mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-11 21:10:24 +01:00
3126 lines
112 KiB
C++
3126 lines
112 KiB
C++
#include "common.h"
|
|
#include "llama.h"
|
|
#include "grammar-parser.h"
|
|
|
|
#include "../llava/clip.h"
|
|
|
|
#include "stb_image.h"
|
|
|
|
#ifndef NDEBUG
|
|
// crash the server in debug mode, otherwise send an http 500 error
|
|
#define CPPHTTPLIB_NO_EXCEPTIONS 1
|
|
#endif
|
|
// increase max payload length to allow use of larger context size
|
|
#define CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 1048576
|
|
#include "httplib.h"
|
|
#include "json.hpp"
|
|
|
|
// auto generated files (update with ./deps.sh)
|
|
#include "index.html.hpp"
|
|
#include "index.js.hpp"
|
|
#include "completion.js.hpp"
|
|
#include "json-schema-to-grammar.mjs.hpp"
|
|
|
|
#include <cstddef>
|
|
#include <thread>
|
|
#include <mutex>
|
|
#include <chrono>
|
|
|
|
#ifndef SERVER_VERBOSE
|
|
#define SERVER_VERBOSE 1
|
|
#endif
|
|
|
|
#define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo-0613"
|
|
|
|
using json = nlohmann::json;
|
|
|
|
struct server_params
|
|
{
|
|
std::string hostname = "127.0.0.1";
|
|
std::string api_key;
|
|
std::string public_path = "examples/server/public";
|
|
int32_t port = 8080;
|
|
int32_t read_timeout = 600;
|
|
int32_t write_timeout = 600;
|
|
};
|
|
|
|
static bool server_verbose = false;
|
|
|
|
#if SERVER_VERBOSE != 1
|
|
#define LOG_VERBOSE(MSG, ...)
|
|
#else
|
|
#define LOG_VERBOSE(MSG, ...) \
|
|
do \
|
|
{ \
|
|
if (server_verbose) \
|
|
{ \
|
|
server_log("VERBOSE", __func__, __LINE__, MSG, __VA_ARGS__); \
|
|
} \
|
|
} while (0)
|
|
#endif
|
|
|
|
#define LOG_ERROR( MSG, ...) server_log("ERROR", __func__, __LINE__, MSG, __VA_ARGS__)
|
|
#define LOG_WARNING(MSG, ...) server_log("WARNING", __func__, __LINE__, MSG, __VA_ARGS__)
|
|
#define LOG_INFO( MSG, ...) server_log("INFO", __func__, __LINE__, MSG, __VA_ARGS__)
|
|
|
|
json oaicompat_completion_params_parse(const json &body);
|
|
std::string format_chatml(std::vector<json> messages);
|
|
|
|
|
|
//
|
|
// base64 utils (TODO: move to common in the future)
|
|
//
|
|
|
|
static const std::string base64_chars =
|
|
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
|
|
"abcdefghijklmnopqrstuvwxyz"
|
|
"0123456789+/";
|
|
|
|
static inline bool is_base64(uint8_t c)
|
|
{
|
|
return (isalnum(c) || (c == '+') || (c == '/'));
|
|
}
|
|
|
|
static std::vector<uint8_t> base64_decode(std::string const &encoded_string)
|
|
{
|
|
int i = 0;
|
|
int j = 0;
|
|
int in_ = 0;
|
|
|
|
int in_len = encoded_string.size();
|
|
|
|
uint8_t char_array_4[4];
|
|
uint8_t char_array_3[3];
|
|
|
|
std::vector<uint8_t> ret;
|
|
|
|
while (in_len-- && (encoded_string[in_] != '=') && is_base64(encoded_string[in_]))
|
|
{
|
|
char_array_4[i++] = encoded_string[in_]; in_++;
|
|
if (i == 4)
|
|
{
|
|
for (i = 0; i <4; i++)
|
|
{
|
|
char_array_4[i] = base64_chars.find(char_array_4[i]);
|
|
}
|
|
|
|
char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4);
|
|
char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
|
|
char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
|
|
|
|
for (i = 0; (i < 3); i++)
|
|
{
|
|
ret.push_back(char_array_3[i]);
|
|
}
|
|
i = 0;
|
|
}
|
|
}
|
|
|
|
if (i)
|
|
{
|
|
for (j = i; j <4; j++)
|
|
{
|
|
char_array_4[j] = 0;
|
|
}
|
|
|
|
for (j = 0; j <4; j++)
|
|
{
|
|
char_array_4[j] = base64_chars.find(char_array_4[j]);
|
|
}
|
|
|
|
char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4);
|
|
char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
|
|
char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
|
|
|
|
for (j = 0; (j < i - 1); j++)
|
|
{
|
|
ret.push_back(char_array_3[j]);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
//
|
|
// parallel
|
|
//
|
|
|
|
enum task_type {
|
|
COMPLETION_TASK,
|
|
CANCEL_TASK
|
|
};
|
|
|
|
struct task_server {
|
|
int id;
|
|
int target_id;
|
|
task_type type;
|
|
json data;
|
|
bool infill_mode = false;
|
|
bool embedding_mode = false;
|
|
int multitask_id = -1;
|
|
};
|
|
|
|
struct task_result {
|
|
int id;
|
|
int multitask_id = -1;
|
|
bool stop;
|
|
bool error;
|
|
json result_json;
|
|
};
|
|
|
|
struct task_multi {
|
|
int id;
|
|
std::set<int> subtasks_remaining{};
|
|
std::vector<task_result> results{};
|
|
};
|
|
|
|
// TODO: can become bool if we can't find use of more states
|
|
enum slot_state
|
|
{
|
|
IDLE,
|
|
PROCESSING,
|
|
};
|
|
|
|
enum slot_command
|
|
{
|
|
NONE,
|
|
LOAD_PROMPT,
|
|
RELEASE,
|
|
};
|
|
|
|
struct slot_params
|
|
{
|
|
bool stream = true;
|
|
bool cache_prompt = false; // remember the prompt to avoid reprocessing all prompt
|
|
|
|
uint32_t seed = -1; // RNG seed
|
|
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
|
int32_t n_predict = -1; // new tokens to predict
|
|
|
|
std::vector<std::string> antiprompt;
|
|
|
|
json input_prefix;
|
|
json input_suffix;
|
|
};
|
|
|
|
struct slot_image
|
|
{
|
|
int32_t id;
|
|
|
|
bool request_encode_image = false;
|
|
float* image_embedding = nullptr;
|
|
int32_t image_tokens = 0;
|
|
|
|
clip_image_u8 img_data;
|
|
|
|
std::string prefix_prompt; // before of this image
|
|
};
|
|
|
|
// completion token output with probabilities
|
|
struct completion_token_output
|
|
{
|
|
struct token_prob
|
|
{
|
|
llama_token tok;
|
|
float prob;
|
|
};
|
|
|
|
std::vector<token_prob> probs;
|
|
llama_token tok;
|
|
std::string text_to_send;
|
|
};
|
|
|
|
static size_t common_part(const std::vector<llama_token> &a, const std::vector<llama_token> &b)
|
|
{
|
|
size_t i;
|
|
for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++)
|
|
{
|
|
}
|
|
return i;
|
|
}
|
|
|
|
enum stop_type
|
|
{
|
|
STOP_FULL,
|
|
STOP_PARTIAL,
|
|
};
|
|
|
|
static bool ends_with(const std::string &str, const std::string &suffix)
|
|
{
|
|
return str.size() >= suffix.size() &&
|
|
0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix);
|
|
}
|
|
|
|
static size_t find_partial_stop_string(const std::string &stop,
|
|
const std::string &text)
|
|
{
|
|
if (!text.empty() && !stop.empty())
|
|
{
|
|
const char text_last_char = text.back();
|
|
for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--)
|
|
{
|
|
if (stop[char_index] == text_last_char)
|
|
{
|
|
const std::string current_partial = stop.substr(0, char_index + 1);
|
|
if (ends_with(text, current_partial))
|
|
{
|
|
return text.size() - char_index - 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return std::string::npos;
|
|
}
|
|
|
|
// TODO: reuse llama_detokenize
|
|
template <class Iter>
|
|
static std::string tokens_to_str(llama_context *ctx, Iter begin, Iter end)
|
|
{
|
|
std::string ret;
|
|
for (; begin != end; ++begin)
|
|
{
|
|
ret += llama_token_to_piece(ctx, *begin);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void server_log(const char *level, const char *function, int line,
|
|
const char *message, const nlohmann::ordered_json &extra)
|
|
{
|
|
nlohmann::ordered_json log
|
|
{
|
|
{"timestamp", time(nullptr)},
|
|
{"level", level},
|
|
{"function", function},
|
|
{"line", line},
|
|
{"message", message},
|
|
};
|
|
|
|
if (!extra.empty())
|
|
{
|
|
log.merge_patch(extra);
|
|
}
|
|
|
|
const std::string str = log.dump(-1, ' ', false, json::error_handler_t::replace);
|
|
printf("%.*s\n", (int)str.size(), str.data());
|
|
fflush(stdout);
|
|
}
|
|
|
|
// format incomplete utf-8 multibyte character for output
|
|
static std::string tokens_to_output_formatted_string(const llama_context *ctx, const llama_token token)
|
|
{
|
|
std::string out = token == -1 ? "" : llama_token_to_piece(ctx, token);
|
|
// if the size is 1 and first bit is 1, meaning it's a partial character
|
|
// (size > 1 meaning it's already a known token)
|
|
if (out.size() == 1 && (out[0] & 0x80) == 0x80)
|
|
{
|
|
std::stringstream ss;
|
|
ss << std::hex << (out[0] & 0xff);
|
|
std::string res(ss.str());
|
|
out = "byte: \\x" + res;
|
|
}
|
|
return out;
|
|
}
|
|
|
|
// convert a vector of completion_token_output to json
|
|
static json probs_vector_to_json(const llama_context *ctx, const std::vector<completion_token_output> &probs)
|
|
{
|
|
json out = json::array();
|
|
for (const auto &prob : probs)
|
|
{
|
|
json probs_for_token = json::array();
|
|
for (const auto &p : prob.probs)
|
|
{
|
|
std::string tok_str = tokens_to_output_formatted_string(ctx, p.tok);
|
|
probs_for_token.push_back(json
|
|
{
|
|
{"tok_str", tok_str},
|
|
{"prob", p.prob},
|
|
});
|
|
}
|
|
std::string tok_str = tokens_to_output_formatted_string(ctx, prob.tok);
|
|
out.push_back(json{
|
|
{"content", tok_str},
|
|
{"probs", probs_for_token},
|
|
});
|
|
}
|
|
return out;
|
|
}
|
|
|
|
template <typename T>
|
|
static T json_value(const json &body, const std::string &key, const T &default_value)
|
|
{
|
|
// Fallback null to default value
|
|
return body.contains(key) && !body.at(key).is_null()
|
|
? body.value(key, default_value)
|
|
: default_value;
|
|
}
|
|
|
|
struct llama_client_slot
|
|
{
|
|
int id;
|
|
int task_id = -1;
|
|
|
|
struct slot_params params;
|
|
|
|
slot_state state = IDLE;
|
|
slot_command command = NONE;
|
|
|
|
// used to determine the slot that has been used the longest
|
|
int64_t t_last_used = -1;
|
|
|
|
// generation props
|
|
int32_t n_ctx = 0; // context size per slot
|
|
int32_t n_past = 0;
|
|
int32_t n_decoded = 0;
|
|
int32_t n_remaining = -1;
|
|
int32_t i_batch = -1;
|
|
|
|
int32_t num_prompt_tokens = 0;
|
|
int32_t num_prompt_tokens_processed = 0;
|
|
|
|
json prompt;
|
|
std::string generated_text;
|
|
llama_token sampled;
|
|
std::vector<llama_token> cache_tokens;
|
|
std::vector<completion_token_output> generated_token_probs;
|
|
|
|
bool infill = false;
|
|
bool embedding = false;
|
|
bool has_next_token = true;
|
|
bool truncated = false;
|
|
bool stopped_eos = false;
|
|
bool stopped_word = false;
|
|
bool stopped_limit = false;
|
|
|
|
bool oaicompat = false;
|
|
std::string oaicompat_model;
|
|
|
|
std::string stopping_word;
|
|
|
|
// sampling
|
|
struct llama_sampling_params sparams;
|
|
llama_sampling_context *ctx_sampling = nullptr;
|
|
|
|
// multimodal
|
|
std::vector<slot_image> images;
|
|
|
|
// stats
|
|
size_t sent_count = 0;
|
|
size_t sent_token_probs_index = 0;
|
|
|
|
int64_t t_start_process_prompt;
|
|
int64_t t_start_genereration;
|
|
|
|
double t_prompt_processing; // ms
|
|
double t_token_generation; // ms
|
|
|
|
// multitasks
|
|
int multitask_id = -1;
|
|
|
|
void reset() {
|
|
num_prompt_tokens = 0;
|
|
generated_text = "";
|
|
truncated = false;
|
|
stopped_eos = false;
|
|
stopped_word = false;
|
|
stopped_limit = false;
|
|
stopping_word = "";
|
|
n_past = 0;
|
|
sent_count = 0;
|
|
sent_token_probs_index = 0;
|
|
infill = false;
|
|
|
|
generated_token_probs.clear();
|
|
|
|
for (slot_image &img : images)
|
|
{
|
|
free(img.image_embedding);
|
|
delete[] img.img_data.data;
|
|
img.prefix_prompt = "";
|
|
}
|
|
|
|
images.clear();
|
|
// llama_set_rng_seed(ctx, params.seed); in batched the seed matter???????
