mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-14 14:28:58 +01:00
24203e9dd7
ggml-ci
868 lines
31 KiB
C++
868 lines
31 KiB
C++
#include "ggml-opt.h"
|
|
|
|
#include "ggml.h"
|
|
#include "ggml-alloc.h"
|
|
#include "ggml-backend.h"
|
|
#include "ggml-impl.h"
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <cstdint>
|
|
#include <cinttypes>
|
|
#include <map>
|
|
#include <random>
|
|
#include <vector>
|
|
|
|
struct ggml_opt_dataset {
|
|
struct ggml_context * ctx;
|
|
ggml_backend_buffer_t buf;
|
|
struct ggml_tensor * data;
|
|
struct ggml_tensor * labels;
|
|
|
|
int64_t ndata;
|
|
int64_t ndata_shard;
|
|
size_t nbs_data;
|
|
size_t nbs_labels;
|
|
|
|
std::vector<int64_t> permutation;
|
|
};
|
|
|
|
struct ggml_opt_context {
|
|
ggml_backend_sched_t backend_sched;
|
|
ggml_cgraph * allocated_graph;
|
|
ggml_cgraph * allocated_graph_copy;
|
|
struct ggml_context * ctx_static;
|
|
struct ggml_context * ctx_static_cpu;
|
|
struct ggml_context * ctx_compute;
|
|
struct ggml_context * ctx_copy;
|
|
ggml_backend_buffer_t buf_static;
|
|
ggml_backend_buffer_t buf_static_cpu;
|
|
std::mt19937 rng;
|
|
|
|
struct ggml_tensor * inputs;
|
|
struct ggml_tensor * outputs;
|
|
struct ggml_tensor * labels;
|
|
|
|
struct ggml_tensor * loss;
|
|
struct ggml_tensor * pred;
|
|
struct ggml_tensor * ncorrect;
|
|
|
|
struct ggml_cgraph * gf;
|
|
struct ggml_cgraph * gb_grad;
|
|
struct ggml_cgraph * gb_opt;
|
|
|
|
int64_t iter;
|
|
int32_t opt_period;
|
|
int32_t opt_i;
|
|
bool loss_per_datapoint;
|
|
|
|
ggml_opt_get_optimizer_params get_opt_pars;
|
|
void * get_opt_pars_ud;
|
|
struct ggml_tensor * adamw_params;
|
|
};
|
|
|
|
struct ggml_opt_result {
|
|
int64_t ndata = 0;
|
|
std::vector<float> loss;
|
|
std::vector<int32_t> pred;
|
|
int64_t ncorrect = 0;
|
|
|
|
bool loss_per_datapoint = false;
|
|
int64_t opt_period = -1;
|
|
};
|
|
|
|
// ====== Dataset ======
|
|
|
|
ggml_opt_dataset_t ggml_opt_dataset_init(int64_t ne_datapoint, int64_t ne_label, int64_t ndata, int64_t ndata_shard) {
|
|
GGML_ASSERT(ne_datapoint > 0);
|
|
GGML_ASSERT(ne_label >= 0);
|
|
GGML_ASSERT(ndata > 0);
|
|
GGML_ASSERT(ndata_shard > 0);
|
|
|
|
ggml_opt_dataset_t result = new ggml_opt_dataset;
|
|
result->ndata = ndata;
|
|
result->ndata_shard = ndata_shard;
|
|
|
|
{
|
|
struct ggml_init_params params = {
|
|
/*.mem_size =*/ 2*ggml_tensor_overhead(),
|
|
/*.mem_buffer =*/ nullptr,
|
|
/*.no_alloc =*/ true,
|
|
};
|
|
result->ctx = ggml_init(params);
|
|
}
|
|
|
|
result->data = ggml_new_tensor_2d(result->ctx, GGML_TYPE_F32, ne_datapoint, ndata);
|
|
result->nbs_data = ggml_nbytes(result->data) * ndata_shard/ndata;
|
|
|
|
if (ne_label > 0) {
|
|
result->labels = ggml_new_tensor_2d(result->ctx, GGML_TYPE_F32, ne_label, ndata);
|
|
result->nbs_labels = ggml_nbytes(result->labels) * ndata_shard/ndata;
|
|
} else {
|
|
result->labels = nullptr;
|
|
result->nbs_labels = 0;
|
|
}
|
|
|
|
result->buf = ggml_backend_alloc_ctx_tensors_from_buft(result->ctx, ggml_backend_cpu_buffer_type());
|
|
|
|
const int64_t nshards = ndata/ndata_shard;
|
|
result->permutation.resize(nshards);
|
|
for (int64_t i = 0; i < nshards; ++i) {
|
|
result->permutation[i] = i;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void ggml_opt_dataset_free(ggml_opt_dataset_t dataset) {
|
|
ggml_backend_buffer_free(dataset->buf);
|
|
ggml_free(dataset->ctx);
|
|
delete dataset;
|
|
}
|
|
|
|
struct ggml_tensor * ggml_opt_dataset_data(ggml_opt_dataset_t dataset) {
|
|
return dataset->data;
|
|
}
|
|
|
|
struct ggml_tensor * ggml_opt_dataset_labels(ggml_opt_dataset_t dataset) {
|
|
return dataset->labels;
|
|
}
|
|
|
|
