mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-27 22:59:24 +01:00
8369 lines
401 KiB
C++
8369 lines
401 KiB
C++
#include "ggml-vulkan.h"
|
|
#include <vulkan/vulkan_core.h>
|
|
#if defined(GGML_VULKAN_RUN_TESTS) || defined(GGML_VULKAN_PERF) || defined(GGML_VULKAN_CHECK_RESULTS)
|
|
#include <chrono>
|
|
#include "ggml-cpu.h"
|
|
#endif
|
|
|
|
#include <vulkan/vulkan.hpp>
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <iomanip>
|
|
#include <iostream>
|
|
#include <tuple>
|
|
#include <vector>
|
|
#include <sstream>
|
|
#include <utility>
|
|
#include <memory>
|
|
#include <limits>
|
|
#include <map>
|
|
#include <unordered_map>
|
|
#include <memory>
|
|
#include <mutex>
|
|
#include <future>
|
|
#include <thread>
|
|
|
|
#include "ggml-impl.h"
|
|
#include "ggml-backend-impl.h"
|
|
|
|
#include "ggml-vulkan-shaders.hpp"
|
|
|
|
#define VK_API_VERSION VK_API_VERSION_1_2
|
|
|
|
#define CEIL_DIV(M, N) (((M) + (N)-1) / (N))
|
|
|
|
#define VK_VENDOR_ID_AMD 0x1002
|
|
#define VK_VENDOR_ID_APPLE 0x106b
|
|
#define VK_VENDOR_ID_INTEL 0x8086
|
|
#define VK_VENDOR_ID_NVIDIA 0x10de
|
|
|
|
#define VK_DEVICE_DESCRIPTOR_POOL_SIZE 32
|
|
|
|
#define GGML_VK_MAX_NODES 8192
|
|
|
|
#define MAX_VK_BUFFERS 256
|
|
|
|
#ifndef K_QUANTS_PER_ITERATION
|
|
#define K_QUANTS_PER_ITERATION 1
|
|
#else
|
|
static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2");
|
|
#endif
|
|
|
|
#define VK_CHECK(err, msg) \
|
|
do { \
|
|
vk::Result err_ = (err); \
|
|
if (err_ != vk::Result::eSuccess) { \
|
|
fprintf(stderr, "ggml_vulkan: %s error %s at %s:%d\n", \
|
|
#err, to_string(err_).c_str(), __FILE__, __LINE__); \
|
|
exit(1); \
|
|
} \
|
|
} while (0)
|
|
|
|
#ifdef GGML_VULKAN_DEBUG
|
|
#define VK_LOG_DEBUG(msg) std::cerr << msg << std::endl
|
|
#else
|
|
#define VK_LOG_DEBUG(msg) ((void) 0)
|
|
#endif // GGML_VULKAN_DEBUG
|
|
|
|
struct ggml_backend_vk_context;
|
|
|
|
struct vk_queue {
|
|
uint32_t queue_family_index;
|
|
vk::Queue queue;
|
|
vk::CommandPool pool;
|
|
uint32_t cmd_buffer_idx;
|
|
std::vector<vk::CommandBuffer> cmd_buffers;
|
|
|
|
vk::PipelineStageFlags stage_flags;
|
|
|
|
bool transfer_only;
|
|
};
|
|
|
|
struct vk_pipeline_struct {
|
|
std::string name;
|
|
vk::ShaderModule shader_module;
|
|
vk::DescriptorSetLayout dsl;
|
|
std::vector<vk::DescriptorPool> descriptor_pools;
|
|
std::vector<vk::DescriptorSet> descriptor_sets;
|
|
uint32_t descriptor_set_idx;
|
|
vk::PipelineLayout layout;
|
|
vk::Pipeline pipeline;
|
|
uint32_t push_constant_size;
|
|
uint32_t parameter_count;
|
|
std::array<uint32_t, 3> wg_denoms;
|
|
uint32_t align;
|
|
};
|
|
|
|
typedef std::shared_ptr<vk_pipeline_struct> vk_pipeline;
|
|
typedef std::weak_ptr<vk_pipeline_struct> vk_pipeline_ref;
|
|
|
|
static void ggml_vk_destroy_pipeline(vk::Device& device, vk_pipeline& pipeline);
|
|
|
|
struct vk_matmul_pipeline_struct {
|
|
vk_pipeline l, m, s;
|
|
vk_pipeline a_l, a_m, a_s;
|
|
};
|
|
|
|
typedef std::shared_ptr<vk_matmul_pipeline_struct> vk_matmul_pipeline;
|
|
|
|
struct vk_matmul_pipeline2 {
|
|
vk_matmul_pipeline2() {
|
|
f16acc = std::make_shared<vk_matmul_pipeline_struct>();
|
|
f32acc = std::make_shared<vk_matmul_pipeline_struct>();
|
|
}
|
|
vk_matmul_pipeline f32acc;
|
|
vk_matmul_pipeline f16acc;
|
|
};
|
|
|
|
struct vk_device_struct;
|
|
typedef std::shared_ptr<vk_device_struct> vk_device;
|
|
typedef std::weak_ptr<vk_device_struct> vk_device_ref;
|
|
|
|
struct vk_buffer_struct;
|
|
typedef std::shared_ptr<vk_buffer_struct> vk_buffer;
|
|
typedef std::weak_ptr<vk_buffer_struct> vk_buffer_ref;
|
|
|
|
struct ggml_backend_vk_buffer_type_context {
|
|
std::string name;
|
|
vk_device device;
|
|
};
|
|
|
|
static const char * ggml_backend_vk_buffer_type_name(ggml_backend_buffer_type_t buft);
|
|
static ggml_backend_buffer_t ggml_backend_vk_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size);
|
|
static size_t ggml_backend_vk_buffer_type_get_alignment(ggml_backend_buffer_type_t buft);
|
|
static size_t ggml_backend_vk_buffer_type_get_max_size(ggml_backend_buffer_type_t buft);
|
|
static size_t ggml_backend_vk_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor);
|
|
static ggml_backend_buffer_type_i ggml_backend_vk_buffer_type_interface = {
|
|
/* .get_name = */ ggml_backend_vk_buffer_type_name,
|
|
/* .alloc_buffer = */ ggml_backend_vk_buffer_type_alloc_buffer,
|
|
/* .get_alignment = */ ggml_backend_vk_buffer_type_get_alignment,
|
|
/* .get_max_size = */ ggml_backend_vk_buffer_type_get_max_size,
|
|
/* .get_alloc_size = */ ggml_backend_vk_buffer_type_get_alloc_size,
|
|
/* .is_host = */ NULL,
|
|
};
|
|
|
|
#ifdef GGML_VULKAN_MEMORY_DEBUG
|
|
class vk_memory_logger;
|
|
#endif
|
|
#ifdef GGML_VULKAN_PERF
|
|
class vk_perf_logger;
|
|
#endif
|
|
static void ggml_vk_destroy_buffer(vk_buffer& buf);
|
|
|
|
struct vk_device_struct {
|
|
std::mutex mutex;
|
|
|
|
vk::PhysicalDevice physical_device;
|
|
vk::PhysicalDeviceProperties properties;
|
|
std::string name;
|
|
uint64_t max_memory_allocation_size;
|
|
bool fp16;
|
|
bool pipeline_robustness;
|
|
vk::Device device;
|
|
uint32_t vendor_id;
|
|
vk_queue compute_queue;
|
|
vk_queue transfer_queue;
|
|
bool single_queue;
|
|
uint32_t subgroup_size;
|
|
uint32_t shader_core_count;
|
|
bool uma;
|
|
bool coopmat2;
|
|
|
|
bool coopmat_support;
|
|
bool coopmat_acc_f32_support;
|
|
bool coopmat_acc_f16_support;
|
|
uint32_t coopmat_m;
|
|
uint32_t coopmat_n;
|
|
uint32_t coopmat_k;
|
|
|
|
size_t idx;
|
|
|
|
bool mul_mat_l;
|
|
bool mul_mat_m;
|
|
bool mul_mat_s;
|
|
bool mul_mat_id_l;
|
|
bool mul_mat_id_m;
|
|
bool mul_mat_id_s;
|
|
|
|
vk_matmul_pipeline pipeline_matmul_f32;
|
|
vk_matmul_pipeline pipeline_matmul_f32_f16;
|
|
vk_matmul_pipeline2 pipeline_matmul_f16;
|
|
vk_matmul_pipeline2 pipeline_matmul_f16_f32;
|
|
vk_pipeline pipeline_matmul_split_k_reduce;
|
|
|
|
vk_matmul_pipeline2 pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_COUNT];
|
|
vk_matmul_pipeline2 pipeline_dequant_mul_mat_mat[GGML_TYPE_COUNT];
|
|
|
|
vk_matmul_pipeline pipeline_matmul_id_f32;
|
|
vk_matmul_pipeline2 pipeline_matmul_id_f16;
|
|
vk_matmul_pipeline2 pipeline_matmul_id_f16_f32;
|
|
|
|
vk_matmul_pipeline2 pipeline_dequant_mul_mat_mat_id[GGML_TYPE_COUNT];
|
|
|
|
vk_pipeline pipeline_dequant[GGML_TYPE_COUNT];
|
|
vk_pipeline pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_COUNT];
|
|
vk_pipeline pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_COUNT];
|
|
vk_pipeline pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_COUNT];
|
|
|
|
vk_pipeline pipeline_mul_mat_vec_p021_f16_f32;
|
|
vk_pipeline pipeline_mul_mat_vec_nc_f16_f32;
|
|
vk_pipeline pipeline_get_rows[GGML_TYPE_COUNT];
|
|
vk_pipeline pipeline_get_rows_f32[GGML_TYPE_COUNT];
|
|
vk_pipeline pipeline_acc_f32;
|
|
vk_pipeline pipeline_add_f32, pipeline_add_f32_norepeat;
|
|
vk_pipeline pipeline_add_f16_f32_f16, pipeline_add_f16_f32_f16_norepeat;
|
|
vk_pipeline pipeline_mul_f32, pipeline_mul_f32_norepeat;
|
|
vk_pipeline pipeline_div_f32, pipeline_div_f32_norepeat;
|
|
vk_pipeline pipeline_concat_f32, pipeline_concat_f16, pipeline_concat_i32;
|
|
vk_pipeline pipeline_upscale_f32;
|
|
vk_pipeline pipeline_scale_f32;
|
|
vk_pipeline pipeline_sqr_f32;
|
|
vk_pipeline pipeline_sin_f32;
|
|
vk_pipeline pipeline_cos_f32;
|
|
vk_pipeline pipeline_clamp_f32;
|
|
vk_pipeline pipeline_pad_f32;
|
|
vk_pipeline pipeline_repeat_f32;
|
|
vk_pipeline pipeline_cpy_f32_f32, pipeline_cpy_f32_f16, pipeline_cpy_f16_f16;
|
|
vk_pipeline pipeline_contig_cpy_f32_f32, pipeline_contig_cpy_f32_f16, pipeline_contig_cpy_f16_f16;
|
|
vk_pipeline pipeline_norm_f32;
|
|
vk_pipeline pipeline_group_norm_f32;
|
|
vk_pipeline pipeline_rms_norm_f32;
|
|
vk_pipeline pipeline_gelu_f32;
|
|
vk_pipeline pipeline_gelu_quick_f32;
|
|
vk_pipeline pipeline_silu_f32;
|
|
vk_pipeline pipeline_relu_f32;
|
|
vk_pipeline pipeline_leaky_relu_f32;
|
|
vk_pipeline pipeline_tanh_f32;
|
|
vk_pipeline pipeline_diag_mask_inf_f32;
|
|
vk_pipeline pipeline_soft_max_f32, pipeline_soft_max_f32_f16;
|
|
vk_pipeline pipeline_soft_max_f32_wg512, pipeline_soft_max_f32_f16_wg512;
|
|
vk_pipeline pipeline_rope_norm_f32, pipeline_rope_norm_f16;
|
|
vk_pipeline pipeline_rope_neox_f32, pipeline_rope_neox_f16;
|
|
vk_pipeline pipeline_argsort_f32;
|
|
vk_pipeline pipeline_sum_rows_f32;
|
|
vk_pipeline pipeline_im2col_f32, pipeline_im2col_f32_f16;
|
|
vk_pipeline pipeline_timestep_embedding_f32;
|
|
vk_pipeline pipeline_pool2d_f32;
|
|
|
|
// [2][2][2] is for {f16acc,f32acc}x{large,small_rows}x{unaligned, aligned}
|
|
vk_pipeline pipeline_flash_attn_f32_f16_D64[GGML_TYPE_COUNT][2][2][2];
|
|
vk_pipeline pipeline_flash_attn_f32_f16_D80[GGML_TYPE_COUNT][2][2][2];
|
|
vk_pipeline pipeline_flash_attn_f32_f16_D96[GGML_TYPE_COUNT][2][2][2];
|
|
vk_pipeline pipeline_flash_attn_f32_f16_D112[GGML_TYPE_COUNT][2][2][2];
|
|
vk_pipeline pipeline_flash_attn_f32_f16_D128[GGML_TYPE_COUNT][2][2][2];
|
|
vk_pipeline pipeline_flash_attn_f32_f16_D256[GGML_TYPE_COUNT][2][2][2];
|
|
|
|
std::unordered_map<std::string, vk_pipeline_ref> pipelines;
|
|
std::unordered_map<std::string, uint64_t> pipeline_descriptor_set_requirements;
|
|
|
|
std::vector<std::tuple<void*, size_t, vk_buffer>> pinned_memory;
|
|
|
|
vk::Fence fence;
|
|
vk_buffer sync_staging;
|
|
|
|
ggml_backend_buffer_type buffer_type;
|
|
|
|
#ifdef GGML_VULKAN_MEMORY_DEBUG
|
|
std::unique_ptr<vk_memory_logger> memory_logger;
|
|
#endif
|
|
#ifdef GGML_VULKAN_PERF
|
|
std::unique_ptr<vk_perf_logger> perf_logger;
|
|
#endif
|
|
|
|
~vk_device_struct() {
|
|
VK_LOG_DEBUG("destroy device " << name);
|
|
|
|
device.destroyFence(fence);
|
|
|
|
ggml_vk_destroy_buffer(sync_staging);
|
|
|
|
device.destroyCommandPool(compute_queue.pool);
|
|
if (!single_queue) {
|
|
device.destroyCommandPool(transfer_queue.pool);
|
|
}
|
|
|
|
for (auto& pipeline : pipelines) {
|
|
if (pipeline.second.expired()) {
|
|
continue;
|
|
}
|
|
|
|
vk_pipeline pl = pipeline.second.lock();
|
|
ggml_vk_destroy_pipeline(device, pl);
|
|
}
|
|
pipelines.clear();
|
|
|
|
device.destroy();
|
|
}
|
|
};
|
|
|
|
struct vk_buffer_struct {
|
|
vk::Buffer buffer = VK_NULL_HANDLE;
|
|
vk::DeviceMemory device_memory = VK_NULL_HANDLE;
|
|
vk::MemoryPropertyFlags memory_property_flags;
|
|
void * ptr;
|
|
size_t size = 0;
|
|
|
|
vk_device device;
|
|
|
|
~vk_buffer_struct() {
|
|
if (size == 0) {
|
|
return;
|
|
}
|
|
VK_LOG_DEBUG("~vk_buffer_struct(" << buffer << ", " << size << ")");
|
|
|
|
device->device.freeMemory(device_memory);
|
|
device->device.destroyBuffer(buffer);
|
|
}
|
|
};
|
|
|
|
struct vk_subbuffer {
|
|
vk_buffer buffer;
|
|
uint64_t offset;
|
|
uint64_t size;
|
|
|
|
operator vk::DescriptorBufferInfo() const {
|
|
return { buffer->buffer, offset, size };
|
|
}
|
|
};
|
|
|
|
struct vk_semaphore {
|
|
vk::Semaphore s;
|
|
uint64_t value;
|
|
};
|
|
|
|
struct vk_submission {
|
|
vk::CommandBuffer buffer;
|
|
std::vector<vk_semaphore> wait_semaphores;
|
|
std::vector<vk_semaphore> signal_semaphores;
|
|
};
|
|
|
|
typedef std::vector<vk_submission> vk_sequence;
|
|
|
|
struct vk_mat_mat_push_constants {
|
|
uint32_t M; uint32_t N; uint32_t K;
|
|
uint32_t stride_a; uint32_t stride_b; uint32_t stride_d;
|
|
uint32_t batch_stride_a; uint32_t batch_stride_b; uint32_t batch_stride_d;
|
|
uint32_t k_split;
|
|
uint32_t ne02; uint32_t ne12; uint32_t broadcast2; uint32_t broadcast3;
|
|
};
|
|
struct vk_mat_vec_push_constants {
|
|
uint32_t ncols; uint32_t stride_a; uint32_t stride_b; uint32_t stride_d;
|
|
uint32_t batch_stride_a; uint32_t batch_stride_b; uint32_t batch_stride_d;
|
|
uint32_t ne02; uint32_t ne12; uint32_t broadcast2; uint32_t broadcast3;
|
|
};
|
|
|
|
struct vk_mat_mat_id_push_constants {
|
|
uint32_t M; uint32_t N; uint32_t K;
|
|
uint32_t stride_a; uint32_t stride_b; uint32_t stride_d;
|
|
uint32_t batch_stride_a; uint32_t batch_stride_b; uint32_t batch_stride_d;
|
|
uint32_t nei0; uint32_t nei1; uint32_t nbi1; uint32_t ne11;
|
|
};
|
|
struct vk_mat_vec_id_push_constants {
|
|
uint32_t ncols; uint32_t stride_a; uint32_t stride_b; uint32_t stride_d;
|
|
uint32_t batch_stride_a; uint32_t batch_stride_b; uint32_t batch_stride_d;
|
|
uint32_t nei0; uint32_t ne11;
|
|
};
|
|
|
|
struct vk_flash_attn_push_constants {
|
|
uint32_t N;
|
|
uint32_t KV;
|
|
|
|
uint32_t ne1;
|
|
uint32_t ne2;
|
|
uint32_t ne3;
|
|
|
|
uint32_t neq2;
|
|
uint32_t neq3;
|
|
uint32_t nek2;
|
|
uint32_t nek3;
|
|
uint32_t nev2;
|
|
uint32_t nev3;
|
|
uint32_t nem1;
|
|
|
|
uint32_t nb02;
|
|
uint32_t nb03;
|
|
uint32_t nb12;
|
|
uint32_t nb13;
|
|
uint32_t nb22;
|
|
uint32_t nb23;
|
|
uint32_t nb31;
|
|
|
|
float scale;
|
|
float max_bias;
|
|
float logit_softcap;
|
|
|
|
uint32_t mask;
|
|
uint32_t n_head_log2;
|
|
float m0;
|
|
float m1;
|
|
};
|
|
|
|
struct vk_op_push_constants {
|
|
uint32_t KX;
|
|
uint32_t KY;
|
|
float param1;
|
|
float param2;
|
|
};
|
|
|
|
struct vk_op_unary_push_constants {
|
|
uint32_t ne;
|
|
uint32_t ne00; uint32_t ne01; uint32_t ne02; uint32_t ne03; uint32_t nb00; uint32_t nb01; uint32_t nb02; uint32_t nb03;
|
|
uint32_t ne10; uint32_t ne11; uint32_t ne12; uint32_t ne13; uint32_t nb10; uint32_t nb11; uint32_t nb12; uint32_t nb13;
|
|
uint32_t d_offset;
|
|
float param1; float param2;
|
|
uint32_t ne0_012mp; uint32_t ne0_012L;
|
|
uint32_t ne0_01mp; uint32_t ne0_01L;
|
|
uint32_t ne0_0mp; uint32_t ne0_0L;
|
|
uint32_t ne1_012mp; uint32_t ne1_012L;
|
|
uint32_t ne1_01mp; uint32_t ne1_01L;
|
|
uint32_t ne1_0mp; uint32_t ne1_0L;
|
|
};
|
|
static_assert(sizeof(vk_op_unary_push_constants) <= 128, "sizeof(vk_op_unary_push_constants) must be <= 128");
|
|
|
|
// See https://gmplib.org/~tege/divcnst-pldi94.pdf figure 4.1.
|
|
// Precompute mp (m' in the paper) and L such that division
|
|
// can be computed using a multiply (high 32b of 64b result)
|
|
// and a shift:
|
|
//
|
|
// n/d = (mulhi(n, mp) + n) >> L;
|
|
void init_fastdiv_values(uint32_t d, uint32_t &mp, uint32_t &L)
|
|
{
|
|
// compute L = ceil(log2(d));
|
|
L = 0;
|
|
while (L < 32 && (uint32_t{1} << L) < d) {
|
|
L++;
|
|
}
|
|
|
|
mp = (uint32_t)((uint64_t{1} << 32) * ((uint64_t{1} << L) - d) / d + 1);
|
|
}
|
|
|
|
template <typename T> void init_pushconst_fastdiv(T &p) {
|
|
static_assert(!std::is_const<T>::value, "unexpected type");
|
|
}
|
|
|
|
template <> void init_pushconst_fastdiv(vk_op_unary_push_constants &p) {
|
|
// Compute magic values to divide by these six numbers.