|
|
}
|
|
|
|
bool has_budget(gpt_params &global_params) {
|
|
n_remaining = -1;
|
|
if(params.n_predict != -1)
|
|
{
|
|
n_remaining = params.n_predict - n_decoded;
|
|
}
|
|
else if (global_params.n_predict != -1)
|
|
{
|
|
n_remaining = global_params.n_predict - n_decoded;
|
|
}
|
|
return n_remaining > 0 || n_remaining == -1; // no budget || limitless
|
|
}
|
|
|
|
bool available() const {
|
|
return state == IDLE && command == NONE;
|
|
}
|
|
|
|
bool is_processing() const {
|
|
return (state == IDLE && command == LOAD_PROMPT) || state == PROCESSING;
|
|
}
|
|
|
|
void add_token_string(const completion_token_output &token) {
|
|
if (command == RELEASE)
|
|
{
|
|
return;
|
|
}
|
|
cache_tokens.push_back(token.tok);
|
|
generated_token_probs.push_back(token);
|
|
}
|
|
|
|
void release() {
|
|
if (state == IDLE || state == PROCESSING)
|
|
{
|
|
t_token_generation = (ggml_time_us() - t_start_genereration) / 1e3;
|
|
command = RELEASE;
|
|
}
|
|
}
|
|
|
|
json get_formated_timings() {
|
|
return json
|
|
{
|
|
{"prompt_n", num_prompt_tokens_processed},
|
|
{"prompt_ms", t_prompt_processing},
|
|
{"prompt_per_token_ms", t_prompt_processing / num_prompt_tokens_processed},
|
|
{"prompt_per_second", 1e3 / t_prompt_processing * num_prompt_tokens_processed},
|
|
|
|
{"predicted_n", n_decoded},
|
|
{"predicted_ms", t_token_generation},
|
|
{"predicted_per_token_ms", t_token_generation / n_decoded},
|
|
{"predicted_per_second", 1e3 / t_token_generation * n_decoded},
|
|
};
|
|
}
|
|
|
|
void print_timings() const {
|
|
LOG_TEE("\n");
|
|
LOG_TEE("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
|
|
__func__, t_prompt_processing, num_prompt_tokens_processed, t_prompt_processing / num_prompt_tokens_processed, 1e3 / t_prompt_processing * num_prompt_tokens_processed);
|
|
LOG_TEE("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
|
|
__func__, t_token_generation, n_decoded,t_token_generation / n_decoded, 1e3 / t_token_generation * n_decoded);
|
|
LOG_TEE("%s: total time = %10.2f ms\n", __func__, t_prompt_processing + t_token_generation);
|
|
}
|
|
};
|
|
|
|
struct llama_server_context
|
|
{
|
|
llama_model *model = nullptr;
|
|
llama_context *ctx = nullptr;
|
|
|
|
clip_ctx *clp_ctx = nullptr;
|
|
|
|
gpt_params params;
|
|
|
|
llama_batch batch;
|
|
|
|
bool multimodal = false;
|
|
bool clean_kv_cache = true;
|
|
bool all_slots_are_idle = false;
|
|
bool add_bos_token = true;
|
|
|
|
int32_t id_gen;
|
|
int32_t n_ctx; // total context for all clients / slots
|
|
|
|
// system prompt
|
|
bool system_need_update = false;
|
|
|
|
std::string system_prompt;
|
|
std::vector<llama_token> system_tokens;
|
|
|
|
std::string name_user; // this should be the antiprompt
|
|
std::string name_assistant;
|
|
|
|
// slots / clients
|
|
std::vector<llama_client_slot> slots;
|
|
|
|
std::vector<task_server> queue_tasks;
|
|
std::vector<task_result> queue_results;
|
|
std::vector<task_multi> queue_multitasks;
|
|
std::mutex mutex_tasks; // also guards id_gen, and queue_multitasks
|
|
std::mutex mutex_results;
|
|
|
|
~llama_server_context()
|
|
{
|
|
if (ctx)
|
|
{
|
|
llama_free(ctx);
|
|
ctx = nullptr;
|
|
}
|
|
if (model)
|
|
{
|
|
llama_free_model(model);
|
|
model = nullptr;
|
|
}
|
|
}
|
|
|
|
bool load_model(const gpt_params ¶ms_)
|
|
{
|
|
params = params_;
|
|
if (!params.mmproj.empty()) {
|
|
multimodal = true;
|
|
LOG_TEE("Multi Modal Mode Enabled");
|
|
clp_ctx = clip_model_load(params.mmproj.c_str(), /*verbosity=*/ 1);
|
|
if(clp_ctx == nullptr) {
|
|
LOG_ERROR("unable to load clip model", {{"model", params.mmproj}});
|
|
return false;
|
|
}
|
|
|
|
if (params.n_ctx < 2048) { // request larger context for the image embedding
|
|
params.n_ctx = 2048;
|
|
}
|
|
}
|
|
|
|
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
|
if (model == nullptr)
|
|
{
|
|
LOG_ERROR("unable to load model", {{"model", params.model}});
|
|
return false;
|
|
}
|
|
|
|
if (multimodal) {
|
|
const int n_embd_clip = clip_n_mmproj_embd(clp_ctx);
|
|
const int n_embd_llm = llama_n_embd(model);
|
|
if (n_embd_clip != n_embd_llm) {
|
|
LOG_TEE("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_embd_clip, n_embd_llm);
|
|
llama_free(ctx);
|
|
llama_free_model(model);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
n_ctx = llama_n_ctx(ctx);
|
|
|
|
add_bos_token = llama_should_add_bos_token(model);
|
|
|
|
return true;
|
|
}
|
|
|
|
void initialize() {
|
|
id_gen = 0;
|
|
|
|
// create slots
|
|
all_slots_are_idle = true;
|
|
|
|
const int32_t n_ctx_slot = n_ctx / params.n_parallel;
|
|
|
|
LOG_TEE("Available slots:\n");
|
|
for (int i = 0; i < params.n_parallel; i++)
|
|
{
|
|
llama_client_slot slot;
|
|
|
|
slot.id = i;
|
|
slot.n_ctx = n_ctx_slot;
|
|
slot.reset();
|
|
|
|
LOG_TEE(" -> Slot %i - max context: %i\n", slot.id, n_ctx_slot);
|
|
slots.push_back(slot);
|
|
}
|
|
|
|
batch = llama_batch_init(n_ctx, 0, params.n_parallel);
|
|
|
|
// empty system prompt
|
|
system_prompt = "";
|
|
system_tokens.clear();
|
|
}
|
|
|
|
std::vector<llama_token> tokenize(const json & json_prompt, bool add_bos) const
|
|
{
|
|
// TODO: currently, we tokenize using special tokens by default
|
|
// this is not always correct (see https://github.com/ggerganov/llama.cpp/pull/4160#issuecomment-1824826216)
|
|
// but it's better compared to completely ignoring ChatML and other chat templates
|
|
const bool TMP_FORCE_SPECIAL = true;
|
|
|
|
// If `add_bos` is true, we only add BOS, when json_prompt is a string,
|
|
// or the first element of the json_prompt array is a string.
|
|
std::vector<llama_token> prompt_tokens;
|
|
|
|
if (json_prompt.is_array())
|
|
{
|
|
bool first = true;
|
|
for (const auto& p : json_prompt)
|
|
{
|
|
if (p.is_string())
|
|
{
|
|
auto s = p.template get<std::string>();
|
|
std::vector<llama_token> p;
|
|
if (first)
|
|
{
|
|
p = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
|
|
first = false;
|
|
}
|
|
else
|
|
{
|
|
p = ::llama_tokenize(ctx, s, false, TMP_FORCE_SPECIAL);
|
|
}
|
|
prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
|
|
}
|
|
else
|
|
{
|
|
if (first)
|
|
{
|
|
first = false;
|
|
}
|
|
prompt_tokens.push_back(p.template get<llama_token>());
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
auto s = json_prompt.template get<std::string>();
|
|
prompt_tokens = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
|
|
}
|
|
|
|
return prompt_tokens;
|
|
}
|
|
|
|
llama_client_slot* get_slot(int id) {
|
|
int64_t t_last = ggml_time_us();
|
|
llama_client_slot *last_used = nullptr;
|
|
|
|
for (llama_client_slot & slot : slots)
|
|
{
|
|
if (slot.id == id && slot.available())
|
|
{
|
|
return &slot;
|
|
}
|
|
|
|
if (slot.available() && slot.t_last_used < t_last)
|
|
{
|
|
last_used = &slot;
|
|
t_last = slot.t_last_used;
|
|
}
|
|
}
|
|
|
|
return last_used;
|
|
}
|
|
|
|
bool launch_slot_with_data(llama_client_slot* &slot, json data) {
|
|
slot_params default_params;
|
|
llama_sampling_params default_sparams;
|
|
|
|
if (data.count("__oaicompat") != 0) {
|
|
slot->oaicompat = true;
|
|
slot->oaicompat_model = json_value(data, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
|
|
} else {
|
|
slot->oaicompat = false;
|
|
slot->oaicompat_model = "";
|
|
}
|
|
|
|
slot->params.stream = json_value(data, "stream", false);
|
|
slot->params.cache_prompt = json_value(data, "cache_prompt", false);
|
|
slot->params.n_predict = json_value(data, "n_predict", default_params.n_predict);
|
|
slot->sparams.top_k = json_value(data, "top_k", default_sparams.top_k);
|
|
slot->sparams.top_p = json_value(data, "top_p", default_sparams.top_p);
|
|
slot->sparams.min_p = json_value(data, "min_p", default_sparams.min_p);
|
|
slot->sparams.tfs_z = json_value(data, "tfs_z", default_sparams.tfs_z);
|
|
slot->sparams.typical_p = json_value(data, "typical_p", default_sparams.typical_p);
|
|
slot->sparams.temp = json_value(data, "temperature", default_sparams.temp);
|
|
slot->sparams.penalty_last_n = json_value(data, "repeat_last_n", default_sparams.penalty_last_n);
|
|
slot->sparams.penalty_repeat = json_value(data, "repeat_penalty", default_sparams.penalty_repeat);
|
|
slot->sparams.penalty_freq = json_value(data, "frequency_penalty", default_sparams.penalty_freq);
|
|
slot->sparams.penalty_present = json_value(data, "presence_penalty", default_sparams.penalty_present);
|
|
slot->sparams.mirostat = json_value(data, "mirostat", default_sparams.mirostat);
|
|
slot->sparams.mirostat_tau = json_value(data, "mirostat_tau", default_sparams.mirostat_tau);
|
|
slot->sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta);
|
|
slot->sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl);
|
|
slot->params.n_keep = json_value(data, "n_keep", slot->params.n_keep);
|
|
slot->params.seed = json_value(data, "seed", default_params.seed);
|
|
slot->sparams.grammar = json_value(data, "grammar", default_sparams.grammar);
|
|
slot->sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);
|
|
|
|
// infill
|
|
if (data.count("input_prefix") != 0)
|
|
{
|
|
slot->params.input_prefix = data["input_prefix"];
|
|
}
|
|
else
|
|
{
|
|
slot->params.input_prefix = "";
|
|
}
|
|
|
|
if (data.count("input_suffix") != 0)
|
|
{
|
|
slot->params.input_suffix = data["input_suffix"];
|
|
}
|
|
else
|
|
{
|
|
slot->params.input_suffix = "";
|
|
}
|
|
|
|
if (data.count("prompt") != 0)
|
|
{
|
|
slot->prompt = data["prompt"];
|
|
}
|
|
else
|
|
{
|
|
slot->prompt = "";
|
|
}
|
|
|
|
slot->sparams.logit_bias.clear();
|
|
|
|
if (json_value(data, "ignore_eos", false))
|
|
{
|
|
slot->sparams.logit_bias[llama_token_eos(model)] = -INFINITY;
|
|
}
|
|
|
|
const auto &logit_bias = data.find("logit_bias");
|
|
if (logit_bias != data.end() && logit_bias->is_array())
|
|
{
|
|
const int n_vocab = llama_n_vocab(model);
|
|
for (const auto &el : *logit_bias)
|
|
{
|
|
if (el.is_array() && el.size() == 2 && el[0].is_number_integer())
|
|
{
|
|
llama_token tok = el[0].get<llama_token>();
|
|
if (tok >= 0 && tok < n_vocab)
|
|
{
|
|
if (el[1].is_number())
|
|
{
|
|
slot->sparams.logit_bias[tok] = el[1].get<float>();
|
|
}
|
|
else if (el[1].is_boolean() && !el[1].get<bool>())
|
|
{
|
|
slot->sparams.logit_bias[tok] = -INFINITY;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