void ggml_opt_dataset_shuffle(ggml_opt_context_t opt_ctx, ggml_opt_dataset_t dataset, int64_t idata) {
|
|
GGML_ASSERT(idata <= dataset->ndata);
|
|
|
|
if (idata < 0) {
|
|
std::shuffle(dataset->permutation.begin(), dataset->permutation.end(), opt_ctx->rng);
|
|
return;
|
|
}
|
|
|
|
GGML_ASSERT(idata % dataset->ndata_shard == 0);
|
|
const int64_t ishard_max = idata / dataset->ndata_shard;
|
|
std::shuffle(dataset->permutation.begin(), dataset->permutation.begin() + ishard_max, opt_ctx->rng);
|
|
}
|
|
|
|
void ggml_opt_dataset_get_batch(ggml_opt_dataset_t dataset, struct ggml_tensor * data_batch, struct ggml_tensor * labels_batch, int64_t ibatch) {
|
|
GGML_ASSERT( data_batch && ggml_is_contiguous(data_batch));
|
|
GGML_ASSERT(!labels_batch || ggml_is_contiguous(labels_batch));
|
|
GGML_ASSERT((labels_batch == nullptr) == (dataset->labels == nullptr));
|
|
|
|
const size_t nb_data_batch = ggml_nbytes(data_batch);
|
|
GGML_ASSERT(nb_data_batch % dataset->nbs_data == 0);
|
|
const int64_t shards_per_batch = nb_data_batch / dataset->nbs_data;
|
|
|
|
if (labels_batch) {
|
|
const size_t nb_labels_batch = ggml_nbytes(labels_batch);
|
|
GGML_ASSERT(nb_labels_batch == shards_per_batch*dataset->nbs_labels);
|
|
}
|
|
|
|
GGML_ASSERT((ibatch + 1)*shards_per_batch <= int64_t(dataset->permutation.size()));
|
|
|
|
for (int64_t ishard_batch = 0; ishard_batch < shards_per_batch; ++ishard_batch) {
|
|
const int64_t ishard = dataset->permutation[ibatch*shards_per_batch + ishard_batch];
|
|
|
|
const char * ptr_data = (const char *) dataset->data->data + ishard*dataset->nbs_data;
|
|
ggml_backend_tensor_set(data_batch, ptr_data, ishard_batch*dataset->nbs_data, dataset->nbs_data);
|
|
|
|
if (!labels_batch) {
|
|
continue;
|
|
}
|
|
|
|
const char * ptr_labels = (const char *) dataset->labels->data + ishard*dataset->nbs_labels;
|
|
ggml_backend_tensor_set(labels_batch, ptr_labels, ishard_batch*dataset->nbs_labels, dataset->nbs_labels);
|
|
}
|
|
}
|
|
|
|
// ====== Model / Context ======
|
|
|
|
struct ggml_opt_optimizer_params ggml_opt_get_default_optimizer_params(void * userdata) {
|
|
GGML_UNUSED(userdata);
|
|
|
|
ggml_opt_optimizer_params result;
|
|
|
|
result.adamw.alpha = 0.001f;
|
|
result.adamw.beta1 = 0.9f;
|
|
result.adamw.beta2 = 0.999f;
|
|
result.adamw.eps = 1e-8f;
|
|
result.adamw.wd = 0.0f;
|
|
|
|
return result;
|
|
}
|
|
|
|
struct ggml_opt_params ggml_opt_default_params(
|
|
ggml_backend_sched_t backend_sched,
|
|
struct ggml_context * ctx_compute,
|
|
struct ggml_tensor * inputs,
|
|
struct ggml_tensor * outputs,
|
|
enum ggml_opt_loss_type loss_type) {
|
|
return {
|
|
/*backend_sched =*/ backend_sched,
|
|
/*ctx_compute =*/ ctx_compute,
|
|
/*inputs =*/ inputs,
|
|
/*logits =*/ outputs,
|
|
/*loss_type =*/ loss_type,
|
|
/*build_type =*/ GGML_OPT_BUILD_TYPE_OPT,
|
|
/*opt_period =*/ 1,
|
|
/*get_opt_pars =*/ ggml_opt_get_default_optimizer_params,
|
|
/*get_opt_pars_ud =*/ nullptr,
|
|
};
|
|
}
|
|
|
|
static ggml_tensor * map_tensor(std::map<ggml_tensor *, ggml_tensor *> & tensor_map, ggml_context * ctx, ggml_tensor * tensor) {
|
|
if (!tensor) {
|
|
return nullptr;
|
|
}
|
|
|
|
if (tensor_map.find(tensor) != tensor_map.end()) {
|
|
return tensor_map[tensor];
|
|
}
|
|
|
|
ggml_tensor * new_tensor = ggml_dup_tensor(ctx, tensor);
|
|
tensor_map[tensor] = new_tensor;
|
|
|
|
new_tensor->op = tensor->op;
|
|
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
|
new_tensor->nb[i] = tensor->nb[i];
|
|
}
|
|
new_tensor->flags = tensor->flags;
|
|
memcpy(new_tensor->op_params, tensor->op_params, sizeof(tensor->op_params));
|
|
strcpy(new_tensor->name, tensor->name);
|
|
new_tensor->data = tensor->data;
