mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-25 13:58:46 +01:00
8cc91dc63c
This change upstreams llamafile's cpu matrix multiplication kernels which improve image and prompt evaluation speed. For starters, Q4_0 and Q8_0 weights should go ~40% faster on CPU. The biggest benefits are with data types like f16 / f32, which process prompts 2x faster thus making them faster than quantized data types for prompt evals. This change also introduces bona fide AVX512 support since tinyBLAS is able to exploit the larger register file. For example, on my CPU llama.cpp llava-cli processes an image prompt at 305 tokens/second, using the Q4_K and Q4_0 types, which has always been faster than if we used f16 LLaVA weights, which at HEAD go 188 tokens/second. With this change, f16 LLaVA performance leap frogs to 464 tokens/second. On Intel Core i9-14900K this change improves F16 prompt perf by 5x. For example, using llama.cpp at HEAD with Mistral 7b f16 to process a 215 token prompt will go 13 tok/sec. This change has fixes making it go 52 tok/sec. It's mostly thanks to my vectorized outer product kernels but also because I added support for correctly counting the number of cores on Alderlake, so the default thread count discounts Intel's new efficiency cores. Only Linux right now can count cores. This work was sponsored by Mozilla who's given permission to change the license of this code from Apache 2.0 to MIT. To read more about what's improved, and how it works, see: https://justine.lol/matmul/
325 lines
14 KiB
C++
325 lines
14 KiB
C++
// Various helper functions and utilities
|
|
|
|
#pragma once
|
|
|
|
#include "llama.h"
|
|
|
|
#include "sampling.h"
|
|
|
|
#define LOG_NO_FILE_LINE_FUNCTION
|
|
#include "log.h"
|
|
|
|
#include <cmath>
|
|
#include <string>
|
|
#include <vector>
|
|
#include <random>
|
|
#include <thread>
|
|
#include <unordered_map>
|
|
#include <tuple>
|
|
|
|
#ifdef _WIN32
|
|
#define DIRECTORY_SEPARATOR '\\'
|
|
#else
|
|
#define DIRECTORY_SEPARATOR '/'
|
|
#endif // _WIN32
|
|
|
|
#define die(msg) do { fputs("error: " msg "\n", stderr); exit(1); } while (0)
|
|
#define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)
|
|
|
|
#define print_build_info() do { \
|
|
fprintf(stderr, "%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT); \
|
|
fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \
|
|
} while(0)
|
|
|
|
// build info
|
|
extern int LLAMA_BUILD_NUMBER;
|
|
extern char const *LLAMA_COMMIT;
|
|
extern char const *LLAMA_COMPILER;
|
|
extern char const *LLAMA_BUILD_TARGET;
|
|
|
|
struct llama_control_vector_load_info;
|
|
|
|
int get_math_cpu_count();
|
|
int32_t get_num_physical_cores();
|
|
|
|
//
|
|
// CLI argument parsing
|
|
//
|
|
|
|
struct gpt_params {
|
|
uint32_t seed = LLAMA_DEFAULT_SEED; // RNG seed
|
|
|
|
int32_t n_threads = get_math_cpu_count();
|
|
int32_t n_threads_draft = -1;
|
|
int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads)
|
|
int32_t n_threads_batch_draft = -1;
|
|
int32_t n_predict = -1; // new tokens to predict
|
|
int32_t n_ctx = 512; // context size
|
|
int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
|
|
int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
|
|
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
|
int32_t n_draft = 5; // number of tokens to draft during speculative decoding
|
|
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
|
|
int32_t n_parallel = 1; // number of parallel sequences to decode
|
|
int32_t n_sequences = 1; // number of sequences to decode
|
|
float p_split = 0.1f; // speculative decoding split probability
|
|
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
|
|
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
|
|
llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
|
|
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
|
|
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
|
|
int32_t n_beams = 0; // if non-zero then use beam search of given width.
