mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-22 01:29:09 +01:00
f7cab35ef9
CLI to hash GGUF files to detect difference on a per model and per tensor level The hash type we support is: - `--xxh64`: use xhash 64bit hash mode (default) - `--sha1`: use sha1 - `--uuid`: use uuid - `--sha256`: use sha256 While most POSIX systems already have hash checking programs like sha256sum, it is designed to check entire files. This is not ideal for our purpose if we want to check for consistency of the tensor data even if the metadata content of the gguf KV store has been updated. This program is designed to hash a gguf tensor payload on a 'per tensor layer' in addition to a 'entire tensor model' hash. The intent is that the entire tensor layer can be checked first but if there is any detected inconsistencies, then the per tensor hash can be used to narrow down the specific tensor layer that has inconsistencies. Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
222 lines
5.2 KiB
C
222 lines
5.2 KiB
C
/* Crypto/Sha256.c -- SHA-256 Hash
|
|
2010-06-11 : Igor Pavlov : Public domain
|
|
This code is based on public domain code from Wei Dai's Crypto++ library. */
|
|
|
|
#include "rotate-bits/rotate-bits.h"
|
|
#include "sha256.h"
|
|
|
|
/* define it for speed optimization */
|
|
#define _SHA256_UNROLL
|
|
#define _SHA256_UNROLL2
|
|
|
|
void
|
|
sha256_init(sha256_t *p)
|
|
{
|
|
p->state[0] = 0x6a09e667;
|
|
p->state[1] = 0xbb67ae85;
|
|
p->state[2] = 0x3c6ef372;
|
|
p->state[3] = 0xa54ff53a;
|
|
p->state[4] = 0x510e527f;
|
|
p->state[5] = 0x9b05688c;
|
|
p->state[6] = 0x1f83d9ab;
|
|
p->state[7] = 0x5be0cd19;
|
|
p->count = 0;
|
|
}
|
|
|
|
#define S0(x) (ROTR32(x, 2) ^ ROTR32(x,13) ^ ROTR32(x, 22))
|
|
#define S1(x) (ROTR32(x, 6) ^ ROTR32(x,11) ^ ROTR32(x, 25))
|
|
#define s0(x) (ROTR32(x, 7) ^ ROTR32(x,18) ^ (x >> 3))
|
|
#define s1(x) (ROTR32(x,17) ^ ROTR32(x,19) ^ (x >> 10))
|
|
|
|
#define blk0(i) (W[i] = data[i])
|
|
#define blk2(i) (W[i&15] += s1(W[(i-2)&15]) + W[(i-7)&15] + s0(W[(i-15)&15]))
|
|
|
|
#define Ch(x,y,z) (z^(x&(y^z)))
|
|
#define Maj(x,y,z) ((x&y)|(z&(x|y)))
|
|
|
|
#define a(i) T[(0-(i))&7]
|
|
#define b(i) T[(1-(i))&7]
|
|
#define c(i) T[(2-(i))&7]
|
|
#define d(i) T[(3-(i))&7]
|
|
#define e(i) T[(4-(i))&7]
|
|
#define f(i) T[(5-(i))&7]
|
|
#define g(i) T[(6-(i))&7]
|
|
#define h(i) T[(7-(i))&7]
|
|
|
|
|
|
#ifdef _SHA256_UNROLL2
|
|
|
|
#define R(a,b,c,d,e,f,g,h, i) h += S1(e) + Ch(e,f,g) + K[i+j] + (j?blk2(i):blk0(i));\
|
|
d += h; h += S0(a) + Maj(a, b, c)
|
|
|
|
#define RX_8(i) \
|
|
R(a,b,c,d,e,f,g,h, i); \
|
|
R(h,a,b,c,d,e,f,g, (i+1)); \
|
|
R(g,h,a,b,c,d,e,f, (i+2)); \
|
|
R(f,g,h,a,b,c,d,e, (i+3)); \
|
|
R(e,f,g,h,a,b,c,d, (i+4)); \
|
|
R(d,e,f,g,h,a,b,c, (i+5)); \
|
|
R(c,d,e,f,g,h,a,b, (i+6)); \
|
|
R(b,c,d,e,f,g,h,a, (i+7))
|
|
|
|
#else
|
|
|
|
#define R(i) h(i) += S1(e(i)) + Ch(e(i),f(i),g(i)) + K[i+j] + (j?blk2(i):blk0(i));\
|
|
d(i) += h(i); h(i) += S0(a(i)) + Maj(a(i), b(i), c(i))
|
|
|
|
#ifdef _SHA256_UNROLL
|
|
|
|
#define RX_8(i) R(i+0); R(i+1); R(i+2); R(i+3); R(i+4); R(i+5); R(i+6); R(i+7);
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
static const uint32_t K[64] = {
|
|
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
|
|
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
|
|
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
|
|
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
|
|
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
|
|