|
|
new_tensor->buffer = tensor->buffer;
|
|
new_tensor->extra = tensor->extra;
|
|
new_tensor->view_offs = tensor->view_offs;
|
|
new_tensor->view_src = map_tensor(tensor_map, ctx, tensor->view_src);
|
|
for (int i = 0; i < GGML_MAX_SRC; i++) {
|
|
new_tensor->src[i] = map_tensor(tensor_map, ctx, tensor->src[i]);
|
|
}
|
|
|
|
return new_tensor;
|
|
}
|
|
|
|
static ggml_cgraph * dup_graph(ggml_context * ctx, ggml_cgraph * graph) {
|
|
std::map<ggml_tensor *, ggml_tensor *> tensor_map;
|
|
|
|
ggml_cgraph * new_graph = ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, /*grads =*/ true);
|
|
|
|
for (int i = 0; i < graph->n_leafs; i++) {
|
|
ggml_build_forward_expand(new_graph, map_tensor(tensor_map, ctx, graph->leafs[i]));
|
|
}
|
|
for (int i = 0; i < graph->n_nodes; i++) {
|
|
ggml_build_forward_expand(new_graph, map_tensor(tensor_map, ctx, graph->nodes[i]));
|
|
}
|
|
for (int i = 0; i < graph->n_nodes; ++i) {
|
|
const size_t igrad_src = ggml_hash_find(&graph->visited_hash_set, graph->nodes[i]);
|
|
const size_t igrad_dst = ggml_hash_find(&new_graph->visited_hash_set, new_graph->nodes[i]);
|
|
graph->grads[igrad_dst] = new_graph->grads[igrad_src];
|
|
graph->grad_accs[igrad_dst] = new_graph->grad_accs[igrad_src];
|
|
}
|
|
|
|
return new_graph;
|
|
}
|
|
|
|
static void ggml_opt_alloc_graph(ggml_opt_context_t opt_ctx, ggml_cgraph * graph) {
|
|
GGML_ASSERT(graph);
|
|
if (opt_ctx->allocated_graph == graph) {
|
|
return;
|
|
}
|
|
|
|
ggml_backend_sched_reset(opt_ctx->backend_sched); // clear allocation of previous graph
|
|
|
|
{
|
|
ggml_init_params params = {
|
|
/*.mem_size =*/ ggml_tensor_overhead() * GGML_DEFAULT_GRAPH_SIZE,
|
|
/*.mem_buffer =*/ nullptr,
|
|
/*.no_alloc =*/ true,
|
|
};
|
|
ggml_free(opt_ctx->ctx_copy);
|
|
opt_ctx->ctx_copy = ggml_init(params);
|
|
}
|
|
|
|
opt_ctx->allocated_graph_copy = dup_graph(opt_ctx->ctx_copy, graph);
|
|
|
|
ggml_backend_sched_alloc_graph(opt_ctx->backend_sched, opt_ctx->allocated_graph_copy);
|
|
opt_ctx->allocated_graph = graph;
|
|
}
|
|
|
|
ggml_opt_context_t ggml_opt_init(struct ggml_opt_params params) {
|
|
ggml_opt_context_t result = new struct ggml_opt_context;
|
|
result->backend_sched = params.backend_sched;
|
|
result->allocated_graph = nullptr;
|
|
result->allocated_graph_copy = nullptr;
|
|
result->ctx_compute = params.ctx_compute;
|
|
result->ctx_copy = nullptr;
|
|
result->inputs = params.inputs;
|
|
result->outputs = params.outputs;
|
|
result->iter = 1;
|
|
result->opt_period = params.opt_period;
|
|
result->opt_i = 0;
|
|
result->get_opt_pars = params.get_opt_pars;
|
|
result->get_opt_pars_ud = params.get_opt_pars_ud;
|
|
|
|
GGML_ASSERT(result->inputs->data && "the inputs must be allocated statically");
|
|
GGML_ASSERT(result->opt_period >= 1);
|
|
|
|
const bool accumulate = params.build_type == GGML_OPT_BUILD_TYPE_GRAD ||
|
|
(params.build_type == GGML_OPT_BUILD_TYPE_OPT && result->opt_period > 1);
|
|
|
|
ggml_set_input(result->inputs);
|
|
ggml_set_output(result->outputs);
|
|
|
|
result->gf = ggml_new_graph_custom(result->ctx_compute, GGML_DEFAULT_GRAPH_SIZE, /*grads =*/ true); // Forward pass.
|
|
ggml_build_forward_expand(result->gf, result->outputs);
|
|
|
|
int n_param = 0;
|
|
for (int i = 0; i < result->gf->n_nodes; ++i) {
|
|
if (result->gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
|
|
n_param++;
|
|
}
|
|
}
|
|
|
|
{
|
|
// The static context is used for:
|
|
// - gradients (1 tensor per param if using gradient accumulation)
|
|
// - optimizer momenta (2 tensors per param)
|
|
// - labels
|
|
// - loss + its gradient (up to 5 tensors)
|
|
// - pred
|
|
// - ncorrect (2 tensors).