slot->params.antiprompt.clear();
|
|
|
|
const auto &stop = data.find("stop");
|
|
if (stop != data.end() && stop->is_array())
|
|
{
|
|
for (const auto &word : *stop)
|
|
{
|
|
if (!word.empty())
|
|
{
|
|
slot->params.antiprompt.push_back(word);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (multimodal)
|
|
{
|
|
const auto &images_data = data.find("image_data");
|
|
if (images_data != data.end() && images_data->is_array())
|
|
{
|
|
for (const auto &img : *images_data)
|
|
{
|
|
std::string data_b64 = img["data"].get<std::string>();
|
|
slot_image img_sl;
|
|
img_sl.id = img.count("id") != 0 ? img["id"].get<int>() : slot->images.size();
|
|
int width, height, channels;
|
|
std::vector<uint8_t> image_buffer = base64_decode(data_b64);
|
|
data_b64.clear();
|
|
auto data = stbi_load_from_memory(image_buffer.data(), image_buffer.size(), &width, &height, &channels, 3);
|
|
if (!data) {
|
|
LOG_TEE("slot %i - failed to load image [id: %i]\n", slot->id, img_sl.id);
|
|
return false;
|
|
}
|
|
LOG_TEE("slot %i - image loaded [id: %i] resolution (%i x %i)\n", slot->id, img_sl.id, width, height);
|
|
img_sl.img_data.nx = width;
|
|
img_sl.img_data.ny = height;
|
|
img_sl.img_data.size = width * height * 3;
|
|
img_sl.img_data.data = new uint8_t[width * height * 3]();
|
|
memcpy(img_sl.img_data.data, data, width * height * 3);
|
|
stbi_image_free(data);
|
|
img_sl.request_encode_image = true;
|
|
slot->images.push_back(img_sl);
|
|
}
|
|
// process prompt
|
|
// example: system prompt [img-102] user [img-103] describe [img-134] -> [{id: 102, prefix: 'system prompt '}, {id: 103, prefix: ' user '}, {id: 134, prefix: ' describe '}]}
|
|
if (slot->images.size() > 0 && !slot->prompt.is_array())
|
|
{
|
|
std::string prompt = slot->prompt.get<std::string>();
|
|
size_t pos = 0, begin_prefix = 0;
|
|
std::string pattern = "[img-";
|
|
while ((pos = prompt.find(pattern, pos)) != std::string::npos) {
|
|
size_t end_prefix = pos;
|
|
pos += pattern.length();
|
|
size_t end_pos = prompt.find("]", pos);
|
|
if (end_pos != std::string::npos)
|
|
{
|
|
std::string image_id = prompt.substr(pos, end_pos - pos);
|
|
try
|
|
{
|
|
int img_id = std::stoi(image_id);
|
|
bool found = false;
|
|
for (slot_image &img : slot->images)
|
|
{
|
|
if (img.id == img_id) {
|
|
found = true;
|
|
img.prefix_prompt = prompt.substr(begin_prefix, end_prefix - begin_prefix);
|
|
begin_prefix = end_pos + 1;
|
|
break;
|
|
}
|
|
}
|
|
if (!found) {
|
|
LOG_TEE("ERROR: Image with id: %i, not found.\n", img_id);
|
|
slot->images.clear();
|
|
return false;
|
|
}
|
|
} catch (const std::invalid_argument& e) {
|
|
LOG_TEE("Invalid image number id in prompt\n");
|
|
slot->images.clear();
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
slot->prompt = "";
|
|
slot->params.input_suffix = prompt.substr(begin_prefix);
|
|
slot->params.cache_prompt = false; // multimodal doesn't support cache prompt
|
|
}
|
|
}
|
|
}
|
|
|
|
if (slot->ctx_sampling != nullptr)
|
|
{
|
|
llama_sampling_free(slot->ctx_sampling);
|
|
}
|
|
slot->ctx_sampling = llama_sampling_init(slot->sparams);
|
|
slot->command = LOAD_PROMPT;
|
|
|
|
all_slots_are_idle = false;
|
|
|
|
LOG_TEE("slot %i is processing [task id: %i]\n", slot->id, slot->task_id);
|
|
|
|
return true;
|
|
}
|
|
|
|
void kv_cache_clear() {
|
|
// clear the entire KV cache
|
|
llama_kv_cache_clear(ctx);
|
|
clean_kv_cache = false;
|
|
}
|
|
|
|
void update_system_prompt() {
|
|
system_tokens = ::llama_tokenize(ctx, system_prompt, add_bos_token);
|
|
|
|
llama_batch_clear(batch);
|
|
|
|
kv_cache_clear();
|
|
|
|
for (int i = 0; i < (int) system_tokens.size(); ++i)
|
|
{
|
|
llama_batch_add(batch, system_tokens[i], i, { 0 }, false);
|
|
}
|
|
|
|
if (llama_decode(ctx, batch) != 0)
|
|
{
|
|
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
|
return;
|
|
}
|
|
|
|
// assign the system KV cache to all parallel sequences
|
|
for (int32_t i = 1; i < params.n_parallel; ++i)
|
|
{
|
|
llama_kv_cache_seq_cp(ctx, 0, i, 0, system_tokens.size());
|
|
}
|
|
|
|
LOG_TEE("system prompt updated\n");
|
|
system_need_update = false;
|
|
}
|
|
|
|
void notify_system_prompt_changed() {
|
|
// release all slots
|
|
for (llama_client_slot &slot : slots)
|
|
{
|
|
slot.release();
|
|
}
|
|
|
|
system_need_update = true;
|
|
}
|
|
|
|
void process_system_prompt_data(const json &sys_props) {
|
|
system_prompt = sys_props.value("prompt", "");
|
|
name_user = sys_props.value("anti_prompt", "");
|
|
name_assistant = sys_props.value("assistant_name", "");
|
|
|
|
if (slots.size() > 0)
|
|
{
|
|
notify_system_prompt_changed();
|
|
}
|
|
}
|
|
|
|
static size_t find_stopping_strings(const std::string &text, const size_t last_token_size,
|
|
const stop_type type, llama_client_slot &slot)
|
|
{
|
|
size_t stop_pos = std::string::npos;
|
|
|
|
for (const std::string &word : slot.params.antiprompt)
|
|
{
|
|
size_t pos;
|
|
if (type == STOP_FULL)
|
|
{
|
|
const size_t tmp = word.size() + last_token_size;
|
|
const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
|
|
pos = text.find(word, from_pos);
|
|
}
|
|
else
|
|
{
|
|
pos = find_partial_stop_string(word, text);
|
|
}
|
|
if (pos != std::string::npos &&
|
|
(stop_pos == std::string::npos || pos < stop_pos))
|
|
{
|
|
if (type == STOP_FULL)
|
|
{
|
|
slot.stopped_word = true;
|
|
slot.stopping_word = word;
|
|
slot.has_next_token = false;
|
|
}
|
|
stop_pos = pos;
|
|
}
|
|
}
|
|
|
|
return stop_pos;
|
|
}
|
|
|
|
bool process_token(completion_token_output &result, llama_client_slot &slot) {
|
|
// remember which tokens were sampled - used for repetition penalties during sampling
|
|
const std::string token_str = llama_token_to_piece(ctx, result.tok);
|
|
slot.sampled = result.tok;
|
|
|
|
// search stop word and delete it
|
|
slot.generated_text += token_str;
|
|
slot.has_next_token = true;
|
|
|
|
// check if there is incomplete UTF-8 character at the end
|
|
bool incomplete = false;
|
|
for (unsigned i = 1; i < 5 && i <= slot.generated_text.size(); ++i)
|
|
{
|
|
unsigned char c = slot.generated_text[slot.generated_text.size() - i];
|
|
if ((c & 0xC0) == 0x80)
|
|
{
|
|
// continuation byte: 10xxxxxx
|
|
continue;
|
|
}
|
|
if ((c & 0xE0) == 0xC0)
|
|
{
|
|
// 2-byte character: 110xxxxx ...
|
|
incomplete = i < 2;
|
|
}
|
|
else if ((c & 0xF0) == 0xE0)
|
|
{
|
|
// 3-byte character: 1110xxxx ...
|
|
incomplete = i < 3;
|
|
}
|
|
else if ((c & 0xF8) == 0xF0)
|
|
{
|
|
// 4-byte character: 11110xxx ...
|
|
incomplete = i < 4;
|
|
}
|
|
// else 1-byte character or invalid byte
|
|
break;
|
|
}
|
|
|
|
if (!incomplete)
|
|
{
|
|
size_t pos = std::min(slot.sent_count, slot.generated_text.size());
|
|
const std::string str_test = slot.generated_text.substr(pos);
|
|
bool is_stop_full = false;
|
|
size_t stop_pos = find_stopping_strings(str_test, token_str.size(), STOP_FULL, slot);
|
|
if (stop_pos != std::string::npos)
|
|
{
|
|
is_stop_full = true;
|
|
slot.generated_text.erase(
|
|
slot.generated_text.begin() + pos + stop_pos,
|
|
slot.generated_text.end());
|
|
pos = std::min(slot.sent_count, slot.generated_text.size());
|
|
}
|
|
else
|
|
{
|
|
is_stop_full = false;
|
|
stop_pos = find_stopping_strings(str_test, token_str.size(), STOP_PARTIAL, slot);
|
|
}
|
|
|
|
// check if there is any token to predict
|
|
if (stop_pos == std::string::npos || (!slot.has_next_token && !is_stop_full && stop_pos > 0))
|
|
{
|
|
// no send the stop word in the response
|
|
result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
|
|
slot.sent_count += result.text_to_send.size();
|
|
// add the token to slot queue and cache
|
|
}
|
|
slot.add_token_string(result);
|
|
if (slot.params.stream)
|
|
{
|
|
send_partial_response(slot, result);
|
|
}
|
|
}
|
|
|
|
if (incomplete)
|
|
{
|
|
slot.has_next_token = true;
|
|
}
|
|
|
|
// check the limits
|
|
if (slot.n_decoded > 2 && slot.has_next_token && !slot.has_budget(params))
|
|
{
|
|
slot.stopped_limit = true;
|
|
slot.has_next_token = false;
|
|
}
|
|
|
|
if (!slot.cache_tokens.empty() && result.tok == llama_token_eos(model))
|
|
{
|
|
slot.stopped_eos = true;
|
|
slot.has_next_token = false;
|
|
LOG_VERBOSE("eos token found", {});
|
|
}
|
|
|
|
LOG_VERBOSE("next token", {
|
|
{"token", result.tok},
|
|
{"token_text", tokens_to_output_formatted_string(ctx, result.tok)},
|
|
{"has_next_token", slot.has_next_token},
|
|
{"n_remain", slot.n_remaining},
|
|
{"num_tokens_predicted", slot.n_decoded},
|
|
{"stopped_eos", slot.stopped_eos},
|
|
{"stopped_word", slot.stopped_word},
|
|
{"stopped_limit", slot.stopped_limit},
|
|
{"stopping_word", slot.stopping_word},
|
|
});
|
|
|
|
return slot.has_next_token; // continue
|
|
}
|
|
|
|
bool process_images(llama_client_slot &slot) const
|
|
{
|
|
for (slot_image &img : slot.images)
|
|
{
|
|
if (!img.request_encode_image)
|
|
{
|
|
continue;
|
|
}
|
|
clip_image_f32 img_res;
|
|
if (!clip_image_preprocess(clp_ctx, &img.img_data, &img_res, /*pad2square =*/ true))
|
|
{
|
|
LOG_TEE("Error processing the given image");
|
|
clip_free(clp_ctx);
|
|
return false;
|
|
}
|
|
img.image_tokens = clip_n_patches(clp_ctx);
|
|
img.image_embedding = (float *)malloc(clip_embd_nbytes(clp_ctx));
|
|
if (!img.image_embedding)
|
|
{
|
|
LOG_TEE("Unable to allocate memory for image embeddings\n");
|
|
clip_free(clp_ctx);
|
|
return false;
|
|
}
|
|
LOG_TEE("slot %i - encoding image [id: %i]\n", slot.id, img.id);
|
|
if (!clip_image_encode(clp_ctx, params.n_threads, &img_res, img.image_embedding))
|
|
{
|
|
LOG_TEE("Unable to encode image\n");
|
|
return false;
|
|
}
|
|
img.request_encode_image = false;
|
|
}
|
|
|
|
return slot.images.size() > 0;
|
|
}
|
|
|
|
void send_error(task_server& task, std::string error)
|
|
{
|
|
std::lock_guard<std::mutex> lock(mutex_results);
|
|
task_result res;
|
|
res.id = task.id;
|
|
res.multitask_id = task.multitask_id;
|
|
res.stop = false;
|
|
res.error = true;
|
|
res.result_json = { { "content", error } };
|
|
queue_results.push_back(res);
|
|
}
|
|
|
|
void add_multi_task(int id, std::vector<int>& sub_ids)
|
|
{
|
|
std::lock_guard<std::mutex> lock(mutex_tasks);
|
|
task_multi multi;
|
|
multi.id = id;
|
|
std::copy(sub_ids.begin(), sub_ids.end(), std::inserter(multi.subtasks_remaining, multi.subtasks_remaining.end()));
