggml_backend_cann_buffer_type_context {
int32_t
device; /**< Device identifier associated with the buffer context. */
std::string name; /**< Name associated with the buffer context. */
};
/**
* @brief Retrieves the name associated with a CANN buffer type.
*
* This function returns the descriptive name associated with the specified
* CANN buffer type context.
*
* @param buft Pointer to the buffer type context.
* @return Const pointer to the C-style string containing the name.
*/
GGML_CALL static const char* ggml_backend_cann_buffer_type_name(
ggml_backend_buffer_type_t buft) {
return "CANN";
GGML_UNUSED(buft);
}
/**
* @brief Allocates a new CANN buffer of the specified type and size.
*
* This function allocates a new CANN buffer on the specified device with the
* given size.
*
* @param buft Pointer to the buffer type context.
* @param size Size in bytes of the buffer to allocate.
* @return Pointer to the allocated buffer, or nullptr if allocation fails.
*/
GGML_CALL static ggml_backend_buffer_t
ggml_backend_cann_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft,
size_t size) {
ggml_backend_cann_buffer_type_context* buft_ctx =
(ggml_backend_cann_buffer_type_context*)buft->context;
ggml_cann_set_device(buft_ctx->device);
size = std::max(size, (size_t)1);
void* dev_ptr;
aclError err = aclrtMalloc(&dev_ptr, size, ACL_MEM_MALLOC_HUGE_FIRST);
if (err != ACL_SUCCESS) {
GGML_CANN_LOG_ERROR(
"%s: allocating %.2f MiB on device %d: aclrtMalloc failed: %s\n",
__func__, size / 1024.0 / 1024.0, buft_ctx->device,
aclGetRecentErrMsg());
return nullptr;
}
ggml_backend_cann_buffer_context* ctx =
new ggml_backend_cann_buffer_context(buft_ctx->device, dev_ptr);
return ggml_backend_buffer_init(buft, ggml_backend_cann_buffer_interface,
ctx, size);
}
/**
* @brief Retrieves the memory alignment requirement for CANN buffers of this
* type.
*
* This function returns the alignment requirement in bytes for memory allocated
* by the CANN buffer type.
*
* @param buft Pointer to the buffer type context (unused in this
* implementation).
* @return The alignment requirement in bytes (fixed at 128 bytes for CANN
* buffers).
*/
GGML_CALL static size_t ggml_backend_cann_buffer_type_get_alignment(
ggml_backend_buffer_type_t buft) {
return 128;
GGML_UNUSED(buft);
}
/**
* @brief Calculates the allocation size required for a tensor in a CANN buffer.
*
* Computes the total allocation size needed for storing the tensor's data in a
* CANN buffer, considering any necessary padding or adjustments for quantized
* types.
*
* @param buft Pointer to the buffer type context (unused in this
* implementation).
* @param tensor Pointer to the tensor for which the allocation size is
* calculated.
* @return The total allocation size in bytes required for the tensor in the
* CANN buffer.
*/
GGML_CALL static size_t ggml_backend_cann_buffer_type_get_alloc_size(
ggml_backend_buffer_type_t buft, const ggml_tensor* tensor) {
size_t size = ggml_nbytes(tensor);
int64_t ne0 = tensor->ne[0];
// last line must bigger than 32, because every single op deal at
// least 32 bytes.
// TODO: quantized type?
// int64_t line_size = ne0 * ggml_element_size(tensor);
// int64_t line_size_align_32 = (line_size + 31) & ~31;
// size += (line_size_align_32 - line_size);
// TODO: not support quantized yet.
// TODO: consider un-continue tensor.
if (ggml_is_quantized(tensor->type)) {
if (ne0 % MATRIX_ROW_PADDING != 0) {
size += ggml_row_size(
tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
}
}
return size;
GGML_UNUSED(buft);
}
/**
* @brief Interface for managing CANN buffer types in the GGML backend.
*
* Provides function pointers for allocating, querying properties, and managing
* memory for CANN buffer types in the GGML backend.