|
|
init_fastdiv_values(p.ne02*p.ne01*p.ne00, p.ne0_012mp, p.ne0_012L);
|
|
init_fastdiv_values(p.ne01*p.ne00, p.ne0_01mp, p.ne0_01L);
|
|
init_fastdiv_values(p.ne00, p.ne0_0mp, p.ne0_0L);
|
|
init_fastdiv_values(p.ne12*p.ne11*p.ne10, p.ne1_012mp, p.ne1_012L);
|
|
init_fastdiv_values(p.ne11*p.ne10, p.ne1_01mp, p.ne1_01L);
|
|
init_fastdiv_values(p.ne10, p.ne1_0mp, p.ne1_0L);
|
|
}
|
|
|
|
struct vk_op_binary_push_constants {
|
|
uint32_t ne;
|
|
uint32_t ne00; uint32_t ne01; uint32_t ne02; uint32_t ne03; uint32_t nb00; uint32_t nb01; uint32_t nb02; uint32_t nb03;
|
|
uint32_t ne10; uint32_t ne11; uint32_t ne12; uint32_t ne13; uint32_t nb10; uint32_t nb11; uint32_t nb12; uint32_t nb13;
|
|
uint32_t ne20; uint32_t ne21; uint32_t ne22; uint32_t ne23; uint32_t nb20; uint32_t nb21; uint32_t nb22; uint32_t nb23;
|
|
uint32_t d_offset;
|
|
float param1; float param2; int32_t param3;
|
|
};
|
|
|
|
struct vk_op_diag_mask_push_constants {
|
|
uint32_t ncols;
|
|
uint32_t rows_per_channel;
|
|
int32_t n_past;
|
|
};
|
|
|
|
struct vk_op_rope_push_constants {
|
|
uint32_t ncols;
|
|
uint32_t n_dims;
|
|
float freq_scale;
|
|
uint32_t p_delta_rows;
|
|
float freq_base;
|
|
float ext_factor;
|
|
float attn_factor;
|
|
float corr_dims[2];
|
|
float theta_scale;
|
|
uint32_t has_ff;
|
|
};
|
|
|
|
struct vk_op_soft_max_push_constants {
|
|
uint32_t KX;
|
|
uint32_t KY;
|
|
float scale;
|
|
float max_bias;
|
|
float m0;
|
|
float m1;
|
|
uint32_t n_head_log2;
|
|
uint32_t nrows_x;
|
|
};
|
|
|
|
struct vk_op_argsort_push_constants {
|
|
uint32_t ncols;
|
|
uint32_t ncols_pad;
|
|
int32_t order;
|
|
};
|
|
|
|
struct vk_op_im2col_push_constants {
|
|
uint32_t batch_offset; uint32_t offset_delta;
|
|
uint32_t IC;
|
|
uint32_t IW; uint32_t IH;
|
|
uint32_t OW; uint32_t OH;
|
|
uint32_t KW; uint32_t KH;
|
|
uint32_t pelements;
|
|
uint32_t CHW;
|
|
int32_t s0; int32_t s1;
|
|
int32_t p0; int32_t p1;
|
|
int32_t d0; int32_t d1;
|
|
};
|
|
|
|
struct vk_op_timestep_embedding_push_constants {
|
|
uint32_t nb1;
|
|
uint32_t dim;
|
|
uint32_t max_period;
|
|
};
|
|
|
|
struct vk_op_pool2d_push_constants {
|
|
uint32_t IW; uint32_t IH;
|
|
uint32_t OW; uint32_t OH;
|
|
uint32_t OC;
|
|
uint32_t pelements;
|
|
uint32_t op;
|
|
int32_t k0; int32_t k1;
|
|
int32_t s0; int32_t s1;
|
|
int32_t p0; int32_t p1;
|
|
};
|
|
|
|
// Allow pre-recording command buffers
|
|
struct vk_staging_memcpy {
|
|
vk_staging_memcpy(void * _dst, const void * _src, size_t _n) : dst(_dst), src(_src), n(_n) {}
|
|
|
|
void * dst;
|
|
const void * src;
|
|
size_t n;
|
|
};
|
|
|
|
struct vk_op_upscale_push_constants {
|
|
uint32_t ne; uint32_t d_offset;
|
|
uint32_t nb00; uint32_t nb01; uint32_t nb02; uint32_t nb03;
|
|
uint32_t ne10; uint32_t ne11; uint32_t ne12; uint32_t ne13;
|
|
float sf0; float sf1; float sf2; float sf3;
|
|
};
|
|
|
|
struct vk_context_struct {
|
|
vk_submission * s;
|
|
std::vector<vk_sequence> seqs;
|
|
|
|
int exit_tensor_idx;
|
|
|
|
std::vector<vk_staging_memcpy> in_memcpys;
|
|
std::vector<vk_staging_memcpy> out_memcpys;
|
|
|
|
vk_queue * q;
|
|
};
|
|
typedef std::shared_ptr<vk_context_struct> vk_context;
|
|
typedef std::weak_ptr<vk_context_struct> vk_context_ref;
|
|
|
|
struct ggml_vk_garbage_collector {
|
|
std::vector<vk_semaphore> tl_semaphores;
|
|
std::vector<vk_semaphore> semaphores;
|
|
std::vector<vk::Event> events;
|
|
std::vector<vk_buffer> temp_buffers;
|
|
std::vector<vk_context> contexts;
|
|
};
|
|
|
|
#if defined(GGML_VULKAN_MEMORY_DEBUG) || defined(GGML_VULKAN_DEBUG)
|
|
#define VK_LOG_MEMORY(msg) std::cerr << "ggml_vulkan memory: " << msg << std::endl
|
|
|
|
static std::string format_size(size_t size) {
|
|
const size_t kib = 1024;
|
|
const size_t mib = kib * 1024;
|
|
const size_t gib = mib * 1024;
|
|
|
|
std::ostringstream oss;
|
|
oss << std::fixed << std::setprecision(2);
|
|
|
|
if (size >= gib) {
|
|
oss << static_cast<double>(size) / gib << " GiB";
|
|
} else if (size >= mib) {
|
|
oss << static_cast<double>(size) / mib << " MiB";
|
|
} else if (size >= kib) {
|
|
oss << static_cast<double>(size) / kib << " KiB";
|
|
} else {
|
|
oss << size << " B";
|
|
}
|
|
|
|
return oss.str();
|
|
}
|
|
|
|
static std::mutex log_mutex;
|
|
|
|
class vk_memory_logger {
|
|
public:
|
|
vk_memory_logger(): total_device(0), total_host(0) {}
|
|
void log_allocation(vk_buffer_ref buf_ref, size_t size);
|
|
void log_deallocation(vk_buffer_ref buf_ref);
|
|
|
|
private:
|
|
std::map<vk::Buffer, size_t> allocations; // Track allocations
|
|
size_t total_device;
|
|
size_t total_host;
|
|
};
|
|
#else
|
|
#define VK_LOG_MEMORY(msg) ((void) 0)
|
|
#endif // GGML_VULKAN_MEMORY_DEBUG
|
|
|
|
#if defined(GGML_VULKAN_PERF)
|
|
|
|
class vk_perf_logger {
|
|
public:
|
|
void print_timings() {
|
|
std::cerr << "----------------\nVulkan Timings:" << std::endl;
|
|
for (const auto& t : timings) {
|
|
uint64_t total = 0;
|
|
for (const auto& time : t.second) {
|
|
total += time;
|
|
}
|
|
std::cerr << t.first << ": " << t.second.size() << " x " << (total / t.second.size() / 1000.0) << " ms" << std::endl;
|
|
}
|
|
|
|
timings.clear();
|
|
}
|
|
|
|
void log_timing(const ggml_tensor * node, uint64_t time) {
|
|
if (node->op == GGML_OP_UNARY) {
|
|
timings[ggml_unary_op_name(ggml_get_unary_op(node))].push_back(time);
|
|
return;
|
|
}
|
|
if (node->op == GGML_OP_MUL_MAT || node->op == GGML_OP_MUL_MAT_ID) {
|
|
const uint64_t m = node->src[0]->ne[1];
|
|
const uint64_t n = node->src[1]->ne[1];
|
|
const uint64_t k = node->src[1]->ne[0];
|
|
std::string name = ggml_op_name(node->op);
|
|
if (n == 1) {
|
|
name += "_VEC m=" + std::to_string(m) + " k=" + std::to_string(k);
|
|
} else {
|
|
name += " m=" + std::to_string(m) + " n=" + std::to_string(n) + " k=" + std::to_string(k);
|
|
}
|
|
timings[name].push_back(time);
|
|
return;
|
|
}
|
|
timings[ggml_op_name(node->op)].push_back(time);
|
|
}
|
|
private:
|
|
std::map<std::string, std::vector<uint64_t>> timings;
|
|
};
|
|
#endif // GGML_VULKAN_PERF
|
|
|
|
struct ggml_backend_vk_context {
|
|
std::string name;
|
|
|
|
vk_device device;
|
|
|
|
size_t semaphore_idx, event_idx;
|
|
ggml_vk_garbage_collector gc;
|
|
size_t prealloc_size_x, prealloc_size_y, prealloc_size_split_k;
|
|
vk_buffer prealloc_x, prealloc_y, prealloc_split_k;
|
|
vk::Fence fence;
|
|
|
|
vk_buffer buffer_pool[MAX_VK_BUFFERS];
|
|
|
|
vk_context_ref compute_ctx;
|
|
vk_context_ref transfer_ctx;
|
|
|
|
std::vector<vk_context_ref> tensor_ctxs;
|
|
};
|
|
|
|
static void * const vk_ptr_base = (void *)(uintptr_t) 0x1000; // NOLINT
|
|
|
|
static uint64_t vk_tensor_offset(const ggml_tensor * tensor) {
|
|
if (tensor->view_src) {
|
|
return (uint8_t *) tensor->view_src->data - (uint8_t *) vk_ptr_base;
|
|
}
|
|
return (uint8_t *) tensor->data - (uint8_t *) vk_ptr_base;
|
|
}
|
|
|
|
struct ggml_backend_vk_buffer_context {
|
|
vk_device_ref device;
|
|
vk_buffer dev_buffer;
|
|
std::string name;
|
|
|
|
ggml_backend_vk_buffer_context(vk_device_ref device, vk_buffer&& dev_buffer, std::string& name) :
|
|
device(device),
|
|
dev_buffer(dev_buffer),
|
|
name(name) {
|
|
}
|
|
|
|
~ggml_backend_vk_buffer_context() {
|
|
ggml_vk_destroy_buffer(dev_buffer);
|
|
}
|
|
};
|
|
|
|
#ifdef GGML_VULKAN_MEMORY_DEBUG
|
|
void vk_memory_logger::log_allocation(vk_buffer_ref buf_ref, size_t size) {
|
|
std::lock_guard<std::mutex> guard(log_mutex);
|
|
vk_buffer buf = buf_ref.lock();
|
|
const bool device = bool(buf->memory_property_flags & vk::MemoryPropertyFlagBits::eDeviceLocal);
|
|
const std::string type = device ? "device" : "host";
|
|
allocations[buf->buffer] = size;
|
|
total_device += device ? size : 0;
|
|
total_host += device ? 0 : size;
|
|
VK_LOG_MEMORY(buf->device->name << ": +" << format_size(size) << " " << type << " at " << buf->buffer << ". Total device: " << format_size(total_device) << ", total host: " << format_size(total_host));
|
|
}
|
|
|
|
void vk_memory_logger::log_deallocation(vk_buffer_ref buf_ref) {
|
|
if (buf_ref.expired() || buf_ref.lock()->size == 0) {
|
|
return;
|
|
}
|
|
|
|
std::lock_guard<std::mutex> guard(log_mutex);
|
|
vk_buffer buf = buf_ref.lock();
|
|
const bool device = bool(buf->memory_property_flags & vk::MemoryPropertyFlagBits::eDeviceLocal);
|
|
std::string type = device ? "device" : "host";
|
|
auto it = allocations.find(buf->buffer);
|
|
total_device -= device ? it->second : 0;
|
|
total_host -= device ? 0 : it->second;
|
|
if (it != allocations.end()) {
|
|
VK_LOG_MEMORY(buf->device->name << ": -" << format_size(it->second) << " " << type << " at " << buf->buffer << ". Total device: " << format_size(total_device) << ", total host: " << format_size(total_host));
|
|
allocations.erase(it);
|
|
} else {
|
|
VK_LOG_MEMORY("ERROR " << buf->device->name << ": Attempted to deallocate unknown " << type << " memory at " << buf->buffer);
|
|
}
|
|
}
|
|
#endif // GGML_VULKAN_MEMORY_DEBUG
|
|
|
|
struct vk_instance_t {
|
|
vk::Instance instance;
|
|
|
|
std::vector<size_t> device_indices;
|
|
vk_device devices[GGML_VK_MAX_DEVICES];
|
|
};
|
|
|
|
static bool vk_instance_initialized = false;
|
|
static vk_instance_t vk_instance;
|
|
|
|
#ifdef GGML_VULKAN_CHECK_RESULTS
|
|
static size_t vk_skip_checks;
|
|
static size_t vk_output_tensor;
|
|
|
|
static void ggml_vk_print_tensor(const ggml_tensor * tensor, const char * name);
|
|
static void ggml_vk_check_results_0(ggml_tensor * tensor);
|
|
static void ggml_vk_check_results_1(ggml_tensor * tensor);
|
|
#endif
|
|
|
|
typedef void (*ggml_vk_func_t)(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
|
|
|
|
static void ggml_backend_vk_free(ggml_backend_t backend);
|
|
|
|
// variables to track number of compiles in progress
|
|
static uint32_t compile_count = 0;
|
|
static std::mutex compile_count_mutex;
|
|
static std::condition_variable compile_count_cond;
|
|
|
|
static void ggml_vk_create_pipeline_func(vk_device& device, vk_pipeline& pipeline, const std::string name, size_t spv_size, const void* spv_data, const std::string entrypoint, uint32_t parameter_count, uint32_t push_constant_size, std::array<uint32_t, 3> wg_denoms, std::vector<uint32_t> specialization_constants, uint32_t align, bool disable_robustness) {
|
|
VK_LOG_DEBUG("ggml_vk_create_pipeline(" << device->name << ", " << name << ", " << entrypoint << ", " << parameter_count << ", " << push_constant_size << ", (" << wg_denoms[0] << "," << wg_denoms[1] << "," << wg_denoms[2] << "), specialization_constants, " << align << ")");
|
|
GGML_ASSERT(parameter_count > 0);
|
|
GGML_ASSERT(wg_denoms[0] > 0 && wg_denoms[1] > 0 && wg_denoms[2] > 0); // NOLINT
|
|
|
|
pipeline = std::make_shared<vk_pipeline_struct>();
|
|
pipeline->name = name;
|
|
pipeline->parameter_count = parameter_count;
|
|
pipeline->push_constant_size = push_constant_size;
|
|
pipeline->wg_denoms = wg_denoms;
|
|
pipeline->align = align;
|
|
|
|
vk::ShaderModuleCreateInfo shader_module_create_info({}, spv_size, reinterpret_cast<const uint32_t *>(spv_data));
|
|
pipeline->shader_module = device->device.createShaderModule(shader_module_create_info);
|
|
|
|
std::vector<vk::DescriptorSetLayoutBinding> dsl_binding;
|
|
std::vector<vk::DescriptorBindingFlags> dsl_binding_flags;
|
|
for (uint32_t i = 0; i < parameter_count; i++) {
|
|
dsl_binding.push_back({i, vk::DescriptorType::eStorageBuffer, 1, vk::ShaderStageFlagBits::eCompute});
|
|
dsl_binding_flags.push_back({});
|
|
}
|
|
|
|
vk::DescriptorSetLayoutBindingFlagsCreateInfo dslbfci = { dsl_binding_flags };
|
|
|
|
vk::PushConstantRange pcr(
|
|
vk::ShaderStageFlagBits::eCompute,
|
|
0,
|
|
pipeline->push_constant_size
|
|
);
|
|
|
|
vk::DescriptorSetLayoutCreateInfo descriptor_set_layout_create_info(
|
|
{},
|
|
dsl_binding);
|
|
descriptor_set_layout_create_info.setPNext(&dslbfci);
|
|
pipeline->dsl = device->device.createDescriptorSetLayout(descriptor_set_layout_create_info);
|
|
|
|
vk::DescriptorPoolSize descriptor_pool_size(vk::DescriptorType::eStorageBuffer, pipeline->parameter_count * VK_DEVICE_DESCRIPTOR_POOL_SIZE);
|
|
vk::DescriptorPoolCreateInfo descriptor_pool_create_info({}, VK_DEVICE_DESCRIPTOR_POOL_SIZE, descriptor_pool_size);
|
|
pipeline->descriptor_pools.push_back(device->device.createDescriptorPool(descriptor_pool_create_info));
|
|
|
|
pipeline->descriptor_set_idx = 0;
|
|
|
|
vk::PipelineLayoutCreateInfo pipeline_layout_create_info(vk::PipelineLayoutCreateFlags(), pipeline->dsl, pcr);
|
|
pipeline->layout = device->device.createPipelineLayout(pipeline_layout_create_info);
|
|
|
|
std::vector<vk::SpecializationMapEntry> specialization_entries(specialization_constants.size());
|
|
|
|
for (size_t i = 0; i < specialization_constants.size(); i++) {
|
|
specialization_entries[i].constantID = i;
|
|
specialization_entries[i].offset = i * sizeof(uint32_t);
|
|
specialization_entries[i].size = sizeof(uint32_t);
|
|
}
|
|
|
|
vk::SpecializationInfo specialization_info(
|
|
specialization_entries.size(),
|
|
specialization_entries.data(),
|
|
specialization_constants.size() * sizeof(uint32_t),
|
|
specialization_constants.data()
|
|
);
|
|
|
|
vk::PipelineShaderStageCreateInfo pipeline_shader_create_info(
|
|
vk::PipelineShaderStageCreateFlags(),
|
|
vk::ShaderStageFlagBits::eCompute,
|
|
pipeline->shader_module,
|
|
entrypoint.c_str(),
|
|
&specialization_info);
|
|
vk::ComputePipelineCreateInfo compute_pipeline_create_info(
|
|
vk::PipelineCreateFlags(),
|
|
pipeline_shader_create_info,
|
|
pipeline->layout);
|
|
|
|
vk::PipelineRobustnessCreateInfoEXT rci;
|
|
|
|
if (device->pipeline_robustness && disable_robustness) {
|
|
rci.storageBuffers = vk::PipelineRobustnessBufferBehaviorEXT::eDisabled;
|
|
rci.uniformBuffers = vk::PipelineRobustnessBufferBehaviorEXT::eDisabled;
|
|
compute_pipeline_create_info.setPNext(&rci);
|
|
}
|
|
|
|
pipeline->pipeline = device->device.createComputePipeline(VK_NULL_HANDLE, compute_pipeline_create_info).value;
|
|
|
|
{
|
|
std::lock_guard<std::mutex> guard(device->mutex);
|
|
device->pipelines.insert({ pipeline->name, pipeline });
|
|
}
|
|
|
|
{
|
|
std::lock_guard<std::mutex> guard(compile_count_mutex);
|
|
assert(compile_count > 0);
|
|
compile_count--;
|
|
|
|
// "Progress bar" for shader compiles
|
|
static uint32_t total_compile_count = 0;
|
|
if ((total_compile_count++ % 10) == 0) {
|
|
std::cerr << ".";
|
|
}
|
|
}
|
|
compile_count_cond.notify_all();
|
|
}
|
|
|
|
static void ggml_vk_destroy_pipeline(vk::Device& device, vk_pipeline& pipeline) {
|
|
VK_LOG_DEBUG("ggml_pipeline_destroy_pipeline(" << pipeline->name << ")");
|
|
for (auto& pool : pipeline->descriptor_pools) {
|
|
device.destroyDescriptorPool(pool);
|
|
}
|
|
pipeline->descriptor_pools.clear();
|
|
pipeline->descriptor_sets.clear();
|
|
pipeline->descriptor_set_idx = 0;
|
|
|
|
device.destroyDescriptorSetLayout(pipeline->dsl);
|
|
|
|
device.destroyPipelineLayout(pipeline->layout);
|
|
|
|
device.destroyShaderModule(pipeline->shader_module);
|
|
|
|
device.destroyPipeline(pipeline->pipeline);
|
|
}
|
|
|
|
static void ggml_pipeline_request_descriptor_sets(vk_device& device, vk_pipeline& pipeline, uint32_t n) {
|
|
VK_LOG_DEBUG("ggml_pipeline_request_descriptor_sets(" << pipeline->name << ", " << n << ")");
|
|
device->pipeline_descriptor_set_requirements[pipeline->name] += n;
|
|
}
|
|
|
|
static void ggml_pipeline_allocate_descriptor_sets(vk_device& device) {
|
|
std::lock_guard<std::mutex> guard(device->mutex);
|
|
|
|
for (auto& pair : device->pipeline_descriptor_set_requirements) {
|
|
vk_pipeline pipeline = device->pipelines.at(pair.first).lock();
|
|
const uint64_t n = pair.second;
|
|
|
|
VK_LOG_DEBUG("ggml_pipeline_allocate_descriptor_sets(" << pipeline->name << ", " << n << ")");
|
|
|
|
if (pipeline->descriptor_sets.size() >= pipeline->descriptor_set_idx + n) {
|
|
// Enough descriptors are available
|
|
continue;
|
|
}
|
|
|
|
uint32_t to_alloc = pipeline->descriptor_set_idx + n - pipeline->descriptor_sets.size();
|
|
uint32_t pool_remaining = VK_DEVICE_DESCRIPTOR_POOL_SIZE - pipeline->descriptor_sets.size() % VK_DEVICE_DESCRIPTOR_POOL_SIZE;
|
|
uint32_t pool_idx = pipeline->descriptor_sets.size() / VK_DEVICE_DESCRIPTOR_POOL_SIZE;
|
|
|
|
while (to_alloc > 0) {
|
|
const uint32_t alloc_count = std::min(pool_remaining, to_alloc);
|
|
to_alloc -= alloc_count;
|
|
pool_remaining = VK_DEVICE_DESCRIPTOR_POOL_SIZE;
|
|
|
|
if (pool_idx >= pipeline->descriptor_pools.size()) {
|
|
vk::DescriptorPoolSize descriptor_pool_size(vk::DescriptorType::eStorageBuffer, pipeline->parameter_count * VK_DEVICE_DESCRIPTOR_POOL_SIZE);
|
|
vk::DescriptorPoolCreateInfo descriptor_pool_create_info({}, VK_DEVICE_DESCRIPTOR_POOL_SIZE, descriptor_pool_size);
|
|
pipeline->descriptor_pools.push_back(device->device.createDescriptorPool(descriptor_pool_create_info));
|
|
}
|
|
|
|
std::vector<vk::DescriptorSetLayout> layouts(alloc_count);
|
|
for (uint32_t i = 0; i < alloc_count; i++) {
|
|
layouts[i] = pipeline->dsl;
|
|
}
|
|
vk::DescriptorSetAllocateInfo descriptor_set_alloc_info(pipeline->descriptor_pools[pool_idx], alloc_count, layouts.data());
|
|
std::vector<vk::DescriptorSet> sets = device->device.allocateDescriptorSets(descriptor_set_alloc_info);
|
|
pipeline->descriptor_sets.insert(pipeline->descriptor_sets.end(), sets.begin(), sets.end());
|
|
|
|
pool_idx++;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ggml_pipeline_cleanup(vk_pipeline& pipeline) {
|
|
VK_LOG_DEBUG("ggml_pipeline_cleanup(" << pipeline->name << ")");
|
|
pipeline->descriptor_set_idx = 0;
|
|
}
|
|
|
|
static vk::CommandBuffer ggml_vk_create_cmd_buffer(vk_device& device, vk_queue& q) {
|
|
VK_LOG_DEBUG("ggml_vk_create_cmd_buffer()");
|
|
std::lock_guard<std::mutex> guard(device->mutex);
|
|
|
|
if (q.cmd_buffers.size() > q.cmd_buffer_idx) {
|
|
// Reuse command buffer
|
|
return q.cmd_buffers[q.cmd_buffer_idx++];
|
|
}
|
|
|
|
vk::CommandBufferAllocateInfo command_buffer_alloc_info(
|
|
q.pool,
|
|
vk::CommandBufferLevel::ePrimary,
|
|
1);
|
|
const std::vector<vk::CommandBuffer> cmd_buffers = device->device.allocateCommandBuffers(command_buffer_alloc_info);
|
|
auto buf = cmd_buffers.front();
|
|
|
|
q.cmd_buffers.push_back(buf);
|
|
q.cmd_buffer_idx++;
|
|
|
|
return buf;
|
|
}
|
|
|
|
static vk_submission ggml_vk_create_submission(vk_device& device, vk_queue& q, std::vector<vk_semaphore> wait_semaphores, std::vector<vk_semaphore> signal_semaphores) {
|
|
VK_LOG_DEBUG("ggml_vk_create_submission()");
|
|
vk_submission s;
|
|
s.buffer = ggml_vk_create_cmd_buffer(device, q);
|
|
s.wait_semaphores = std::move(wait_semaphores);
|
|
s.signal_semaphores = std::move(signal_semaphores);
|
|
return s;
|
|
}
|
|
|
|
static void ggml_vk_submit(vk_context& ctx, vk::Fence fence) {
|
|
if (ctx->seqs.empty()) {
|
|
if (fence) {
|
|
ctx->q->queue.submit({}, fence);
|
|
}
|
|
return;
|
|
}
|
|
VK_LOG_DEBUG("ggml_vk_submit(" << ctx << ", " << fence << ")");
|
|
|
|
std::vector<std::vector<uint64_t>> tl_wait_vals;
|
|
std::vector<std::vector<uint64_t>> tl_signal_vals;
|
|