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
|
|
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
|
|
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
|
|
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
|
|
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
|
|
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
|
|
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
|
|
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
|
|
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
|
|
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
|
|
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
|
|
};
|
|
|
|
static void
|
|
sha256_transform(uint32_t *state, const uint32_t *data)
|
|
{
|
|
uint32_t W[16] = {0};
|
|
unsigned j;
|
|
#ifdef _SHA256_UNROLL2
|
|
uint32_t a,b,c,d,e,f,g,h;
|
|
a = state[0];
|
|
b = state[1];
|
|
c = state[2];
|
|
d = state[3];
|
|
e = state[4];
|
|
f = state[5];
|
|
g = state[6];
|
|
h = state[7];
|
|
#else
|
|
uint32_t T[8];
|
|
for (j = 0; j < 8; j++)
|
|
T[j] = state[j];
|
|
#endif
|
|
|
|
for (j = 0; j < 64; j += 16)
|
|
{
|
|
#if defined(_SHA256_UNROLL) || defined(_SHA256_UNROLL2)
|
|
RX_8(0); RX_8(8);
|
|
#else
|
|
unsigned i;
|
|
for (i = 0; i < 16; i++) { R(i); }
|
|
#endif
|
|
}
|
|
|
|
#ifdef _SHA256_UNROLL2
|
|
state[0] += a;
|
|
state[1] += b;
|
|
state[2] += c;
|
|
state[3] += d;
|
|
state[4] += e;
|
|
state[5] += f;
|
|
state[6] += g;
|
|
state[7] += h;
|
|
#else
|
|
for (j = 0; j < 8; j++)
|
|
state[j] += T[j];
|
|
#endif
|
|
|
|
/* Wipe variables */
|
|
/* memset(W, 0, sizeof(W)); */
|
|
/* memset(T, 0, sizeof(T)); */
|
|
}
|
|
|
|
#undef S0
|
|
#undef S1
|
|
#undef s0
|
|
#undef s1
|
|
|
|
static void
|
|
sha256_write_byte_block(sha256_t *p)
|
|
{
|
|
uint32_t data32[16];
|
|
unsigned i;
|
|
for (i = 0; i < 16; i++)
|
|
data32[i] =
|
|
((uint32_t)(p->buffer[i * 4 ]) << 24) +
|
|
((uint32_t)(p->buffer[i * 4 + 1]) << 16) +
|
|
((uint32_t)(p->buffer[i * 4 + 2]) << 8) +
|
|
((uint32_t)(p->buffer[i * 4 + 3]));
|
|
sha256_transform(p->state, data32);
|
|
}
|
|
|
|
|
|
void
|
|
sha256_hash(unsigned char *buf, const unsigned char *data, size_t size)
|
|
{
|
|
sha256_t hash;
|
|
sha256_init(&hash);
|
|
sha256_update(&hash, data, size);
|
|
sha256_final(&hash, buf);
|
|
}
|
|
|
|
|
|
void
|
|
sha256_update(sha256_t *p, const unsigned char *data, size_t size)
|
|
{
|
|
uint32_t curBufferPos = (uint32_t)p->count & 0x3F;
|
|
while (size > 0)
|
|
{
|
|
p->buffer[curBufferPos++] = *data++;
|
|
p->count++;
|
|
size--;
|
|
if (curBufferPos == 64)
|
|
{
|
|
curBufferPos = 0;
|
|
sha256_write_byte_block(p);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
sha256_final(sha256_t *p, unsigned char *digest)
|
|
{
|
|
uint64_t lenInBits = (p->count << 3);
|
|
uint32_t curBufferPos = (uint32_t)p->count & 0x3F;
|
|
unsigned i;
|
|
p->buffer[curBufferPos++] = 0x80;
|
|
while (curBufferPos != (64 - 8))
|
|
{
|
|
curBufferPos &= 0x3F;
|
|
if (curBufferPos == 0)
|
|
sha256_write_byte_block(p);
|
|
p->buffer[curBufferPos++] = 0;
|
|
}
|
|
for (i = 0; i < 8; i++)
|
|
{
|
|
p->buffer[curBufferPos++] = (unsigned char)(lenInBits >> 56);
|
|
lenInBits <<= 8;
|
|
}
|
|
sha256_write_byte_block(p);
|
|
|
|
for (i = 0; i < 8; i++)
|
|
{
|
|
*digest++ = (unsigned char)(p->state[i] >> 24);
|
|
*digest++ = (unsigned char)(p->state[i] >> 16);
|
|
*digest++ = (unsigned char)(p->state[i] >> 8);
|
|
*digest++ = (unsigned char)(p->state[i]);
|
|
}
|
|
sha256_init(p);
|
|
}
|