*/
static ggml_backend_buffer_type_i ggml_backend_cann_buffer_type_interface = {
/* .get_name = */ ggml_backend_cann_buffer_type_name,
/* .alloc_buffer = */ ggml_backend_cann_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_cann_buffer_type_get_alignment,
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
/* .get_alloc_size = */ ggml_backend_cann_buffer_type_get_alloc_size,
/* .is_host = */ NULL,
};
/**
* @brief Retrieves the CANN buffer type for a specified device.
*
* This function initializes and returns the buffer type interface associated
* with the given device. It ensures thread-safe access using a mutex.
*
* @param device The device index for which to retrieve the buffer type.
* @return A pointer to the buffer type interface for the specified device, or
* nullptr if the device index is out of range.
*/
GGML_CALL ggml_backend_buffer_type_t
ggml_backend_cann_buffer_type(int32_t device) {
static std::mutex mutex;
std::lock_guard<std::mutex> lock(mutex);
if (device >= ggml_backend_cann_get_device_count()) {
return nullptr;
}
static ggml_backend_buffer_type
ggml_backend_cann_buffer_types[GGML_CANN_MAX_DEVICES];
static bool ggml_backend_cann_buffer_type_initialized = false;
if (!ggml_backend_cann_buffer_type_initialized) {
for (int32_t i = 0; i < GGML_CANN_MAX_DEVICES; i++) {
ggml_backend_cann_buffer_types[i] = {
/* .iface = */ ggml_backend_cann_buffer_type_interface,
/* .context = */
new ggml_backend_cann_buffer_type_context{
i, "CANN" + std::to_string(i)},
};
}
ggml_backend_cann_buffer_type_initialized = true;
}
return &ggml_backend_cann_buffer_types[device];
}
/**
* @brief Computes the forward operation for a given tensor using CANN
* operations.
*
* This function selects the appropriate CANN operation based on the type of
* operation specified in the tensor and performs the computation.
*
* @param ctx The CANN context containing necessary resources and
* configurations.
* @param dst The destination tensor where the result of the computation will be
* stored.
* @return true if the computation was successful; false otherwise.
*/
static bool ggml_cann_compute_forward(ggml_backend_cann_context& ctx,
struct ggml_tensor* dst) {
switch (dst->op) {
case GGML_OP_REPEAT:
ggml_cann_repeat(ctx, dst);
break;
case GGML_OP_GET_ROWS:
ggml_cann_get_rows(ctx, dst);
break;
case GGML_OP_DUP:
ggml_cann_dup(ctx, dst);
break;
case GGML_OP_ADD:
ggml_cann_add(ctx, dst);
break;
case GGML_OP_ACC:
ggml_cann_acc(ctx, dst);
break;
case GGML_OP_MUL:
ggml_cann_mul_div<aclnnMulGetWorkspaceSize, aclnnMul>(ctx, dst);
break;
case GGML_OP_DIV:
ggml_cann_mul_div<aclnnDivGetWorkspaceSize, aclnnDiv>(ctx, dst);
break;
case GGML_OP_UNARY:
switch (ggml_get_unary_op(dst)) {
case GGML_UNARY_OP_GELU:
ggml_cann_activation<aclnnGeluGetWorkspaceSize, aclnnGelu>(
ctx, dst);
break;
case GGML_UNARY_OP_SILU:
ggml_cann_activation<aclnnSiluGetWorkspaceSize, aclnnSilu>(
ctx, dst);
break;
// TODO: Use faster gelu??