std::vector<std::vector<vk::Semaphore>> tl_wait_semaphores;
|
|
std::vector<std::vector<vk::Semaphore>> tl_signal_semaphores;
|
|
std::vector<vk::TimelineSemaphoreSubmitInfo> tl_submit_infos;
|
|
std::vector<vk::SubmitInfo> submit_infos;
|
|
int idx = -1;
|
|
std::vector<std::vector<vk::PipelineStageFlags>> stage_flags;
|
|
|
|
size_t reserve = 0;
|
|
|
|
for (const auto& sequence : ctx->seqs) {
|
|
reserve += sequence.size();
|
|
}
|
|
|
|
// Pre-reserve vectors to prevent reallocation, which invalidates pointers
|
|
tl_wait_semaphores.reserve(reserve);
|
|
tl_wait_vals.reserve(reserve);
|
|
tl_signal_semaphores.reserve(reserve);
|
|
tl_signal_vals.reserve(reserve);
|
|
tl_submit_infos.reserve(reserve);
|
|
submit_infos.reserve(reserve);
|
|
stage_flags.reserve(reserve);
|
|
|
|
for (const auto& sequence : ctx->seqs) {
|
|
for (const auto& submission : sequence) {
|
|
stage_flags.push_back({});
|
|
idx++;
|
|
tl_wait_vals.push_back({});
|
|
tl_wait_semaphores.push_back({});
|
|
tl_signal_vals.push_back({});
|
|
tl_signal_semaphores.push_back({});
|
|
for (size_t i = 0; i < submission.wait_semaphores.size(); i++) {
|
|
stage_flags[idx].push_back(ctx->q->stage_flags);
|
|
tl_wait_vals[idx].push_back(submission.wait_semaphores[i].value);
|
|
tl_wait_semaphores[idx].push_back(submission.wait_semaphores[i].s);
|
|
}
|
|
for (size_t i = 0; i < submission.signal_semaphores.size(); i++) {
|
|
tl_signal_vals[idx].push_back(submission.signal_semaphores[i].value);
|
|
tl_signal_semaphores[idx].push_back(submission.signal_semaphores[i].s);
|
|
}
|
|
tl_submit_infos.push_back({
|
|
(uint32_t) submission.wait_semaphores.size(),
|
|
tl_wait_vals[idx].data(),
|
|
(uint32_t) submission.signal_semaphores.size(),
|
|
tl_signal_vals[idx].data(),
|
|
});
|
|
tl_submit_infos[idx].sType = vk::StructureType::eTimelineSemaphoreSubmitInfo;
|
|
tl_submit_infos[idx].pNext = nullptr;
|
|
vk::SubmitInfo si{
|
|
(uint32_t) submission.wait_semaphores.size(),
|
|
tl_wait_semaphores[idx].data(),
|
|
stage_flags[idx].data(),
|
|
1,
|
|
&submission.buffer,
|
|
(uint32_t) submission.signal_semaphores.size(),
|
|
tl_signal_semaphores[idx].data(),
|
|
};
|
|
si.setPNext(&tl_submit_infos[idx]);
|
|
submit_infos.push_back(si);
|
|
}
|
|
}
|
|
|
|
ctx->q->queue.submit(submit_infos, fence);
|
|
|
|
ctx->seqs.clear();
|
|
}
|
|
|
|
static uint32_t ggml_vk_find_queue_family_index(std::vector<vk::QueueFamilyProperties>& queue_family_props, const vk::QueueFlags& required, const vk::QueueFlags& avoid, int32_t compute_index, uint32_t min_num_queues) {
|
|
VK_LOG_DEBUG("ggml_vk_find_queue_family_index()");
|
|
const uint32_t qfsize = queue_family_props.size();
|
|
|
|
// Try with avoid preferences first
|
|
for (uint32_t i = 0; i < qfsize; i++) {
|
|
if (queue_family_props[i].queueCount >= min_num_queues && (compute_index < 0 || i != (uint32_t) compute_index) && queue_family_props[i].queueFlags & required && !(queue_family_props[i].queueFlags & avoid)) {
|
|
return i;
|
|
}
|
|
}
|
|
|
|
// Fall back to only required
|
|
for (size_t i = 0; i < qfsize; i++) {
|
|
if (queue_family_props[i].queueCount >= min_num_queues && (compute_index < 0 || i != (uint32_t) compute_index) && queue_family_props[i].queueFlags & required) {
|
|
return i;
|
|
}
|
|
}
|
|
|
|
// Fall back to reusing compute queue
|
|
for (size_t i = 0; i < qfsize; i++) {
|
|
if (queue_family_props[i].queueCount >= min_num_queues && queue_family_props[i].queueFlags & required) {
|
|
return i;
|
|
}
|
|
}
|
|
|
|
// Fall back to ignoring min_num_queries
|
|
for (size_t i = 0; i < qfsize; i++) {
|
|
if (queue_family_props[i].queueFlags & required) {
|
|
return i;
|
|
}
|
|
}
|
|
|
|
// All commands that are allowed on a queue that supports transfer operations are also allowed on a queue that supports either graphics or compute operations.
|
|
// Thus, if the capabilities of a queue family include VK_QUEUE_GRAPHICS_BIT or VK_QUEUE_COMPUTE_BIT, then reporting the VK_QUEUE_TRANSFER_BIT capability separately for that queue family is optional.
|
|
if (compute_index >= 0) {
|
|
return compute_index;
|
|
}
|
|
|
|
std::cerr << "ggml_vulkan: No suitable queue family index found." << std::endl;
|
|
|
|
for(auto &q_family : queue_family_props) {
|
|
std::cerr << "Queue number: " + std::to_string(q_family.queueCount) << " flags: " + to_string(q_family.queueFlags) << std::endl;
|
|
}
|
|
abort();
|
|
}
|
|
|
|
static void ggml_vk_create_queue(vk_device& device, vk_queue& q, uint32_t queue_family_index, uint32_t queue_index, vk::PipelineStageFlags&& stage_flags, bool transfer_only) {
|
|
VK_LOG_DEBUG("ggml_vk_create_queue()");
|
|
std::lock_guard<std::mutex> guard(device->mutex);
|
|
|
|
q.queue_family_index = queue_family_index;
|
|
q.transfer_only = transfer_only;
|
|
|
|
vk::CommandPoolCreateInfo command_pool_create_info_compute(vk::CommandPoolCreateFlags(VK_COMMAND_POOL_CREATE_TRANSIENT_BIT), queue_family_index);
|
|
q.pool = device->device.createCommandPool(command_pool_create_info_compute);
|
|
|
|
q.cmd_buffer_idx = 0;
|
|
|
|
q.queue = device->device.getQueue(queue_family_index, queue_index);
|
|
|
|
q.stage_flags = stage_flags;
|
|
}
|
|
|
|
static vk_context ggml_vk_create_context(ggml_backend_vk_context * ctx, vk_queue& q) {
|
|
vk_context result = std::make_shared<vk_context_struct>();
|
|
VK_LOG_DEBUG("ggml_vk_create_context(" << result << ")");
|
|
ctx->gc.contexts.emplace_back(result);
|
|
result->q = &q;
|
|
return result;
|
|
}
|
|
|
|
static vk_context ggml_vk_create_temporary_context(vk_queue& q) {
|
|
vk_context result = std::make_shared<vk_context_struct>();
|
|
VK_LOG_DEBUG("ggml_vk_create_temporary_context(" << result << ")");
|
|
result->q = &q;
|
|
return result;
|
|
}
|
|
|
|
static vk_semaphore * ggml_vk_create_binary_semaphore(ggml_backend_vk_context * ctx) {
|
|
VK_LOG_DEBUG("ggml_vk_create_timeline_semaphore()");
|
|
vk::SemaphoreTypeCreateInfo tci{ vk::SemaphoreType::eBinary, 0 };
|
|
vk::SemaphoreCreateInfo ci{};
|
|
ci.setPNext(&tci);
|
|
vk::Semaphore semaphore = ctx->device->device.createSemaphore(ci);
|
|
ctx->gc.semaphores.push_back({ semaphore, 0 });
|
|
return &ctx->gc.semaphores[ctx->gc.semaphores.size() - 1];
|
|
}
|
|
|
|
static vk_semaphore * ggml_vk_create_timeline_semaphore(ggml_backend_vk_context * ctx) {
|
|
VK_LOG_DEBUG("ggml_vk_create_timeline_semaphore()");
|
|
if (ctx->semaphore_idx >= ctx->gc.tl_semaphores.size()) {
|
|
vk::SemaphoreTypeCreateInfo tci{ vk::SemaphoreType::eTimeline, 0 };
|
|
vk::SemaphoreCreateInfo ci{};
|
|
ci.setPNext(&tci);
|
|
vk::Semaphore semaphore = ctx->device->device.createSemaphore(ci);
|
|
ctx->gc.tl_semaphores.push_back({ semaphore, 0 });
|
|
}
|
|
return &ctx->gc.tl_semaphores[ctx->semaphore_idx++];
|
|
}
|
|
|
|
static vk::Event ggml_vk_create_event(ggml_backend_vk_context * ctx) {
|
|
if (ctx->event_idx >= ctx->gc.events.size()) {
|
|
ctx->gc.events.push_back(ctx->device->device.createEvent({}));
|
|
}
|
|
return ctx->gc.events[ctx->event_idx++];
|
|
}
|
|
|
|
static void ggml_vk_queue_cleanup(vk_device& device, vk_queue& q) {
|
|
VK_LOG_DEBUG("ggml_vk_queue_cleanup()");
|
|
std::lock_guard<std::mutex> guard(device->mutex);
|
|
|
|
// Requires command buffers to be done
|
|
device->device.resetCommandPool(q.pool);
|
|
q.cmd_buffer_idx = 0;
|
|
}
|
|
|
|
static uint32_t find_properties(const vk::PhysicalDeviceMemoryProperties* mem_props, vk::MemoryRequirements* mem_req, vk::MemoryPropertyFlags flags) {
|
|
for (uint32_t i = 0; i < mem_props->memoryTypeCount; ++i) {
|
|
vk::MemoryType memory_type = mem_props->memoryTypes[i];
|
|
if ((mem_req->memoryTypeBits & ((uint64_t)1 << i)) &&
|
|
(flags & memory_type.propertyFlags) == flags &&
|
|
mem_props->memoryHeaps[memory_type.heapIndex].size >= mem_req->size) {
|
|
return static_cast<int32_t>(i);
|
|
}
|
|
}
|
|
return UINT32_MAX;
|
|
}
|
|
|
|
static vk_buffer ggml_vk_create_buffer(vk_device& device, size_t size, vk::MemoryPropertyFlags req_flags, vk::MemoryPropertyFlags fallback_flags = vk::MemoryPropertyFlags(0)) {
|
|
VK_LOG_DEBUG("ggml_vk_create_buffer(" << device->name << ", " << size << ", " << to_string(req_flags) << ", " << to_string(fallback_flags) << ")");
|
|
if (size > device->max_memory_allocation_size) {
|
|
throw vk::OutOfDeviceMemoryError("Requested buffer size exceeds device memory allocation limit");
|
|
}
|
|
|
|
std::lock_guard<std::mutex> guard(device->mutex);
|
|
|
|
vk_buffer buf = std::make_shared<vk_buffer_struct>();
|
|
|
|
if (size == 0) {
|
|
buf->size = 0;
|
|
return buf;
|
|
}
|
|
|
|
vk::BufferCreateInfo buffer_create_info{
|
|
vk::BufferCreateFlags(),
|
|
size,
|
|
vk::BufferUsageFlagBits::eStorageBuffer | vk::BufferUsageFlagBits::eTransferSrc | vk::BufferUsageFlagBits::eTransferDst,
|
|
vk::SharingMode::eExclusive,
|
|
0,
|
|
nullptr,
|
|
};
|
|
|
|
buf->buffer = device->device.createBuffer(buffer_create_info);
|
|
|
|
vk::MemoryRequirements mem_req = device->device.getBufferMemoryRequirements(buf->buffer);
|
|
|
|
vk::PhysicalDeviceMemoryProperties mem_props = device->physical_device.getMemoryProperties();
|
|
|
|
uint32_t memory_type_index = UINT32_MAX;
|
|
|
|
memory_type_index = find_properties(&mem_props, &mem_req, req_flags);
|
|
buf->memory_property_flags = req_flags;
|
|
|
|
if (memory_type_index == UINT32_MAX && fallback_flags) {
|
|
memory_type_index = find_properties(&mem_props, &mem_req, fallback_flags);
|
|
buf->memory_property_flags = fallback_flags;
|
|
}
|
|
|
|
if (memory_type_index == UINT32_MAX) {
|
|
device->device.destroyBuffer(buf->buffer);
|
|
throw vk::OutOfDeviceMemoryError("No suitable memory type found");
|
|
}
|
|
|
|
try {
|
|
buf->device_memory = device->device.allocateMemory({ mem_req.size, memory_type_index });
|
|
} catch (const vk::SystemError& e) {
|
|
if (buf->memory_property_flags != fallback_flags) {
|
|
// Try again with fallback flags
|
|
memory_type_index = find_properties(&mem_props, &mem_req, fallback_flags);
|
|
buf->memory_property_flags = fallback_flags;
|
|
|
|
try {
|
|
buf->device_memory = device->device.allocateMemory({ mem_req.size, memory_type_index });
|
|
}
|
|
catch (const vk::SystemError& e) {
|
|
device->device.destroyBuffer(buf->buffer);
|
|
throw e;
|
|
}
|
|
} else {
|
|
// Out of Host/Device memory, clean up buffer
|
|
device->device.destroyBuffer(buf->buffer);
|
|
throw e;
|
|
}
|
|
}
|
|
buf->ptr = nullptr;
|
|
|
|
if (buf->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible) {
|
|
buf->ptr = device->device.mapMemory(buf->device_memory, 0, VK_WHOLE_SIZE);
|
|
}
|
|
|
|
device->device.bindBufferMemory(buf->buffer, buf->device_memory, 0);
|
|
|
|
buf->device = device;
|
|
buf->size = size;
|
|
|
|
#ifdef GGML_VULKAN_MEMORY_DEBUG
|
|
device->memory_logger->log_allocation(buf, size);
|
|
#endif
|
|
|
|
return buf;
|
|
}
|
|
|
|
static vk_buffer ggml_vk_create_buffer_check(vk_device& device, size_t size, vk::MemoryPropertyFlags req_flags, vk::MemoryPropertyFlags fallback_flags = vk::MemoryPropertyFlags(0)) {
|
|
try {
|
|
return ggml_vk_create_buffer(device, size, req_flags, fallback_flags);
|
|
} catch (const vk::SystemError& e) {
|
|
std::cerr << "ggml_vulkan: Memory allocation of size " << size << " failed." << std::endl;
|
|
std::cerr << "ggml_vulkan: " << e.what() << std::endl;
|
|
throw e;
|
|
}
|
|
}
|
|
|
|
static vk_buffer ggml_vk_create_buffer_device(vk_device& device, size_t size) {
|
|
vk_buffer buf;
|
|
try {
|
|
if (device->uma) {
|
|
// Fall back to host memory type
|
|
buf = ggml_vk_create_buffer(device, size, vk::MemoryPropertyFlagBits::eDeviceLocal, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent);
|
|
} else {
|
|
// use rebar if available, otherwise fallback to device only visible memory
|
|
buf = ggml_vk_create_buffer(device, size, vk::MemoryPropertyFlagBits::eDeviceLocal | vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent, vk::MemoryPropertyFlagBits::eDeviceLocal);
|
|
}
|
|
} catch (const vk::SystemError& e) {
|
|
std::cerr << "ggml_vulkan: Device memory allocation of size " << size << " failed." << std::endl;
|
|
std::cerr << "ggml_vulkan: " << e.what() << std::endl;
|
|
throw e;
|
|
}
|
|
|
|
return buf;
|
|
}
|
|
|
|
static void ggml_vk_destroy_buffer(vk_buffer& buf) {
|
|
if (buf == nullptr) {
|
|
return;
|
|
}
|
|
|
|
#ifdef GGML_VULKAN_MEMORY_DEBUG
|
|
if (buf->device != nullptr) {
|
|
buf->device->memory_logger->log_deallocation(buf);
|
|
}
|
|
#endif
|
|
|
|
buf.reset();
|
|
}
|
|
|
|
static vk_subbuffer ggml_vk_subbuffer(vk_buffer& buf) {
|
|
return { buf, 0, VK_WHOLE_SIZE };
|
|
}
|
|
|
|
static void ggml_vk_sync_buffers(vk_context& ctx) {
|
|
VK_LOG_DEBUG("ggml_vk_sync_buffers()");
|
|
|
|
const bool transfer_queue = ctx->q->transfer_only;
|
|
|
|
ctx->s->buffer.pipelineBarrier(
|
|
ctx->q->stage_flags,
|
|
ctx->q->stage_flags,
|
|
{},
|
|
{ {
|
|
{ !transfer_queue ? (vk::AccessFlagBits::eShaderRead | vk::AccessFlagBits::eShaderWrite | vk::AccessFlagBits::eTransferRead | vk::AccessFlagBits::eTransferWrite) : (vk::AccessFlagBits::eTransferRead | vk::AccessFlagBits::eTransferWrite) },
|
|
{ !transfer_queue ? (vk::AccessFlagBits::eShaderRead | vk::AccessFlagBits::eShaderWrite | vk::AccessFlagBits::eTransferRead | vk::AccessFlagBits::eTransferWrite) : (vk::AccessFlagBits::eTransferRead | vk::AccessFlagBits::eTransferWrite) }
|
|
} },
|
|
{},
|
|
{}
|
|
);
|
|
}
|
|
|
|
static void ggml_vk_wait_events(vk_context& ctx, std::vector<vk::Event>&& events) {
|
|
VK_LOG_DEBUG("ggml_vk_wait_events()");
|
|
if (events.empty()) {
|
|
return;
|
|
}
|
|
|
|
ctx->s->buffer.waitEvents(
|
|
events,
|
|
ctx->q->stage_flags,
|
|
ctx->q->stage_flags,
|
|
{},
|
|
{},
|
|
{}
|
|
);
|
|
}
|
|
|
|
// number of rows/cols for flash attention shader
|
|
static constexpr uint32_t flash_attention_num_small_rows = 32;
|
|
static std::array<uint32_t, 2> fa_rows_cols(uint32_t D, uint32_t clamp, ggml_type type, bool small_rows) {
|
|
GGML_UNUSED(clamp);
|
|
|
|
// small rows, large cols
|
|
if (small_rows) {
|
|
return {flash_attention_num_small_rows, 128};
|
|
}
|
|
// small cols to reduce register count
|
|
if (ggml_is_quantized(type) || D == 256) {
|
|
return {64, 32};
|
|
}
|
|
return {64, 64};
|
|
};
|
|
|
|
static bool ggml_vk_matmul_shmem_support(const vk_device& device, const std::vector<uint32_t>& warptile, bool mul_mat_id) {
|
|
// Needs to be kept up to date on shader changes
|
|
const uint32_t bank_conflict_offset = device->coopmat_support ? 8 : 1;
|
|
const uint32_t type_size = device->fp16 ? sizeof(ggml_fp16_t) : sizeof(float);
|
|
const uint32_t warps = warptile[0] / device->subgroup_size;
|
|
|
|
const uint32_t load_bufs = (warptile[1] + warptile[2]) * (warptile[3] + bank_conflict_offset) * type_size;
|
|
const uint32_t mmid_row_ids = mul_mat_id ? 3072 * sizeof(uint32_t) : 0;
|
|
const uint32_t coopmat_stage = device->coopmat_support ? warptile[7] * warptile[8] / warps * sizeof(float) : 0;
|
|
|
|
return (load_bufs + mmid_row_ids + coopmat_stage) <= device->properties.limits.maxComputeSharedMemorySize;
|
|
}
|
|
|
|
static void ggml_vk_load_shaders(vk_device& device) {
|
|
VK_LOG_DEBUG("ggml_vk_load_shaders(" << device->name << ")");
|
|
|
|
std::cerr << "ggml_vulkan: Compiling shaders";
|
|
|
|
// some shaders require the subgroup size to be 16 or larger
|
|
const uint32_t subgroup_size_16 = std::max(device->subgroup_size, 16u);
|
|
|
|
// mulmat
|
|
std::vector<uint32_t> l_warptile, m_warptile, s_warptile,
|
|
l_warptile_mmq, m_warptile_mmq, s_warptile_mmq,
|
|
l_warptile_mmq_k, m_warptile_mmq_k, s_warptile_mmq_k,
|
|
l_warptile_mmqid, m_warptile_mmqid, s_warptile_mmqid;
|
|
std::array<uint32_t, 3> l_wg_denoms, m_wg_denoms, s_wg_denoms,
|
|
l_mmq_wg_denoms, m_mmq_wg_denoms, s_mmq_wg_denoms,
|
|
l_mmq_wg_denoms_k, m_mmq_wg_denoms_k, s_mmq_wg_denoms_k,
|
|
l_mmqid_wg_denoms, m_mmqid_wg_denoms, s_mmqid_wg_denoms;
|
|
|
|
uint32_t l_align, m_align, s_align;
|
|
if (device->coopmat2) {
|
|
// spec constants and tile sizes for non-quant matmul/matmul_id
|
|
l_warptile = { 256, 128, 256, 64 };
|
|
m_warptile = { 256, 128, 128, 64 };
|
|
s_warptile = { 128, 32, 16, 64 };
|
|
l_wg_denoms = {128, 256, 1 };
|
|
m_wg_denoms = {128, 128, 1 };
|
|
s_wg_denoms = { 32, 16, 1 };
|
|
|
|
// spec constants and tile sizes for quant matmul (non-Qi_K)
|
|
l_warptile_mmq = { 256, 128, 256, 64 };
|
|
m_warptile_mmq = { 256, 128, 128, 64 };
|
|
s_warptile_mmq = { 256, 128, 128, 64 };
|
|
l_mmq_wg_denoms = { 128, 256, 1 };
|
|
m_mmq_wg_denoms = { 128, 128, 1 };
|
|
s_mmq_wg_denoms = { 128, 128, 1 };
|
|
|
|
// spec constants and tile sizes for quant matmul (Qi_K)
|
|
l_warptile_mmq_k = { 256, 128, 512, 16 };
|
|
m_warptile_mmq_k = { 256, 128, 256, 16 };
|
|
s_warptile_mmq_k = { 256, 32, 128, 64 };
|
|
l_mmq_wg_denoms_k = { 128, 512, 1 };
|
|
m_mmq_wg_denoms_k = { 128, 256, 1 };
|
|
s_mmq_wg_denoms_k = { 32, 128, 1 };
|
|
|
|
// spec constants and tile sizes for quant matmul_id
|
|
l_warptile_mmqid = { 256, 128, 128, 16 };
|
|
m_warptile_mmqid = { 256, 128, 64, 16 };
|
|
s_warptile_mmqid = { 256, 64, 64, 16 };
|
|
l_mmqid_wg_denoms = { 128, 128, 1 };
|
|
m_mmqid_wg_denoms = { 128, 64, 1 };
|
|
s_mmqid_wg_denoms = { 64, 64, 1 };
|
|
|
|
l_align = 128;
|
|
m_align = 64;
|
|
s_align = 32;
|
|
} else {
|
|
// Matrix cores require different warp group sizes
|
|
const uint32_t tm_l = device->coopmat_support ? device->coopmat_m : 4;
|
|
const uint32_t tm_m = device->coopmat_support ? device->coopmat_m : 4;
|
|
const uint32_t tm_s = device->coopmat_support ? device->coopmat_m : 2;
|
|
const uint32_t tn_l = device->coopmat_support ? device->coopmat_n : 4;
|
|
const uint32_t tn_m = device->coopmat_support ? device->coopmat_n : 2;
|
|
const uint32_t tn_s = device->coopmat_support ? device->coopmat_n : 2;
|
|
const uint32_t tk_l = device->coopmat_support ? device->coopmat_k : 1;
|
|
const uint32_t tk_m = device->coopmat_support ? device->coopmat_k : 1;
|
|
const uint32_t tk_s = device->coopmat_support ? device->coopmat_k : 1;
|
|
|
|
l_warptile = { 128, 128, 128, 16, device->subgroup_size * 2, 64, 2, tm_l, tn_l, tk_l, device->subgroup_size };
|
|
m_warptile = { 128, 64, 64, 16, device->subgroup_size, 32, 2, tm_m, tn_m, tk_m, device->subgroup_size };
|
|
s_warptile = { subgroup_size_16, 32, 32, 16, 32, 32, 2, tm_s, tn_s, tk_s, device->subgroup_size };
|
|
|
|
l_warptile_mmq = { 128, 128, 128, 32, device->subgroup_size * 2, 64, 2, tm_l, tn_l, tk_l, device->subgroup_size };
|
|
m_warptile_mmq = { 128, 64, 64, 32, device->subgroup_size, 32, 2, tm_m, tn_m, tk_m, device->subgroup_size };
|
|
s_warptile_mmq = { subgroup_size_16, 32, 32, 32, 32, 32, 2, tm_s, tn_s, tk_s, device->subgroup_size };
|
|
|
|
l_mmq_wg_denoms = l_wg_denoms = {128, 128, 1 };
|
|
m_mmq_wg_denoms = m_wg_denoms = { 64, 64, 1 };
|
|
s_mmq_wg_denoms = s_wg_denoms = { 32, 32, 1 };
|
|
l_align = 128;
|
|
m_align = 64;
|
|
s_align = 32;
|
|
|
|
// Fallback to smaller sizes if there's not enough shared memory. Given the current shaders
|
|
// and tile sizes, this should handle 16KB, 32KB, and 48KB+.