|
|
const size_t tensors_per_param = (accumulate ? 1 : 0) + (params.build_type == GGML_OPT_BUILD_TYPE_OPT ? 2 : 0);
|
|
const size_t size_meta = (tensors_per_param*n_param + 9) * ggml_tensor_overhead();
|
|
struct ggml_init_params params = {
|
|
/*.mem_size =*/ size_meta,
|
|
/*.mem_buffer =*/ nullptr,
|
|
/*.no_alloc =*/ true,
|
|
};
|
|
result->ctx_static = ggml_init(params);
|
|
}
|
|
{
|
|
// The static cpu context is used for:
|
|
// - optimizer parameters (1 for the entire context)
|
|
const size_t size_meta = 1 * ggml_tensor_overhead();
|
|
struct ggml_init_params params = {
|
|
/*.mem_size =*/ size_meta,
|
|
/*.mem_buffer =*/ nullptr,
|
|
/*.no_alloc =*/ true,
|
|
};
|
|
result->ctx_static_cpu = ggml_init(params);
|
|
}
|
|
|
|
|
|
switch (params.loss_type) {
|
|
case GGML_OPT_LOSS_TYPE_MEAN: {
|
|
result->labels = nullptr;
|
|
result->loss = ggml_sum(result->ctx_static, result->outputs);
|
|
ggml_set_name(result->loss, "loss_sum");
|
|
const float scale = 1.0f / (result->opt_period * ggml_nelements(result->outputs));
|
|
result->loss = ggml_scale(result->ctx_static, result->loss, scale);
|
|
ggml_set_name(result->loss, "loss_mean");
|
|
result->loss_per_datapoint = true;
|
|
break;
|
|
}
|
|
case GGML_OPT_LOSS_TYPE_SUM: {
|
|
result->labels = nullptr;
|
|
result->loss = ggml_sum(result->ctx_static, result->outputs);
|
|
ggml_set_name(result->loss, "loss_sum");
|
|
result->loss_per_datapoint = false;
|
|
break;
|
|
}
|
|
case GGML_OPT_LOSS_TYPE_CROSS_ENTROPY: {
|
|
result->labels = ggml_dup_tensor(result->ctx_static, result->outputs);
|
|
ggml_set_input(result->labels);
|
|
ggml_set_name(result->labels, "labels");
|
|
result->loss = ggml_cross_entropy_loss(result->ctx_static, result->outputs, result->labels);
|
|
ggml_set_name(result->loss, "loss_cross_entropy");
|
|
if (result->opt_period > 1) {
|
|
result->loss = ggml_scale(result->ctx_static, result->loss, 1.0f / result->opt_period);
|
|
ggml_set_name(result->loss, "loss_cross_entropy_scaled");
|
|
}
|
|
result->loss_per_datapoint = true;
|
|
break;
|
|
}
|
|
case GGML_OPT_LOSS_TYPE_MEAN_SQUARED_ERROR: {
|
|
result->labels = ggml_dup_tensor(result->ctx_static, result->outputs);
|
|
ggml_set_input(result->labels);
|
|
ggml_set_name(result->labels, "labels");
|
|
result->loss = ggml_sub(result->ctx_static, result->outputs, result->labels);
|
|
ggml_set_name(result->loss, "loss_error");
|
|
result->loss = ggml_sqr(result->ctx_static, result->loss);
|
|
ggml_set_name(result->loss, "loss_squared_error");
|
|
result->loss = ggml_sum(result->ctx_static, result->loss);
|
|
ggml_set_name(result->loss, "loss_sum_squared_error");
|
|
const float scale = 1.0f / (result->opt_period * ggml_nelements(result->outputs));
|
|
result->loss = ggml_scale(result->ctx_static, result->loss, scale);
|
|
ggml_set_name(result->loss, "loss_mean_squared_error");
|
|
result->loss_per_datapoint = true;
|
|
break;
|
|
}
|
|
}
|
|
ggml_set_output(result->loss);
|
|
ggml_set_loss(result->loss);
|
|
ggml_build_forward_expand(result->gf, result->loss);
|
|
|
|
result->pred = ggml_argmax(result->ctx_static, result->outputs);
|
|
ggml_set_name(result->pred, "pred");
|
|
ggml_set_output(result->pred);
|
|
ggml_build_forward_expand(result->gf, result->pred);
|
|
|
|
if (result->labels) {
|
|
result->ncorrect = ggml_count_equal(result->ctx_static, result->pred, ggml_argmax(result->ctx_static, result->labels));
|
|
ggml_set_name(result->ncorrect, "ncorrect");
|
|
ggml_set_output(result->ncorrect);
|
|
ggml_build_forward_expand(result->gf, result->ncorrect);
|
|
} else {
|
|
result->ncorrect = nullptr;
|
|
}
|
|
|
|
if (params.build_type == GGML_OPT_BUILD_TYPE_FORWARD) {
|
|
result->gb_grad = nullptr;
|
|
result->gb_opt = nullptr;
|
|
|
|
result->buf_static = ggml_backend_alloc_ctx_tensors(result->ctx_static, ggml_backend_sched_get_backend(result->backend_sched, 0));
|
|
result->buf_static_cpu = nullptr;
|
|
|
|
ggml_opt_alloc_graph(result, result->gf);
|
|
|
|
return result;
|
|
}
|
|
|
|
// gb_grad == graph backward gradients, forward pass, then backward pass to calculate gradients.
|
|
result->gb_grad = ggml_graph_dup(result->ctx_compute, result->gf);
|
|
ggml_build_backward_expand(result->ctx_static, result->ctx_compute, result->gb_grad, accumulate);
|
|
|
|
if (params.build_type == GGML_OPT_BUILD_TYPE_GRAD) {
|
|
result->gb_opt = nullptr;
|
|
|
|
result->buf_static = ggml_backend_alloc_ctx_tensors(result->ctx_static, ggml_backend_sched_get_backend(result->backend_sched, 0));
|
|
result->buf_static_cpu = nullptr;
|
|
|
|
ggml_opt_alloc_graph(result, result->gb_grad);
|
|
ggml_graph_reset(result->gb_grad);
|
|
|
|
return result;
|
|
}
|
|
|
|
GGML_ASSERT(params.build_type == GGML_OPT_BUILD_TYPE_OPT);
|
|
|
|
// gb_opt == graph backward optimize, forward pass, then backward pass to calculate gradients, then optimizer step.