case GGML_UNARY_OP_GELU_QUICK:
ggml_cann_activation<aclnnGeluGetWorkspaceSize, aclnnGelu>(
ctx, dst);
break;
case GGML_UNARY_OP_TANH:
ggml_cann_activation<aclnnTanhGetWorkspaceSize, aclnnTanh>(
ctx, dst);
break;
case GGML_UNARY_OP_RELU:
ggml_cann_activation<aclnnReluGetWorkspaceSize, aclnnRelu>(
ctx, dst);
break;
case GGML_UNARY_OP_HARDSIGMOID:
ggml_cann_activation<aclnnHardsigmoidGetWorkspaceSize,
aclnnHardsigmoid>(ctx, dst);
break;
case GGML_UNARY_OP_HARDSWISH:
ggml_cann_activation<aclnnHardswishGetWorkspaceSize,
aclnnHardswish>(ctx, dst);
break;
default:
return false;
}
break;
case GGML_OP_NORM:
ggml_cann_norm(ctx, dst);
break;
case GGML_OP_GROUP_NORM:
ggml_cann_group_norm(ctx, dst);
break;
case GGML_OP_CONCAT:
ggml_cann_concat(ctx, dst);
break;
case GGML_OP_UPSCALE:
ggml_cann_upsample_nearest2d(ctx, dst);
break;
case GGML_OP_PAD:
ggml_cann_pad(ctx, dst);
break;
case GGML_OP_ARANGE:
ggml_cann_arange(ctx, dst);
break;
case GGML_OP_TIMESTEP_EMBEDDING:
ggml_cann_timestep_embedding(ctx, dst);
break;
case GGML_OP_LEAKY_RELU:
ggml_cann_leaky_relu(ctx, dst);
break;
case GGML_OP_RMS_NORM:
ggml_cann_rms_norm(ctx, dst);
break;
case GGML_OP_MUL_MAT:
ggml_cann_mul_mat(ctx, dst);
break;
case GGML_OP_MUL_MAT_ID:
return false;
case GGML_OP_SCALE:
ggml_cann_scale(ctx, dst);
break;
case GGML_OP_SQR:
ggml_cann_sqr(ctx, dst);
break;
case GGML_OP_CLAMP:
ggml_cann_clamp(ctx, dst);
break;
case GGML_OP_CPY:
ggml_cann_cpy(ctx, dst);
break;
case GGML_OP_CONT:
ggml_cann_dup(ctx, dst);
break;
case GGML_OP_NONE:
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
case GGML_OP_PERMUTE:
case GGML_OP_TRANSPOSE:
break;
case GGML_OP_DIAG_MASK_INF:
ggml_cann_diag_mask(ctx, dst, -INFINITY);
break;
case GGML_OP_SOFT_MAX:
ggml_cann_softmax(ctx, dst);
break;
case GGML_OP_ROPE:
ggml_cann_rope(ctx, dst);
break;
case GGML_OP_IM2COL:
ggml_cann_im2col(ctx, dst);
break;
case GGML_OP_POOL_2D:
ggml_cann_pool2d(ctx, dst);
break;
case GGML_OP_SUM_ROWS:
ggml_cann_sum_rows(ctx, dst);
break;
case GGML_OP_ARGSORT:
ggml_cann_argsort(ctx, dst);
break;
default:
return false;
}
return true;
}
// backend
/**
* @brief Retrieves the name associated with the CANN backend.
*
* This function returns the name assigned to the CANN backend, which is stored
* in the context of the provided backend structure.
*
* @param backend Pointer to the CANN backend structure.
* @return A pointer to a constant string representing the backend name.
*/
GGML_CALL static const char* ggml_backend_cann_name(ggml_backend_t backend) {
ggml_backend_cann_context* cann_ctx =
(ggml_backend_cann_context*)backend->context;
return cann_ctx->name.c_str();
}
/**
* @brief Frees resources associated with the CANN backend.
*
* This function releases resources associated with the CANN backend context
* and resets the device associated with the backend to its initial state.
*
* @param backend Pointer to the CANN backend structure to be freed.
*/
GGML_CALL static void ggml_backend_cann_free(ggml_backend_t backend) {
ggml_backend_cann_context* cann_ctx =
(ggml_backend_cann_context*)backend->context;
ACL_CHECK(aclrtSynchronizeDevice());
ACL_CHECK(aclrtResetDevice(cann_ctx->device));
// finalize when last backend freed.
if (cann_ctx->device == ggml_backend_cann_get_device_count() - 1) {
ACL_CHECK(aclFinalize());
}
delete cann_ctx;
delete backend;
}
/**
* @brief Retrieves the default buffer type associated with the CANN backend.
*
* This function returns the buffer type specific to the device associated
* with the CANN backend. It is used to allocate buffers for computations
* performed by the backend.
*
* @param backend Pointer to the CANN backend structure.
* @return Pointer to the buffer type structure for the CANN backend.
*/
GGML_CALL static ggml_backend_buffer_type_t
ggml_backend_cann_get_default_buffer_type(ggml_backend_t backend) {
ggml_backend_cann_context* cann_ctx =
(ggml_backend_cann_context*)backend->context;
return ggml_backend_cann_buffer_type(cann_ctx->device);
}
/**
* @brief Sets tensor data asynchronously in the CANN backend.
