mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-15 06:40:45 +01:00
0e797c2fc5
* Produces garbage output * wip: correct tensors up to RoPE * correct tensors thru RoPE * Correct outputs through masked & softmax'd KQ * fp32 works * Rename adept->persimmon * Produces correct outputs * clean up convert scripts * remove printing logic from ggml.c * remove prints from llama.cpp & fix merge * trivial cleanups * Add offload funcs * update conversion script to directly take adept artifacts rather than .saftensors file * Fix norm eps bug * Support sqr and concat on metal, persimmon-8b-q4 runs correctly * Small changes from review * Formatting changes * Minor changes to conversion script * Remove old script * Fix editorconfig formatting * Fix build * add overlooked offload code ggml-ci
131 lines
4.7 KiB
Python
131 lines
4.7 KiB
Python
import torch
|
|
import os
|
|
from pprint import pprint
|
|
import sys
|
|
import argparse
|
|
from pathlib import Path
|
|
from sentencepiece import SentencePieceProcessor
|
|
if 'NO_LOCAL_GGUF' not in os.environ:
|
|
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
|
|
import gguf
|
|
|
|
def _flatten_dict(dct, tensors, prefix=None):
|
|
assert isinstance(dct, dict)
|
|
for key in dct.keys():
|
|
new_prefix = prefix + '.' + key if prefix is not None else key
|
|
if isinstance(dct[key], torch.Tensor):
|
|
tensors[new_prefix] = dct[key]
|
|
elif isinstance(dct[key], dict):
|
|
_flatten_dict(dct[key], tensors, new_prefix)
|
|
else:
|
|
raise ValueError(type(dct[key]))
|
|
return None
|
|
|
|
def _get_sentencepiece_tokenizer_info(dir_model: Path):
|
|
tokenizer_path = dir_model / 'adept_vocab.model'
|
|
print('gguf: getting sentencepiece tokenizer from', tokenizer_path)
|
|
tokenizer = SentencePieceProcessor(str(tokenizer_path))
|
|
print('gguf: adding tokens')
|
|
tokens: list[bytes] = []
|
|
scores: list[float] = []
|
|
toktypes: list[int] = []
|
|
|
|
for i in range(tokenizer.vocab_size()):
|
|
text: bytes
|
|
score: float
|
|
|
|
piece = tokenizer.id_to_piece(i)
|
|
text = piece.encode("utf-8")
|
|
score = tokenizer.get_score(i)
|
|
|
|
toktype = 1
|
|
if tokenizer.is_unknown(i):
|
|
toktype = 2
|
|
if tokenizer.is_control(i):
|
|
toktype = 3
|
|
if tokenizer.is_unused(i):
|
|
toktype = 5
|
|
if tokenizer.is_byte(i):
|
|
toktype = 6
|
|
|
|
tokens.append(text)
|
|
scores.append(score)
|
|
toktypes.append(toktype)
|
|
pass
|
|
return tokens, scores, toktypes
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(description="Convert a Persimmon model from Adept (e.g. Persimmon 8b chat) to a GGML compatible file")
|
|
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
|
|
parser.add_argument("--ckpt-path", type=Path, help="path to persimmon checkpoint .pt file")
|
|
parser.add_argument("--model-dir", type=Path, help="directory containing model e.g. 8b_chat_model_release")
|
|
parser.add_argument("--adept-inference-dir", type=str, help="path to adept-inference code directory")
|
|
args = parser.parse_args()
|
|
sys.path.append(str(args.adept_inference_dir))
|
|
persimmon_model = torch.load(args.ckpt_path)
|
|
hparams = persimmon_model['args']
|
|
pprint(hparams)
|
|
tensors = {}
|
|
_flatten_dict(persimmon_model['model'], tensors, None)
|
|
|
|
arch = gguf.MODEL_ARCH.PERSIMMON
|
|
gguf_writer = gguf.GGUFWriter(args.outfile, gguf.MODEL_ARCH_NAMES[arch])
|
|
|
|
block_count = hparams.num_layers
|
|
head_count = hparams.num_attention_heads
|
|
head_count_kv = head_count
|
|
ctx_length = hparams.seq_length
|
|
hidden_size = hparams.hidden_size
|
|
|
|
gguf_writer.add_name('persimmon-8b-chat')
|
|
gguf_writer.add_context_length(ctx_length)
|
|
gguf_writer.add_embedding_length(hidden_size)
|
|
gguf_writer.add_block_count(block_count)
|
|
gguf_writer.add_feed_forward_length(hparams.ffn_hidden_size)
|
|
gguf_writer.add_rope_dimension_count(hidden_size // head_count)
|
|
gguf_writer.add_head_count(head_count)
|
|
gguf_writer.add_head_count_kv(head_count_kv)
|
|
gguf_writer.add_rope_freq_base(hparams.rotary_emb_base)
|
|
gguf_writer.add_layer_norm_eps(hparams.layernorm_epsilon)
|
|
|
|
tokens, scores, toktypes = _get_sentencepiece_tokenizer_info(args.model_dir)
|
|
gguf_writer.add_tokenizer_model('llama')
|
|
gguf_writer.add_token_list(tokens)
|
|
gguf_writer.add_token_scores(scores)
|
|
gguf_writer.add_token_types(toktypes)
|
|
gguf_writer.add_bos_token_id(71013)
|
|
gguf_writer.add_eos_token_id(71013)
|
|
|
|
tensor_map = gguf.get_tensor_name_map(arch, block_count)
|
|
print(tensor_map)
|
|
for name in tensors.keys():
|
|
data = tensors[name]
|
|
if name.endswith(".self_attention.rotary_emb.inv_freq"):
|
|
continue
|
|
old_dtype = data.dtype
|
|
# TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
|
|
data = data.to(torch.float32).squeeze().numpy()
|
|
new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
|
|
if new_name is None:
|
|
print("Can not map tensor '" + name + "'")
|
|
sys.exit()
|
|
n_dims = len(data.shape)
|
|
print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
|
|
gguf_writer.add_tensor(new_name, data)
|
|
print("gguf: write header")
|
|
gguf_writer.write_header_to_file()
|
|
print("gguf: write metadata")
|
|
gguf_writer.write_kv_data_to_file()
|
|
print("gguf: write tensors")
|
|
gguf_writer.write_tensors_to_file()
|
|
|
|
gguf_writer.close()
|
|
|
|
print(f"gguf: model successfully exported to '{args.outfile}'")
|
|
print("")
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|