|
|
// This logic doesn't explicitly account for the 12KB row_ids in the mul_mat_mat_id shaders.
|
|
// But the numbers happen to work out for 32KB shared memory size that when using the medium
|
|
// size there's enough room for everything, and we assert for this.
|
|
uint32_t shmem_needed = (l_warptile[1] + l_warptile[2]) * (l_warptile[3] + 1) * sizeof(float);
|
|
if (shmem_needed > device->properties.limits.maxComputeSharedMemorySize) {
|
|
l_warptile = m_warptile;
|
|
l_wg_denoms = m_wg_denoms;
|
|
shmem_needed = (l_warptile[1] + l_warptile[2]) * (l_warptile[3] + 1) * sizeof(float);
|
|
GGML_ASSERT(shmem_needed <= device->properties.limits.maxComputeSharedMemorySize);
|
|
}
|
|
if (device->properties.limits.maxComputeSharedMemorySize >= 32768) {
|
|
// assert mul_mat_mat_id shaders will fit.
|
|
GGML_ASSERT(shmem_needed + 3072*4 <= device->properties.limits.maxComputeSharedMemorySize);
|
|
}
|
|
|
|
shmem_needed = (l_warptile_mmq[1] + l_warptile_mmq[2]) * (l_warptile_mmq[3] + 1) * sizeof(float);
|
|
if (shmem_needed > device->properties.limits.maxComputeSharedMemorySize) {
|
|
if (device->properties.limits.maxComputeSharedMemorySize == 32768) {
|
|
l_warptile_mmq = m_warptile_mmq;
|
|
l_mmq_wg_denoms = m_mmq_wg_denoms;
|
|
} else {
|
|
l_warptile_mmq = s_warptile_mmq;
|
|
l_mmq_wg_denoms = s_mmq_wg_denoms;
|
|
}
|
|
shmem_needed = (l_warptile_mmq[1] + l_warptile_mmq[2]) * (l_warptile_mmq[3] + 1) * sizeof(float);
|
|
GGML_ASSERT(shmem_needed <= device->properties.limits.maxComputeSharedMemorySize);
|
|
}
|
|
if (device->properties.limits.maxComputeSharedMemorySize >= 32768) {
|
|
// assert mul_mat_mat_id shaders will fit.
|
|
GGML_ASSERT(shmem_needed + 3072*4 <= device->properties.limits.maxComputeSharedMemorySize);
|
|
}
|
|
// Disable medium and large matrix multiplication if not enough shared memory is available
|
|
// Check mmq warptiles as the largest configuration
|
|
// Throw an error if not enough for any matrix multiplication is available
|
|
if (!ggml_vk_matmul_shmem_support(device, s_warptile_mmq, false)) {
|
|
std::cerr << "ggml_vulkan: Error: Shared memory size too small for matrix multiplication." << std::endl;
|
|
throw std::runtime_error("Shared memory size too small for matrix multiplication.");
|
|
} else if (!ggml_vk_matmul_shmem_support(device, m_warptile_mmq, false)) {
|
|
device->mul_mat_m = false;
|
|
device->mul_mat_l = false;
|
|
} else if (!ggml_vk_matmul_shmem_support(device, l_warptile_mmq, false)) {
|
|
device->mul_mat_l = false;
|
|
}
|
|
|
|
// Disable mul_mat_id if not enough shared memory is available
|
|
if (!ggml_vk_matmul_shmem_support(device, s_warptile_mmq, true)) {
|
|
device->mul_mat_id_s = false;
|
|
device->mul_mat_id_m = false;
|
|
device->mul_mat_id_l = false;
|
|
} else if (!ggml_vk_matmul_shmem_support(device, m_warptile_mmq, true)) {
|
|
device->mul_mat_id_m = false;
|
|
device->mul_mat_id_l = false;
|
|
} else if (!ggml_vk_matmul_shmem_support(device, l_warptile_mmq, true)) {
|
|
device->mul_mat_id_l = false;
|
|
}
|
|
}
|
|
|
|
device->pipeline_matmul_f32 = std::make_shared<vk_matmul_pipeline_struct>();
|
|
device->pipeline_matmul_f32_f16 = std::make_shared<vk_matmul_pipeline_struct>();
|
|
|
|
device->pipeline_matmul_id_f32 = std::make_shared<vk_matmul_pipeline_struct>();
|
|
|
|
std::vector<std::future<void>> compiles;
|
|
auto const &ggml_vk_create_pipeline = [&](vk_device& device, vk_pipeline& pipeline, const std::string &name, size_t spv_size, const void* spv_data, const std::string &entrypoint, uint32_t parameter_count, uint32_t push_constant_size, std::array<uint32_t, 3> wg_denoms, const std::vector<uint32_t>& specialization_constants, uint32_t align, bool disable_robustness = false) {
|
|
{
|
|
// wait until fewer than N compiles are in progress
|
|
uint32_t N = std::max(1u, std::thread::hardware_concurrency());
|
|
std::unique_lock<std::mutex> guard(compile_count_mutex);
|
|
while (compile_count >= N) {
|
|
compile_count_cond.wait(guard);
|
|
}
|
|
compile_count++;
|
|
}
|
|
compiles.push_back(std::async(ggml_vk_create_pipeline_func, std::ref(device), std::ref(pipeline), name, spv_size, spv_data, entrypoint, parameter_count, push_constant_size, wg_denoms, specialization_constants, align, disable_robustness));
|
|
};
|
|
|
|
#if defined(VK_NV_cooperative_matrix2) && defined(GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT)
|
|
if (device->coopmat2) {
|
|
|
|
auto const &fa_wg_denoms = [&](uint32_t D, uint32_t clamp, ggml_type type, bool small_rows) -> std::array<uint32_t, 3> {
|
|
return {fa_rows_cols(D, clamp, type, small_rows)[0], 1, 1};
|
|
};
|
|
|
|
auto const &fa_spec_constants = [&](uint32_t D, uint32_t clamp, ggml_type type, bool small_rows) -> std::vector<uint32_t> {
|
|
// For large number of rows, 128 invocations seems to work best.
|
|
// For small number of rows (e.g. N==1), 256 works better. But matrix granularity for 256 is 32, so we
|
|
// can't use 256 for D==80.
|
|
uint32_t wg_size = (small_rows && (D % 32) == 0) ? 256 : 128;
|
|
auto rows_cols = fa_rows_cols(D, clamp, type, small_rows);
|
|
return {wg_size, rows_cols[0], rows_cols[1], (D), clamp};
|
|
};
|
|
|
|
#define CREATE_FA2(TYPE, NAMELC, D) \
|
|
ggml_vk_create_pipeline(device, device->pipeline_flash_attn_f32_f16_D ## D[TYPE][0][0][0], "flash_attn_f32_f16_D" #D "_f16acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## _f16acc_cm2_len, flash_attn_f32_f16_ ## NAMELC ## _f16acc_cm2_data, "main", 5, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(D,1,TYPE,false), fa_spec_constants(D,1,TYPE,false), 1); \
|
|
ggml_vk_create_pipeline(device, device->pipeline_flash_attn_f32_f16_D ## D[TYPE][0][0][1], "flash_attn_f32_f16_D" #D "_aligned_f16acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## _f16acc_cm2_len, flash_attn_f32_f16_ ## NAMELC ## _f16acc_cm2_data, "main", 5, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(D,0,TYPE,false), fa_spec_constants(D,0,TYPE,false), fa_rows_cols(D,0,TYPE,false)[1]); \
|
|
ggml_vk_create_pipeline(device, device->pipeline_flash_attn_f32_f16_D ## D[TYPE][1][0][0], "flash_attn_f32_f16_D" #D "_f32acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## _cm2_len, flash_attn_f32_f16_ ## NAMELC ## _cm2_data, "main", 5, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(D,1,TYPE,false), fa_spec_constants(D,1,TYPE,false), 1); \
|
|
ggml_vk_create_pipeline(device, device->pipeline_flash_attn_f32_f16_D ## D[TYPE][1][0][1], "flash_attn_f32_f16_D" #D "_aligned_f32acc" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## _cm2_len, flash_attn_f32_f16_ ## NAMELC ## _cm2_data, "main", 5, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(D,0,TYPE,false), fa_spec_constants(D,0,TYPE,false), fa_rows_cols(D,0,TYPE,false)[1]); \
|
|
ggml_vk_create_pipeline(device, device->pipeline_flash_attn_f32_f16_D ## D[TYPE][0][1][0], "flash_attn_f32_f16_D" #D "_f16acc_smallrows" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## _f16acc_cm2_len, flash_attn_f32_f16_ ## NAMELC ## _f16acc_cm2_data, "main", 5, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(D,1,TYPE,true), fa_spec_constants(D,1,TYPE,true), 1); \
|
|
ggml_vk_create_pipeline(device, device->pipeline_flash_attn_f32_f16_D ## D[TYPE][0][1][1], "flash_attn_f32_f16_D" #D "_aligned_f16acc_smallrows" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## _f16acc_cm2_len, flash_attn_f32_f16_ ## NAMELC ## _f16acc_cm2_data, "main", 5, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(D,0,TYPE,true), fa_spec_constants(D,0,TYPE,true), fa_rows_cols(D,0,TYPE,true)[1]); \
|
|
ggml_vk_create_pipeline(device, device->pipeline_flash_attn_f32_f16_D ## D[TYPE][1][1][0], "flash_attn_f32_f16_D" #D "_f32acc_smallrows" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## _cm2_len, flash_attn_f32_f16_ ## NAMELC ## _cm2_data, "main", 5, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(D,1,TYPE,true), fa_spec_constants(D,1,TYPE,true), 1); \
|
|
ggml_vk_create_pipeline(device, device->pipeline_flash_attn_f32_f16_D ## D[TYPE][1][1][1], "flash_attn_f32_f16_D" #D "_aligned_f32acc_smallrows" #NAMELC, flash_attn_f32_f16_ ## NAMELC ## _cm2_len, flash_attn_f32_f16_ ## NAMELC ## _cm2_data, "main", 5, sizeof(vk_flash_attn_push_constants), fa_wg_denoms(D,0,TYPE,true), fa_spec_constants(D,0,TYPE,true), fa_rows_cols(D,0,TYPE,true)[1]); \
|
|
|
|
#define CREATE_FA(TYPE, NAMELC) \
|
|
CREATE_FA2(TYPE, NAMELC, 64) \
|
|
CREATE_FA2(TYPE, NAMELC, 80) \
|
|
CREATE_FA2(TYPE, NAMELC, 96) \
|
|
CREATE_FA2(TYPE, NAMELC, 112) \
|
|
CREATE_FA2(TYPE, NAMELC, 128) \
|
|
CREATE_FA2(TYPE, NAMELC, 256)
|
|
|
|
CREATE_FA(GGML_TYPE_F16, f16)
|
|
CREATE_FA(GGML_TYPE_Q4_0, q4_0)
|
|
CREATE_FA(GGML_TYPE_Q4_1, q4_1)
|
|
CREATE_FA(GGML_TYPE_Q5_0, q5_0)
|
|
CREATE_FA(GGML_TYPE_Q5_1, q5_1)
|
|
CREATE_FA(GGML_TYPE_Q8_0, q8_0)
|
|
// K dequants currently disabled because D dimension is rounded up to 256 and runs inefficiently
|
|
//CREATE_FA(GGML_TYPE_Q2_K, q2_k)
|
|
//CREATE_FA(GGML_TYPE_Q3_K, q3_k)
|
|
//CREATE_FA(GGML_TYPE_Q4_K, q4_k)
|
|
//CREATE_FA(GGML_TYPE_Q5_K, q5_k)
|
|
//CREATE_FA(GGML_TYPE_Q6_K, q6_k)
|
|
CREATE_FA(GGML_TYPE_IQ4_NL, iq4_nl)
|
|
#undef CREATE_FA
|
|
|
|
// Create 6 variants, {s,m,l}x{unaligned,aligned}
|
|
#define CREATE_MM(PIPELINE_NAME, NAMELC, F16ACC, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT) \
|
|
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->l, #NAMELC #F16ACC "_l", NAMELC ## F16ACC ## _cm2_len, NAMELC ## F16ACC ## _cm2_data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, 1); \
|
|
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->m, #NAMELC #F16ACC "_m", NAMELC ## F16ACC ## _cm2_len, NAMELC ## F16ACC ## _cm2_data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, 1); \
|
|
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->s, #NAMELC #F16ACC "_s", NAMELC ## F16ACC ## _cm2_len, NAMELC ## F16ACC ## _cm2_data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, 1); \
|
|
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_l, #NAMELC #F16ACC "_aligned_l", NAMELC ## _aligned ## F16ACC ## _cm2_len, NAMELC ## _aligned ## F16ACC ## _cm2_data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, l_align); \
|
|
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_m, #NAMELC #F16ACC "_aligned_m", NAMELC ## _aligned ## F16ACC ## _cm2_len, NAMELC ## _aligned ## F16ACC ## _cm2_data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, m_align); \
|
|
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_s, #NAMELC #F16ACC "_aligned_s", NAMELC ## _aligned ## F16ACC ## _cm2_len, NAMELC ## _aligned ## F16ACC ## _cm2_data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, s_align); \
|
|
|
|
// Create 2 variants, {f16,f32} accumulator
|
|
#define CREATE_MM2(PIPELINE_NAME, NAMELC, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT) \
|
|
CREATE_MM(PIPELINE_NAME . f16acc, NAMELC, _f16acc, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT) \
|
|
CREATE_MM(PIPELINE_NAME . f32acc, NAMELC, , WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT) \
|
|
|
|
CREATE_MM(pipeline_matmul_f32, matmul_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 3)
|
|
CREATE_MM(pipeline_matmul_f32_f16, matmul_f32_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3)
|
|
|
|
CREATE_MM2(pipeline_matmul_f16, matmul_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 3)
|
|
CREATE_MM2(pipeline_matmul_f16_f32, matmul_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 3)
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q4_0].f16acc, matmul_q4_0_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q4_1].f16acc, matmul_q4_1_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q5_0].f16acc, matmul_q5_0_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q5_1].f16acc, matmul_q5_1_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q8_0].f16acc, matmul_q8_0_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q2_K].f16acc, matmul_q2_k_f16, _f16acc, mmq_wg_denoms_k, warptile_mmq_k, vk_mat_mat_push_constants, 3)
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q3_K].f16acc, matmul_q3_k_f16, _f16acc, mmq_wg_denoms_k, warptile_mmq_k, vk_mat_mat_push_constants, 3)
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q4_K].f16acc, matmul_q4_k_f16, _f16acc, mmq_wg_denoms_k, warptile_mmq_k, vk_mat_mat_push_constants, 3)
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q5_K].f16acc, matmul_q5_k_f16, _f16acc, mmq_wg_denoms_k, warptile_mmq_k, vk_mat_mat_push_constants, 3)
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_Q6_K].f16acc, matmul_q6_k_f16, _f16acc, mmq_wg_denoms_k, warptile_mmq_k, vk_mat_mat_push_constants, 3)
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_f16[GGML_TYPE_IQ4_NL].f16acc, matmul_iq4_nl_f16, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3)
|
|
|
|
CREATE_MM(pipeline_matmul_id_f32, matmul_id_f32_f32, , wg_denoms, warptile, vk_mat_mat_id_push_constants, 4)
|
|
CREATE_MM2(pipeline_matmul_id_f16, matmul_id_f16, wg_denoms, warptile, vk_mat_mat_id_push_constants, 4)
|
|
CREATE_MM2(pipeline_matmul_id_f16_f32, matmul_id_f16_f32, wg_denoms, warptile, vk_mat_mat_id_push_constants, 4)
|
|
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f16acc, matmul_id_q4_0_f32, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1].f16acc, matmul_id_q4_1_f32, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0].f16acc, matmul_id_q5_0_f32, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_1].f16acc, matmul_id_q5_1_f32, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q8_0].f16acc, matmul_id_q8_0_f32, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q2_K].f16acc, matmul_id_q2_k_f32, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q3_K].f16acc, matmul_id_q3_k_f32, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_K].f16acc, matmul_id_q4_k_f32, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_K].f16acc, matmul_id_q5_k_f32, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q6_K].f16acc, matmul_id_q6_k_f32, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL].f16acc, matmul_id_iq4_nl_f32, , mmqid_wg_denoms, warptile_mmqid, vk_mat_mat_id_push_constants, 4)
|
|
#undef CREATE_MM
|
|
#undef CREATE_MM2
|
|
} else
|
|
#endif // defined(VK_NV_cooperative_matrix2) && defined(GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT)
|
|
if (device->coopmat_support) {
|
|
// Create 6 variants, {s,m,l}x{unaligned,aligned}
|
|
#define CREATE_MM(PIPELINE_NAME, NAMELC, F16ACC, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \
|
|
if (device->mul_mat ## ID ## _l) \
|
|
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->l, #NAMELC #F16ACC "_l", NAMELC ## F16ACC ## _coopmat_len, NAMELC ## F16ACC ## _coopmat_data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, 1); \
|
|
if (device->mul_mat ## ID ## _m) \
|
|
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->m, #NAMELC #F16ACC "_m", NAMELC ## F16ACC ## _coopmat_len, NAMELC ## F16ACC ## _coopmat_data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, 1); \
|
|
if (device->mul_mat ## ID ## _s) \
|
|
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->s, #NAMELC #F16ACC "_s", NAMELC ## F16ACC ## _coopmat_len, NAMELC ## F16ACC ## _coopmat_data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, 1); \
|
|
if (device->mul_mat ## ID ## _l) \
|
|
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_l, #NAMELC #F16ACC "_aligned_l", NAMELC ## _aligned ## F16ACC ## _coopmat_len, NAMELC ## _aligned ## F16ACC ## _coopmat_data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, l_align); \
|
|
if (device->mul_mat ## ID ## _m) \
|
|
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_m, #NAMELC #F16ACC "_aligned_m", NAMELC ## _aligned ## F16ACC ## _coopmat_len, NAMELC ## _aligned ## F16ACC ## _coopmat_data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, m_align); \
|
|
if (device->mul_mat ## ID ## _s) \
|
|
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_s, #NAMELC #F16ACC "_aligned_s", NAMELC ## _aligned ## F16ACC ## _coopmat_len, NAMELC ## _aligned ## F16ACC ## _coopmat_data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, s_align); \
|
|
|
|
// Create 2 variants, {f16,f32} accumulator
|
|
#define CREATE_MM2(PIPELINE_NAME, NAMELC, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \
|
|
CREATE_MM(PIPELINE_NAME . f16acc, NAMELC, _f16acc, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \
|
|
CREATE_MM(PIPELINE_NAME . f32acc, NAMELC, , WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \
|
|
|
|
CREATE_MM(pipeline_matmul_f32, matmul_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
|
|
CREATE_MM(pipeline_matmul_f32_f16, matmul_f32_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
|
|
CREATE_MM2(pipeline_matmul_f16, matmul_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
|
|
CREATE_MM2(pipeline_matmul_f16_f32, matmul_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
|
|
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_0].f16acc, matmul_q4_0_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_1].f16acc, matmul_q4_1_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_0].f16acc, matmul_q5_0_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_1].f16acc, matmul_q5_1_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q8_0].f16acc, matmul_q8_0_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
|
|
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q2_K].f16acc, matmul_q2_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q3_K].f16acc, matmul_q3_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_K].f16acc, matmul_q4_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_K].f16acc, matmul_q5_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q6_K].f16acc, matmul_q6_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_NL].f16acc, matmul_iq4_nl_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
|
|
|
|
// If there's not enough shared memory for row_ids and the result tile, don't create these pipelines.