*
* This function asynchronously sets tensor data in the CANN backend. Depending
* on the tensor type, it may perform data transformations before copying data
* to the device.
*
* @param backend Pointer to the CANN backend structure.
* @param tensor Pointer to the tensor structure to set data for.
* @param data Pointer to the host data to copy to the tensor.
* @param offset Offset in bytes within the host data.
* @param size Size of the data to copy in bytes.
*/
GGML_CALL static void ggml_backend_cann_set_tensor_async(ggml_backend_t backend,
ggml_tensor* tensor,
const void* data,
size_t offset,
size_t size) {
ggml_backend_cann_context* cann_ctx =
(ggml_backend_cann_context*)backend->context;
if (!need_transform(tensor->type)) {
ACL_CHECK(aclrtMemcpyAsync(
tensor->data, size, (const char*)data + offset, size,
ACL_MEMCPY_HOST_TO_DEVICE, cann_ctx->stream()));
} else {
void* transform_buffer = malloc(size);
ggml_backend_cann_transform(tensor, (const char*)data + offset,
transform_buffer);
#ifndef NDEBUG
void* check_buffer = malloc(size);
ggml_backend_cann_transform_back(tensor, transform_buffer,
check_buffer);
GGML_ASSERT(memcmp((const char*)data + offset, check_buffer, size));
free(check_buffer);
#endif
ACL_CHECK(aclrtMemcpyAsync(tensor->data, size, transform_buffer, size,
ACL_MEMCPY_HOST_TO_DEVICE,
cann_ctx->stream()));
ACL_CHECK(aclrtSynchronizeStream(cann_ctx->stream()));
free(transform_buffer);
}
}
GGML_CALL static void ggml_backend_cann_get_tensor_async(
ggml_backend_t backend, const ggml_tensor* tensor, void* data,
size_t offset, size_t size) {
ggml_backend_cann_context* cann_ctx =
(ggml_backend_cann_context*)backend->context;
ggml_backend_buffer_t buf =
tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
GGML_ASSERT(buf->buft == ggml_backend_cann_buffer_type(cann_ctx->device) &&
"unsupported buffer type");
if (!need_transform(tensor->type)) {
ACL_CHECK(aclrtMemcpyAsync((char*)data + offset, size, tensor->data,
size, ACL_MEMCPY_DEVICE_TO_HOST,
cann_ctx->stream()));
} else {
void* transform_buffer = malloc(size);
ACL_CHECK(aclrtMemcpyAsync(transform_buffer, size, tensor->data, size,
ACL_MEMCPY_DEVICE_TO_HOST,
cann_ctx->stream()));
ACL_CHECK(aclrtSynchronizeStream(cann_ctx->stream()));
ggml_backend_cann_transform_back(tensor, transform_buffer,
(char*)data + offset);
free(transform_buffer);
}
}
/**
* @brief Asynchronously copies tensor data between CANN backends.
*
* This function copies tensor data asynchronously between two CANN backends. It
* checks if both tensors reside in CANN buffers and whether the devices support
* peer-to-peer access for direct copying. If not, it returns false.
*
* @param backend_src Pointer to the source CANN backend structure.
* @param backend_dst Pointer to the destination CANN backend structure.
* @param src Pointer to the source tensor to copy data from.
* @param dst Pointer to the destination tensor to copy data to.
* @return true if the copy operation succeeds, false otherwise.