|
|
queue_multitasks.push_back(multi);
|
|
}
|
|
|
|
void update_multi_task(int multitask_id, int subtask_id, task_result& result)
|
|
{
|
|
std::lock_guard<std::mutex> lock(mutex_tasks);
|
|
for (auto& multitask : queue_multitasks)
|
|
{
|
|
if (multitask.id == multitask_id)
|
|
{
|
|
multitask.subtasks_remaining.erase(subtask_id);
|
|
multitask.results.push_back(result);
|
|
}
|
|
}
|
|
}
|
|
|
|
json get_model_props()
|
|
{
|
|
return get_formated_generation(slots[0]);
|
|
}
|
|
|
|
json get_formated_generation(llama_client_slot &slot)
|
|
{
|
|
const auto eos_bias = slot.sparams.logit_bias.find(llama_token_eos(model));
|
|
const bool ignore_eos = eos_bias != slot.sparams.logit_bias.end() &&
|
|
eos_bias->second < 0.0f && std::isinf(eos_bias->second);
|
|
return json {
|
|
{"n_ctx", slot.n_ctx},
|
|
{"model", params.model_alias},
|
|
{"seed", slot.params.seed},
|
|
{"temp", slot.sparams.temp},
|
|
{"top_k", slot.sparams.top_k},
|
|
{"top_p", slot.sparams.top_p},
|
|
{"min_p", slot.sparams.min_p},
|
|
{"tfs_z", slot.sparams.tfs_z},
|
|
{"typical_p", slot.sparams.typical_p},
|
|
{"repeat_last_n", slot.sparams.penalty_last_n},
|
|
{"repeat_penalty", slot.sparams.penalty_repeat},
|
|
{"presence_penalty", slot.sparams.penalty_present},
|
|
{"frequency_penalty", slot.sparams.penalty_freq},
|
|
{"mirostat", slot.sparams.mirostat},
|
|
{"mirostat_tau", slot.sparams.mirostat_tau},
|
|
{"mirostat_eta", slot.sparams.mirostat_eta},
|
|
{"penalize_nl", slot.sparams.penalize_nl},
|
|
{"stop", slot.params.antiprompt},
|
|
{"n_predict", slot.params.n_predict},
|
|
{"n_keep", params.n_keep},
|
|
{"ignore_eos", ignore_eos},
|
|
{"stream", slot.params.stream},
|
|
{"logit_bias", slot.sparams.logit_bias},
|
|
{"n_probs", slot.sparams.n_probs},
|
|
{"grammar", slot.sparams.grammar},
|
|
};
|
|
}
|
|
|
|
void send_partial_response(llama_client_slot &slot, completion_token_output tkn)
|
|
{
|
|
std::lock_guard<std::mutex> lock(mutex_results);
|
|
task_result res;
|
|
res.id = slot.task_id;
|
|
res.multitask_id = slot.multitask_id;
|
|
res.error = false;
|
|
res.stop = false;
|
|
|
|
res.result_json = json
|
|
{
|
|
{"content", tkn.text_to_send},
|
|
{"stop", false},
|
|
{"slot_id", slot.id},
|
|
{"multimodal", multimodal}
|
|
};
|
|
|
|
if (slot.sparams.n_probs > 0)
|
|
{
|
|
std::vector<completion_token_output> probs_output = {};
|
|
const std::vector<llama_token> to_send_toks = llama_tokenize(ctx, tkn.text_to_send, false);
|
|
size_t probs_pos = std::min(slot.sent_token_probs_index, slot.generated_token_probs.size());
|
|
size_t probs_stop_pos = std::min(slot.sent_token_probs_index + to_send_toks.size(), slot.generated_token_probs.size());
|
|
if (probs_pos < probs_stop_pos)
|
|
{
|
|
probs_output = std::vector<completion_token_output>(slot.generated_token_probs.begin() + probs_pos, slot.generated_token_probs.begin() + probs_stop_pos);
|
|
}
|
|
slot.sent_token_probs_index = probs_stop_pos;
|
|
res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs_output);
|
|
}
|
|
|
|
if (slot.oaicompat)
|
|
{
|
|
res.result_json["oaicompat_token_ctr"] = slot.n_decoded;
|
|
res.result_json["model"] = slot.oaicompat_model;
|
|
}
|
|
|
|
queue_results.push_back(res);
|
|
}
|
|
|
|
void send_final_response(llama_client_slot &slot)
|
|
{
|
|
std::lock_guard<std::mutex> lock(mutex_results);
|
|
task_result res;
|
|
res.id = slot.task_id;
|
|
res.multitask_id = slot.multitask_id;
|
|
res.error = false;
|
|
res.stop = true;
|
|
|
|
res.result_json = json
|
|
{
|
|
{"content", !slot.params.stream ? slot.generated_text : ""},
|
|
{"slot_id", slot.id},
|
|
{"stop", true},
|
|
{"model", params.model_alias},
|
|
{"tokens_predicted", slot.n_decoded},
|
|
{"tokens_evaluated", slot.num_prompt_tokens},
|
|
{"generation_settings", get_formated_generation(slot)},
|
|
{"prompt", slot.prompt},
|
|
{"truncated", slot.truncated},
|
|
{"stopped_eos", slot.stopped_eos},
|
|
{"stopped_word", slot.stopped_word},
|
|
{"stopped_limit", slot.stopped_limit},
|
|
{"stopping_word", slot.stopping_word},
|
|
{"tokens_cached", slot.n_past},
|
|
{"timings", slot.get_formated_timings()}
|
|
};
|
|
|
|
if (slot.sparams.n_probs > 0)
|
|
{
|
|
std::vector<completion_token_output> probs = {};
|
|
if (!slot.params.stream && slot.stopped_word)
|
|
{
|
|
const std::vector<llama_token> stop_word_toks = llama_tokenize(ctx, slot.stopping_word, false);
|
|
probs = std::vector<completion_token_output>(slot.generated_token_probs.begin(), slot.generated_token_probs.end() - stop_word_toks.size());
|
|
}
|
|
else
|
|
{
|
|
probs = std::vector<completion_token_output>(
|
|
slot.generated_token_probs.begin(),
|
|
slot.generated_token_probs.begin() + slot.sent_token_probs_index);
|
|
}
|
|
res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs);
|
|
}
|
|
|
|
if (slot.oaicompat)
|
|
{
|
|
res.result_json["oaicompat_token_ctr"] = slot.n_decoded;
|
|
res.result_json["model"] = slot.oaicompat_model;
|
|
}
|
|
|
|
// parent multitask, if any, needs to be updated
|
|
if (slot.multitask_id != -1)
|
|
{
|
|
update_multi_task(slot.multitask_id, slot.task_id, res);
|
|
}
|
|
|
|
queue_results.push_back(res);
|
|
}
|
|
|
|
void send_embedding(llama_client_slot &slot)
|
|
{
|
|
std::lock_guard<std::mutex> lock(mutex_results);
|
|
task_result res;
|
|
res.id = slot.task_id;
|
|
res.multitask_id = slot.multitask_id;
|
|
res.error = false;
|
|
res.stop = true;
|
|
|
|
const int n_embd = llama_n_embd(model);
|
|
if (!params.embedding)
|
|
{
|
|
LOG_WARNING("embedding disabled", {
|
|
{"params.embedding", params.embedding},
|
|
});
|
|
res.result_json = json
|
|
{
|
|
{"embedding", std::vector<float>(n_embd, 0.0f)},
|
|
};
|
|
}
|
|
else
|
|
{
|
|
const float *data = llama_get_embeddings(ctx);
|
|
std::vector<float> embedding(data, data + n_embd);
|
|
res.result_json = json
|
|
{
|
|
{"embedding", embedding },
|
|
};
|
|
}
|
|
queue_results.push_back(res);
|
|
}
|
|
|
|
int request_completion(json data, bool infill, bool embedding, int multitask_id)
|
|
{
|
|
std::unique_lock<std::mutex> lock(mutex_tasks);
|
|
task_server task;
|
|
task.id = id_gen++;
|
|
task.target_id = 0;
|
|
task.data = std::move(data);
|
|
task.infill_mode = infill;
|
|
task.embedding_mode = embedding;
|
|
task.type = COMPLETION_TASK;
|
|
task.multitask_id = multitask_id;
|
|
|
|
// when a completion task's prompt array is not a singleton, we split it into multiple requests
|
|
if (task.data.at("prompt").size() > 1)
|
|
{
|
|
lock.unlock(); // entering new func scope
|
|
return split_multiprompt_task(task);
|
|
}
|
|
|
|
// otherwise, it's a single-prompt task, we actually queue it
|
|
queue_tasks.push_back(task);
|
|
return task.id;
|
|
}
|
|
|
|
task_result next_result(int task_id)
|
|
{
|
|
while (true)
|
|
{
|
|
std::this_thread::sleep_for(std::chrono::microseconds(5));
|
|
std::lock_guard<std::mutex> lock(mutex_results);
|
|
|
|
if (queue_results.empty())
|
|
{
|
|
continue;
|
|
}
|
|
|
|
for (int i = 0; i < (int) queue_results.size(); i++)
|
|
{
|
|
// for now, tasks that have associated parent multitasks just get erased once multitask picks up the result
|
|
if (queue_results[i].multitask_id == task_id)
|
|
{
|
|
update_multi_task(task_id, queue_results[i].id, queue_results[i]);
|
|
queue_results.erase(queue_results.begin() + i);
|
|
continue;
|
|
}
|
|
|
|
if (queue_results[i].id == task_id)
|
|
{
|
|
assert(queue_results[i].multitask_id == -1);
|
|
task_result res = queue_results[i];
|
|
queue_results.erase(queue_results.begin() + i);
|
|
return res;
|
|
}
|
|
}
|
|
}
|
|
|
|
// never reached
|
|
//return task_result{-1, false, false, {}};
|
|
}
|
|
|
|
// for multiple images processing
|
|
bool ingest_images(llama_client_slot &slot, int n_batch)
|
|
{
|
|
int image_idx = 0;
|
|
|
|
while (image_idx < (int) slot.images.size())
|
|
{
|
|
slot_image &img = slot.images[image_idx];
|
|
|
|
// process prefix prompt
|
|
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch)
|
|
{
|
|
const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
|
|
llama_batch batch_view = {
|
|
n_tokens,
|
|
batch.token + i,
|
|
nullptr,
|
|
batch.pos + i,
|
|
batch.n_seq_id + i,
|
|
batch.seq_id + i,
|
|
batch.logits + i,
|
|
0, 0, 0, // unused
|
|
};
|
|
if (llama_decode(ctx, batch_view))
|
|
{
|
|
LOG_TEE("%s : failed to eval\n", __func__);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// process image with llm
|
|
for (int i = 0; i < img.image_tokens; i += n_batch)
|
|
{
|
|
int n_eval = img.image_tokens - i;
|
|
if (n_eval > n_batch)
|
|
{
|
|
n_eval = n_batch;
|
|
}
|
|
|
|
const int n_embd = llama_n_embd(model);
|
|
llama_batch batch_img = { n_eval, nullptr, (img.image_embedding + i * n_embd), nullptr, nullptr, nullptr, nullptr, slot.n_past, 1, 0, };
|
|
if (llama_decode(ctx, batch_img))
|
|
{
|
|
LOG_TEE("%s : failed to eval image\n", __func__);
|
|
return false;
|
|
}
|
|
slot.n_past += n_eval;
|
|
}
|
|
image_idx++;
|
|
|
|
llama_batch_clear(batch);
|
|
|
|
// append prefix of next image
|
|
const auto json_prompt = (image_idx >= (int) slot.images.size()) ?
|
|
slot.params.input_suffix : // no more images, then process suffix prompt
|
|
(json)(slot.images[image_idx].prefix_prompt);
|
|
|
|
std::vector<llama_token> append_tokens = tokenize(json_prompt, false); // has next image
|
|
for (int i = 0; i < (int) append_tokens.size(); ++i)
|
|
{
|
|
llama_batch_add(batch, append_tokens[i], slot.n_past, { slot.id }, true);
|
|
slot.n_past += 1;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void request_cancel(int task_id)
|
|
{
|
|
std::lock_guard<std::mutex> lock(mutex_tasks);
|
|
task_server task;
|
|
task.id = id_gen++;
|
|
task.type = CANCEL_TASK;
|
|
task.target_id = task_id;
|
|
queue_tasks.push_back(task);
|
|
}
|
|
|
|
int split_multiprompt_task(task_server& multiprompt_task)
|
|
{
|
|
int prompt_count = multiprompt_task.data.at("prompt").size();
|
|
assert(prompt_count > 1);
|
|
|
|
int multitask_id = id_gen++;
|
|
std::vector<int> subtask_ids(prompt_count);
|
|
for (int i = 0; i < prompt_count; i++)
|
|
{
|
|
json subtask_data = multiprompt_task.data;
|
|
subtask_data["prompt"] = subtask_data["prompt"][i];
|
|
|
|
// subtasks inherit everything else (infill mode, embedding mode, etc.)