|
|
result->gb_opt = ggml_graph_dup(result->ctx_compute, result->gb_grad);
|
|
|
|
result->adamw_params = ggml_new_tensor_1d(result->ctx_static_cpu, GGML_TYPE_F32, 7);
|
|
ggml_set_input(result->adamw_params);
|
|
ggml_set_name(result->adamw_params, "adamw_params");
|
|
|
|
for (int i = result->gf->n_nodes-1; i >= 0; --i) {
|
|
struct ggml_tensor * node = result->gb_opt->nodes[i];
|
|
struct ggml_tensor * grad = ggml_graph_get_grad(result->gb_opt, node);
|
|
|
|
if (node->flags & GGML_TENSOR_FLAG_PARAM) {
|
|
struct ggml_tensor * m = ggml_dup_tensor(result->ctx_static, node);
|
|
struct ggml_tensor * v = ggml_dup_tensor(result->ctx_static, node);
|
|
struct ggml_tensor * opt_step = ggml_opt_step_adamw(result->ctx_compute, node, grad, m, v, result->adamw_params);
|
|
ggml_build_forward_expand(result->gb_opt, opt_step);
|
|
}
|
|
}
|
|
|
|
result->buf_static = ggml_backend_alloc_ctx_tensors(
|
|
result->ctx_static, ggml_backend_sched_get_backend(result->backend_sched, 0));
|
|
|
|
result->buf_static_cpu = ggml_backend_alloc_ctx_tensors_from_buft(result->ctx_static_cpu, ggml_backend_cpu_buffer_type());
|
|
|
|
ggml_opt_alloc_graph(result, result->gb_opt);
|
|
ggml_graph_reset(result->gb_opt);
|
|
|
|
return result;
|
|
}
|
|
|
|
void ggml_opt_free(ggml_opt_context_t opt_ctx) {
|
|
if (opt_ctx == nullptr) {
|
|
return;
|
|
}
|
|
ggml_backend_buffer_free(opt_ctx->buf_static);
|
|
ggml_backend_buffer_free(opt_ctx->buf_static_cpu);
|
|
ggml_free(opt_ctx->ctx_static);
|
|
ggml_free(opt_ctx->ctx_static_cpu);
|
|
delete opt_ctx;
|
|
}
|
|
|
|
void ggml_opt_reset(ggml_opt_context_t opt_ctx, bool optimizer) {
|
|
if (optimizer) {
|
|
ggml_graph_reset(opt_ctx->gb_opt);
|
|
opt_ctx->iter = 1;
|
|
} else {
|
|
ggml_graph_reset(opt_ctx->gb_grad);
|
|
}
|
|
}
|
|
|
|
struct ggml_tensor * ggml_opt_inputs(ggml_opt_context_t opt_ctx) {
|
|
return opt_ctx->inputs;
|
|
}
|
|
|
|
struct ggml_tensor * ggml_opt_outputs(ggml_opt_context_t opt_ctx) {
|
|
return opt_ctx->outputs;
|
|
}
|
|
|
|
struct ggml_tensor * ggml_opt_labels(ggml_opt_context_t opt_ctx) {
|
|
return opt_ctx->labels;
|
|
}
|
|
|
|
struct ggml_tensor * ggml_opt_loss(ggml_opt_context_t opt_ctx) {
|
|
return opt_ctx->loss;
|
|
}
|
|
|
|
struct ggml_tensor * ggml_opt_pred(ggml_opt_context_t opt_ctx) {
|
|
return opt_ctx->pred;
|
|
}
|
|
|
|
struct ggml_tensor * ggml_opt_ncorrect(ggml_opt_context_t opt_ctx) {
|
|
return opt_ctx->ncorrect;
|
|
}
|
|
|
|
struct ggml_tensor * ggml_opt_grad_acc(ggml_opt_context_t opt_ctx, struct ggml_tensor * node) {
|
|
return ggml_graph_get_grad_acc(opt_ctx->gb_opt, node);
|
|
}
|
|
|
|
// ====== Optimization Result ======
|
|
|
|
ggml_opt_result_t ggml_opt_result_init() {
|
|
return new ggml_opt_result;
|
|
}
|
|
|
|
void ggml_opt_result_free(ggml_opt_result_t result) {
|
|
delete result;
|
|
}
|
|
|
|
void ggml_opt_result_reset(ggml_opt_result_t result) {
|
|
result->ndata = 0;
|
|
result->loss.clear();
|
|
result->pred.clear();
|
|
result->ncorrect = 0;
|
|
}
|
|
|
|
void ggml_opt_result_ndata(ggml_opt_result_t result, int64_t * ndata) {
|
|
*ndata = result->ndata;
|
|
}
|
|
|
|
void ggml_opt_result_loss(ggml_opt_result_t result, double * loss, double * unc) {
|
|
const int64_t nbatches = result->loss.size(); // Number of physical batches.
|
|
|
|
if (nbatches == 0) {
|
|
*loss = 0.0;
|
|
*unc = NAN;
|
|
return;
|
|
}
|
|
|
|
double sum = 0.0;
|
|
double sum_squared = 0.0;
|
|
|
|
for (const float & loss : result->loss) {
|
|
// If the loss is per datapoint it was scaled by 1.0f/opt_period for each physical batch.