|
|
if (device->mul_mat_id_s || device->mul_mat_id_m || device->mul_mat_id_l) {
|
|
CREATE_MM(pipeline_matmul_id_f32, matmul_id_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
|
|
CREATE_MM2(pipeline_matmul_id_f16, matmul_id_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
|
|
CREATE_MM2(pipeline_matmul_id_f16_f32, matmul_id_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
|
|
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f16acc, matmul_id_q4_0_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1].f16acc, matmul_id_q4_1_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0].f16acc, matmul_id_q5_0_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_1].f16acc, matmul_id_q5_1_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q8_0].f16acc, matmul_id_q8_0_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
|
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q2_K].f16acc, matmul_id_q2_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q3_K].f16acc, matmul_id_q3_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_K].f16acc, matmul_id_q4_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_K].f16acc, matmul_id_q5_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q6_K].f16acc, matmul_id_q6_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL].f16acc, matmul_id_iq4_nl_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
|
}
|
|
#undef CREATE_MM
|
|
} else if (device->fp16) {
|
|
// Create 6 variants, {s,m,l}x{unaligned,aligned}
|
|
#define CREATE_MM(PIPELINE_NAME, NAMELC, F16ACC, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \
|
|
if (device->mul_mat ## ID ## _l) \
|
|
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->l, #NAMELC #F16ACC "_l", NAMELC ## F16ACC ## _len, NAMELC ## F16ACC ## _data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, 1); \
|
|
if (device->mul_mat ## ID ## _m) \
|
|
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->m, #NAMELC #F16ACC "_m", NAMELC ## F16ACC ## _len, NAMELC ## F16ACC ## _data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, 1); \
|
|
if (device->mul_mat ## ID ## _s) \
|
|
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->s, #NAMELC #F16ACC "_s", NAMELC ## F16ACC ## _len, NAMELC ## F16ACC ## _data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, 1); \
|
|
if (device->mul_mat ## ID ## _l) \
|
|
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_l, #NAMELC #F16ACC "_aligned_l", NAMELC ## _aligned ## F16ACC ## _len, NAMELC ## _aligned ## F16ACC ## _data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, l_align); \
|
|
if (device->mul_mat ## ID ## _m) \
|
|
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_m, #NAMELC #F16ACC "_aligned_m", NAMELC ## _aligned ## F16ACC ## _len, NAMELC ## _aligned ## F16ACC ## _data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, m_align); \
|
|
if (device->mul_mat ## ID ## _s) \
|
|
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_s, #NAMELC #F16ACC "_aligned_s", NAMELC ## _aligned ## F16ACC ## _len, NAMELC ## _aligned ## F16ACC ## _data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, s_align); \
|
|
|
|
CREATE_MM(pipeline_matmul_f32, matmul_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
|
|
CREATE_MM(pipeline_matmul_f32_f16, matmul_f32_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
|
|
CREATE_MM2(pipeline_matmul_f16, matmul_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
|
|
CREATE_MM2(pipeline_matmul_f16_f32, matmul_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
|
|
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_0].f16acc, matmul_q4_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_1].f16acc, matmul_q4_1_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_0].f16acc, matmul_q5_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_1].f16acc, matmul_q5_1_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q8_0].f16acc, matmul_q8_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
|
|
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q2_K].f16acc, matmul_q2_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q3_K].f16acc, matmul_q3_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_K].f16acc, matmul_q4_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_K].f16acc, matmul_q5_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q6_K].f16acc, matmul_q6_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_NL].f16acc, matmul_iq4_nl_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
|
|
|
|
// If there's not enough shared memory for row_ids and the result tile, don't create these pipelines.
|
|
if (device->mul_mat_id_s || device->mul_mat_id_m || device->mul_mat_id_l) {
|
|
CREATE_MM(pipeline_matmul_id_f32, matmul_id_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
|
|
CREATE_MM2(pipeline_matmul_id_f16, matmul_id_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
|
|
CREATE_MM2(pipeline_matmul_id_f16_f32, matmul_id_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
|
|
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f16acc, matmul_id_q4_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1].f16acc, matmul_id_q4_1_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0].f16acc, matmul_id_q5_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_1].f16acc, matmul_id_q5_1_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q8_0].f16acc, matmul_id_q8_0_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
|
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q2_K].f16acc, matmul_id_q2_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q3_K].f16acc, matmul_id_q3_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_K].f16acc, matmul_id_q4_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_K].f16acc, matmul_id_q5_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q6_K].f16acc, matmul_id_q6_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL].f16acc, matmul_id_iq4_nl_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
|
}
|
|
#undef CREATE_MM
|
|
} else {
|
|
// Create 6 variants, {s,m,l}x{unaligned,aligned}
|
|
#define CREATE_MM(PIPELINE_NAME, NAMELC, F16ACC, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \
|
|
if (device->mul_mat ## ID ## _l) \
|
|
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->l, #NAMELC #F16ACC "_l", NAMELC ## F16ACC ## _fp32_len, NAMELC ## F16ACC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, 1); \
|
|
if (device->mul_mat ## ID ## _m) \
|
|
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->m, #NAMELC #F16ACC "_m", NAMELC ## F16ACC ## _fp32_len, NAMELC ## F16ACC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, 1); \
|
|
if (device->mul_mat ## ID ## _s) \
|
|
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->s, #NAMELC #F16ACC "_s", NAMELC ## F16ACC ## _fp32_len, NAMELC ## F16ACC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, 1); \
|
|
if (device->mul_mat ## ID ## _l) \
|
|
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_l, #NAMELC #F16ACC "_aligned_l", NAMELC ## _aligned ## F16ACC ## _fp32_len, NAMELC ## _aligned ## F16ACC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, l_align); \
|
|
if (device->mul_mat ## ID ## _m) \
|
|
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_m, #NAMELC #F16ACC "_aligned_m", NAMELC ## _aligned ## F16ACC ## _fp32_len, NAMELC ## _aligned ## F16ACC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, m_align); \
|
|
if (device->mul_mat ## ID ## _s) \
|
|
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_s, #NAMELC #F16ACC "_aligned_s", NAMELC ## _aligned ## F16ACC ## _fp32_len, NAMELC ## _aligned ## F16ACC ## _fp32_data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, s_align); \
|
|
|
|
CREATE_MM(pipeline_matmul_f32, matmul_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
|
|
CREATE_MM(pipeline_matmul_f32_f16, matmul_f32_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
|
|
CREATE_MM(pipeline_matmul_f16.f32acc, matmul_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
|
|
CREATE_MM(pipeline_matmul_f16_f32.f32acc, matmul_f16_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
|
|
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_0].f32acc, matmul_q4_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_1].f32acc, matmul_q4_1_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_0].f32acc, matmul_q5_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_1].f32acc, matmul_q5_1_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q8_0].f32acc, matmul_q8_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
|
|
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q2_K].f32acc, matmul_q2_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q3_K].f32acc, matmul_q3_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_K].f32acc, matmul_q4_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_K].f32acc, matmul_q5_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q6_K].f32acc, matmul_q6_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_NL].f32acc, matmul_iq4_nl_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
|
|
|
|
// If there's not enough shared memory for row_ids and the result tile, don't create these pipelines.
|
|
if (device->mul_mat_id_s || device->mul_mat_id_m || device->mul_mat_id_l) {
|
|
CREATE_MM(pipeline_matmul_id_f32, matmul_id_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
|
|
CREATE_MM(pipeline_matmul_id_f16.f32acc, matmul_id_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
|
|
CREATE_MM(pipeline_matmul_id_f16_f32.f32acc, matmul_id_f16_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
|
|
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f32acc, matmul_id_q4_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1].f32acc, matmul_id_q4_1_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0].f32acc, matmul_id_q5_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_1].f32acc, matmul_id_q5_1_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q8_0].f32acc, matmul_id_q8_0_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
|
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q2_K].f32acc, matmul_id_q2_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q3_K].f32acc, matmul_id_q3_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_K].f32acc, matmul_id_q4_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_K].f32acc, matmul_id_q5_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q6_K].f32acc, matmul_id_q6_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
|
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL].f32acc, matmul_id_iq4_nl_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
|
|
}
|
|
#undef CREATE_MM2
|
|
#undef CREATE_MM
|
|
}
|
|
|
|
// mul mat vec
|
|
// computing two rows per workgroup is a benefit for Q4_0 -> Q5_1, but not for Q8_0.
|
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_F32 ], "mul_mat_vec_f32_f32_f32", mul_mat_vec_f32_f32_f32_len, mul_mat_vec_f32_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_F16 ], "mul_mat_vec_f16_f32_f32", mul_mat_vec_f16_f32_f32_len, mul_mat_vec_f16_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_0], "mul_mat_vec_q4_0_f32_f32", mul_mat_vec_q4_0_f32_f32_len, mul_mat_vec_q4_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true);
|
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_1], "mul_mat_vec_q4_1_f32_f32", mul_mat_vec_q4_1_f32_f32_len, mul_mat_vec_q4_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true);
|
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_0], "mul_mat_vec_q5_0_f32_f32", mul_mat_vec_q5_0_f32_f32_len, mul_mat_vec_q5_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true);
|
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_1], "mul_mat_vec_q5_1_f32_f32", mul_mat_vec_q5_1_f32_f32_len, mul_mat_vec_q5_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true);
|
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q8_0], "mul_mat_vec_q8_0_f32_f32", mul_mat_vec_q8_0_f32_f32_len, mul_mat_vec_q8_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size, 1}, 1, true);
|
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q2_K], "mul_mat_vec_q2_k_f32_f32", mul_mat_vec_q2_k_f32_f32_len, mul_mat_vec_q2_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true);
|
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q3_K], "mul_mat_vec_q3_k_f32_f32", mul_mat_vec_q3_k_f32_f32_len, mul_mat_vec_q3_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true);
|
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_K], "mul_mat_vec_q4_k_f32_f32", mul_mat_vec_q4_k_f32_f32_len, mul_mat_vec_q4_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true);
|
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_K], "mul_mat_vec_q5_k_f32_f32", mul_mat_vec_q5_k_f32_f32_len, mul_mat_vec_q5_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true);
|
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q6_K], "mul_mat_vec_q6_k_f32_f32", mul_mat_vec_q6_k_f32_f32_len, mul_mat_vec_q6_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
|
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_iq4_nl_f32_f32", mul_mat_vec_iq4_nl_f32_f32_len, mul_mat_vec_iq4_nl_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true);
|
|
|
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_F32 ], "mul_mat_vec_f32_f16_f32", mul_mat_vec_f32_f16_f32_len, mul_mat_vec_f32_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_F16 ], "mul_mat_vec_f16_f16_f32", mul_mat_vec_f16_f16_f32_len, mul_mat_vec_f16_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_0], "mul_mat_vec_q4_0_f16_f32", mul_mat_vec_q4_0_f16_f32_len, mul_mat_vec_q4_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true);
|
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_1], "mul_mat_vec_q4_1_f16_f32", mul_mat_vec_q4_1_f16_f32_len, mul_mat_vec_q4_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true);
|
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_0], "mul_mat_vec_q5_0_f16_f32", mul_mat_vec_q5_0_f16_f32_len, mul_mat_vec_q5_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true);
|
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_1], "mul_mat_vec_q5_1_f16_f32", mul_mat_vec_q5_1_f16_f32_len, mul_mat_vec_q5_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true);
|
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q8_0], "mul_mat_vec_q8_0_f16_f32", mul_mat_vec_q8_0_f16_f32_len, mul_mat_vec_q8_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size, 1}, 1, true);
|
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q2_K], "mul_mat_vec_q2_k_f16_f32", mul_mat_vec_q2_k_f16_f32_len, mul_mat_vec_q2_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true);
|
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q3_K], "mul_mat_vec_q3_k_f16_f32", mul_mat_vec_q3_k_f16_f32_len, mul_mat_vec_q3_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true);
|
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_K], "mul_mat_vec_q4_k_f16_f32", mul_mat_vec_q4_k_f16_f32_len, mul_mat_vec_q4_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true);
|
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_K], "mul_mat_vec_q5_k_f16_f32", mul_mat_vec_q5_k_f16_f32_len, mul_mat_vec_q5_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true);
|
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q6_K], "mul_mat_vec_q6_k_f16_f32", mul_mat_vec_q6_k_f16_f32_len, mul_mat_vec_q6_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
|
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_iq4_nl_f16_f32", mul_mat_vec_iq4_nl_f16_f32_len, mul_mat_vec_iq4_nl_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size}, 1, true);
|
|
|
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_F32 ], "mul_mat_vec_id_f32_f32", mul_mat_vec_id_f32_f32_len, mul_mat_vec_id_f32_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_F16 ], "mul_mat_vec_id_f16_f32", mul_mat_vec_id_f16_f32_len, mul_mat_vec_id_f16_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_0], "mul_mat_vec_id_q4_0_f32", mul_mat_vec_id_q4_0_f32_len, mul_mat_vec_id_q4_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true);
|
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_1], "mul_mat_vec_id_q4_1_f32", mul_mat_vec_id_q4_1_f32_len, mul_mat_vec_id_q4_1_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true);
|
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_0], "mul_mat_vec_id_q5_0_f32", mul_mat_vec_id_q5_0_f32_len, mul_mat_vec_id_q5_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true);
|
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_1], "mul_mat_vec_id_q5_1_f32", mul_mat_vec_id_q5_1_f32_len, mul_mat_vec_id_q5_1_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true);
|
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q8_0], "mul_mat_vec_id_q8_0_f32", mul_mat_vec_id_q8_0_f32_len, mul_mat_vec_id_q8_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {device->subgroup_size, 1}, 1, true);
|
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q2_K], "mul_mat_vec_id_q2_k_f32", mul_mat_vec_id_q2_k_f32_len, mul_mat_vec_id_q2_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true);
|
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q3_K], "mul_mat_vec_id_q3_k_f32", mul_mat_vec_id_q3_k_f32_len, mul_mat_vec_id_q3_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true);
|
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_K], "mul_mat_vec_id_q4_k_f32", mul_mat_vec_id_q4_k_f32_len, mul_mat_vec_id_q4_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true);
|
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_K], "mul_mat_vec_id_q5_k_f32", mul_mat_vec_id_q5_k_f32_len, mul_mat_vec_id_q5_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {device->subgroup_size}, 1, true);
|
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q6_K], "mul_mat_vec_id_q6_k_f32", mul_mat_vec_id_q6_k_f32_len, mul_mat_vec_id_q6_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
|
|
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_id_iq4_nl_f32", mul_mat_vec_id_iq4_nl_f32_len, mul_mat_vec_id_iq4_nl_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true);
|
|
|
|
// dequant shaders
|
|
ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_F32 ], "f32_to_f16", dequant_f32_len, dequant_f32_data, "main", 2, 5 * sizeof(uint32_t), {256 * 16, 1, 1}, {}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_Q4_0], "dequant_q4_0", dequant_q4_0_len, dequant_q4_0_data, "main", 2, 5 * sizeof(uint32_t), {256 * 16, 1, 1}, {}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_Q4_1], "dequant_q4_1", dequant_q4_1_len, dequant_q4_1_data, "main", 2, 5 * sizeof(uint32_t), {256 * 16, 1, 1}, {}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_Q5_0], "dequant_q5_0", dequant_q5_0_len, dequant_q5_0_data, "main", 2, 5 * sizeof(uint32_t), {256 * 16, 1, 1}, {}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_Q5_1], "dequant_q5_1", dequant_q5_1_len, dequant_q5_1_data, "main", 2, 5 * sizeof(uint32_t), {256 * 16, 1, 1}, {}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_Q8_0], "dequant_q8_0", dequant_q8_0_len, dequant_q8_0_data, "main", 2, 5 * sizeof(uint32_t), {256 * 16, 1, 1}, {}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_Q2_K], "dequant_q2_k", dequant_q2_k_len, dequant_q2_k_data, "main", 2, 5 * sizeof(uint32_t), {256 * 64, 1, 1}, {}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_Q3_K], "dequant_q3_k", dequant_q3_k_len, dequant_q3_k_data, "main", 2, 5 * sizeof(uint32_t), {256 * 64, 1, 1}, {}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_Q4_K], "dequant_q4_k", dequant_q4_k_len, dequant_q4_k_data, "main", 2, 5 * sizeof(uint32_t), {256 * 32, 1, 1}, {}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_Q5_K], "dequant_q5_k", dequant_q5_k_len, dequant_q5_k_data, "main", 2, 5 * sizeof(uint32_t), {256 * 64, 1, 1}, {}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_Q6_K], "dequant_q6_k", dequant_q6_k_len, dequant_q6_k_data, "main", 2, 5 * sizeof(uint32_t), {256 * 64, 1, 1}, {}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_IQ4_NL], "dequant_iq4_nl", dequant_iq4_nl_len, dequant_iq4_nl_data, "main", 2, 5 * sizeof(uint32_t), {256 * 16, 1, 1}, {}, 1);
|
|
|
|
// get_rows
|
|
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_F32 ], "get_rows_f32", get_rows_f32_len, get_rows_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_F16 ], "get_rows_f16", get_rows_f16_len, get_rows_f16_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_Q4_0], "get_rows_q4_0", get_rows_q4_0_len, get_rows_q4_0_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_Q4_1], "get_rows_q4_1", get_rows_q4_1_len, get_rows_q4_1_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_Q5_0], "get_rows_q5_0", get_rows_q5_0_len, get_rows_q5_0_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_Q5_1], "get_rows_q5_1", get_rows_q5_1_len, get_rows_q5_1_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_Q8_0], "get_rows_q8_0", get_rows_q8_0_len, get_rows_q8_0_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_get_rows[GGML_TYPE_IQ4_NL], "get_rows_iq4_nl", get_rows_iq4_nl_len, get_rows_iq4_nl_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