*/
GGML_CALL static bool ggml_backend_cann_cpy_tensor_async(
ggml_backend_t backend_src, ggml_backend_t backend_dst,
const ggml_tensor* src, ggml_tensor* dst) {
GGML_ASSERT(ggml_backend_is_cann(backend_src) ||
ggml_backend_is_cann(backend_dst));
if (!ggml_backend_buffer_is_cann(src->buffer) ||
!ggml_backend_buffer_is_cann(dst->buffer)) {
return false;
}
ggml_backend_buffer_t buf_src =
src->view_src ? src->view_src->buffer : src->buffer;
ggml_backend_buffer_t buf_dst =
dst->view_src ? dst->view_src->buffer : dst->buffer;
ggml_backend_cann_context* cann_ctx_src =
(ggml_backend_cann_context*)backend_src->context;
ggml_backend_cann_context* cann_ctx_dst =
(ggml_backend_cann_context*)backend_dst->context;
size_t copy_size = ggml_nbytes(dst);
if (backend_src != backend_dst) {
ggml_backend_cann_buffer_context* buf_ctx_src =
(ggml_backend_cann_buffer_context*)buf_src->context;
ggml_backend_cann_buffer_context* buf_ctx_dst =
(ggml_backend_cann_buffer_context*)buf_dst->context;
GGML_ASSERT(cann_ctx_src->device == buf_ctx_src->device);
GGML_ASSERT(cann_ctx_dst->device == buf_ctx_dst->device);
int32_t canAccessPeer = 0;
ACL_CHECK(aclrtDeviceCanAccessPeer(&canAccessPeer, cann_ctx_src->device,
cann_ctx_dst->device));
if (!canAccessPeer) {
return false;
}
ggml_cann_set_device(cann_ctx_src->device);
ACL_CHECK(aclrtDeviceEnablePeerAccess(cann_ctx_dst->device, 0));
ACL_CHECK(aclrtMemcpyAsync(dst->data, copy_size, src->data, copy_size,
ACL_MEMCPY_DEVICE_TO_DEVICE,
cann_ctx_dst->stream()));
// record event on src stream
if (!cann_ctx_src->copy_event) {
ACL_CHECK(aclrtCreateEvent(&cann_ctx_src->copy_event));
}
ACL_CHECK(
aclrtRecordEvent(cann_ctx_src->copy_event, cann_ctx_src->stream()));
// wait on dst stream for the copy to complete
ACL_CHECK(aclrtStreamWaitEvent(cann_ctx_dst->stream(),
cann_ctx_src->copy_event));
} else {
// src and dst are on the same backend
ACL_CHECK(aclrtMemcpyAsync(dst->data, copy_size, src->data, copy_size,
ACL_MEMCPY_DEVICE_TO_DEVICE,
cann_ctx_dst->stream()));
}
return true;
}
/**
* @brief Synchronizes a CANN backend.
*
* This function synchronizes the specified CANN backend by waiting for all
* operations in its associated stream to complete.
*
* @param backend Pointer to the CANN backend structure to synchronize.
*/
GGML_CALL static void ggml_backend_cann_synchronize(ggml_backend_t backend) {
ggml_backend_cann_context* cann_ctx =
(ggml_backend_cann_context*)backend->context;
ggml_cann_set_device(cann_ctx->device);
ACL_CHECK(aclrtSynchronizeStream(cann_ctx->stream()));
}
/**
* @brief Computes a computational graph using a CANN backend.
*
* This function computes the operations defined in the computational graph
* using the specified CANN backend.
*
* @param backend Pointer to the CANN backend structure to use for computation.
* @param cgraph Pointer to the computational graph structure containing nodes
* representing operations to be computed.
* @return enum ggml_status Returns GGML_STATUS_SUCCESS if computation
* completes successfully, otherwise an appropriate error status.
*/
GGML_CALL static enum ggml_status ggml_backend_cann_graph_compute(
ggml_backend_t backend, ggml_cgraph* cgraph) {
ggml_backend_cann_context* cann_ctx =
(ggml_backend_cann_context*)backend->context;
ggml_cann_set_device(cann_ctx->device);
for (int i = 0; i < cgraph->n_nodes; i++) {
ggml_tensor* node = cgraph->nodes[i];
if (ggml_is_empty(node) || node->op == GGML_OP_NONE) {
continue;
}
bool ok = ggml_cann_compute_forward(*cann_ctx, node);
if (!ok) {
GGML_CANN_LOG_ERROR("%s: error: op not supported %s (%s)\n", __func__,
node->name, ggml_op_name(node->op));
}
GGML_ASSERT(ok);
}
return GGML_STATUS_SUCCESS;
}
/**
* @brief Checks if the CANN backend supports a specific operation.
*
* This function checks whether the specified operation is supported by the
* CANN backend.
*
* @param backend Pointer to the CANN backend structure to check support for
* the operation.