|
|
const float loss_scaled = result->loss_per_datapoint ? loss*result->opt_period : loss;
|
|
sum += loss_scaled;
|
|
sum_squared += loss_scaled*loss_scaled;
|
|
}
|
|
|
|
const double mean = sum/nbatches;
|
|
*loss = result->loss_per_datapoint ? mean : sum;
|
|
|
|
if (!unc) {
|
|
return;
|
|
}
|
|
|
|
if (nbatches < 2) {
|
|
*unc = NAN;
|
|
return;
|
|
}
|
|
|
|
const double var_sum = sum_squared/nbatches - mean*mean; // variance without Bessel's correction, i.e. nbatches/(nbatches-1)
|
|
*unc = result->loss_per_datapoint ? sqrt(var_sum / (nbatches - 1)) : sqrt(var_sum * nbatches/(nbatches - 1));
|
|
}
|
|
|
|
void ggml_opt_result_pred(ggml_opt_result_t result, int32_t * pred) {
|
|
for (size_t i = 0; i < result->pred.size(); ++i) {
|
|
pred[i] = result->pred[i];
|
|
}
|
|
}
|
|
|
|
void ggml_opt_result_accuracy(ggml_opt_result_t result, double * accuracy, double * unc) {
|
|
*accuracy = result->ncorrect >= 0 ? double(result->ncorrect) / double(result->ndata) : NAN;
|
|
|
|
if (!unc) {
|
|
return;
|
|
}
|
|
|
|
*unc = result->ncorrect >= 0 && result->ndata >= 2 ?
|
|
sqrt((*accuracy) * (1.0 - (*accuracy)) / double(result->ndata - 1)) : NAN;
|
|
}
|
|
|
|
// ====== Computation ======
|
|
|
|
static void ggml_opt_eval_graph(ggml_opt_context_t opt_ctx, ggml_cgraph * graph, ggml_opt_result * result) {
|
|
if (graph != opt_ctx->gf) {
|
|
struct ggml_opt_optimizer_params opt_pars = opt_ctx->get_opt_pars(opt_ctx->get_opt_pars_ud);
|
|
|
|
GGML_ASSERT(opt_pars.adamw.alpha > 0.0f);
|
|
GGML_ASSERT(opt_pars.adamw.beta1 >= 0.0f);
|
|
GGML_ASSERT(opt_pars.adamw.beta1 <= 1.0f);
|
|
GGML_ASSERT(opt_pars.adamw.beta2 >= 0.0f);
|
|
GGML_ASSERT(opt_pars.adamw.beta2 <= 1.0f);
|
|
GGML_ASSERT(opt_pars.adamw.eps >= 0.0f);
|
|
GGML_ASSERT(opt_pars.adamw.wd >= 0.0f);
|
|
GGML_ASSERT(opt_pars.adamw.wd <= 1.0f);
|
|
|
|
// beta1, beta2 after applying warmup
|
|
const float beta1h = 1.0f/(1.0f - powf(opt_pars.adamw.beta1, opt_ctx->iter));
|
|
const float beta2h = 1.0f/(1.0f - powf(opt_pars.adamw.beta2, opt_ctx->iter));
|
|
|
|
float * adamw_par_data = ggml_get_data_f32(opt_ctx->adamw_params);
|
|
adamw_par_data[0] = opt_pars.adamw.alpha;
|
|
adamw_par_data[1] = opt_pars.adamw.beta1;
|
|
adamw_par_data[2] = opt_pars.adamw.beta2;
|
|
adamw_par_data[3] = opt_pars.adamw.eps;
|
|
adamw_par_data[4] = opt_pars.adamw.wd;
|
|
adamw_par_data[5] = beta1h;
|
|
adamw_par_data[6] = beta2h;
|
|
}
|
|
|
|
ggml_opt_alloc_graph(opt_ctx, graph);
|
|
ggml_backend_sched_graph_compute(opt_ctx->backend_sched, opt_ctx->allocated_graph_copy);
|
|
opt_ctx->iter += opt_ctx->allocated_graph == opt_ctx->gb_opt;
|
|
|
|
if (!result) {
|
|
return;
|
|
}
|
|
|
|
if (result->ndata == 0) {
|
|
result->loss_per_datapoint = opt_ctx->loss_per_datapoint;
|
|
result->opt_period = opt_ctx->opt_period;
|
|
} else {
|
|
GGML_ASSERT(result->loss_per_datapoint == opt_ctx->loss_per_datapoint);
|
|
GGML_ASSERT(result->opt_period == opt_ctx->opt_period);
|
|
}
|
|
|
|
const int64_t ndata = opt_ctx->outputs->ne[1];
|
|
GGML_ASSERT(result->ndata == ndata*int64_t(result->loss.size()) && "varying batch size not supported");
|
|
result->ndata += ndata;
|
|
|
|
GGML_ASSERT(ggml_is_scalar(opt_ctx->loss));
|
|
GGML_ASSERT(opt_ctx->loss->type == GGML_TYPE_F32);
|
|
float loss;
|
|
ggml_backend_tensor_get(opt_ctx->loss, &loss, 0, ggml_nbytes(opt_ctx->loss));
|
|
result->loss.push_back(loss);
|
|
|
|
GGML_ASSERT(opt_ctx->pred->type == GGML_TYPE_I32);
|
|
std::vector<int32_t> pred(ndata);
|
|
ggml_backend_tensor_get(opt_ctx->pred, pred.data(), 0, ggml_nbytes(opt_ctx->pred));
|
|
result->pred.insert(result->pred.end(), pred.begin(), pred.end());
|
|
|
|
if (!opt_ctx->labels || result->ncorrect < 0) {
|
|
result->ncorrect = -1;
|
|
return;
|
|
}
|
|
|