|
|
subtask_ids[i] = request_completion(subtask_data, multiprompt_task.infill_mode, multiprompt_task.embedding_mode, multitask_id);
|
|
}
|
|
|
|
// queue up the multitask so we can track its subtask progression
|
|
add_multi_task(multitask_id, subtask_ids);
|
|
return multitask_id;
|
|
}
|
|
|
|
void process_tasks()
|
|
{
|
|
std::lock_guard<std::mutex> lock(mutex_tasks);
|
|
while (!queue_tasks.empty())
|
|
{
|
|
task_server task = queue_tasks.front();
|
|
queue_tasks.erase(queue_tasks.begin());
|
|
switch (task.type)
|
|
{
|
|
case COMPLETION_TASK: {
|
|
llama_client_slot *slot = get_slot(json_value(task.data, "slot_id", -1));
|
|
if (slot == nullptr)
|
|
{
|
|
LOG_TEE("slot unavailable\n");
|
|
// send error result
|
|
send_error(task, "slot unavailable");
|
|
return;
|
|
}
|
|
|
|
if (task.data.contains("system_prompt"))
|
|
{
|
|
process_system_prompt_data(task.data["system_prompt"]);
|
|
}
|
|
|
|
slot->reset();
|
|
|
|
slot->infill = task.infill_mode;
|
|
slot->embedding = task.embedding_mode;
|
|
slot->task_id = task.id;
|
|
slot->multitask_id = task.multitask_id;
|
|
|
|
if (!launch_slot_with_data(slot, task.data))
|
|
{
|
|
// send error result
|
|
send_error(task, "internal_error");
|
|
break;
|
|
}
|
|
} break;
|
|
case CANCEL_TASK: { // release slot linked with the task id
|
|
for (auto & slot : slots)
|
|
{
|
|
if (slot.task_id == task.target_id)
|
|
{
|
|
slot.release();
|
|
break;
|
|
}
|
|
}
|
|
} break;
|
|
}
|
|
}
|
|
|
|
// remove finished multitasks from the queue of multitasks, and add the corresponding result to the result queue
|
|
auto queue_iterator = queue_multitasks.begin();
|
|
while (queue_iterator != queue_multitasks.end())
|
|
{
|
|
if (queue_iterator->subtasks_remaining.empty())
|
|
{
|
|
// all subtasks done == multitask is done
|
|
task_result aggregate_result;
|
|
aggregate_result.id = queue_iterator->id;
|
|
aggregate_result.stop = true;
|
|
aggregate_result.error = false;
|
|
|
|
// collect json results into one json result
|
|
std::vector<json> result_jsons;
|
|
for (auto& subres : queue_iterator->results)
|
|
{
|
|
result_jsons.push_back(subres.result_json);
|
|
aggregate_result.error = aggregate_result.error && subres.error;
|
|
}
|
|
aggregate_result.result_json = json{ "results", result_jsons };
|
|
|
|
std::lock_guard<std::mutex> lock(mutex_results);
|
|
queue_results.push_back(aggregate_result);
|
|
|
|
queue_iterator = queue_multitasks.erase(queue_iterator);
|
|
}
|
|
else
|
|
{
|
|
++queue_iterator;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool update_slots() {
|
|
// attend tasks
|
|
process_tasks();
|
|
|
|
// update the system prompt wait until all slots are idle state
|
|
if (system_need_update && all_slots_are_idle)
|
|
{
|
|
LOG_TEE("updating system prompt\n");
|
|
update_system_prompt();
|
|
}
|
|
|
|
llama_batch_clear(batch);
|
|
|
|
if (all_slots_are_idle)
|
|
{
|
|
if (system_prompt.empty() && clean_kv_cache)
|
|
{
|
|
LOG_TEE("all slots are idle and system prompt is empty, clear the KV cache\n");
|
|
kv_cache_clear();
|
|
}
|
|
// avoid 100% usage of cpu all time
|
|
std::this_thread::sleep_for(std::chrono::milliseconds(5));
|
|
}
|
|
|
|
for (llama_client_slot &slot : slots)
|
|
{
|
|
if (slot.is_processing() && slot.cache_tokens.size() >= (size_t) slot.n_ctx)
|
|
{
|
|
// Shift context
|
|
const int n_left = slot.n_past - slot.params.n_keep - 1;
|
|
const int n_discard = n_left / 2;
|
|
|
|
LOG_TEE("slot %d: context shift - n_keep = %d, n_left = %d, n_discard = %d\n", slot.id, slot.params.n_keep, n_left, n_discard);
|
|
llama_kv_cache_seq_rm (ctx, slot.id, slot.params.n_keep + 1 , slot.params.n_keep + n_discard + 1);
|
|
llama_kv_cache_seq_shift(ctx, slot.id, slot.params.n_keep + 1 + n_discard, slot.n_past, -n_discard);
|
|
|
|
for (size_t i = slot.params.n_keep + 1 + n_discard; i < slot.cache_tokens.size(); i++)
|
|
{
|
|
slot.cache_tokens[i - n_discard] = slot.cache_tokens[i];
|
|
}
|
|
|
|
slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard);
|
|
|
|
slot.n_past -= n_discard;
|
|
|
|
slot.truncated = true;
|
|
|
|
LOG_VERBOSE("context shift", {
|
|
{"n_ctx", n_ctx},
|
|
{"n_keep", params.n_keep},
|
|
{"n_left", n_left},
|
|
});
|
|
}
|
|
}
|
|
|
|
// decode any currently ongoing sequences
|
|
for (auto & slot : slots)
|
|
{
|
|
// release the slot
|
|
if (slot.command == RELEASE)
|
|
{
|
|
slot.state = IDLE;
|
|
slot.command = NONE;
|
|
slot.t_last_used = ggml_time_us();
|
|
|
|
LOG_TEE("slot %d released (%d tokens in cache)\n", slot.id, (int) slot.cache_tokens.size());
|
|
|
|
continue;
|
|
}
|
|
|
|
if (slot.state == IDLE)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
slot.i_batch = batch.n_tokens;
|
|
|
|
llama_batch_add(batch, slot.sampled, system_tokens.size() + slot.n_past, { slot.id }, true);
|
|
|
|
slot.n_decoded += 1;
|
|
slot.n_past += 1;
|
|
}
|
|
|
|
// process in chunks of params.n_batch
|
|
int32_t n_batch = params.n_batch;
|
|
|
|
// assign workload to the slots
|
|
if (params.cont_batching || batch.n_tokens == 0)
|
|
{
|
|
for (auto & slot : slots)
|
|
{
|
|
const bool has_prompt = slot.prompt.is_array() || (slot.prompt.is_string() && !slot.prompt.get<std::string>().empty()) || !slot.images.empty();
|
|
|
|
// empty prompt passed -> release the slot and send empty response
|
|
if (slot.state == IDLE && slot.command == LOAD_PROMPT && !has_prompt)
|
|
{
|
|
slot.release();
|
|
slot.print_timings();
|
|
send_final_response(slot);
|
|
continue;
|
|
}
|
|
|
|
// need process the prompt
|
|
if (slot.state == IDLE && slot.command == LOAD_PROMPT)
|
|
{
|
|
slot.state = PROCESSING;
|
|
slot.command = NONE;
|
|
std::vector<llama_token> prompt_tokens;
|
|
slot.t_start_process_prompt = ggml_time_us();
|
|
slot.t_start_genereration = 0;
|
|
|
|
if (slot.infill)
|
|
{
|
|
bool suff_rm_leading_spc = true;
|
|
if (params.input_suffix.find_first_of(' ') == 0 && params.input_suffix.size() > 1)
|
|
{
|
|
params.input_suffix.erase(0, 1);
|
|
suff_rm_leading_spc = false;
|
|
}
|
|
auto prefix_tokens = tokenize(slot.params.input_prefix, false);
|
|
auto suffix_tokens = tokenize(slot.params.input_suffix, false);
|
|
|
|
const int space_token = 29871; // TODO: this should not be hardcoded
|
|
if (suff_rm_leading_spc && !suffix_tokens.empty() && suffix_tokens[0] == space_token) {
|
|
suffix_tokens.erase(suffix_tokens.begin());
|
|
}
|
|
|
|
prefix_tokens.insert(prefix_tokens.begin(), llama_token_prefix(model));
|
|
prefix_tokens.insert(prefix_tokens.begin(), llama_token_bos(model)); // always add BOS
|
|
prefix_tokens.insert(prefix_tokens.end(), llama_token_suffix(model));
|
|
prefix_tokens.insert(prefix_tokens.end(), suffix_tokens.begin(), suffix_tokens.end());
|
|
prefix_tokens.push_back(llama_token_middle(model));
|
|
prompt_tokens = prefix_tokens;
|
|
}
|
|
else
|
|
{
|
|
prompt_tokens = tokenize(slot.prompt, system_prompt.empty() && add_bos_token); // add BOS if there isn't system prompt
|
|
}
|
|
|
|
slot.num_prompt_tokens = prompt_tokens.size();
|
|
|
|
if (slot.params.n_keep < 0)
|
|
{
|
|
slot.params.n_keep = slot.num_prompt_tokens;
|
|
}
|
|
slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
|
|
|
|
// if input prompt is too big, truncate it
|
|
if (slot.num_prompt_tokens >= slot.n_ctx)
|
|
{
|
|
const int n_left = slot.n_ctx - slot.params.n_keep;
|
|
const int n_block_size = n_left / 2;
|
|
const int erased_blocks = (slot.num_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
|
|
|
|
std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + slot.params.n_keep);
|
|
new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size, prompt_tokens.end());
|
|
|
|
LOG_VERBOSE("input truncated", {
|
|
{"n_ctx", slot.n_ctx},
|
|
{"n_keep", slot.params.n_keep},
|
|
{"n_left", n_left},
|
|
{"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())},
|
|
});
|
|
slot.truncated = true;
|
|
prompt_tokens = new_tokens;
|
|
|
|
slot.num_prompt_tokens = prompt_tokens.size();
|
|
GGML_ASSERT(slot.num_prompt_tokens < slot.n_ctx);
|
|
}
|
|
|
|
if (!slot.params.cache_prompt)
|
|
{
|
|
llama_sampling_reset(slot.ctx_sampling);
|
|
|
|
slot.n_past = 0;
|
|
slot.num_prompt_tokens_processed = slot.num_prompt_tokens;
|
|
}
|
|
else
|
|
{
|
|
// push the prompt into the sampling context (do not apply grammar)
|
|
for (auto &token : prompt_tokens)
|
|
{
|
|
llama_sampling_accept(slot.ctx_sampling, ctx, token, false);
|
|
}
|
|
|
|
slot.n_past = common_part(slot.cache_tokens, prompt_tokens);
|
|
slot.num_prompt_tokens_processed = slot.num_prompt_tokens - slot.n_past;
|
|
|
|
LOG_TEE("slot %d : in cache: %i tokens | to process: %i tokens\n", slot.id, slot.n_past, slot.num_prompt_tokens_processed);
|
|
}
|
|
|
|
LOG_TEE("slot %d : kv cache rm - [%d, end)\n", slot.id, (int) system_tokens.size() + slot.n_past);
|
|
|
|
llama_kv_cache_seq_rm(ctx, slot.id, system_tokens.size() + slot.n_past, -1);
|
|
|
|
slot.cache_tokens = prompt_tokens;
|
|
|
|
if (slot.n_past == slot.num_prompt_tokens)
|
|
{
|
|
// we have to evaluate at least 1 token to generate logits.