* @param op Pointer to the tensor representing the operation to check.
* @return bool Returns true if the operation is supported by the backend,
* otherwise false.
*/
GGML_CALL static bool ggml_backend_cann_supports_op(ggml_backend_t backend,
const ggml_tensor* op) {
switch (op->op) {
case GGML_OP_UNARY:
switch (ggml_get_unary_op(op)) {
case GGML_UNARY_OP_GELU:
case GGML_UNARY_OP_SILU:
case GGML_UNARY_OP_RELU:
case GGML_UNARY_OP_HARDSIGMOID:
case GGML_UNARY_OP_HARDSWISH:
case GGML_UNARY_OP_GELU_QUICK:
case GGML_UNARY_OP_TANH:
return true;
default:
return false;
}
case GGML_OP_MUL_MAT: {
switch (op->src[0]->type) {
// case GGML_TYPE_Q4_0:
case GGML_TYPE_F16:
case GGML_TYPE_F32:
case GGML_TYPE_Q8_0:
return true;
default:
return false;
}
}
case GGML_OP_MUL_MAT_ID:
return false;
// embedding
case GGML_OP_GET_ROWS: {
switch (op->src[0]->type) {
case GGML_TYPE_F32:
case GGML_TYPE_F16:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q8_0:
return true;
default:
return false;
}
} break;
case GGML_OP_CPY: {
switch (op->type) {
case GGML_TYPE_F32:
case GGML_TYPE_F16:
case GGML_TYPE_Q8_0:
return true;
default:
return false;
}
}
case GGML_OP_DUP:
case GGML_OP_REPEAT:
case GGML_OP_CONCAT:
case GGML_OP_NONE:
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
case GGML_OP_PERMUTE:
case GGML_OP_TRANSPOSE:
case GGML_OP_NORM:
case GGML_OP_ADD:
case GGML_OP_MUL:
case GGML_OP_DIV:
case GGML_OP_RMS_NORM:
case GGML_OP_SCALE:
case GGML_OP_SQR:
case GGML_OP_CLAMP:
case GGML_OP_CONT:
case GGML_OP_DIAG_MASK_INF:
case GGML_OP_SOFT_MAX:
case GGML_OP_ROPE:
case GGML_OP_IM2COL:
case GGML_OP_POOL_2D:
case GGML_OP_SUM_ROWS:
case GGML_OP_ARGSORT:
case GGML_OP_ACC:
case GGML_OP_GROUP_NORM:
case GGML_OP_UPSCALE:
case GGML_OP_PAD:
case GGML_OP_ARANGE:
case GGML_OP_TIMESTEP_EMBEDDING:
case GGML_OP_LEAKY_RELU:
return true;
default:
return false;
}
GGML_UNUSED(backend);
}
/**
* @brief Checks if the backend buffer type is associated with the CANN backend.
*
* This function checks whether the provided backend buffer type is associated
* with the CANN backend based on the comparison of its name retrieval function
* pointer.
*
* @param buft Pointer to the backend buffer type to check.
* @return bool Returns true if the buffer type is associated with the CANN
* backend, otherwise false.
*/
static bool ggml_backend_buft_is_cann(ggml_backend_buffer_type_t buft) {
return buft->iface.get_name == ggml_backend_cann_buffer_type_name;
}
/**
* @brief Checks if the CANN backend supports a specific backend buffer type.
*
* This function determines whether the CANN backend supports the given backend
* buffer type by comparing the device context of the backend and buffer type.
* It returns true if the device associated with the buffer type matches the
* device associated with the backend.
*
* @param backend Pointer to the CANN backend.
* @param buft Pointer to the backend buffer type to check.
* @return bool Returns true if the CANN backend supports the buffer type,
* otherwise false.
*/
GGML_CALL static bool ggml_backend_cann_supports_buft(
ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
return buft->iface.get_name == ggml_backend_cann_buffer_type_name;
GGML_UNUSED(backend);
}
/**
* @brief Determines if a tensor operation should be offloaded to the CANN
* backend.
*
* This function checks if a given tensor operation should be offloaded to the
* CANN backend based on the operation type and the size of the tensor. It
* returns true if the second dimension (ne[1]) of the tensor is greater than or
* equal to the minimum batch size and the operation is not GGML_OP_GET_ROWS.