|
|
|
|
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_F32 ], "get_rows_f32_f32", get_rows_f32_f32_len, get_rows_f32_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_F16 ], "get_rows_f16_f32", get_rows_f16_f32_len, get_rows_f16_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), { 512, 1, 1}, {}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_Q4_0], "get_rows_q4_0_f32", get_rows_q4_0_f32_len, get_rows_q4_0_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_Q4_1], "get_rows_q4_1_f32", get_rows_q4_1_f32_len, get_rows_q4_1_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_Q5_0], "get_rows_q5_0_f32", get_rows_q5_0_f32_len, get_rows_q5_0_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_Q5_1], "get_rows_q5_1_f32", get_rows_q5_1_f32_len, get_rows_q5_1_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_Q8_0], "get_rows_q8_0_f32", get_rows_q8_0_f32_len, get_rows_q8_0_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_get_rows_f32[GGML_TYPE_IQ4_NL], "get_rows_iq4_nl_f32", get_rows_iq4_nl_f32_len, get_rows_iq4_nl_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {1024, 1, 1}, {}, 1);
|
|
|
|
ggml_vk_create_pipeline(device, device->pipeline_matmul_split_k_reduce, "split_k_reduce", split_k_reduce_len, split_k_reduce_data, "main", 2, 2 * sizeof(uint32_t), {256 * 4, 1, 1}, {}, 1);
|
|
|
|
ggml_vk_create_pipeline(device, device->pipeline_mul_mat_vec_p021_f16_f32, "mul_mat_vec_p021_f16_f32", mul_mat_vec_p021_f16_f32_len, mul_mat_vec_p021_f16_f32_data, "main", 3, 6 * sizeof(uint32_t), {1, 1, 1}, {}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_mul_mat_vec_nc_f16_f32, "mul_mat_vec_nc_f16_f32", mul_mat_vec_nc_f16_f32_len, mul_mat_vec_nc_f16_f32_data, "main", 3, 7 * sizeof(uint32_t), {1, 1, 1}, {}, 1);
|
|
|
|
ggml_vk_create_pipeline(device, device->pipeline_norm_f32, "norm_f32", norm_f32_len, norm_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_group_norm_f32, "group_norm_f32", group_norm_f32_len, group_norm_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_rms_norm_f32, "rms_norm_f32", rms_norm_f32_len, rms_norm_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, {}, 1);
|
|
|
|
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_f32, "cpy_f32_f32", cpy_f32_f32_len, cpy_f32_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_cpy_f32_f16, "cpy_f32_f16", cpy_f32_f16_len, cpy_f32_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_cpy_f16_f16, "cpy_f16_f16", cpy_f16_f16_len, cpy_f16_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
|
|
|
|
ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f32_f32, "contig_cpy_f32_f32", contig_cpy_f32_f32_len, contig_cpy_f32_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f32_f16, "contig_cpy_f32_f16", contig_cpy_f32_f16_len, contig_cpy_f32_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_contig_cpy_f16_f16, "contig_cpy_f16_f16", contig_cpy_f16_f16_len, contig_cpy_f16_f16_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
|
|
|
|
ggml_vk_create_pipeline(device, device->pipeline_add_f32, "add_f32", add_f32_len, add_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {0}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_add_f32_norepeat, "add_f32_norepeat", add_f32_len, add_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {1}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_add_f16_f32_f16, "add_f16_f32_f16", add_f16_f32_f16_len, add_f16_f32_f16_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {0}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_add_f16_f32_f16_norepeat, "add_f16_f32_f16_norepeat", add_f16_f32_f16_len, add_f16_f32_f16_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {1}, 1);
|
|
|
|
ggml_vk_create_pipeline(device, device->pipeline_acc_f32, "acc_f32", acc_f32_len, acc_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
|
|
|
|
ggml_vk_create_pipeline(device, device->pipeline_mul_f32, "mul_f32", mul_f32_len, mul_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {0}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_mul_f32_norepeat, "mul_f32_norepeat", mul_f32_len, mul_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {1}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_div_f32, "div_f32", div_f32_len, div_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {0}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_div_f32_norepeat, "div_f32_norepeat", div_f32_len, div_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {1}, 1);
|
|
|
|
ggml_vk_create_pipeline(device, device->pipeline_concat_f32, "concat_f32", concat_f32_len, concat_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_concat_f16, "concat_f16", concat_f16_len, concat_f16_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_concat_i32, "concat_i32", concat_i32_len, concat_i32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
|
|
|
|
ggml_vk_create_pipeline(device, device->pipeline_upscale_f32, "upscale_f32", upscale_f32_len, upscale_f32_data, "main", 2, sizeof(vk_op_upscale_push_constants), {512, 1, 1}, {}, 1);
|
|
|
|
ggml_vk_create_pipeline(device, device->pipeline_scale_f32, "scale_f32", scale_f32_len, scale_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
|
|
|
|
ggml_vk_create_pipeline(device, device->pipeline_sqr_f32, "sqr_f32", sqr_f32_len, sqr_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_sin_f32, "sin_f32", sin_f32_len, sin_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_cos_f32, "cos_f32", cos_f32_len, cos_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
|
|
|
|
ggml_vk_create_pipeline(device, device->pipeline_clamp_f32, "clamp_f32", clamp_f32_len, clamp_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
|
|
|
|
ggml_vk_create_pipeline(device, device->pipeline_pad_f32, "pad_f32", pad_f32_len, pad_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
|
|
|
|
ggml_vk_create_pipeline(device, device->pipeline_repeat_f32, "repeat_f32", repeat_f32_len, repeat_f32_data, "main", 2, sizeof(vk_op_unary_push_constants), {512, 1, 1}, {}, 1);
|
|
|
|
ggml_vk_create_pipeline(device, device->pipeline_gelu_f32, "gelu_f32", gelu_f32_len, gelu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_gelu_quick_f32, "gelu_quick_f32", gelu_quick_f32_len, gelu_quick_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_silu_f32, "silu_f32", silu_f32_len, silu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_relu_f32, "relu_f32", relu_f32_len, relu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_leaky_relu_f32, "leaky_relu_f32", leaky_relu_f32_len, leaky_relu_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_tanh_f32, "tanh_f32", tanh_f32_len, tanh_f32_data, "main", 2, sizeof(vk_op_push_constants), {512, 1, 1}, {}, 1);
|
|
|
|
ggml_vk_create_pipeline(device, device->pipeline_diag_mask_inf_f32, "diag_mask_inf_f32", diag_mask_inf_f32_len, diag_mask_inf_f32_data, "main", 2, sizeof(vk_op_diag_mask_push_constants), {512, 1, 1}, {}, 1);
|
|
|
|
ggml_vk_create_pipeline(device, device->pipeline_soft_max_f32, "soft_max_f32", soft_max_f32_len, soft_max_f32_data, "main", 3, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, { device->subgroup_size }, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_soft_max_f32_wg512, "soft_max_f32_wg512", soft_max_f32_len, soft_max_f32_data, "main", 3, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, { 512 }, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_soft_max_f32_f16, "soft_max_f32_f16", soft_max_f32_f16_len, soft_max_f32_f16_data, "main", 3, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, { device->subgroup_size }, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_soft_max_f32_f16_wg512, "soft_max_f32_f16_wg512", soft_max_f32_f16_len, soft_max_f32_f16_data, "main", 3, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, { 512 }, 1);
|
|
|
|
ggml_vk_create_pipeline(device, device->pipeline_rope_norm_f32, "rope_norm_f32", rope_norm_f32_len, rope_norm_f32_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_rope_norm_f16, "rope_norm_f16", rope_norm_f16_len, rope_norm_f16_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
|
|
|
|
ggml_vk_create_pipeline(device, device->pipeline_rope_neox_f32, "rope_neox_f32", rope_neox_f32_len, rope_neox_f32_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_rope_neox_f16, "rope_neox_f16", rope_neox_f16_len, rope_neox_f16_data, "main", 4, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
|
|
|
|
ggml_vk_create_pipeline(device, device->pipeline_argsort_f32, "argsort_f32", argsort_f32_len, argsort_f32_data, "main", 2, sizeof(vk_op_argsort_push_constants), {1024, 1, 1}, {}, 1);
|
|
|
|
ggml_vk_create_pipeline(device, device->pipeline_sum_rows_f32, "sum_rows_f32", sum_rows_f32_len, sum_rows_f32_data, "main", 2, sizeof(vk_op_push_constants), {1, 1, 1}, { device->subgroup_size }, 1);
|
|
|
|
ggml_vk_create_pipeline(device, device->pipeline_im2col_f32, "im2col_f32", im2col_f32_len, im2col_f32_data, "main", 2, sizeof(vk_op_im2col_push_constants), {256, 1, 1}, {}, 1);
|
|
ggml_vk_create_pipeline(device, device->pipeline_im2col_f32_f16, "im2col_f32_f16", im2col_f32_f16_len, im2col_f32_f16_data, "main", 2, sizeof(vk_op_im2col_push_constants), {256, 1, 1}, {}, 1);
|
|
|
|
ggml_vk_create_pipeline(device, device->pipeline_timestep_embedding_f32, "timestep_embedding_f32", timestep_embedding_f32_len, timestep_embedding_f32_data, "main", 2, sizeof(vk_op_timestep_embedding_push_constants), {256, 1, 1}, {}, 1);
|
|
|
|
ggml_vk_create_pipeline(device, device->pipeline_pool2d_f32, "pool2d_f32", pool2d_f32_len, pool2d_f32_data, "main", 2, sizeof(vk_op_pool2d_push_constants), {512, 1, 1}, {}, 1);
|
|
|
|
for (auto &c : compiles) {
|
|
c.wait();
|
|
}
|
|
std::cerr << "Done!" << std::endl;
|
|
}
|
|
|
|
static vk_device ggml_vk_get_device(size_t idx) {
|
|
VK_LOG_DEBUG("ggml_vk_get_device(" << idx << ")");
|
|
|
|
if (vk_instance.devices[idx] == nullptr) {
|
|
VK_LOG_DEBUG("Initializing new vk_device");
|
|
vk_device device = std::make_shared<vk_device_struct>();
|
|
vk_instance.devices[idx] = device;
|
|
|
|
#ifdef GGML_VULKAN_MEMORY_DEBUG
|
|
device->memory_logger = std::unique_ptr<vk_memory_logger>(new vk_memory_logger());
|
|
#endif
|
|
#ifdef GGML_VULKAN_PERF
|
|
device->perf_logger = std::unique_ptr<vk_perf_logger>(new vk_perf_logger());
|
|
#endif
|
|
|
|
size_t dev_num = vk_instance.device_indices[idx];
|
|
|
|
std::vector<vk::PhysicalDevice> physical_devices = vk_instance.instance.enumeratePhysicalDevices();
|
|
|
|
if (dev_num >= physical_devices.size()) {
|
|
std::cerr << "ggml_vulkan: Device with index " << dev_num << " does not exist." << std::endl;
|
|
throw std::runtime_error("Device not found");
|
|
}
|
|
|
|
device->physical_device = physical_devices[dev_num];
|
|
const std::vector<vk::ExtensionProperties> ext_props = device->physical_device.enumerateDeviceExtensionProperties();
|
|
|
|
bool fp16_storage = false;
|
|
bool fp16_compute = false;
|
|
bool maintenance4_support = false;
|
|
bool sm_builtins = false;
|
|
bool amd_shader_core_properties2 = false;
|
|
bool pipeline_robustness = false;
|
|
bool coopmat2_support = false;
|
|
device->coopmat_support = false;
|
|
|
|
// Check if maintenance4 is supported
|
|
for (const auto& properties : ext_props) {
|
|
if (strcmp("VK_KHR_maintenance4", properties.extensionName) == 0) {
|
|
maintenance4_support = true;
|
|
} else if (strcmp("VK_KHR_16bit_storage", properties.extensionName) == 0) {
|
|
fp16_storage = true;
|
|
} else if (strcmp("VK_KHR_shader_float16_int8", properties.extensionName) == 0) {
|
|
fp16_compute = true;
|
|
} else if (strcmp("VK_NV_shader_sm_builtins", properties.extensionName) == 0) {
|
|
sm_builtins = true;
|
|
} else if (strcmp("VK_AMD_shader_core_properties2", properties.extensionName) == 0) {
|
|
amd_shader_core_properties2 = true;
|
|
} else if (strcmp("VK_EXT_pipeline_robustness", properties.extensionName) == 0) {
|
|
pipeline_robustness = true;
|
|
} else if (strcmp("VK_KHR_cooperative_matrix", properties.extensionName) == 0 &&
|
|
!getenv("GGML_VK_DISABLE_COOPMAT")) {
|
|
device->coopmat_support = true;
|
|
device->coopmat_m = 0;
|
|
device->coopmat_n = 0;
|
|
device->coopmat_k = 0;
|
|
} else if (strcmp("VK_NV_cooperative_matrix2", properties.extensionName) == 0 &&
|
|
!getenv("GGML_VK_DISABLE_COOPMAT2")) {
|
|
coopmat2_support = true;
|
|
}
|
|
}
|
|
|
|
vk::PhysicalDeviceProperties2 props2;
|
|
vk::PhysicalDeviceMaintenance3Properties props3;
|
|
vk::PhysicalDeviceMaintenance4Properties props4;
|
|
vk::PhysicalDeviceSubgroupProperties subgroup_props;
|
|
vk::PhysicalDeviceDriverProperties driver_props;
|
|
vk::PhysicalDeviceShaderSMBuiltinsPropertiesNV sm_props;
|
|
vk::PhysicalDeviceShaderCoreProperties2AMD amd_shader_core_properties2_props;
|
|
props2.pNext = &props3;
|
|
props3.pNext = &subgroup_props;
|
|
subgroup_props.pNext = &driver_props;
|
|
|
|
VkBaseOutStructure * last_struct = (VkBaseOutStructure *)&driver_props;
|
|
|
|
if (maintenance4_support) {
|
|
last_struct->pNext = (VkBaseOutStructure *)&props4;
|
|
last_struct = (VkBaseOutStructure *)&props4;
|
|
}
|
|
if (sm_builtins) {
|
|
last_struct->pNext = (VkBaseOutStructure *)&sm_props;
|
|
last_struct = (VkBaseOutStructure *)&sm_props;
|
|
}
|
|
if (amd_shader_core_properties2) {
|
|
last_struct->pNext = (VkBaseOutStructure *)&amd_shader_core_properties2_props;
|
|
last_struct = (VkBaseOutStructure *)&amd_shader_core_properties2_props;
|
|
}
|
|
|
|
#if defined(VK_NV_cooperative_matrix2)
|
|
vk::PhysicalDeviceCooperativeMatrix2PropertiesNV coopmat2_props;
|
|
if (coopmat2_support) {
|
|
last_struct->pNext = (VkBaseOutStructure *)&coopmat2_props;
|
|
last_struct = (VkBaseOutStructure *)&coopmat2_props;
|
|
}
|
|
#endif
|
|
|
|
device->physical_device.getProperties2(&props2);
|
|
device->properties = props2.properties;
|
|
|
|
const char* GGML_VK_FORCE_MAX_ALLOCATION_SIZE = getenv("GGML_VK_FORCE_MAX_ALLOCATION_SIZE");
|
|
|
|
if (GGML_VK_FORCE_MAX_ALLOCATION_SIZE != nullptr) {
|
|
device->max_memory_allocation_size = std::stoul(GGML_VK_FORCE_MAX_ALLOCATION_SIZE);
|
|
} else if (maintenance4_support) {
|
|
device->max_memory_allocation_size = std::min(props3.maxMemoryAllocationSize, props4.maxBufferSize);
|
|
} else {
|
|
device->max_memory_allocation_size = props3.maxMemoryAllocationSize;
|
|
}
|
|
|
|
device->vendor_id = device->properties.vendorID;
|
|
device->subgroup_size = subgroup_props.subgroupSize;
|
|
device->uma = device->properties.deviceType == vk::PhysicalDeviceType::eIntegratedGpu;
|
|
if (sm_builtins) {
|
|
device->shader_core_count = sm_props.shaderSMCount;
|
|
} else if (amd_shader_core_properties2) {
|
|
device->shader_core_count = amd_shader_core_properties2_props.activeComputeUnitCount;
|
|
} else {
|
|
device->shader_core_count = 0;
|
|
}
|
|
|
|
const bool force_disable_f16 = getenv("GGML_VK_DISABLE_F16") != nullptr;
|
|
|
|
device->fp16 = !force_disable_f16 && fp16_storage && fp16_compute;
|
|
|
|
if (device->vendor_id == VK_VENDOR_ID_INTEL || (props2.properties.vendorID == VK_VENDOR_ID_AMD && driver_props.driverID == vk::DriverId::eAmdProprietary)) {
|
|
// Intel drivers don't support coopmat properly yet
|
|
// Only RADV supports coopmat properly on AMD
|
|
device->coopmat_support = false;
|
|
}
|
|
|
|
std::vector<vk::QueueFamilyProperties> queue_family_props = device->physical_device.getQueueFamilyProperties();
|
|
|
|
// Try to find a non-graphics compute queue and transfer-focused queues
|
|
const uint32_t compute_queue_family_index = ggml_vk_find_queue_family_index(queue_family_props, vk::QueueFlagBits::eCompute, vk::QueueFlagBits::eGraphics, -1, 1);
|
|
const uint32_t transfer_queue_family_index = ggml_vk_find_queue_family_index(queue_family_props, vk::QueueFlagBits::eTransfer, vk::QueueFlagBits::eCompute | vk::QueueFlagBits::eGraphics, compute_queue_family_index, 1);
|
|
|
|
const float priorities[] = { 1.0f, 1.0f };
|
|
device->single_queue = compute_queue_family_index == transfer_queue_family_index && queue_family_props[compute_queue_family_index].queueCount == 1;
|
|
|
|
std::vector<vk::DeviceQueueCreateInfo> device_queue_create_infos;
|
|
if (compute_queue_family_index != transfer_queue_family_index) {
|
|
device_queue_create_infos.push_back({vk::DeviceQueueCreateFlags(), compute_queue_family_index, 1, priorities});
|
|
device_queue_create_infos.push_back({vk::DeviceQueueCreateFlags(), transfer_queue_family_index, 1, priorities + 1});
|
|
} else if(!device->single_queue) {
|
|
device_queue_create_infos.push_back({vk::DeviceQueueCreateFlags(), compute_queue_family_index, 2, priorities});
|
|
} else {
|
|
device_queue_create_infos.push_back({vk::DeviceQueueCreateFlags(), compute_queue_family_index, 1, priorities});
|
|
}
|
|
vk::DeviceCreateInfo device_create_info;
|
|
std::vector<const char *> device_extensions;
|
|
vk::PhysicalDeviceFeatures device_features = device->physical_device.getFeatures();
|
|
|
|
VkPhysicalDeviceFeatures2 device_features2;
|
|
device_features2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2;
|
|
device_features2.pNext = nullptr;
|
|
device_features2.features = (VkPhysicalDeviceFeatures)device_features;
|
|
|
|
VkPhysicalDeviceVulkan11Features vk11_features;
|
|
vk11_features.pNext = nullptr;
|
|
vk11_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES;
|
|
device_features2.pNext = &vk11_features;
|
|
|
|
VkPhysicalDeviceVulkan12Features vk12_features;
|
|
vk12_features.pNext = nullptr;
|
|
vk12_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES;
|
|
vk11_features.pNext = &vk12_features;
|
|
|
|
last_struct = (VkBaseOutStructure *)&vk12_features;
|
|
|
|
VkPhysicalDevicePipelineRobustnessFeaturesEXT pl_robustness_features;
|
|
pl_robustness_features.pNext = nullptr;
|
|
pl_robustness_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PIPELINE_ROBUSTNESS_FEATURES_EXT;
|
|
pl_robustness_features.pipelineRobustness = VK_FALSE;
|
|
|
|
if (pipeline_robustness) {
|
|
last_struct->pNext = (VkBaseOutStructure *)&pl_robustness_features;
|
|
last_struct = (VkBaseOutStructure *)&pl_robustness_features;
|
|
device_extensions.push_back("VK_EXT_pipeline_robustness");
|
|
}
|
|
|
|
VkPhysicalDeviceCooperativeMatrixFeaturesKHR coopmat_features;
|
|
coopmat_features.pNext = nullptr;
|
|
coopmat_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COOPERATIVE_MATRIX_FEATURES_KHR;
|
|
coopmat_features.cooperativeMatrix = VK_FALSE;
|
|
|
|
if (device->coopmat_support) {
|
|
last_struct->pNext = (VkBaseOutStructure *)&coopmat_features;
|
|
last_struct = (VkBaseOutStructure *)&coopmat_features;
|
|
}
|
|
|
|
#if defined(VK_NV_cooperative_matrix2)
|
|
VkPhysicalDeviceCooperativeMatrix2FeaturesNV coopmat2_features {};
|
|
coopmat2_features.pNext = nullptr;
|
|
coopmat2_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COOPERATIVE_MATRIX_2_FEATURES_NV;
|
|
if (coopmat2_support) {
|
|
last_struct->pNext = (VkBaseOutStructure *)&coopmat2_features;
|
|
last_struct = (VkBaseOutStructure *)&coopmat2_features;
|
|
device_extensions.push_back("VK_NV_cooperative_matrix2");
|
|
}
|
|
#endif
|
|
|
|
vkGetPhysicalDeviceFeatures2(device->physical_device, &device_features2);
|
|
|
|
device->fp16 = device->fp16 && vk12_features.shaderFloat16;
|
|
|
|
device->pipeline_robustness = pl_robustness_features.pipelineRobustness;
|
|
|
|
device->coopmat_support = device->coopmat_support && coopmat_features.cooperativeMatrix;
|
|
|
|
if (coopmat2_support) {
|
|
#if defined(VK_NV_cooperative_matrix2) && defined(GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT)
|
|
if (coopmat2_features.cooperativeMatrixWorkgroupScope &&
|
|
coopmat2_features.cooperativeMatrixFlexibleDimensions &&
|
|
coopmat2_features.cooperativeMatrixReductions &&
|
|
coopmat2_features.cooperativeMatrixConversions &&
|
|
coopmat2_features.cooperativeMatrixPerElementOperations &&
|
|
coopmat2_features.cooperativeMatrixTensorAddressing &&
|
|
coopmat2_features.cooperativeMatrixBlockLoads &&
|
|
vk12_features.bufferDeviceAddress) {
|
|
|
|
std::vector<VkCooperativeMatrixFlexibleDimensionsPropertiesNV> flexible_dimensions;
|
|
uint32_t count = 0;
|
|
|
|
PFN_vkGetPhysicalDeviceCooperativeMatrixFlexibleDimensionsPropertiesNV
|
|
_vkGetPhysicalDeviceCooperativeMatrixFlexibleDimensionsPropertiesNV =
|
|
(PFN_vkGetPhysicalDeviceCooperativeMatrixFlexibleDimensionsPropertiesNV)
|
|
vk_instance.instance.getProcAddr("vkGetPhysicalDeviceCooperativeMatrixFlexibleDimensionsPropertiesNV");
|
|
|
|
_vkGetPhysicalDeviceCooperativeMatrixFlexibleDimensionsPropertiesNV(device->physical_device, &count, nullptr);
|
|
|
|
VkCooperativeMatrixFlexibleDimensionsPropertiesNV empty_prop {};
|
|
empty_prop.sType = VK_STRUCTURE_TYPE_COOPERATIVE_MATRIX_FLEXIBLE_DIMENSIONS_PROPERTIES_NV;
|
|
flexible_dimensions.resize(count, empty_prop);
|
|
|
|
_vkGetPhysicalDeviceCooperativeMatrixFlexibleDimensionsPropertiesNV(device->physical_device, &count, flexible_dimensions.data());
|
|
|
|
bool found_fp16_128 = false,
|
|
found_fp16_256 = false,
|
|
found_fp32_128 = false,
|
|
found_fp32_256 = false;
|
|
// need to support fp16*fp16 with fp16/fp32 accumulator, for workgroupsize 128
|
|
// with 32x16x16 and 256 with 32x32x16.