|
GGML_ASSERT(ggml_is_scalar(opt_ctx->ncorrect));
|
|
GGML_ASSERT(opt_ctx->ncorrect->type == GGML_TYPE_I64);
|
|
int64_t ncorrect;
|
|
ggml_backend_tensor_get(opt_ctx->ncorrect, &ncorrect, 0, ggml_nbytes(opt_ctx->ncorrect));
|
|
result->ncorrect += ncorrect;
|
|
}
|
|
|
|
void ggml_opt_forward(ggml_opt_context_t opt_ctx, ggml_opt_result * result) {
|
|
ggml_opt_eval_graph(opt_ctx, opt_ctx->gf, result);
|
|
}
|
|
|
|
void ggml_opt_forward_backward(ggml_opt_context_t opt_ctx, ggml_opt_result * result) {
|
|
if (opt_ctx->opt_period == 1) {
|
|
ggml_opt_eval_graph(opt_ctx, opt_ctx->gb_opt, result);
|
|
return;
|
|
}
|
|
|
|
const int32_t opt_i_next = (opt_ctx->opt_i + 1) % opt_ctx->opt_period;
|
|
if (opt_i_next == 0) {
|
|
ggml_opt_eval_graph(opt_ctx, opt_ctx->gb_opt, result);
|
|
ggml_opt_reset(opt_ctx, /*optimizer =*/ false);
|
|
} else {
|
|
ggml_opt_eval_graph(opt_ctx, opt_ctx->gb_grad, result);
|
|
}
|
|
opt_ctx->opt_i = opt_i_next;
|
|
}
|
|
|
|
// ====== High-Level Functions ======
|
|
|
|
void ggml_opt_epoch(
|
|
ggml_opt_context_t opt_ctx,
|
|
ggml_opt_dataset_t dataset,
|
|
ggml_opt_result_t result_train,
|
|
ggml_opt_result_t result_eval,
|
|
int64_t idata_split,
|
|
ggml_opt_epoch_callback callback_train,
|
|
ggml_opt_epoch_callback callback_eval) {
|
|
struct ggml_tensor * inputs = ggml_opt_inputs(opt_ctx);
|
|
struct ggml_tensor * labels = ggml_opt_labels(opt_ctx);
|
|
struct ggml_tensor * data = ggml_opt_dataset_data(dataset);
|
|
GGML_ASSERT(data->ne[0] == inputs->ne[0]);
|
|
|
|
const int64_t ndata = data->ne[1];
|
|
const int64_t ndata_batch = inputs->ne[1];
|
|
|
|
GGML_ASSERT(data->ne[1] % inputs->ne[1] == 0);
|
|
const int64_t nbatches = ndata/ndata_batch;
|
|
|
|
idata_split = idata_split < 0 ? ndata : idata_split;
|
|
GGML_ASSERT(idata_split % ndata_batch == 0);
|
|
const int64_t ibatch_split = idata_split / ndata_batch;
|
|
|
|
int64_t ibatch = 0;
|
|
int64_t t_loop_start = ggml_time_us();
|
|
for (; ibatch < ibatch_split; ++ibatch) {
|
|
ggml_opt_dataset_get_batch(dataset, inputs, labels, ibatch);
|
|
ggml_opt_forward_backward(opt_ctx, result_train);
|
|
if (callback_train) {
|
|
callback_train(true, opt_ctx, dataset, result_train, ibatch+1, ibatch_split, t_loop_start);
|
|
}
|
|
}
|
|
t_loop_start = ggml_time_us();
|
|
for (; ibatch < nbatches; ++ibatch) {
|
|
ggml_opt_dataset_get_batch(dataset, inputs, labels, ibatch);
|
|
ggml_opt_forward(opt_ctx, result_eval);
|
|
if (callback_eval) {
|
|
callback_eval(false, opt_ctx, dataset, result_eval, ibatch+1-ibatch_split, nbatches-ibatch_split, t_loop_start);
|
|
}
|
|
}
|
|
}
|
|
|
|
void ggml_opt_epoch_callback_progress_bar(
|
|
bool train,
|
|
ggml_opt_context_t opt_ctx,
|
|
ggml_opt_dataset_t dataset,
|
|
ggml_opt_result_t result,
|
|
int64_t ibatch,
|
|
int64_t ibatch_max,
|
|
int64_t t_start_us) {
|
|
fprintf(stderr, "%s[", train ? "train: " : "val: ");
|
|
|
|
constexpr int64_t bar_length = 25;
|
|
for (int64_t j = 0; j < bar_length; ++j) {
|
|
const int64_t ibatch_j = ibatch_max * j/bar_length;
|
|
if (ibatch_j < ibatch) {
|
|
fprintf(stderr, "=");
|
|
} else if (ibatch_max * (j - 1)/bar_length < ibatch) {
|
|
fprintf(stderr, ">");
|
|
} else {
|
|
fprintf(stderr, " ");
|
|
}
|
|
}
|
|
|
|
const int64_t batch_size = ggml_opt_inputs(opt_ctx)->ne[1];
|
|
const int64_t idata = ibatch*batch_size;
|
|
const int64_t idata_max = ibatch_max*batch_size;
|
|
|
|
double loss;
|
|
double loss_unc;
|
|
ggml_opt_result_loss(result, &loss, &loss_unc);
|
|
|
|
double accuracy;
|
|
double accuracy_unc;
|
|
ggml_opt_result_accuracy(result, &accuracy, &accuracy_unc);
|
|
|
|
const int64_t t_ibatch_us = ggml_time_us() - t_start_us;
|
|
int64_t t_ibatch_s = t_ibatch_us / 1000000;
|
|
const int64_t t_ibatch_h = t_ibatch_s / 3600;