*
* @param backend Pointer to the CANN backend.
* @param op Pointer to the tensor operation to check.
* @return bool Returns true if the operation should be offloaded, otherwise
* false.
*/
GGML_CALL static bool ggml_backend_cann_offload_op(ggml_backend_t backend,
const ggml_tensor* op) {
const int min_batch_size = 32;
GGML_UNUSED(backend);
return op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS;
}
/**
* @brief Creates a new event for the CANN backend.
*
* This function initializes a new event for the CANN backend by setting the
* device and creating an ACL runtime event. The created event is then wrapped
* in a ggml_backend_event structure and returned.
*
* @param backend Pointer to the CANN backend.
* @return ggml_backend_event_t Returns a pointer to the new event structure.
*/
static ggml_backend_event_t ggml_backend_cann_event_new(
ggml_backend_t backend) {
ggml_backend_cann_context* cann_ctx =
(ggml_backend_cann_context*)backend->context;
ggml_cann_set_device(cann_ctx->device);
aclrtEvent event;
ACL_CHECK(aclrtCreateEvent(&event));
return new ggml_backend_event{
/* .backend = */ backend,
/* .context = */ event,
};
}
/**
* @brief Frees a CANN backend event.
*
* This function destroys the ACL runtime event associated with the given CANN
* backend event and then deletes the event structure itself.
*
* @param event Pointer to the event structure to be freed.
*/
static void ggml_backend_cann_event_free(ggml_backend_event_t event) {
ACL_CHECK(aclrtDestroyEvent((aclrtEvent)event->context));
delete event;
}
/**
* @brief Records an event on the CANN backend stream.
*
* This function records the given event on the ACL runtime stream associated
* with the backend context.
*
* @param event Pointer to the event structure to be recorded.
*/
static void ggml_backend_cann_event_record(ggml_backend_event_t event) {
ggml_backend_cann_context* cann_ctx =
(ggml_backend_cann_context*)event->backend->context;
ACL_CHECK(aclrtRecordEvent((aclrtEvent)event->context, cann_ctx->stream()));
}
/**
* @brief Waits for a recorded event to complete on the CANN backend stream.
*
* This function makes the given backend wait for the event to complete on its
* ACL runtime stream.
*
* @param backend Pointer to the backend structure.
* @param event Pointer to the event structure that the backend needs to wait
* for.
*/
static void ggml_backend_cann_event_wait(ggml_backend_t backend,
ggml_backend_event_t event) {
ggml_backend_cann_context* cann_ctx =
(ggml_backend_cann_context*)backend->context;
if (ggml_backend_is_cann(event->backend)) {
ACL_CHECK(aclrtStreamWaitEvent(cann_ctx->stream(),
(aclrtEvent)event->context));
} else {
GGML_ABORT("fatal error");
}
}
/**
* @brief Synchronizes the given event on the CANN backend.
*
* This function waits for the specified event to complete on the ACL runtime.
*
* @param event Pointer to the event structure to be synchronized.
*/
static void ggml_backend_cann_event_synchronize(ggml_backend_event_t event) {
ACL_CHECK(aclrtSynchronizeEvent((aclrtEvent)event->context));
}
/**
* @brief Structure defining the interface for the CANN backend.
*
* This structure contains function pointers for various operations
* supported by the CANN backend, including name retrieval, memory
* management, tensor operations, synchronization, and event handling.
*/
static ggml_backend_i ggml_backend_cann_interface = {
/* .get_name = */ ggml_backend_cann_name,
/* .free = */ ggml_backend_cann_free,
/* .get_default_buffer_type = */ ggml_backend_cann_get_default_buffer_type,
/* .set_tensor_async = */ ggml_backend_cann_set_tensor_async,
/* .get_tensor_async = */ ggml_backend_cann_get_tensor_async,
/* .cpy_tensor_async = */ ggml_backend_cann_cpy_tensor_async,
/* .synchronize = */ ggml_backend_cann_synchronize,
/* .graph_plan_create = */ NULL,
/* .graph_plan_free = */ NULL,
/* .graph_plan_update = */ NULL,
/* .graph_plan_compute = */ NULL,
/* .graph_compute = */ ggml_backend_cann_graph_compute,
/* .supports_op = */ ggml_backend_cann_supports_op,
/* .supports_buft = */ ggml_backend_cann_supports_buft,
/* .offload_op = */ ggml_backend_cann_offload_op,
/* .event_new = */ ggml_backend_cann_event_new,
/* .event_free = */ ggml_backend_cann_event_free,
/* .event_record = */ ggml_backend_cann_event_record,
/* .event_wait = */ ggml_backend_cann_event_wait,
/* .event_synchronize = */ ggml_backend_cann_event_synchronize,
};
/**
* @brief Return the hardcoded GUID for the CANN backend.