|
|
int32_t grp_attn_n = 1; // group-attention factor
|
|
int32_t grp_attn_w = 512; // group-attention width
|
|
int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
|
|
float rope_freq_base = 0.0f; // RoPE base frequency
|
|
float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
|
|
float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
|
|
float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
|
|
float yarn_beta_fast = 32.0f; // YaRN low correction dim
|
|
float yarn_beta_slow = 1.0f; // YaRN high correction dim
|
|
int32_t yarn_orig_ctx = 0; // YaRN original context length
|
|
float defrag_thold = -1.0f; // KV cache defragmentation threshold
|
|
|
|
ggml_backend_sched_eval_callback cb_eval = nullptr;
|
|
void * cb_eval_user_data = nullptr;
|
|
|
|
ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
|
|
|
|
llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
|
|
llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
|
|
|
|
// // sampling parameters
|
|
struct llama_sampling_params sparams;
|
|
|
|
std::string model = "models/7B/ggml-model-f16.gguf"; // model path
|
|
std::string model_draft = ""; // draft model for speculative decoding
|
|
std::string model_alias = "unknown"; // model alias
|
|
std::string model_url = ""; // model url to download
|
|
std::string hf_repo = ""; // HF repo
|
|
std::string hf_file = ""; // HF file
|
|
std::string prompt = "";
|
|
std::string prompt_file = ""; // store the external prompt file name
|
|
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
|
|
std::string input_prefix = ""; // string to prefix user inputs with
|
|
std::string input_suffix = ""; // string to suffix user inputs with
|
|
std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
|
|
std::string logdir = ""; // directory in which to save YAML log files
|
|
std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding
|
|
std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding
|
|
std::string logits_file = ""; // file for saving *all* logits
|
|
|
|
std::vector<llama_model_kv_override> kv_overrides;
|
|
|
|
// TODO: avoid tuple, use struct
|
|
std::vector<std::tuple<std::string, float>> lora_adapter; // lora adapter path with user defined scale
|
|
std::string lora_base = ""; // base model path for the lora adapter
|
|
|
|
std::vector<llama_control_vector_load_info> control_vectors; // control vector with user defined scale
|
|
|
|
int32_t control_vector_layer_start = -1; // layer range for control vector
|
|
int32_t control_vector_layer_end = -1; // layer range for control vector
|
|
|
|
int ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
|
|
int ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
|
|
// (which is more convenient to use for plotting)
|
|
//
|
|
bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
|
|
size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
|
|
|
|
bool winogrande = false; // compute Winogrande score over random tasks from datafile supplied in prompt
|
|
size_t winogrande_tasks= 0; // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed
|
|
|
|
bool multiple_choice = false; // compute TruthfulQA score over random tasks from datafile supplied in prompt
|
|
size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed
|
|
|
|
bool kl_divergence = false; // compute KL-divergence
|
|
|
|
bool random_prompt = false; // do not randomize prompt if none provided
|
|
bool use_color = false; // use color to distinguish generations and inputs
|
|
bool interactive = false; // interactive mode
|
|
bool chatml = false; // chatml mode (used for models trained on chatml syntax)
|
|
bool prompt_cache_all = false; // save user input and generations to prompt cache
|
|
bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
|
|
|
|
bool embedding = false; // get only sentence embedding
|
|
bool escape = false; // escape "\n", "\r", "\t", "\'", "\"", and "\\"
|
|
bool interactive_first = false; // wait for user input immediately
|
|
bool multiline_input = false; // reverse the usage of `\`
|
|
bool simple_io = false; // improves compatibility with subprocesses and limited consoles
|
|
bool cont_batching = true; // insert new sequences for decoding on-the-fly
|
|
|
|
bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
|
|
bool ignore_eos = false; // ignore generated EOS tokens
|
|
bool instruct = false; // instruction mode (used for Alpaca models)
|
|
bool logits_all = false; // return logits for all tokens in the batch
|
|
bool use_mmap = true; // use mmap for faster loads
|
|
bool use_mlock = false; // use mlock to keep model in memory
|
|
bool verbose_prompt = false; // print prompt tokens before generation
|
|
bool display_prompt = true; // print prompt before generation
|
|
bool infill = false; // use infill mode
|
|
bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
|
|
bool no_kv_offload = false; // disable KV offloading
|
|
bool warmup = true; // warmup run
|
|
|
|
std::string cache_type_k = "f16"; // KV cache data type for the K
|
|
std::string cache_type_v = "f16"; // KV cache data type for the V
|
|
|
|
// multimodal models (see examples/llava)
|
|
std::string mmproj = ""; // path to multimodal projector
|
|
std::string image = ""; // path to an image file
|
|
};
|
|
|
|
bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params);