|
|
LOG_TEE("slot %d : we have to evaluate at least 1 token to generate logits\n", slot.id);
|
|
slot.n_past--;
|
|
}
|
|
|
|
LOG_VERBOSE("prompt ingested", {
|
|
{"n_past", slot.n_past},
|
|
{"cached", tokens_to_str(ctx, slot.cache_tokens.cbegin(), slot.cache_tokens.cbegin() + slot.n_past)},
|
|
{"to_eval", tokens_to_str(ctx, slot.cache_tokens.cbegin() + slot.n_past, slot.cache_tokens.cend())},
|
|
});
|
|
|
|
const bool has_images = process_images(slot);
|
|
|
|
// process the prefix of first image
|
|
std::vector<llama_token> prefix_tokens = has_images ? tokenize(slot.images[0].prefix_prompt, add_bos_token) : prompt_tokens;
|
|
for (; slot.n_past < (int) prefix_tokens.size(); ++slot.n_past)
|
|
{
|
|
llama_batch_add(batch, prefix_tokens[slot.n_past], system_tokens.size() + slot.n_past, { slot.id }, false);
|
|
}
|
|
|
|
if (has_images && !ingest_images(slot, n_batch))
|
|
{
|
|
LOG_TEE("failed processing images\n");
|
|
return false;
|
|
}
|
|
|
|
// extract the logits only for the last token
|
|
if (batch.n_tokens > 0)
|
|
{
|
|
batch.logits[batch.n_tokens - 1] = true;
|
|
}
|
|
|
|
slot.n_decoded = 0;
|
|
slot.i_batch = batch.n_tokens - 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (batch.n_tokens == 0)
|
|
{
|
|
all_slots_are_idle = true;
|
|
return true;
|
|
}
|
|
|
|
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch)
|
|
{
|
|
const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
|
|
llama_batch batch_view =
|
|
{
|
|
n_tokens,
|
|
batch.token + i,
|
|
nullptr,
|
|
batch.pos + i,
|
|
batch.n_seq_id + i,
|
|
batch.seq_id + i,
|
|
batch.logits + i,
|
|
0, 0, 0, // unused
|
|
};
|
|
|
|
const int ret = llama_decode(ctx, batch_view);
|
|
if (ret != 0)
|
|
{
|
|
if (n_batch == 1 || ret < 0)
|
|
{
|
|
// if you get here, it means the KV cache is full - try increasing it via the context size
|
|
LOG_TEE("%s : failed to decode the batch, n_batch = %d, ret = %d\n", __func__, n_batch, ret);
|
|
return false;
|
|
}
|
|
|
|
LOG_TEE("%s : failed to find free space in the KV cache, retrying with smaller n_batch = %d\n", __func__, n_batch / 2);
|
|
|
|
// retry with half the batch size to try to find a free slot in the KV cache
|
|
n_batch /= 2;
|
|
i -= n_batch;
|
|
continue;
|
|
}
|
|
|
|
for (auto & slot : slots)
|
|
{
|
|
if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens))
|
|
{
|
|
continue;
|
|
}
|
|
|
|
// prompt evaluated for embedding
|
|
if (slot.embedding)
|
|
{
|
|
send_embedding(slot);
|
|
slot.release();
|
|
slot.i_batch = -1;
|
|
return true;
|
|
}
|
|
|
|
completion_token_output result;
|
|
const llama_token id = llama_sampling_sample(slot.ctx_sampling, ctx, NULL, slot.i_batch - i);
|
|
|
|
llama_sampling_accept(slot.ctx_sampling, ctx, id, true);
|
|
|
|
if (slot.n_decoded == 1)
|
|
{
|
|
slot.t_start_genereration = ggml_time_us();
|
|
slot.t_prompt_processing = (slot.t_start_genereration - slot.t_start_process_prompt) / 1e3;
|
|
}
|
|
|
|
llama_token_data_array cur_p = { slot.ctx_sampling->cur.data(), slot.ctx_sampling->cur.size(), false };
|
|
result.tok = id;
|
|
|
|
const int32_t n_probs = slot.sparams.n_probs;
|
|
if (slot.sparams.temp <= 0 && n_probs > 0)
|
|
{
|
|
// for llama_sample_token_greedy we need to sort candidates
|
|
llama_sample_softmax(ctx, &cur_p);
|
|
}
|
|
|
|
for (size_t i = 0; i < std::min(cur_p.size, (size_t)n_probs); ++i)
|
|
{
|
|
result.probs.push_back({cur_p.data[i].id, cur_p.data[i].p});
|
|
}
|
|
|
|
if (!process_token(result, slot))
|
|
{
|
|
slot.release();
|
|
slot.print_timings();
|
|
send_final_response(slot);
|
|
}
|
|
|
|
slot.i_batch = -1;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
|
|
static void server_print_usage(const char *argv0, const gpt_params ¶ms,
|
|
const server_params &sparams)
|
|
{
|
|
printf("usage: %s [options]\n", argv0);
|
|
printf("\n");
|
|
printf("options:\n");
|
|
printf(" -h, --help show this help message and exit\n");
|
|
printf(" -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled");
|
|
printf(" -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
|
|
printf(" -tb N, --threads-batch N number of threads to use during batch and prompt processing (default: same as --threads)\n");
|
|
printf(" -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
|
|
printf(" --rope-scaling {none,linear,yarn}\n");
|
|
printf(" RoPE frequency scaling method, defaults to linear unless specified by the model\n");
|
|
printf(" --rope-freq-base N RoPE base frequency (default: loaded from model)\n");
|
|
printf(" --rope-freq-scale N RoPE frequency scaling factor, expands context by a factor of 1/N\n");
|
|
printf(" --yarn-ext-factor N YaRN: extrapolation mix factor (default: 1.0, 0.0 = full interpolation)\n");
|
|
printf(" --yarn-attn-factor N YaRN: scale sqrt(t) or attention magnitude (default: 1.0)\n");
|
|
printf(" --yarn-beta-slow N YaRN: high correction dim or alpha (default: %.1f)\n", params.yarn_beta_slow);
|
|
printf(" --yarn-beta-fast N YaRN: low correction dim or beta (default: %.1f)\n", params.yarn_beta_fast);
|
|
printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
|
printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
|
|
printf(" not recommended: doubles context memory required and no measurable increase in quality\n");
|
|
if (llama_mlock_supported())
|
|
{
|
|
printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
|
|
}
|
|
if (llama_mmap_supported())
|
|
{
|
|
printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
|
|
}
|
|
printf(" --numa attempt optimizations that help on some NUMA systems\n");
|
|
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
|
|
printf(" -ngl N, --n-gpu-layers N\n");
|
|
printf(" number of layers to store in VRAM\n");
|
|
printf(" -ts SPLIT --tensor-split SPLIT\n");
|
|
printf(" how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
|
|
printf(" -mg i, --main-gpu i the GPU to use for scratch and small tensors\n");
|
|
printf(" -nommq, --no-mul-mat-q\n");
|
|
printf(" use cuBLAS instead of custom mul_mat_q CUDA kernels.\n");
|
|
printf(" Not recommended since this is both slower and uses more VRAM.\n");
|
|
#endif
|
|
printf(" -m FNAME, --model FNAME\n");
|
|
printf(" model path (default: %s)\n", params.model.c_str());
|
|
printf(" -a ALIAS, --alias ALIAS\n");
|
|
printf(" set an alias for the model, will be added as `model` field in completion response\n");
|
|
printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
|
|
printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
|
|
printf(" --host ip address to listen (default (default: %s)\n", sparams.hostname.c_str());
|
|
printf(" --port PORT port to listen (default (default: %d)\n", sparams.port);
|
|
printf(" --path PUBLIC_PATH path from which to serve static files (default %s)\n", sparams.public_path.c_str());
|
|
printf(" --api-key API_KEY optional api key to enhance server security. If set, requests must include this key for access.\n");
|
|
printf(" -to N, --timeout N server read/write timeout in seconds (default: %d)\n", sparams.read_timeout);
|
|
printf(" --embedding enable embedding vector output (default: %s)\n", params.embedding ? "enabled" : "disabled");
|
|
printf(" -np N, --parallel N number of slots for process requests (default: %d)\n", params.n_parallel);
|
|
printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n");
|
|
printf(" -spf FNAME, --system-prompt-file FNAME\n");
|
|
printf(" Set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications.\n");
|
|
printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA.\n");
|
|
printf(" --log-disable disables logging to a file.\n");
|
|
printf("\n");
|
|
}
|
|
|
|
static void server_params_parse(int argc, char **argv, server_params &sparams,
|
|
gpt_params ¶ms, llama_server_context& llama)
|
|
{
|
|
gpt_params default_params;
|
|
server_params default_sparams;
|
|
std::string arg;
|
|
bool invalid_param = false;
|
|
|
|
for (int i = 1; i < argc; i++)
|
|
{
|
|
arg = argv[i];
|
|
if (arg == "--port")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
sparams.port = std::stoi(argv[i]);
|
|
}
|
|
else if (arg == "--host")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
sparams.hostname = argv[i];
|
|
}
|
|
else if (arg == "--path")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
sparams.public_path = argv[i];
|
|
}
|
|
else if (arg == "--api-key")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
sparams.api_key = argv[i];
|
|
}
|
|
else if (arg == "--timeout" || arg == "-to")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
sparams.read_timeout = std::stoi(argv[i]);
|
|
sparams.write_timeout = std::stoi(argv[i]);
|
|
}
|
|
else if (arg == "-m" || arg == "--model")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.model = argv[i];
|
|
}
|
|
else if (arg == "-a" || arg == "--alias")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.model_alias = argv[i];
|
|
}
|
|
else if (arg == "-h" || arg == "--help")
|
|
{
|
|
server_print_usage(argv[0], default_params, default_sparams);
|
|
exit(0);
|
|
}
|
|
else if (arg == "-c" || arg == "--ctx-size" || arg == "--ctx_size")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.n_ctx = std::stoi(argv[i]);
|
|
}
|
|
else if (arg == "--rope-scaling")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
std::string value(argv[i]);
|
|
/**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_NONE; }
|
|
else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_LINEAR; }
|
|
else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_YARN; }
|
|
else { invalid_param = true; break; }
|
|
}
|
|
else if (arg == "--rope-freq-base")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.rope_freq_base = std::stof(argv[i]);
|
|
}
|
|
else if (arg == "--rope-freq-scale")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.rope_freq_scale = std::stof(argv[i]);
|
|
}
|
|
else if (arg == "--yarn-ext-factor")
|
|
{
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.yarn_ext_factor = std::stof(argv[i]);
|
|
}
|
|
else if (arg == "--yarn-attn-factor")
|
|
{
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.yarn_attn_factor = std::stof(argv[i]);
|
|
}
|
|
else if (arg == "--yarn-beta-fast")
|
|
{
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.yarn_beta_fast = std::stof(argv[i]);
|
|
}
|
|
else if (arg == "--yarn-beta-slow")
|
|
{
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.yarn_beta_slow = std::stof(argv[i]);
|
|
}
|
|
else if (arg == "--threads" || arg == "-t")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.n_threads = std::stoi(argv[i]);
|
|
}
|
|
else if (arg == "--threads-batch" || arg == "-tb")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.n_threads_batch = std::stoi(argv[i]);
|
|
}
|
|
else if (arg == "-b" || arg == "--batch-size")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.n_batch = std::stoi(argv[i]);
|
|
params.n_batch = std::min(512, params.n_batch);
|
|
}
|
|
else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
|
|
params.n_gpu_layers = std::stoi(argv[i]);
|
|
#else
|
|
LOG_WARNING("Not compiled with GPU offload support, --n-gpu-layers option will be ignored. "
|
|
"See main README.md for information on enabling GPU BLAS support",
|
|
{{"n_gpu_layers", params.n_gpu_layers}});
|
|
#endif
|
|
}
|
|
else if (arg == "--tensor-split" || arg == "-ts")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
#ifdef GGML_USE_CUBLAS
|
|
std::string arg_next = argv[i];
|
|
|
|
// split string by , and /
|
|
const std::regex regex{R"([,/]+)"};
|
|
std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
|
|
std::vector<std::string> split_arg{it, {}};
|
|
GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
|
|
|
|
for (size_t i_device = 0; i_device < LLAMA_MAX_DEVICES; ++i_device)
|
|
{
|
|
if (i_device < split_arg.size())
|
|
{
|
|
params.tensor_split[i_device] = std::stof(split_arg[i_device]);
|
|
}
|
|
else
|
|
{
|
|
params.tensor_split[i_device] = 0.0f;
|
|
}
|
|
}
|
|
#else
|
|
LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n", {});
|
|
#endif // GGML_USE_CUBLAS
|
|
}
|
|
else if (arg == "--no-mul-mat-q" || arg == "-nommq")
|
|
{
|
|
#ifdef GGML_USE_CUBLAS
|
|
params.mul_mat_q = false;
|
|
#else
|
|
LOG_WARNING("warning: llama.cpp was compiled without cuBLAS. Disabling mul_mat_q kernels has no effect.\n", {});
|
|
#endif // GGML_USE_CUBLAS
|
|
}
|
|
else if (arg == "--main-gpu" || arg == "-mg")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
#ifdef GGML_USE_CUBLAS
|
|
params.main_gpu = std::stoi(argv[i]);
|
|
#else
|
|
LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.", {});
|
|
#endif
|
|
}
|
|
else if (arg == "--lora")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.lora_adapter.push_back(std::make_tuple(argv[i], 1.0f));
|
|
params.use_mmap = false;
|
|
}
|
|
else if (arg == "--lora-scaled")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
const char * lora_adapter = argv[i];
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.lora_adapter.push_back(std::make_tuple(lora_adapter, std::stof(argv[i])));
|
|
params.use_mmap = false;
|
|
}
|
|
else if (arg == "--lora-base")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.lora_base = argv[i];
|
|
}
|
|
else if (arg == "-v" || arg == "--verbose")
|
|
{
|
|
#if SERVER_VERBOSE != 1
|
|
LOG_WARNING("server.cpp is not built with verbose logging.", {});
|
|
#else
|
|
server_verbose = true;
|
|
#endif
|
|
}
|
|
else if (arg == "--mlock")
|
|
{
|
|
params.use_mlock = true;
|
|
}
|
|
else if (arg == "--no-mmap")
|
|
{
|
|
params.use_mmap = false;
|
|
}
|
|
else if (arg == "--numa")
|
|
{
|
|
params.numa = true;
|
|
}
|
|
else if (arg == "--embedding")
|
|
{
|
|
params.embedding = true;
|
|
}
|
|
else if (arg == "-cb" || arg == "--cont-batching")
|
|
{
|
|
params.cont_batching = true;
|
|
}
|
|
else if (arg == "-np" || arg == "--parallel")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.n_parallel = std::stoi(argv[i]);
|
|
} else if (arg == "-n" || arg == "--n-predict")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.n_predict = std::stoi(argv[i]);
|
|
} else if (arg == "-spf" || arg == "--system-prompt-file")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
std::ifstream file(argv[i]);
|
|
if (!file) {
|
|
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
std::string systm_content;
|
|
std::copy(
|
|
std::istreambuf_iterator<char>(file),
|
|
std::istreambuf_iterator<char>(),
|
|
std::back_inserter(systm_content)
|
|
);
|
|
llama.process_system_prompt_data(json::parse(systm_content));
|
|
}
|
|
else if(arg == "--mmproj")
|
|
{
|
|
if (++i >= argc)
|
|
{
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.mmproj = argv[i];
|
|
}
|
|
else if (arg == "--log-disable")
|
|
{
|
|
log_set_target(stdout);
|
|
LOG_INFO("logging to file is disabled.", {});
|
|
}
|
|
else
|
|
{
|
|
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
|
server_print_usage(argv[0], default_params, default_sparams);
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
if (invalid_param)
|
|
{
|
|
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
|
|
server_print_usage(argv[0], default_params, default_sparams);
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
|
|
static std::string random_string()
|
|
{
|
|
static const std::string str("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz");
|
|
|
|
std::random_device rd;
|
|
std::mt19937 generator(rd());
|
|
|
|
std::string result(32, ' ');
|
|
|
|
for (int i = 0; i < 32; ++i) {
|
|
result[i] = str[generator() % str.size()];