*
* This function returns a static GUID which uniquely identifies the CANN
* backend.
*
* @return A pointer to the static GUID.
*/
static ggml_guid_t ggml_backend_cann_guid() {
static ggml_guid guid = {0xa1, 0x94, 0xaf, 0xac, 0xbd, 0x4f, 0x47, 0x34,
0xbe, 0x1a, 0x9e, 0x71, 0x1f, 0x9e, 0xed, 0x64};
return &guid;
}
GGML_CALL ggml_backend_t ggml_backend_cann_init(int32_t device) {
aclInit(nullptr);
if (device < 0 || device >= ggml_backend_cann_get_device_count()) {
GGML_CANN_LOG_ERROR("%s: error: invalid device %d\n", __func__, device);
return nullptr;
}
ggml_backend_cann_context* ctx = new ggml_backend_cann_context(device);
if (ctx == nullptr) {
GGML_CANN_LOG_ERROR("%s: error: failed to allocate context\n", __func__);
return nullptr;
}
ggml_backend_t cann_backend =
new ggml_backend{/* .guid = */ ggml_backend_cann_guid(),
/* .interface = */ ggml_backend_cann_interface,
/* .context = */ ctx};
return cann_backend;
}
GGML_CALL bool ggml_backend_is_cann(ggml_backend_t backend) {
return backend != NULL &&
ggml_guid_matches(backend->guid, ggml_backend_cann_guid());
}
GGML_CALL int32_t ggml_backend_cann_get_device_count() {
return ggml_cann_info().device_count;
}
GGML_CALL void ggml_backend_cann_get_device_description(
int32_t device, char* description, size_t description_size) {
ggml_cann_set_device(device);
const char* soc_name = aclrtGetSocName();
snprintf(description, description_size, "%s", soc_name);
}
GGML_CALL void ggml_backend_cann_get_device_memory(int32_t device, size_t* free,
size_t* total) {
ggml_cann_set_device(device);
ACL_CHECK(aclrtGetMemInfo(ACL_HBM_MEM, free, total));
}
// backend registry
/**
* @brief Initializes a CANN backend based on the provided parameters.
*
* This function initializes a CANN backend using the device index and then
* initializes the backend using `ggml_backend_cann_init`.
*
* @param params Parameters for initialization (unused in this implementation).
* @param user_data User data containing the device index to initialize the
* backend.
* @return ggml_backend_t The initialized CANN backend.
*/
GGML_CALL static ggml_backend_t ggml_backend_reg_cann_init(const char* params,
void* user_data) {
ggml_backend_t cann_backend =
ggml_backend_cann_init((int)(intptr_t)user_data);
return cann_backend;
GGML_UNUSED(params);
}
extern "C" GGML_CALL int ggml_backend_cann_reg_devices();
/**
* @brief Registers CANN (Ascend) devices as backend options.
*
* This function initializes ACL, retrieves the number of available CANN
* devices, and registers each device as a backend option using
* `ggml_backend_register`. Each device is given a unique name based on
* `GGML_CANN_NAME` followed by its index.
*
* @return int The number of CANN devices registered.
*/
GGML_CALL int ggml_backend_cann_reg_devices() {
uint32_t device_count = ggml_backend_cann_get_device_count();
// initialization
for (uint32_t i = 0; i < device_count; i++) {
char name[128];
snprintf(name, sizeof(name), "CANN%d", i);
ggml_backend_register(name, ggml_backend_reg_cann_init,
ggml_backend_cann_buffer_type(i),
(void*)(intptr_t)i);
}
return device_count;
}