|
|
for (auto &prop : flexible_dimensions) {
|
|
if (prop.saturatingAccumulation == VK_FALSE &&
|
|
prop.scope == VK_SCOPE_WORKGROUP_KHR &&
|
|
prop.AType == VK_COMPONENT_TYPE_FLOAT16_KHR &&
|
|
prop.BType == VK_COMPONENT_TYPE_FLOAT16_KHR) {
|
|
|
|
if (prop.workgroupInvocations == 128 &&
|
|
prop.MGranularity <= 32 &&
|
|
prop.NGranularity <= 16 &&
|
|
prop.KGranularity <= 16) {
|
|
if (prop.CType == VK_COMPONENT_TYPE_FLOAT16_KHR &&
|
|
prop.ResultType == VK_COMPONENT_TYPE_FLOAT16_KHR) {
|
|
found_fp16_128 = true;
|
|
}
|
|
if (prop.CType == VK_COMPONENT_TYPE_FLOAT32_KHR &&
|
|
prop.ResultType == VK_COMPONENT_TYPE_FLOAT32_KHR) {
|
|
found_fp32_128 = true;
|
|
}
|
|
}
|
|
if (prop.workgroupInvocations == 256 &&
|
|
prop.MGranularity <= 32 &&
|
|
prop.NGranularity <= 32 &&
|
|
prop.KGranularity <= 16) {
|
|
if (prop.CType == VK_COMPONENT_TYPE_FLOAT16_KHR &&
|
|
prop.ResultType == VK_COMPONENT_TYPE_FLOAT16_KHR) {
|
|
found_fp16_256 = true;
|
|
}
|
|
if (prop.CType == VK_COMPONENT_TYPE_FLOAT32_KHR &&
|
|
prop.ResultType == VK_COMPONENT_TYPE_FLOAT32_KHR) {
|
|
found_fp32_256 = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (found_fp16_128 && found_fp16_256 &&
|
|
found_fp32_128 && found_fp32_256 &&
|
|
coopmat2_props.cooperativeMatrixFlexibleDimensionsMaxDimension >= 512) {
|
|
device->coopmat2 = true;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
if (!vk11_features.storageBuffer16BitAccess) {
|
|
std::cerr << "ggml_vulkan: device " << GGML_VK_NAME << idx << " does not support 16-bit storage." << std::endl;
|
|
throw std::runtime_error("Unsupported device");
|
|
}
|
|
|
|
device_extensions.push_back("VK_KHR_16bit_storage");
|
|
|
|
#ifdef GGML_VULKAN_VALIDATE
|
|
device_extensions.push_back("VK_KHR_shader_non_semantic_info");
|
|
#endif
|
|
|
|
if (device->fp16) {
|
|
device_extensions.push_back("VK_KHR_shader_float16_int8");
|
|
}
|
|
|
|
if (device->coopmat_support) {
|
|
// Query supported shapes
|
|
std::vector<VkCooperativeMatrixPropertiesKHR> cm_props;
|
|
|
|
PFN_vkGetPhysicalDeviceCooperativeMatrixPropertiesKHR pfn_vkGetPhysicalDeviceCooperativeMatrixPropertiesKHR =
|
|
(PFN_vkGetPhysicalDeviceCooperativeMatrixPropertiesKHR)vkGetInstanceProcAddr(vk_instance.instance, "vkGetPhysicalDeviceCooperativeMatrixPropertiesKHR");
|
|
|
|
uint32_t cm_props_num;
|
|
|
|
pfn_vkGetPhysicalDeviceCooperativeMatrixPropertiesKHR(device->physical_device, &cm_props_num, nullptr);
|
|
|
|
cm_props.resize(cm_props_num);
|
|
|
|
for (auto& prop : cm_props) {
|
|
prop.sType = VK_STRUCTURE_TYPE_COOPERATIVE_MATRIX_PROPERTIES_KHR;
|
|
}
|
|
|
|
pfn_vkGetPhysicalDeviceCooperativeMatrixPropertiesKHR(device->physical_device, &cm_props_num, cm_props.data());
|
|
|
|
VK_LOG_DEBUG("ggml_vulkan: Cooperative Matrix Shapes: " << cm_props.size());
|
|
|
|
for (auto& prop : cm_props) {
|
|
VK_LOG_DEBUG("ggml_vulkan: M: " << prop.MSize << " N: " << prop.NSize << " K: " << prop.KSize << " A: " << vk::to_string((vk::ComponentTypeKHR)prop.AType) << " B: " << vk::to_string((vk::ComponentTypeKHR)prop.BType) << " C: " << vk::to_string((vk::ComponentTypeKHR)prop.CType) << " Result: " << vk::to_string((vk::ComponentTypeKHR)prop.ResultType) << " saturatingAccumulation: " << prop.saturatingAccumulation << " scope: " << vk::to_string((vk::ScopeKHR)prop.scope));
|
|
|
|
if ((vk::ComponentTypeKHR)prop.AType == vk::ComponentTypeKHR::eFloat16 &&
|
|
(vk::ComponentTypeKHR)prop.BType == vk::ComponentTypeKHR::eFloat16 &&
|
|
(vk::ScopeKHR)prop.scope == vk::ScopeKHR::eSubgroup
|
|
) {
|
|
if ((vk::ComponentTypeKHR)prop.CType == vk::ComponentTypeKHR::eFloat32 &&
|
|
(vk::ComponentTypeKHR)prop.ResultType == vk::ComponentTypeKHR::eFloat32) {
|
|
// coopmat sizes not set yet
|
|
if (device->coopmat_m == 0) {
|
|
device->coopmat_acc_f32_support = true;
|
|
device->coopmat_m = prop.MSize;
|
|
device->coopmat_n = prop.NSize;
|
|
device->coopmat_k = prop.KSize;
|
|
} else if (device->coopmat_m == prop.MSize && device->coopmat_n == prop.NSize && device->coopmat_k == prop.KSize) {
|
|
// Only enable if shape is identical
|
|
device->coopmat_acc_f32_support = true;
|
|
}
|
|
} else if ((vk::ComponentTypeKHR)prop.CType == vk::ComponentTypeKHR::eFloat16 &&
|
|
(vk::ComponentTypeKHR)prop.ResultType == vk::ComponentTypeKHR::eFloat16) {
|
|
// coopmat sizes not set yet
|
|
if (device->coopmat_m == 0) {
|
|
device->coopmat_acc_f16_support = true;
|
|
device->coopmat_m = prop.MSize;
|
|
device->coopmat_n = prop.NSize;
|
|
device->coopmat_k = prop.KSize;
|
|
} else if (device->coopmat_m == prop.MSize && device->coopmat_n == prop.NSize && device->coopmat_k == prop.KSize) {
|
|
// Only enable if shape is identical
|
|
device->coopmat_acc_f16_support = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (device->coopmat_m == 0) {
|
|
// No suitable matmul mode found
|
|
GGML_LOG_DEBUG("ggml_vulkan: WARNING: No suitable matrix core mode found. Disabling matrix cores.\n");
|
|
device->coopmat_support = false;
|
|
}
|
|
}
|
|
|
|
if (device->coopmat_support) {
|
|
device_extensions.push_back("VK_KHR_cooperative_matrix");
|
|
}
|
|
|
|
device->name = GGML_VK_NAME + std::to_string(idx);
|
|
|
|
device_create_info = {
|
|
vk::DeviceCreateFlags(),
|
|
device_queue_create_infos,
|
|
{},
|
|
device_extensions
|
|
};
|
|
device_create_info.setPNext(&device_features2);
|
|
device->device = device->physical_device.createDevice(device_create_info);
|
|
|
|
// Queues
|
|
ggml_vk_create_queue(device, device->compute_queue, compute_queue_family_index, 0, { vk::PipelineStageFlagBits::eComputeShader | vk::PipelineStageFlagBits::eTransfer }, false);
|
|
|
|
// Shaders
|
|
// Disable matmul tile sizes early if performance low or not supported
|
|
switch (device->vendor_id) {
|
|
#ifndef GGML_VULKAN_RUN_TESTS
|
|
case VK_VENDOR_ID_AMD:
|
|
case VK_VENDOR_ID_INTEL:
|
|
device->mul_mat_l = false;
|
|
device->mul_mat_m = true;
|
|
device->mul_mat_s = true;
|
|
device->mul_mat_id_l = false;
|
|
device->mul_mat_id_m = true;
|
|
device->mul_mat_id_s = true;
|
|
break;
|
|
case VK_VENDOR_ID_APPLE:
|
|
device->mul_mat_l = false;
|
|
device->mul_mat_m = true;
|
|
device->mul_mat_s = false;
|
|
device->mul_mat_id_l = false;
|
|
device->mul_mat_id_m = true;
|
|
device->mul_mat_id_s = false;
|
|
break;
|
|
#endif
|
|
default:
|
|
device->mul_mat_l = true;
|
|
device->mul_mat_m = true;
|
|
device->mul_mat_s = true;
|
|
device->mul_mat_id_l = true;
|
|
device->mul_mat_id_m = true;
|
|
device->mul_mat_id_s = true;
|
|
break;
|
|
}
|
|
|
|
ggml_vk_load_shaders(device);
|
|
|
|
if (!device->single_queue) {
|
|
const uint32_t transfer_queue_index = compute_queue_family_index == transfer_queue_family_index ? 1 : 0;
|
|
ggml_vk_create_queue(device, device->transfer_queue, transfer_queue_family_index, transfer_queue_index, { vk::PipelineStageFlagBits::eTransfer }, true);
|
|
} else {
|
|
// TODO: Use pointer or reference to avoid copy
|
|
device->transfer_queue = device->compute_queue;
|
|
}
|
|
|
|
device->buffer_type = {
|
|
/* .iface = */ ggml_backend_vk_buffer_type_interface,
|
|
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_vk_reg(), idx),
|
|
/* .context = */ new ggml_backend_vk_buffer_type_context{ device->name, device },
|
|
};
|
|
|
|
device->fence = device->device.createFence({});
|
|
|
|
device->idx = idx;
|
|
|
|
return device;
|
|
}
|
|
|
|
return vk_instance.devices[idx];
|
|
}
|
|
|
|
|
|
static void ggml_vk_print_gpu_info(size_t idx) {
|
|
GGML_ASSERT(idx < vk_instance.device_indices.size());
|
|
size_t dev_num = vk_instance.device_indices[idx];
|
|
VK_LOG_DEBUG("ggml_vk_print_gpu_info(" << dev_num << ")");
|
|
GGML_ASSERT(vk_instance_initialized);
|
|
|
|
std::vector<vk::PhysicalDevice> devices = vk_instance.instance.enumeratePhysicalDevices();
|
|
|
|
if (dev_num >= devices.size()) {
|
|
std::cerr << "ggml_vulkan: Device with index " << dev_num << " does not exist." << std::endl;
|
|
throw std::runtime_error("Device not found");
|
|
}
|
|
|
|
vk::PhysicalDevice physical_device = devices[dev_num];
|
|
std::vector<vk::ExtensionProperties> ext_props = physical_device.enumerateDeviceExtensionProperties();
|
|
|
|
vk::PhysicalDeviceProperties2 props2;
|
|
vk::PhysicalDeviceMaintenance3Properties props3;
|
|
vk::PhysicalDeviceSubgroupProperties subgroup_props;
|
|
vk::PhysicalDeviceDriverProperties driver_props;
|
|
props2.pNext = &props3;
|
|
props3.pNext = &subgroup_props;
|
|
subgroup_props.pNext = &driver_props;
|
|
physical_device.getProperties2(&props2);
|
|
|
|
const size_t subgroup_size = subgroup_props.subgroupSize;
|
|
const bool uma = props2.properties.deviceType == vk::PhysicalDeviceType::eIntegratedGpu;
|
|
|
|
bool fp16_storage = false;
|
|
bool fp16_compute = false;
|
|
bool coopmat_support = false;
|
|
bool coopmat2_support = false;
|
|
|
|
for (auto properties : ext_props) {
|
|
if (strcmp("VK_KHR_16bit_storage", properties.extensionName) == 0) {
|
|
fp16_storage = true;
|
|
} else if (strcmp("VK_KHR_shader_float16_int8", properties.extensionName) == 0) {
|
|
fp16_compute = true;
|
|
} else if (strcmp("VK_KHR_cooperative_matrix", properties.extensionName) == 0 &&
|
|
!getenv("GGML_VK_DISABLE_COOPMAT")) {
|
|
coopmat_support = true;
|
|
} else if (strcmp("VK_NV_cooperative_matrix2", properties.extensionName) == 0 &&
|
|
!getenv("GGML_VK_DISABLE_COOPMAT2")) {
|
|
coopmat2_support = true;
|
|
}
|
|
}
|
|
|
|
if (props2.properties.vendorID == VK_VENDOR_ID_INTEL || (props2.properties.vendorID == VK_VENDOR_ID_AMD && driver_props.driverID == vk::DriverId::eAmdProprietary)) {
|
|
// Intel drivers don't support coopmat properly yet
|
|
// Only RADV supports coopmat properly on AMD
|
|
coopmat_support = false;
|
|
}
|
|
|
|
const char* GGML_VK_DISABLE_F16 = getenv("GGML_VK_DISABLE_F16");
|
|
bool force_disable_f16 = GGML_VK_DISABLE_F16 != nullptr;
|
|
|
|
bool fp16 = !force_disable_f16 && fp16_storage && fp16_compute;
|
|
|
|
vk::PhysicalDeviceFeatures device_features = physical_device.getFeatures();
|
|
|
|
VkPhysicalDeviceFeatures2 device_features2;
|
|
device_features2.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2;
|
|
device_features2.pNext = nullptr;
|
|
device_features2.features = (VkPhysicalDeviceFeatures)device_features;
|
|
|
|
VkPhysicalDeviceVulkan11Features vk11_features;
|
|
vk11_features.pNext = nullptr;
|
|
vk11_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_1_FEATURES;
|
|
device_features2.pNext = &vk11_features;
|
|
|
|
VkPhysicalDeviceVulkan12Features vk12_features;
|
|
vk12_features.pNext = nullptr;
|
|
vk12_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VULKAN_1_2_FEATURES;
|
|
vk11_features.pNext = &vk12_features;
|
|
|
|
// Pointer to the last chain element
|
|
VkBaseOutStructure * last_struct = (VkBaseOutStructure *)&vk12_features;
|
|
|
|
VkPhysicalDeviceCooperativeMatrixFeaturesKHR coopmat_features;
|
|
coopmat_features.pNext = nullptr;
|
|
coopmat_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COOPERATIVE_MATRIX_FEATURES_KHR;
|
|
coopmat_features.cooperativeMatrix = VK_FALSE;
|
|
|
|
if (coopmat_support) {
|
|
last_struct->pNext = (VkBaseOutStructure *)&coopmat_features;
|
|
last_struct = (VkBaseOutStructure *)&coopmat_features;
|
|
}
|
|
|
|
vkGetPhysicalDeviceFeatures2(physical_device, &device_features2);
|
|
|
|
fp16 = fp16 && vk12_features.shaderFloat16;
|
|
|
|
coopmat_support = coopmat_support && coopmat_features.cooperativeMatrix;
|
|
|
|
std::string matrix_cores = coopmat2_support ? "NV_coopmat2" : coopmat_support ? "KHR_coopmat" : "none";
|
|
|
|
std::string device_name = props2.properties.deviceName.data();
|
|
GGML_LOG_DEBUG("ggml_vulkan: %zu = %s (%s) | uma: %d | fp16: %d | warp size: %zu | matrix cores: %s\n",
|
|
idx, device_name.c_str(), driver_props.driverName.data(), uma, fp16, subgroup_size, matrix_cores.c_str());
|
|
|
|
if (props2.properties.deviceType == vk::PhysicalDeviceType::eCpu) {
|
|
GGML_LOG_DEBUG("ggml_vulkan: Warning: Device type is CPU. This is probably not the device you want.\n");
|
|
}
|
|
}
|
|
|
|
static bool ggml_vk_instance_validation_ext_available(const std::vector<vk::ExtensionProperties>& instance_extensions);
|
|
static bool ggml_vk_instance_portability_enumeration_ext_available(const std::vector<vk::ExtensionProperties>& instance_extensions);
|
|
|
|
void ggml_vk_instance_init() {
|
|
if (vk_instance_initialized) {
|
|
return;
|
|
}
|
|
VK_LOG_DEBUG("ggml_vk_instance_init()");
|
|
|
|
vk_instance_initialized = true;
|
|
|
|
vk::ApplicationInfo app_info{ "ggml-vulkan", 1, nullptr, 0, VK_API_VERSION };
|
|
|
|
const std::vector<vk::ExtensionProperties> instance_extensions = vk::enumerateInstanceExtensionProperties();
|
|
const bool validation_ext = ggml_vk_instance_validation_ext_available(instance_extensions);
|
|
#ifdef __APPLE__
|
|
const bool portability_enumeration_ext = ggml_vk_instance_portability_enumeration_ext_available(instance_extensions);
|
|
#endif
|
|
|
|
std::vector<const char*> layers;
|
|
|
|
if (validation_ext) {
|
|
layers.push_back("VK_LAYER_KHRONOS_validation");
|
|
}
|
|
std::vector<const char*> extensions;
|
|
if (validation_ext) {
|
|
extensions.push_back("VK_EXT_validation_features");
|
|
}
|
|
#ifdef __APPLE__
|
|
if (portability_enumeration_ext) {
|
|
extensions.push_back("VK_KHR_portability_enumeration");
|
|
}
|
|
#endif
|
|
vk::InstanceCreateInfo instance_create_info(vk::InstanceCreateFlags{}, &app_info, layers, extensions);
|
|
#ifdef __APPLE__
|
|
if (portability_enumeration_ext) {
|
|
instance_create_info.flags |= vk::InstanceCreateFlagBits::eEnumeratePortabilityKHR;
|
|
}
|
|
#endif
|
|
|
|
std::vector<vk::ValidationFeatureEnableEXT> features_enable;
|
|
vk::ValidationFeaturesEXT validation_features;
|
|
|
|
if (validation_ext) {
|
|
features_enable = { vk::ValidationFeatureEnableEXT::eBestPractices };
|
|
validation_features = {
|
|
features_enable,
|
|
{},
|
|
};
|
|
validation_features.setPNext(nullptr);
|
|
instance_create_info.setPNext(&validation_features);
|
|
GGML_LOG_DEBUG("ggml_vulkan: Validation layers enabled\n");
|
|
}
|
|
vk_instance.instance = vk::createInstance(instance_create_info);
|
|
|
|
size_t num_available_devices = vk_instance.instance.enumeratePhysicalDevices().size();
|
|
|
|
// Emulate behavior of CUDA_VISIBLE_DEVICES for Vulkan
|
|
char * devices_env = getenv("GGML_VK_VISIBLE_DEVICES");
|
|
if (devices_env != nullptr) {
|
|
std::string devices(devices_env);
|
|
std::replace(devices.begin(), devices.end(), ',', ' ');
|
|
|
|
std::stringstream ss(devices);
|
|
size_t tmp;
|
|
while (ss >> tmp) {
|
|
if(tmp >= num_available_devices) {
|
|
std::cerr << "ggml_vulkan: Invalid device index " << tmp << " in GGML_VK_VISIBLE_DEVICES." << std::endl;
|
|
throw std::runtime_error("Invalid Vulkan device index");
|
|
}
|
|
vk_instance.device_indices.push_back(tmp);
|
|
}
|
|
} else {
|
|
std::vector<vk::PhysicalDevice> devices = vk_instance.instance.enumeratePhysicalDevices();
|
|
|
|
// Make sure at least one device exists
|
|
if (devices.empty()) {
|
|
std::cerr << "ggml_vulkan: Error: No devices found." << std::endl;
|
|
GGML_ABORT("fatal error");
|
|
}
|
|
|
|
// Default to using all dedicated GPUs
|
|
for (size_t i = 0; i < devices.size(); i++) {
|
|
vk::PhysicalDeviceProperties2 new_props;
|
|
vk::PhysicalDeviceDriverProperties new_driver;
|
|
vk::PhysicalDeviceIDProperties new_id;
|
|
new_props.pNext = &new_driver;
|
|
new_driver.pNext = &new_id;
|
|
devices[i].getProperties2(&new_props);
|
|
|
|
if (new_props.properties.deviceType == vk::PhysicalDeviceType::eDiscreteGpu) {
|
|
// Check if there are two physical devices corresponding to the same GPU
|
|
auto old_device = std::find_if(
|
|
vk_instance.device_indices.begin(),
|
|
vk_instance.device_indices.end(),
|
|
[&devices, &new_id](const size_t k){
|
|
vk::PhysicalDeviceProperties2 old_props;
|
|
vk::PhysicalDeviceIDProperties old_id;
|
|
old_props.pNext = &old_id;
|
|
devices[k].getProperties2(&old_props);
|
|
return std::equal(std::begin(old_id.deviceUUID), std::end(old_id.deviceUUID), std::begin(new_id.deviceUUID));
|
|
}
|
|
);
|
|
if (old_device == vk_instance.device_indices.end()) {
|
|
vk_instance.device_indices.push_back(i);
|
|
} else {
|
|
// There can be two physical devices corresponding to the same GPU if there are 2 different drivers
|
|
// This can cause error when splitting layers aross the devices, need to keep only 1
|
|
VK_LOG_DEBUG("Device " << i << " and device " << *old_device << " have the same deviceUUID");
|
|
|
|
vk::PhysicalDeviceProperties2 old_props;
|
|
vk::PhysicalDeviceDriverProperties old_driver;
|
|
old_props.pNext = &old_driver;
|
|
devices[*old_device].getProperties2(&old_props);
|
|
|
|
std::map<vk::DriverId, int> driver_priorities {};
|
|
int old_priority = std::numeric_limits<int>::max();
|
|
int new_priority = std::numeric_limits<int>::max();
|
|
|
|
// Check https://registry.khronos.org/vulkan/specs/1.3-extensions/man/html/VkDriverId.html for the list of driver id
|
|
// Smaller number -> higher priority
|
|
switch (old_props.properties.vendorID) {
|
|
case VK_VENDOR_ID_AMD:
|
|
driver_priorities[vk::DriverId::eMesaRadv] = 1;
|
|
driver_priorities[vk::DriverId::eAmdOpenSource] = 2;
|
|
driver_priorities[vk::DriverId::eAmdProprietary] = 3;
|
|
break;
|
|
case VK_VENDOR_ID_INTEL:
|
|
driver_priorities[vk::DriverId::eIntelOpenSourceMESA] = 1;
|
|
driver_priorities[vk::DriverId::eIntelProprietaryWindows] = 2;
|
|
break;
|
|
case VK_VENDOR_ID_NVIDIA:
|
|
driver_priorities[vk::DriverId::eNvidiaProprietary] = 1;