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static std::string gen_chatcmplid()
|
|
{
|
|
std::stringstream chatcmplid;
|
|
chatcmplid << "chatcmpl-" << random_string();
|
|
return chatcmplid.str();
|
|
}
|
|
|
|
std::string format_chatml(std::vector<json> messages)
|
|
{
|
|
std::ostringstream chatml_msgs;
|
|
|
|
for (auto it = messages.begin(); it != messages.end(); ++it) {
|
|
chatml_msgs << "<|im_start|>"
|
|
<< json_value(*it, "role", std::string("user")) << '\n';
|
|
chatml_msgs << json_value(*it, "content", std::string(""))
|
|
<< "<|im_end|>\n";
|
|
}
|
|
|
|
chatml_msgs << "<|im_start|>assistant" << '\n';
|
|
|
|
return chatml_msgs.str();
|
|
}
|
|
|
|
/* llama.cpp completion api semantics */
|
|
json oaicompat_completion_params_parse(
|
|
const json &body /* openai api json semantics */)
|
|
{
|
|
json llama_params;
|
|
|
|
llama_params["__oaicompat"] = true;
|
|
|
|
// Map OpenAI parameters to llama.cpp parameters
|
|
llama_params["model"] = json_value(body, "model", std::string("uknown"));
|
|
llama_params["prompt"] = format_chatml(body["messages"]); // OpenAI 'messages' to llama.cpp 'prompt'
|
|
llama_params["cache_prompt"] = json_value(body, "cache_prompt", false);
|
|
llama_params["temperature"] = json_value(body, "temperature", 0.8);
|
|
llama_params["top_k"] = json_value(body, "top_k", 40);
|
|
llama_params["top_p"] = json_value(body, "top_p", 0.95);
|
|
llama_params["n_predict"] = json_value(body, "max_tokens", -1);
|
|
llama_params["logit_bias"] = json_value(body, "logit_bias",json::object());
|
|
llama_params["frequency_penalty"] = json_value(body, "frequency_penalty", 0.0);
|
|
llama_params["presence_penalty"] = json_value(body, "presence_penalty", 0.0);
|
|
llama_params["seed"] = json_value(body, "seed", 0);
|
|
llama_params["stream"] = json_value(body, "stream", false);
|
|
llama_params["mirostat"] = json_value(body, "mirostat", false);
|
|
llama_params["mirostat_tau"] = json_value(body, "mirostat_tau", 0.0);
|
|
llama_params["mirostat_eta"] = json_value(body, "mirostat_eta", 0.0);
|
|
llama_params["penalize_nl"] = json_value(body, "penalize_nl", false);
|
|
llama_params["typical_p"] = json_value(body, "typical_p", 0.0);
|
|
llama_params["repeat_last_n"] = json_value(body, "repeat_last_n", 0);
|
|
llama_params["ignore_eos"] = json_value(body, "ignore_eos", false);
|
|
llama_params["tfs_z"] = json_value(body, "tfs_z", 0.0);
|
|
|
|
if (body.count("grammar") != 0) {
|
|
llama_params["grammar"] = json_value(body, "grammar", json::object());
|
|
}
|
|
|
|
// Handle 'stop' field
|
|
if (body.contains("stop") && body["stop"].is_string()) {
|
|
llama_params["stop"] = json::array({body["stop"].get<std::string>()});
|
|
} else {
|
|
llama_params["stop"] = json_value(body, "stop", json::array());
|
|
}
|
|
|
|
// Ensure there is ChatML-specific end sequence among stop words
|
|
llama_params["stop"].push_back("<|im_end|>");
|
|
|
|
return llama_params;
|
|
}
|
|
|
|
static json format_final_response_oaicompat(const json &request, const task_result &response, bool streaming = false)
|
|
{
|
|
json result = response.result_json;
|
|
|
|
bool stopped_word = result.count("stopped_word") != 0;
|
|
bool stopped_eos = json_value(result, "stopped_eos", false);
|
|
int num_tokens_predicted = json_value(result, "tokens_predicted", 0);
|
|
int num_prompt_tokens = json_value(result, "tokens_evaluated", 0);
|
|
std::string content = json_value(result, "content", std::string(""));
|
|
|
|
std::string finish_reason = "length";
|
|
if (stopped_word || stopped_eos) {
|
|
finish_reason = "stop";
|
|
}
|
|
|
|
json choices =
|
|
streaming ? json::array({json{{"finish_reason", finish_reason},
|
|
{"index", 0},
|
|
{"delta", json::object()}}})
|
|
: json::array({json{{"finish_reason", finish_reason},
|
|
{"index", 0},
|
|
{"message", json{{"content", content},
|
|
{"role", "assistant"}}}}});
|
|
|
|
std::time_t t = std::time(0);
|
|
|
|
json res =
|
|
json{{"choices", choices},
|
|
{"created", t},
|
|
{"model",
|
|
json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
|
|
{"object", streaming ? "chat.completion.chunk" : "chat.completion"},
|
|
{"usage",
|
|
json{{"completion_tokens", num_tokens_predicted},
|
|
{"prompt_tokens", num_prompt_tokens},
|
|
{"total_tokens", num_tokens_predicted + num_prompt_tokens}}},
|
|
{"id", gen_chatcmplid()}};
|
|
|
|
if (server_verbose) {
|
|
res["__verbose"] = result;
|
|
}
|
|
|
|
if (result.contains("completion_probabilities")) {
|
|
res["completion_probabilities"] = json_value(result, "completion_probabilities", json::array());
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
// return value is vector as there is one case where we might need to generate two responses
|
|
static std::vector<json> format_partial_response_oaicompat(const task_result &response) {
|
|
json result = response.result_json;
|
|
|
|
if (!result.contains("model") || !result.contains("oaicompat_token_ctr")) {
|
|
return std::vector<json>({response.result_json});
|
|
}
|
|
|
|
bool first = json_value(result, "oaicompat_token_ctr", 0) == 0;
|
|
std::string modelname = json_value(result, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
|
|
|
|
bool stopped_word = json_value(result, "stopped_word", false);
|
|
bool stopped_eos = json_value(result, "stopped_eos", false);
|
|
bool stopped_limit = json_value(result, "stopped_limit", false);
|
|
std::string content = json_value(result, "content", std::string(""));
|
|
|
|
std::string finish_reason;
|
|
if (stopped_word || stopped_eos) {
|
|
finish_reason = "stop";
|
|
}
|
|
if (stopped_limit) {
|
|
finish_reason = "length";
|
|
}
|
|
|
|
std::time_t t = std::time(0);
|
|
|
|
json choices;
|
|
|
|
if (!finish_reason.empty()) {
|
|
choices = json::array({json{{"finish_reason", finish_reason},
|
|
{"index", 0},
|
|
{"delta", json::object()}}});
|
|
} else {
|
|
if (first) {
|
|
if (content.empty()) {
|
|
choices = json::array({json{{"finish_reason", nullptr},
|
|
{"index", 0},
|
|
{"delta", json{{"role", "assistant"}}}}});
|
|
} else {
|
|
// We have to send this as two updates to conform to openai behavior
|
|
json initial_ret = json{{"choices", json::array({json{
|
|
{"finish_reason", nullptr},
|
|
{"index", 0},
|
|
{"delta", json{
|
|
{"role", "assistant"}
|
|
}}}})},
|
|
{"created", t},
|
|
{"id", gen_chatcmplid()},
|
|
{"model", modelname},
|
|
{"object", "chat.completion.chunk"}};
|
|
|
|
json second_ret = json{
|
|
{"choices", json::array({json{{"finish_reason", nullptr},
|
|
{"index", 0},
|
|
{"delta", json{
|
|
{"content", content}}}
|
|
}})},
|
|
{"created", t},
|
|
{"id", gen_chatcmplid()},
|
|
{"model", modelname},
|
|
{"object", "chat.completion.chunk"}};
|
|
|
|
return std::vector<json>({initial_ret, second_ret});
|
|
}
|
|
} else {
|
|
// Some idiosyncrasy in task processing logic makes several trailing calls
|
|
// with empty content, we ignore these at the calee site.
|
|
if (content.empty()) {
|
|
return std::vector<json>({json::object()});
|
|
}
|
|
|
|
choices = json::array({json{
|
|
{"finish_reason", nullptr},
|
|
{"index", 0},
|
|
{"delta",
|
|
json{
|
|
{"content", content},
|
|
}},
|
|
}});
|
|
}
|
|
}
|
|
|
|
json ret = json{{"choices", choices},
|
|
{"created", t},
|
|
{"id", gen_chatcmplid()},
|
|
{"model", modelname},
|
|
{"object", "chat.completion.chunk"}};
|
|
|
|
return std::vector<json>({ret});
|
|
}
|
|
|
|
static json format_partial_response(
|
|
llama_server_context &llama, llama_client_slot *slot, const std::string &content, const std::vector<completion_token_output> &probs
|
|
) {
|
|
json res = json
|
|
{
|
|
{"content", content },
|
|
{"stop", false},
|
|
{"slot_id", slot->id },
|
|
{"multimodal", llama.multimodal }
|
|
};
|
|
|
|
if (slot->sparams.n_probs > 0)
|
|
{
|
|
res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs);
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
static json format_tokenizer_response(const std::vector<llama_token> &tokens)
|
|
{
|
|
return json{
|
|
{"tokens", tokens}};
|
|
}
|
|
|
|
static json format_detokenized_response(std::string content)
|
|
{
|
|
return json{
|
|
{"content", content}};
|
|
}
|
|
|
|
|
|
static void log_server_request(const httplib::Request &req, const httplib::Response &res)
|
|
{
|
|
LOG_INFO("request", {
|
|
{"remote_addr", req.remote_addr},
|
|
{"remote_port", req.remote_port},
|
|
{"status", res.status},
|
|
{"method", req.method},
|
|
{"path", req.path},
|
|
{"params", req.params},
|
|
});
|
|
|
|
LOG_VERBOSE("request", {
|
|
{"request", req.body},
|
|
{"response", res.body},
|
|
});
|
|
}
|
|
|
|
struct token_translator
|
|
{
|
|
llama_context * ctx;
|
|
std::string operator()(llama_token tok) const { return llama_token_to_piece(ctx, tok); }
|
|
std::string operator()(const completion_token_output &cto) const { return (*this)(cto.tok); }
|
|
};
|
|
|
|
static void append_to_generated_text_from_generated_token_probs(llama_server_context &llama, llama_client_slot *slot)
|
|
{
|
|
auto & gtps = slot->generated_token_probs;
|
|
auto translator = token_translator{llama.ctx};
|
|
auto add_strlen = [=](size_t sum, const completion_token_output & cto) { return sum + translator(cto).size(); };
|
|
const size_t len = std::accumulate(gtps.begin(), gtps.end(), size_t(0), add_strlen);
|
|
if (slot->generated_text.capacity() < slot->generated_text.size() + len)
|
|
{
|
|
slot->generated_text.reserve(slot->generated_text.size() + len);
|
|
}
|
|
for (const completion_token_output & cto : gtps)
|
|
{
|
|
slot->generated_text += translator(cto);
|
|
}
|
|
}
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
#if SERVER_VERBOSE != 1
|
|
log_disable();
|
|
#endif
|
|
// own arguments required by this example
|
|
gpt_params params;
|
|
server_params sparams;
|
|
|
|
// struct that contains llama context and inference
|
|
llama_server_context llama;
|
|
|
|
server_params_parse(argc, argv, sparams, params, llama);
|
|
|
|
if (params.model_alias == "unknown")
|
|
{
|
|
params.model_alias = params.model;
|
|
}
|
|
|
|
llama_backend_init(params.numa);
|
|
|
|
LOG_INFO("build info", {{"build", LLAMA_BUILD_NUMBER},
|
|
{"commit", LLAMA_COMMIT}});
|
|
|
|
LOG_INFO("system info", {
|
|
{"n_threads", params.n_threads},
|
|
{"n_threads_batch", params.n_threads_batch},
|
|
{"total_threads", std::thread::hardware_concurrency()},
|
|
{"system_info", llama_print_system_info()},
|
|
});
|
|
|
|
// load the model
|
|
if (!llama.load_model(params))
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
llama.initialize();
|
|
|
|
httplib::Server svr;
|
|
|
|
// Middleware for API key validation
|
|
auto validate_api_key = [&sparams](const httplib::Request &req, httplib::Response &res) -> bool {
|
|
// If API key is not set, skip validation
|
|
if (sparams.api_key.empty()) {
|
|
return true;
|
|
}
|
|
|
|
// Check for API key in the header
|
|
auto auth_header = req.get_header_value("Authorization");
|
|
std::string prefix = "Bearer ";
|
|
if (auth_header.substr(0, prefix.size()) == prefix) {
|
|
std::string received_api_key = auth_header.substr(prefix.size());
|
|
if (received_api_key == sparams.api_key) {
|
|
return true; // API key is valid
|
|
}
|
|
}
|
|
|
|
// API key is invalid or not provided
|
|
res.set_content("Unauthorized: Invalid API Key", "text/plain; charset=utf-8");
|
|
res.status = 401; // Unauthorized
|
|
|
|
LOG_WARNING("Unauthorized: Invalid API Key", {});
|
|
|
|
return false;
|
|
};
|
|
|
|
svr.set_default_headers({{"Server", "llama.cpp"},
|
|
{"Access-Control-Allow-Origin", "*"},
|
|
{"Access-Control-Allow-Headers", "content-type"}});
|
|
|
|
// this is only called if no index.html is found in the public --path
|
|
svr.Get("/", [](const httplib::Request &, httplib::Response &res)
|
|
{
|
|
res.set_content(reinterpret_cast<const char*>(&index_html), index_html_len, "text/html; charset=utf-8");
|
|
return false;
|
|
});
|
|
|
|
// this is only called if no index.js is found in the public --path
|
|
svr.Get("/index.js", [](const httplib::Request &, httplib::Response &res)
|
|
{
|
|
res.set_content(reinterpret_cast<const char *>(&index_js), index_js_len, "text/javascript; charset=utf-8");
|
|
return false;
|
|
});
|
|
|
|
// this is only called if no index.html is found in the public --path
|
|
svr.Get("/completion.js", [](const httplib::Request &, httplib::Response &res)
|
|
{
|
|
res.set_content(reinterpret_cast<const char*>(&completion_js), completion_js_len, "application/javascript; charset=utf-8");
|
|
return false;
|
|
});
|
|
|
|
// this is only called if no index.html is found in the public --path
|
|
svr.Get("/json-schema-to-grammar.mjs", [](const httplib::Request &, httplib::Response &res)
|
|
{
|
|
res.set_content(reinterpret_cast<const char*>(&json_schema_to_grammar_mjs), json_schema_to_grammar_mjs_len, "application/javascript; charset=utf-8");
|
|
return false;
|
|
});
|
|
|
|
svr.Get("/props", [&llama](const httplib::Request & /*req*/, httplib::Response &res)
|
|
{
|
|
res.set_header("Access-Control-Allow-Origin", "*");
|
|
json data = {
|
|
{ "user_name", llama.name_user.c_str() },
|
|
{ "assistant_name", llama.name_assistant.c_str() }
|
|
};
|
|
res.set_content(data.dump(), "application/json; charset=utf-8");
|
|
});
|
|
|
|
svr.Post("/completion", [&llama, &validate_api_key](const httplib::Request &req, httplib::Response &res)
|
|
{
|
|
if (!validate_api_key(req, res)) {
|
|
return;
|
|
}
|
|
json data = json::parse(req.body);
|
|
const int task_id = llama.request_completion(data, false, false, -1);
|
|
if (!json_value(data, "stream", false)) {
|
|
std::string completion_text;
|
|
task_result result = llama.next_result(task_id);
|
|
if (!result.error && result.stop) {
|
|
res.set_content(result.result_json.dump(-1, ' ', false, json::error_handler_t::replace), "application/json; charset=utf-8");
|
|
}
|
|
else
|
|
{
|
|
res.status = 404;
|
|
res.set_content(result.result_json["content"], "text/plain; charset=utf-8");
|
|
return;
|
|
}
|
|
} else {
|
|
const auto chunked_content_provider = [task_id, &llama](size_t, httplib::DataSink & sink)
|
|
{
|
|
while (true)
|
|
{
|
|
task_result result = llama.next_result(task_id);
|
|
if (!result.error) {
|
|
const std::string str =
|
|
"data: " +
|
|
result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) +
|
|
"\n\n";
|
|
LOG_VERBOSE("data stream", {
|
|
{ "to_send", str }
|
|
});
|
|
if (!sink.write(str.c_str(), str.size()))
|
|
{
|
|
return false;
|
|
}
|
|
if (result.stop) {
|
|
break;
|
|
}
|
|
} else {
|
|
const std::string str =
|
|
"error: " +
|
|
result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) +
|
|
"\n\n";
|
|
LOG_VERBOSE("data stream", {
|
|
{ "to_send", str }
|
|
});
|
|
if (!sink.write(str.c_str(), str.size()))
|
|
{
|
|
return false;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
sink.done();
|
|
return true;
|
|
};
|
|
|
|
auto on_complete = [task_id, &llama] (bool)
|
|
{
|
|
// cancel
|
|
llama.request_cancel(task_id);
|
|
};
|
|
|
|
res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
|
|
}
|
|
});
|
|
|
|
|
|
|
|
svr.Get("/v1/models", [¶ms](const httplib::Request&, httplib::Response& res)
|
|
{
|
|
std::time_t t = std::time(0);
|
|
|
|
json models = {
|
|
{"object", "list"},
|
|
{"data", {
|
|
{
|
|
{"id", params.model_alias},
|
|
{"object", "model"},
|
|
{"created", t},
|
|
{"owned_by", "llamacpp"}
|
|
},
|
|
}}
|
|
};
|
|
|
|
res.set_content(models.dump(), "application/json; charset=utf-8");
|
|
});
|
|
|
|
// TODO: add mount point without "/v1" prefix -- how?