|
|
|
|
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
|
|
|
|
void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
|
|
|
|
bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param);
|
|
|
|
std::string get_system_info(const gpt_params & params);
|
|
|
|
std::string gpt_random_prompt(std::mt19937 & rng);
|
|
|
|
void process_escapes(std::string& input);
|
|
|
|
bool validate_file_name(const std::string & filename);
|
|
|
|
//
|
|
// String utils
|
|
//
|
|
|
|
std::vector<llama_sampler_type> sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names);
|
|
std::vector<llama_sampler_type> sampler_types_from_chars(const std::string & names_string);
|
|
std::vector<std::string> string_split(std::string input, char separator);
|
|
std::string sampler_type_to_name_string(llama_sampler_type sampler_type);
|
|
|
|
//
|
|
// Model utils
|
|
//
|
|
|
|
// TODO: avoid tuplue, use struct
|
|
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params);
|
|
|
|
struct llama_model_params llama_model_params_from_gpt_params (const gpt_params & params);
|
|
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params);
|
|
|
|
struct llama_model * llama_load_model_from_url(const char * model_url, const char * path_model, const struct llama_model_params & params);
|
|
struct llama_model * llama_load_model_from_hf(const char * repo, const char * file, const char * path_model, const struct llama_model_params & params);
|
|
|
|
// Batch utils
|
|
|
|
void llama_batch_clear(struct llama_batch & batch);
|
|
|
|
void llama_batch_add(
|
|
struct llama_batch & batch,
|
|
llama_token id,
|
|
llama_pos pos,
|
|
const std::vector<llama_seq_id> & seq_ids,
|
|
bool logits);
|
|
|
|
//
|
|
// Vocab utils
|
|
//
|
|
|
|
// tokenizes a string into a vector of tokens
|
|
// should work similar to Python's `tokenizer.encode`
|
|
std::vector<llama_token> llama_tokenize(
|
|
const struct llama_context * ctx,
|
|
const std::string & text,
|
|
bool add_special,
|
|
bool parse_special = false);
|
|
|
|
std::vector<llama_token> llama_tokenize(
|
|
const struct llama_model * model,
|
|
const std::string & text,
|
|
bool add_special,
|
|
bool parse_special = false);
|
|
|
|
// tokenizes a token into a piece
|
|
// should work similar to Python's `tokenizer.id_to_piece`
|
|
std::string llama_token_to_piece(
|
|
const struct llama_context * ctx,
|
|
llama_token token);
|
|
|
|
// TODO: these should be moved in llama.h C-style API under single `llama_detokenize` function
|
|
// that takes into account the tokenizer type and decides how to handle the leading space
|
|
//
|
|
// detokenizes a vector of tokens into a string
|
|
// should work similar to Python's `tokenizer.decode`
|
|
// removes the leading space from the first non-BOS token
|
|
std::string llama_detokenize_spm(
|
|
llama_context * ctx,
|
|
const std::vector<llama_token> & tokens);
|
|
|
|
// detokenizes a vector of tokens into a string
|
|
// should work similar to Python's `tokenizer.decode`
|
|
std::string llama_detokenize_bpe(
|
|
llama_context * ctx,
|
|
const std::vector<llama_token> & tokens);
|
|
|
|
// Uses the value from the model metadata if possible, otherwise
|
|
// defaults to true when model type is SPM, otherwise false.
|
|
bool llama_should_add_bos_token(const llama_model * model);
|
|
|
|
//
|
|
// YAML utils
|
|
//
|
|
|
|
bool create_directory_with_parents(const std::string & path);
|
|
void dump_vector_float_yaml(FILE * stream, const char * prop_name, const std::vector<float> & data);
|
|
void dump_vector_int_yaml(FILE * stream, const char * prop_name, const std::vector<int> & data);
|
|
void dump_string_yaml_multiline(FILE * stream, const char * prop_name, const char * data);
|
|
std::string get_sortable_timestamp();
|
|
|
|
void dump_non_result_info_yaml(
|
|
FILE * stream, const gpt_params & params, const llama_context * lctx,
|
|
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);
|
|
|
|
//
|
|
// KV cache utils
|
|
//
|
|
|
|
// Dump the KV cache view with the number of sequences per cell.
|
|
void dump_kv_cache_view(const llama_kv_cache_view & view, int row_size = 80);
|
|
|
|
// Dump the KV cache view showing individual sequences in each cell (long output).
|
|
void dump_kv_cache_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
|
|
|
|
//
|
|
// Embedding utils
|
|
//
|
|
|
|
void llama_embd_normalize(const float * inp, float * out, int n);
|
|
|
|
float llama_embd_similarity_cos(const float * embd1, const float * embd2, int n);
|
|
|
|
//
|
|
// Control vector utils
|
|
//
|
|
|
|
struct llama_control_vector_data {
|
|
int n_embd;
|
|
|
|
// stores data for layers [1, n_layer] where n_layer = data.size() / n_embd
|
|
std::vector<float> data;
|
|
};
|
|
|
|
struct llama_control_vector_load_info {
|
|
float strength;
|
|
|
|
std::string fname;
|
|
};
|
|
|
|
// Load control vectors, scale each by strength, and add them together.
|
|
// On error, returns {-1, empty}
|
|
llama_control_vector_data llama_control_vector_load(const std::vector<llama_control_vector_load_info> & load_infos);
|
|
|
|
//
|
|
// Split utils
|
|
//
|
|
static const char * const LLM_KV_SPLIT_NO = "split.no";
|
|
static const char * const LLM_KV_SPLIT_COUNT = "split.count";
|
|
static const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
|