mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-10-30 22:50:15 +01:00
370359e5ba
* WIP: start implementing LLaVA * rm scratch buf for now, will revert after cleanup * LLaVA image encoder is working. will combine with llama * Add llava inference code, but it's buggy. debugging * LLaVA is working e2e, needs to optimize memory allocation + cleanup * Use ggml_allocr + rm unnecessary code * fix: crlf -> lf * fix: new line at EoF * fix: trailing whitespace * Add readme * Update readme * Some cleanup * Are you happy editorconfig? * rm unused batch image preprocessing * rm unused import * fix: rm designated initializers * introduce pad-to-square mode for non-square images * are you happy editorconfig? * gitignore /llava * Handle cases where image file does not exist * add llava target to Makefile * add support for 13b model variant * Maybe seed is unlucky? * Check if apples are compared to apples * are you happy editorconfig? * Use temperature = 0.1 by default * command line: use gpt_params_parse() * minor * handle default n_predict * fix typo * llava : code formatting, rename files, fix compile warnings * do not use Wno-cast-qual for MSVC --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
31 lines
958 B
Python
31 lines
958 B
Python
import argparse
|
|
import glob
|
|
import os
|
|
import torch
|
|
|
|
|
|
ap = argparse.ArgumentParser()
|
|
ap.add_argument("-m", "--model", help="Path to LLaVA v1.5 model")
|
|
args = ap.parse_args()
|
|
|
|
# find the model part that includes the the multimodal projector weights
|
|
path = sorted(glob.glob(f"{args.model}/pytorch_model*.bin"))[-1]
|
|
checkpoint = torch.load(path)
|
|
|
|
# get a list of mm tensor names
|
|
mm_tensors = [k for k, v in checkpoint.items() if k.startswith("model.mm_projector")]
|
|
|
|
# store these tensors in a new dictionary and torch.save them
|
|
projector = {name: checkpoint[name] for name in mm_tensors}
|
|
torch.save(projector, f"{args.model}/llava.projector")
|
|
|
|
# remove these tensors from the checkpoint and save it again
|
|
for name in mm_tensors:
|
|
del checkpoint[name]
|
|
|
|
torch.save(checkpoint, path)
|
|
|
|
print("Done!")
|
|
print(f"Now you can convert {args.model} to a a regular LLaMA GGUF file.")
|
|
print(f"Also, use {args.model}/llava.projector to prepare a llava-encoder.gguf file.")
|