|
|
t_ibatch_s -= t_ibatch_h * 3600;
|
|
const int64_t t_ibatch_m = t_ibatch_s / 60;
|
|
t_ibatch_s -= t_ibatch_m * 60;
|
|
|
|
const int64_t t_eta_us = t_ibatch_us * (ibatch_max - ibatch)/ibatch;
|
|
int64_t t_eta_s = t_eta_us / 1000000;
|
|
const int64_t t_eta_h = t_eta_s / 3600;
|
|
t_eta_s -= t_eta_h * 3600;
|
|
const int64_t t_eta_m = t_eta_s / 60;
|
|
t_eta_s -= t_eta_m * 60;
|
|
|
|
fprintf(stderr, "| data=%06" PRId64 "/%06" PRId64 ", loss=%.6lf+-%.6lf, accuracy=%.2lf+-%.2lf%%, "
|
|
"t=%02" PRId64 ":%02" PRId64 ":%02" PRId64 ", ETA=%02" PRId64 ":%02" PRId64 ":%02" PRId64 "]\r",
|
|
idata, idata_max, loss, loss_unc, 100.0*accuracy, 100.0*accuracy_unc,
|
|
t_ibatch_h, t_ibatch_m, t_ibatch_s, t_eta_h, t_eta_m, t_eta_s);
|
|
if (ibatch == ibatch_max) {
|
|
fprintf(stderr, "\n");
|
|
}
|
|
fflush(stderr);
|
|
|
|
GGML_UNUSED(dataset);
|
|
}
|
|
|
|
void ggml_opt_fit(
|
|
ggml_backend_sched_t backend_sched,
|
|
ggml_context * ctx_compute,
|
|
ggml_tensor * inputs,
|
|
ggml_tensor * outputs,
|
|
ggml_opt_dataset_t dataset,
|
|
enum ggml_opt_loss_type loss_type,
|
|
ggml_opt_get_optimizer_params get_opt_pars,
|
|
int64_t nepoch,
|
|
int64_t nbatch_logical,
|
|
float val_split,
|
|
bool silent) {
|
|
ggml_time_init();
|
|
const int64_t t_start_us = ggml_time_us();
|
|
|
|
const int64_t ndata = ggml_opt_dataset_data(dataset)->ne[1];
|
|
const int64_t nbatch_physical = inputs->ne[1];
|
|
GGML_ASSERT(ndata % nbatch_logical == 0);
|
|
GGML_ASSERT(nbatch_logical % nbatch_physical == 0);
|
|
|
|
const int64_t opt_period = nbatch_logical / nbatch_physical;
|
|
const int64_t nbatches_logical = ndata / nbatch_logical;
|
|
|
|
GGML_ASSERT(val_split >= 0.0f);
|
|
GGML_ASSERT(val_split < 1.0f);
|
|
const int64_t ibatch_split = int64_t(((1.0f - val_split) * nbatches_logical)) * opt_period; // train <-> val split index (physical)
|
|
const int64_t idata_split = ibatch_split * nbatch_physical;
|
|
|
|
int64_t epoch = 1;
|
|
|
|
ggml_opt_params params = ggml_opt_default_params(backend_sched, ctx_compute, inputs, outputs, loss_type);
|
|
params.opt_period = opt_period;
|
|
params.get_opt_pars = get_opt_pars;
|
|
params.get_opt_pars_ud = &epoch;
|
|
ggml_opt_context_t opt_ctx = ggml_opt_init(params);
|
|
|
|
// Shuffling the data is generally useful but there is only a point if not all data is used in a single batch.
|
|
if (nbatch_logical < ndata) {
|
|
ggml_opt_dataset_shuffle(opt_ctx, dataset, -1); // Shuffle all data (train + validation).
|
|
}
|
|
|
|
ggml_opt_result_t result_train = ggml_opt_result_init();
|
|
ggml_opt_result_t result_val = ggml_opt_result_init();
|
|
|
|
ggml_opt_epoch_callback epoch_callback = silent ? nullptr : ggml_opt_epoch_callback_progress_bar;
|
|
|
|
for (; epoch <= nepoch; ++epoch) {
|
|
if (nbatch_logical < idata_split) {
|
|
ggml_opt_dataset_shuffle(opt_ctx, dataset, idata_split);
|
|
}
|
|
|
|
ggml_opt_result_reset(result_train);
|
|
ggml_opt_result_reset(result_val);
|
|
|
|
if (!silent) {
|
|
fprintf(stderr, "%s: epoch %04" PRId64 "/%04" PRId64 ":\n", __func__, epoch, nepoch);
|
|
}
|
|
ggml_opt_epoch(opt_ctx, dataset, result_train, result_val, idata_split, epoch_callback, epoch_callback);
|
|
if (!silent) {
|
|
fprintf(stderr, "\n");
|
|
}
|
|
}
|
|
|
|
if (!silent) {
|
|
int64_t t_total_s = (ggml_time_us() - t_start_us) / 1000000;
|
|
const int64_t t_total_h = t_total_s / 3600;
|
|
t_total_s -= t_total_h * 3600;
|
|
const int64_t t_total_m = t_total_s / 60;
|
|
t_total_s -= t_total_m * 60;
|
|
fprintf(stderr, "%s: training took %02" PRId64 ":%02" PRId64 ":%02" PRId64 "\n", __func__, t_total_h, t_total_m, t_total_s);
|
|
}
|
|
|
|
ggml_opt_free(opt_ctx);
|
|
ggml_opt_result_free(result_train);
|
|
ggml_opt_result_free(result_val);
|
|
}
|