|
|
svr.Post("/v1/chat/completions", [&llama, &validate_api_key](const httplib::Request &req, httplib::Response &res)
|
|
{
|
|
if (!validate_api_key(req, res)) {
|
|
return;
|
|
}
|
|
json data = oaicompat_completion_params_parse(json::parse(req.body));
|
|
|
|
const int task_id = llama.request_completion(data, false, false, -1);
|
|
|
|
if (!json_value(data, "stream", false)) {
|
|
std::string completion_text;
|
|
task_result result = llama.next_result(task_id);
|
|
|
|
if (!result.error && result.stop) {
|
|
json oaicompat_result = format_final_response_oaicompat(data, result);
|
|
|
|
res.set_content(oaicompat_result.dump(-1, ' ', false,
|
|
json::error_handler_t::replace),
|
|
"application/json; charset=utf-8");
|
|
} else {
|
|
res.status = 500;
|
|
res.set_content(result.result_json["content"], "text/plain; charset=utf-8");
|
|
return;
|
|
}
|
|
} else {
|
|
const auto chunked_content_provider = [task_id, &llama](size_t, httplib::DataSink &sink) {
|
|
while (true) {
|
|
task_result llama_result = llama.next_result(task_id);
|
|
if (!llama_result.error) {
|
|
std::vector<json> result_array = format_partial_response_oaicompat( llama_result);
|
|
|
|
for (auto it = result_array.begin(); it != result_array.end(); ++it)
|
|
{
|
|
if (!it->empty()) {
|
|
const std::string str =
|
|
"data: " +
|
|
it->dump(-1, ' ', false, json::error_handler_t::replace) +
|
|
"\n\n";
|
|
LOG_VERBOSE("data stream", {{"to_send", str}});
|
|
if (!sink.write(str.c_str(), str.size())) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
if (llama_result.stop) {
|
|
break;
|
|
}
|
|
} else {
|
|
const std::string str =
|
|
"error: " +
|
|
llama_result.result_json.dump(-1, ' ', false,
|
|
json::error_handler_t::replace) +
|
|
"\n\n";
|
|
LOG_VERBOSE("data stream", {{"to_send", str}});
|
|
if (!sink.write(str.c_str(), str.size())) {
|
|
return false;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
sink.done();
|
|
return true;
|
|
};
|
|
|
|
auto on_complete = [task_id, &llama](bool) {
|
|
// cancel request
|
|
llama.request_cancel(task_id);
|
|
};
|
|
|
|
res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
|
|
}
|
|
});
|
|
|
|
svr.Post("/infill", [&llama, &validate_api_key](const httplib::Request &req, httplib::Response &res)
|
|
{
|
|
if (!validate_api_key(req, res)) {
|
|
return;
|
|
}
|
|
json data = json::parse(req.body);
|
|
const int task_id = llama.request_completion(data, true, false, -1);
|
|
if (!json_value(data, "stream", false)) {
|
|
std::string completion_text;
|
|
task_result result = llama.next_result(task_id);
|
|
if (!result.error && result.stop)
|
|
{
|
|
res.set_content(result.result_json.dump(-1, ' ', false, json::error_handler_t::replace), "application/json; charset=utf-8");
|
|
}
|
|
else
|
|
{
|
|
res.status = 404;
|
|
res.set_content(result.result_json["content"], "text/plain; charset=utf-8");
|
|
return;
|
|
}
|
|
} else {
|
|
const auto chunked_content_provider = [task_id, &llama](size_t, httplib::DataSink & sink) {
|
|
while (true)
|
|
{
|
|
task_result result = llama.next_result(task_id);
|
|
if (!result.error) {
|
|
const std::string str =
|
|
"data: " +
|
|
result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) +
|
|
"\n\n";
|
|
LOG_VERBOSE("data stream", {
|
|
{ "to_send", str }
|
|
});
|
|
if (!sink.write(str.c_str(), str.size()))
|
|
{
|
|
return false;
|
|
}
|
|
if (result.stop)
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
sink.done();
|
|
|
|
return true;
|
|
};
|
|
|
|
auto on_complete = [task_id, &llama] (bool)
|
|
{
|
|
// cancel
|
|
llama.request_cancel(task_id);
|
|
};
|
|
|
|
res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
|
|
}
|
|
});
|
|
|
|
svr.Get("/model.json", [&llama](const httplib::Request &, httplib::Response &res)
|
|
{
|
|
const json data = llama.get_model_props();
|
|
return res.set_content(data.dump(), "application/json; charset=utf-8");
|
|
});
|
|
|
|
svr.Options(R"(/.*)", [](const httplib::Request &, httplib::Response &res)
|
|
{ return res.set_content("", "application/json; charset=utf-8"); });
|
|
|
|
svr.Post("/tokenize", [&llama](const httplib::Request &req, httplib::Response &res)
|
|
{
|
|
const json body = json::parse(req.body);
|
|
std::vector<llama_token> tokens;
|
|
if (body.count("content") != 0)
|
|
{
|
|
tokens = llama.tokenize(body["content"], false);
|
|
}
|
|
const json data = format_tokenizer_response(tokens);
|
|
return res.set_content(data.dump(), "application/json; charset=utf-8");
|
|
});
|
|
|
|
svr.Post("/detokenize", [&llama](const httplib::Request &req, httplib::Response &res)
|
|
{
|
|
const json body = json::parse(req.body);
|
|
std::string content;
|
|
if (body.count("tokens") != 0)
|
|
{
|
|
const std::vector<llama_token> tokens = body["tokens"];
|
|
content = tokens_to_str(llama.ctx, tokens.cbegin(), tokens.cend());
|
|
}
|
|
|
|
const json data = format_detokenized_response(content);
|
|
return res.set_content(data.dump(), "application/json; charset=utf-8");
|
|
});
|
|
|
|
svr.Post("/embedding", [&llama](const httplib::Request &req, httplib::Response &res)
|
|
{
|
|
const json body = json::parse(req.body);
|
|
json prompt;
|
|
if (body.count("content") != 0)
|
|
{
|
|
prompt = body["content"];
|
|
}
|
|
else
|
|
{
|
|
prompt = "";
|
|
}
|
|
const int task_id = llama.request_completion({ {"prompt", prompt}, { "n_predict", 0} }, false, true, -1);
|
|
task_result result = llama.next_result(task_id);
|
|
return res.set_content(result.result_json.dump(), "application/json; charset=utf-8");
|
|
});
|
|
|
|
svr.set_logger(log_server_request);
|
|
|
|
svr.set_exception_handler([](const httplib::Request &, httplib::Response &res, std::exception_ptr ep)
|
|
{
|
|
const char fmt[] = "500 Internal Server Error\n%s";
|
|
char buf[BUFSIZ];
|
|
try
|
|
{
|
|
std::rethrow_exception(std::move(ep));
|
|
}
|
|
catch (std::exception &e)
|
|
{
|
|
snprintf(buf, sizeof(buf), fmt, e.what());
|
|
}
|
|
catch (...)
|
|
{
|
|
snprintf(buf, sizeof(buf), fmt, "Unknown Exception");
|
|
}
|
|
res.set_content(buf, "text/plain; charset=utf-8");
|
|
res.status = 500;
|
|
});
|
|
|
|
svr.set_error_handler([](const httplib::Request &, httplib::Response &res)
|
|
{
|
|
if (res.status == 401)
|
|
{
|
|
res.set_content("Unauthorized", "text/plain; charset=utf-8");
|
|
}
|
|
if (res.status == 400)
|
|
{
|
|
res.set_content("Invalid request", "text/plain; charset=utf-8");
|
|
}
|
|
else if (res.status == 404)
|
|
{
|
|
res.set_content("File Not Found", "text/plain; charset=utf-8");
|
|
res.status = 404;
|
|
}
|
|
});
|
|
|
|
// set timeouts and change hostname and port
|
|
svr.set_read_timeout (sparams.read_timeout);
|
|
svr.set_write_timeout(sparams.write_timeout);
|
|
|
|
if (!svr.bind_to_port(sparams.hostname, sparams.port))
|
|
{
|
|
fprintf(stderr, "\ncouldn't bind to server socket: hostname=%s port=%d\n\n", sparams.hostname.c_str(), sparams.port);
|
|
return 1;
|
|
}
|
|
|
|
// Set the base directory for serving static files
|
|
svr.set_base_dir(sparams.public_path);
|
|
|
|
// to make it ctrl+clickable:
|
|
LOG_TEE("\nllama server listening at http://%s:%d\n\n", sparams.hostname.c_str(), sparams.port);
|
|
|
|
std::unordered_map<std::string, std::string> log_data;
|
|
log_data["hostname"] = sparams.hostname;
|
|
log_data["port"] = std::to_string(sparams.port);
|
|
|
|
if (!sparams.api_key.empty()) {
|
|
log_data["api_key"] = "api_key: ****" + sparams.api_key.substr(sparams.api_key.length() - 4);
|
|
}
|
|
|
|
LOG_INFO("HTTP server listening", log_data);
|
|
// run the HTTP server in a thread - see comment below
|
|
std::thread t([&]()
|
|
{
|
|
if (!svr.listen_after_bind())
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
});
|
|
|
|
// GG: if I put the main loop inside a thread, it crashes on the first request when build in Debug!?
|
|
// "Bus error: 10" - this is on macOS, it does not crash on Linux
|
|
//std::thread t2([&]()
|
|
{
|
|
bool running = true;
|
|
while (running)
|
|
{
|
|
running = llama.update_slots();
|
|
}
|
|
}
|
|
//);
|
|
|
|
t.join();
|
|
|
|
llama_backend_free();
|
|
return 0;
|
|
}
|