|
|
#if defined(VK_API_VERSION_1_3) && VK_HEADER_VERSION >= 235
|
|
driver_priorities[vk::DriverId::eMesaNvk] = 2;
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
if (driver_priorities.count(old_driver.driverID)) {
|
|
old_priority = driver_priorities[old_driver.driverID];
|
|
}
|
|
if (driver_priorities.count(new_driver.driverID)) {
|
|
new_priority = driver_priorities[new_driver.driverID];
|
|
}
|
|
|
|
if (new_priority < old_priority) {
|
|
auto r = std::remove(vk_instance.device_indices.begin(), vk_instance.device_indices.end(), *old_device);
|
|
vk_instance.device_indices.erase(r, vk_instance.device_indices.end());
|
|
vk_instance.device_indices.push_back(i);
|
|
|
|
VK_LOG_DEBUG("Prioritize device " << i << " driver " << new_driver.driverName << " over device " << *old_device << " driver " << old_driver.driverName);
|
|
}
|
|
else {
|
|
VK_LOG_DEBUG("Prioritize device " << *old_device << " driver " << old_driver.driverName << " over device " << i << " driver " << new_driver.driverName << std::endl);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If no dedicated GPUs found, fall back to GPU 0
|
|
if (vk_instance.device_indices.empty()) {
|
|
vk_instance.device_indices.push_back(0);
|
|
}
|
|
}
|
|
GGML_LOG_DEBUG("ggml_vulkan: Found %zu Vulkan devices:\n", vk_instance.device_indices.size());
|
|
|
|
for (size_t i = 0; i < vk_instance.device_indices.size(); i++) {
|
|
ggml_vk_print_gpu_info(i);
|
|
}
|
|
}
|
|
|
|
static void ggml_vk_init(ggml_backend_vk_context * ctx, size_t idx) {
|
|
VK_LOG_DEBUG("ggml_vk_init(" << ctx->name << ", " << idx << ")");
|
|
ggml_vk_instance_init();
|
|
GGML_ASSERT(idx < vk_instance.device_indices.size());
|
|
|
|
ctx->name = GGML_VK_NAME + std::to_string(idx);
|
|
|
|
ctx->device = ggml_vk_get_device(idx);
|
|
|
|
ctx->semaphore_idx = 0;
|
|
ctx->event_idx = 0;
|
|
|
|
ctx->prealloc_size_x = 0;
|
|
ctx->prealloc_size_y = 0;
|
|
ctx->prealloc_size_split_k = 0;
|
|
|
|
ctx->fence = ctx->device->device.createFence({});
|
|
|
|
#ifdef GGML_VULKAN_CHECK_RESULTS
|
|
const char* skip_checks = getenv("GGML_VULKAN_SKIP_CHECKS");
|
|
vk_skip_checks = (skip_checks == NULL ? 0 : atoi(skip_checks));
|
|
const char* output_tensor = getenv("GGML_VULKAN_OUTPUT_TENSOR");
|
|
vk_output_tensor = (output_tensor == NULL ? 0 : atoi(output_tensor));
|
|
#endif
|
|
}
|
|
|
|
static vk_pipeline ggml_vk_get_to_fp16(ggml_backend_vk_context * ctx, ggml_type type) {
|
|
VK_LOG_DEBUG("ggml_vk_get_to_fp16()");
|
|
switch (type) {
|
|
case GGML_TYPE_F32:
|
|
case GGML_TYPE_Q4_0:
|
|
case GGML_TYPE_Q4_1:
|
|
case GGML_TYPE_Q5_0:
|
|
case GGML_TYPE_Q5_1:
|
|
case GGML_TYPE_Q8_0:
|
|
case GGML_TYPE_Q2_K:
|
|
case GGML_TYPE_Q3_K:
|
|
case GGML_TYPE_Q4_K:
|
|
case GGML_TYPE_Q5_K:
|
|
case GGML_TYPE_Q6_K:
|
|
case GGML_TYPE_IQ4_NL:
|
|
break;
|
|
default:
|
|
return nullptr;
|
|
}
|
|
|
|
return ctx->device->pipeline_dequant[type];
|
|
}
|
|
|
|
static vk_matmul_pipeline ggml_vk_get_mul_mat_mat_pipeline(ggml_backend_vk_context * ctx, ggml_type src0_type, ggml_type src1_type, ggml_prec prec) {
|
|
VK_LOG_DEBUG("ggml_vk_get_mul_mat_mat_pipeline(" << ggml_type_name(src0_type) << ", " << ggml_type_name(src1_type) << ")");
|
|
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
|
|
return ctx->device->pipeline_matmul_f32;
|
|
}
|
|
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F16) {
|
|
return ctx->device->pipeline_matmul_f32_f16;
|
|
}
|
|
if (prec == GGML_PREC_DEFAULT && ctx->device->fp16) {
|
|
if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) {
|
|
return ctx->device->pipeline_matmul_f16_f32.f16acc;
|
|
}
|
|
if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) {
|
|
return ctx->device->pipeline_matmul_f16.f16acc;
|
|
}
|
|
} else {
|
|
if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) {
|
|
return ctx->device->pipeline_matmul_f16_f32.f32acc;
|
|
}
|
|
if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) {
|
|
return ctx->device->pipeline_matmul_f16.f32acc;
|
|
}
|
|
}
|
|
|
|
if (src1_type != GGML_TYPE_F32 && !ctx->device->coopmat2) {
|
|
return nullptr;
|
|
}
|
|
|
|
switch (src0_type) {
|
|
case GGML_TYPE_Q4_0:
|
|
case GGML_TYPE_Q4_1:
|
|
case GGML_TYPE_Q5_0:
|
|
case GGML_TYPE_Q5_1:
|
|
case GGML_TYPE_Q8_0:
|
|
case GGML_TYPE_Q2_K:
|
|
case GGML_TYPE_Q3_K:
|
|
case GGML_TYPE_Q4_K:
|
|
case GGML_TYPE_Q5_K:
|
|
case GGML_TYPE_Q6_K:
|
|
case GGML_TYPE_IQ4_NL:
|
|
break;
|
|
default:
|
|
return nullptr;
|
|
}
|
|
|
|
if (ctx->device->coopmat2) {
|
|
assert(src1_type == GGML_TYPE_F16);
|
|
return ctx->device->pipeline_dequant_mul_mat_mat_f16[src0_type].f16acc;
|
|
}
|
|
return ctx->device->fp16 ? ctx->device->pipeline_dequant_mul_mat_mat[src0_type].f16acc : ctx->device->pipeline_dequant_mul_mat_mat[src0_type].f32acc;
|
|
}
|
|
|
|
static vk_pipeline ggml_vk_get_dequantize_mul_mat_vec(ggml_backend_vk_context * ctx, ggml_type a_type, ggml_type b_type) {
|
|
VK_LOG_DEBUG("ggml_vk_get_dequantize_mul_mat_vec()");
|
|
GGML_ASSERT(b_type == GGML_TYPE_F32 || b_type == GGML_TYPE_F16);
|
|
|
|
switch (a_type) {
|
|
case GGML_TYPE_F32:
|
|
case GGML_TYPE_F16:
|
|
case GGML_TYPE_Q4_0:
|
|
case GGML_TYPE_Q4_1:
|
|
case GGML_TYPE_Q5_0:
|
|
case GGML_TYPE_Q5_1:
|
|
case GGML_TYPE_Q8_0:
|
|
case GGML_TYPE_Q2_K:
|
|
case GGML_TYPE_Q3_K:
|
|
case GGML_TYPE_Q4_K:
|
|
case GGML_TYPE_Q5_K:
|
|
case GGML_TYPE_Q6_K:
|
|
case GGML_TYPE_IQ4_NL:
|
|
break;
|
|
default:
|
|
return nullptr;
|
|
}
|
|
|
|
return b_type == GGML_TYPE_F32 ? ctx->device->pipeline_dequant_mul_mat_vec_f32_f32[a_type] : ctx->device->pipeline_dequant_mul_mat_vec_f16_f32[a_type];
|
|
}
|
|
|
|
static vk_matmul_pipeline ggml_vk_get_mul_mat_mat_id_pipeline(ggml_backend_vk_context * ctx, ggml_type src0_type, ggml_type src1_type, ggml_prec prec) {
|
|
VK_LOG_DEBUG("ggml_vk_get_mul_mat_mat_id_pipeline()");
|
|
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
|
|
return ctx->device->pipeline_matmul_id_f32;
|
|
}
|
|
if (prec == GGML_PREC_DEFAULT && ctx->device->fp16) {
|
|
if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) {
|
|
return ctx->device->pipeline_matmul_id_f16_f32.f16acc;
|
|
}
|
|
if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) {
|
|
return ctx->device->pipeline_matmul_id_f16.f16acc;
|
|
}
|
|
} else {
|
|
if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) {
|
|
return ctx->device->pipeline_matmul_id_f16_f32.f32acc;
|
|
}
|
|
if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) {
|
|
return ctx->device->pipeline_matmul_id_f16.f32acc;
|
|
}
|
|
}
|
|
|
|
GGML_ASSERT(src1_type == GGML_TYPE_F32);
|
|
|
|
switch (src0_type) {
|
|
case GGML_TYPE_Q4_0:
|
|
case GGML_TYPE_Q4_1:
|
|
case GGML_TYPE_Q5_0:
|
|
case GGML_TYPE_Q5_1:
|
|
case GGML_TYPE_Q8_0:
|
|
case GGML_TYPE_Q2_K:
|
|
case GGML_TYPE_Q3_K:
|
|
case GGML_TYPE_Q4_K:
|
|
case GGML_TYPE_Q5_K:
|
|
case GGML_TYPE_Q6_K:
|
|
case GGML_TYPE_IQ4_NL:
|
|
break;
|
|
default:
|
|
return nullptr;
|
|
}
|
|
|
|
return ctx->device->fp16 ? ctx->device->pipeline_dequant_mul_mat_mat_id[src0_type].f16acc : ctx->device->pipeline_dequant_mul_mat_mat_id[src0_type].f32acc;
|
|
}
|
|
|
|
static vk_pipeline ggml_vk_get_dequantize_mul_mat_vec_id(ggml_backend_vk_context * ctx, ggml_type a_type, ggml_type b_type) {
|
|
VK_LOG_DEBUG("ggml_vk_get_dequantize_mul_mat_vec()");
|
|
GGML_ASSERT(b_type == GGML_TYPE_F32);
|
|
|
|
switch (a_type) {
|
|
case GGML_TYPE_F32:
|
|
case GGML_TYPE_F16:
|
|
case GGML_TYPE_Q4_0:
|
|
case GGML_TYPE_Q4_1:
|
|
case GGML_TYPE_Q5_0:
|
|
case GGML_TYPE_Q5_1:
|
|
case GGML_TYPE_Q8_0:
|
|
case GGML_TYPE_Q2_K:
|
|
case GGML_TYPE_Q3_K:
|
|
case GGML_TYPE_Q4_K:
|
|
case GGML_TYPE_Q5_K:
|
|
case GGML_TYPE_Q6_K:
|
|
case GGML_TYPE_IQ4_NL:
|
|
break;
|
|
default:
|
|
return nullptr;
|
|
}
|
|
|
|
return ctx->device->pipeline_dequant_mul_mat_vec_id_f32[a_type];
|
|
}
|
|
|
|
static vk_buffer ggml_vk_pool_malloc(ggml_backend_vk_context * ctx, size_t size) {
|
|
VK_LOG_DEBUG("ggml_vk_pool_malloc(" << size << ")");
|
|
VK_LOG_MEMORY("ggml_vk_pool_malloc");
|
|
|
|
int best_i = -1;
|
|
size_t best_size = std::numeric_limits<size_t>::max(); //smallest unused buffer that fits our needs
|
|
int worst_i = -1;
|
|
size_t worst_size = 0; //largest unused buffer seen so far
|
|
for (int i = 0; i < MAX_VK_BUFFERS; ++i) {
|
|
vk_buffer &b = ctx->buffer_pool[i];
|
|
if (b != nullptr && b->size >= size && b->size < best_size) {
|
|
best_i = i;
|
|
best_size = b->size;
|
|
}
|
|
if (b != nullptr && b->size > worst_size) {
|
|
worst_i = i;
|
|
worst_size = b->size;
|
|
}
|
|
}
|
|
if(best_i != -1) {
|
|
//found the smallest buffer that fits our needs
|
|
vk_buffer b = ctx->buffer_pool[best_i];
|
|
ctx->buffer_pool[best_i].reset();
|
|
return b;
|
|
}
|
|
if(worst_i != -1) {
|
|
//no buffer that fits our needs, resize largest one to save memory
|
|
vk_buffer& b = ctx->buffer_pool[worst_i];
|
|
ggml_vk_destroy_buffer(b);
|
|
}
|
|
|
|
return ggml_vk_create_buffer_device(ctx->device, size);
|
|
}
|
|
|
|
static void ggml_vk_pool_free(ggml_backend_vk_context * ctx, vk_buffer& buffer) {
|
|
VK_LOG_DEBUG("ggml_vk_pool_free(" << buffer->size << ")");
|
|
for (int i = 0; i < MAX_VK_BUFFERS; ++i) {
|
|
vk_buffer& b = ctx->buffer_pool[i];
|
|
if (b == nullptr) {
|
|
b = buffer;
|
|
return;
|
|
}
|
|
}
|
|
std::cerr << "ggml_vulkan: WARNING: vk buffer pool full, increase MAX_VK_BUFFERS" << std::endl;
|
|
ggml_vk_destroy_buffer(buffer);
|
|
}
|
|
|
|
// Returns an available temporary buffer that may only be used temporarily, it will be reused
|
|
static vk_buffer ggml_vk_create_buffer_temp(ggml_backend_vk_context * ctx, size_t size) {
|
|
// Try to find existing temp buffer with enough capacity
|
|
for (auto& buffer : ctx->gc.temp_buffers) {
|
|
if (buffer->size >= size) {
|
|
return buffer;
|
|
}
|
|
}
|
|
|
|
VK_LOG_MEMORY("ggml_vk_create_buffer_temp(" << size << ")");
|
|
|
|
// Otherwise create new buffer
|
|
vk_buffer buf = ggml_vk_pool_malloc(ctx, size);
|
|
ctx->gc.temp_buffers.push_back(buf);
|
|
|
|
return buf;
|
|
}
|
|
|
|
static void * ggml_vk_host_malloc(vk_device& device, size_t size) {
|
|
VK_LOG_MEMORY("ggml_vk_host_malloc(" << size << ")");
|
|
vk_buffer buf = ggml_vk_create_buffer(device, size,
|
|
vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached,
|
|
vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent);
|
|
|
|
if(!(buf->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible)) {
|
|
fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory\n",
|
|
size/1024.0/1024.0);
|
|
device->device.freeMemory(buf->device_memory);
|
|
device->device.destroyBuffer(buf->buffer);
|
|
return nullptr;
|
|
}
|
|
|
|
device->pinned_memory.push_back(std::make_tuple(buf->ptr, size, buf));
|
|
|
|
return buf->ptr;
|
|
}
|
|
|
|
static void ggml_vk_host_free(vk_device& device, void* ptr) {
|
|
if (ptr == nullptr) {
|
|
return;
|
|
}
|
|
VK_LOG_MEMORY("ggml_vk_host_free(" << ptr << ")");
|
|
vk_buffer buf;
|
|
size_t index;
|
|
for (size_t i = 0; i < device->pinned_memory.size(); i++) {
|
|
const uint8_t* addr = (const uint8_t*) std::get<0>(device->pinned_memory[i]);
|
|
const uint8_t* endr = addr + std::get<1>(device->pinned_memory[i]);
|
|
if (ptr >= addr && ptr < endr) {
|
|
buf = std::get<2>(device->pinned_memory[i]);
|
|
index = i;
|
|
break;
|
|
}
|
|
}
|
|
if (buf == nullptr) {
|
|
fprintf(stderr, "WARNING: failed to free pinned memory: memory not in map\n");
|
|
return;
|
|
}
|
|
|
|
ggml_vk_destroy_buffer(buf);
|
|
|
|
device->pinned_memory.erase(device->pinned_memory.begin() + index);
|
|
}
|
|
|
|
static void ggml_vk_host_get(vk_device& device, const void * ptr, vk_buffer& buf, size_t& buf_offset) {
|
|
buf = nullptr;
|
|
buf_offset = 0;
|
|
for (size_t i = 0; i < device->pinned_memory.size(); i++) {
|
|
const uint8_t* addr = (const uint8_t*) std::get<0>(device->pinned_memory[i]);
|
|
const uint8_t* endr = addr + std::get<1>(device->pinned_memory[i]);
|
|
if (ptr >= addr && ptr < endr) {
|
|
buf = std::get<2>(device->pinned_memory[i]);
|
|
buf_offset = ((const uint8_t *)ptr) - addr;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static vk_submission ggml_vk_begin_submission(vk_device& device, vk_queue& q, bool one_time = true) {
|
|
vk_submission s;
|
|
s.buffer = ggml_vk_create_cmd_buffer(device, q);
|
|
if (one_time) {
|
|
s.buffer.begin({ vk::CommandBufferUsageFlagBits::eOneTimeSubmit });
|
|
} else {
|
|
s.buffer.begin({ vk::CommandBufferUsageFlags{} });
|
|
}
|
|
|
|
return s;
|
|
}
|
|
|
|
|
|
|
|
static void ggml_vk_dispatch_pipeline(ggml_backend_vk_context* ctx, vk_context& subctx, vk_pipeline& pipeline, std::initializer_list<vk::DescriptorBufferInfo> const& descriptor_buffer_infos, size_t push_constant_size, const void* push_constants, std::array<uint32_t, 3> elements) {
|
|
const uint32_t wg0 = CEIL_DIV(elements[0], pipeline->wg_denoms[0]);
|
|
const uint32_t wg1 = CEIL_DIV(elements[1], pipeline->wg_denoms[1]);
|
|
const uint32_t wg2 = CEIL_DIV(elements[2], pipeline->wg_denoms[2]);
|
|
VK_LOG_DEBUG("ggml_vk_dispatch_pipeline(" << pipeline->name << ", {";
|
|
for (auto& buffer : descriptor_buffer_infos) {
|
|
std::cerr << "(" << buffer.buffer << ", " << buffer.offset << ", " << buffer.range << "), ";
|
|
}
|
|
std::cerr << "}, (" << wg0 << "," << wg1 << "," << wg2 << "))");
|
|
GGML_ASSERT(pipeline->descriptor_set_idx < pipeline->descriptor_sets.size());
|
|
GGML_ASSERT(descriptor_buffer_infos.size() == pipeline->parameter_count);
|
|
|
|
vk::DescriptorSet& descriptor_set = pipeline->descriptor_sets[pipeline->descriptor_set_idx++];
|
|
vk::WriteDescriptorSet write_descriptor_set{ descriptor_set, 0, 0, pipeline->parameter_count, vk::DescriptorType::eStorageBuffer, nullptr, descriptor_buffer_infos.begin() };
|
|
ctx->device->device.updateDescriptorSets({ write_descriptor_set }, {});
|
|
|
|
subctx->s->buffer.pushConstants(pipeline->layout, vk::ShaderStageFlagBits::eCompute, 0, push_constant_size, push_constants);
|
|
subctx->s->buffer.bindPipeline(vk::PipelineBindPoint::eCompute, pipeline->pipeline);
|
|
subctx->s->buffer.bindDescriptorSets(vk::PipelineBindPoint::eCompute,
|
|
pipeline->layout,
|
|
0,
|
|
{ descriptor_set },
|
|
{});
|
|
subctx->s->buffer.dispatch(wg0, wg1, wg2);
|
|
}
|
|
|
|
static void ggml_vk_end_submission(vk_submission& s, std::vector<vk_semaphore> wait_semaphores, std::vector<vk_semaphore> signal_semaphores) {
|
|
s.buffer.end();
|
|
|
|
s.wait_semaphores = std::move(wait_semaphores);
|
|
s.signal_semaphores = std::move(signal_semaphores);
|
|
}
|
|
|
|
static void ggml_vk_ctx_end(vk_context& ctx) {
|
|
VK_LOG_DEBUG("ggml_vk_ctx_end(" << ctx << ", " << ctx->seqs.size() << ")");
|
|
if (ctx->s == nullptr) {
|
|
return;
|
|
}
|
|
|
|
ctx->s->buffer.end();
|
|
ctx->s = nullptr;
|
|
}
|
|
|
|
static void ggml_vk_ctx_begin(vk_device& device, vk_context& subctx) {
|
|
VK_LOG_DEBUG("ggml_vk_ctx_begin(" << device->name << ")");
|
|
if (subctx->s != nullptr) {
|
|
ggml_vk_ctx_end(subctx);
|
|
}
|
|
|
|
subctx->seqs.push_back({ ggml_vk_begin_submission(device, *subctx->q) });
|
|
subctx->s = subctx->seqs[subctx->seqs.size() - 1].data();
|
|
}
|
|
|
|
static size_t ggml_vk_align_size(size_t width, size_t align) {
|
|
VK_LOG_DEBUG("ggml_vk_align_size(" << width << ", " << align << ")");
|
|
return CEIL_DIV(width, align) * align;
|
|
}
|
|
|
|
static void deferred_memcpy(void * dst, const void * src, size_t size, std::vector<vk_staging_memcpy>* memcpys = nullptr) {
|
|
if (memcpys == nullptr) {
|
|
memcpy(dst, src, size);
|
|
} else {
|
|
memcpys->emplace_back(dst, src, size);
|
|
}
|
|
}
|
|
|
|
static void ggml_vk_ensure_sync_staging_buffer(vk_device& device, size_t size) {
|
|
if (device->sync_staging == nullptr || device->sync_staging->size < size) {
|
|
VK_LOG_MEMORY("ggml_vk_ensure_sync_staging_buffer(" << size << ")");
|
|
ggml_vk_destroy_buffer(device->sync_staging);
|
|
device->sync_staging = ggml_vk_create_buffer_check(device, size,
|
|
vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached,
|
|
vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent);
|
|
}
|
|
}
|
|
|
|
static void ggml_vk_buffer_write_nc_async(ggml_backend_vk_context * ctx, vk_context& subctx, vk_buffer& dst, size_t offset, const ggml_tensor * tensor, bool sync_staging = false) {
|
|
VK_LOG_DEBUG("ggml_vk_buffer_write_nc_async(" << tensor << ")");
|
|
GGML_ASSERT(!ggml_is_contiguous(tensor));
|
|
// Buffer is already mapped
|
|
if(dst->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible) {
|
|
std::cerr << "ggml_vulkan: buffer_write_nc_async dst buffer is host_visible. Use synchronous write." << std::endl;
|
|
GGML_ABORT("fatal error");
|
|
}
|
|
// Check if src is pinned memory
|
|
vk_buffer buf;
|
|
size_t buf_offset;
|
|
ggml_vk_host_get(ctx->device, tensor->data, buf, buf_offset);
|
|
|
|
const uint64_t ne0 = tensor->ne[0];
|
|
const uint64_t ne1 = tensor->ne[1];
|
|
const uint64_t ne2 = tensor->ne[2];
|
|
const uint64_t ne3 = tensor->ne[3];
|
|
const uint64_t nb0 = tensor->nb[0];
|
|
const uint64_t nb1 = tensor->nb[1];
|
|
const uint64_t nb2 = tensor->nb[2];
|
|
const uint64_t nb3 = tensor->nb[3];
|
|
const ggml_type type = tensor->type;
|
|
const uint64_t ts = ggml_type_size(type);
|
|
const uint64_t bs = ggml_blck_size(type);
|
|
|
|
const uint64_t dstnb0 = ts;
|
|
const uint64_t dstnb1 = dstnb0*(ne0/bs);
|
|
const uint64_t dstnb2 = dstnb1*ne1;
|
|
const uint64_t dstnb3 = dstnb2*ne2;
|
|
|
|
const uint64_t ne = ggml_nelements(tensor);
|
|
|
|
if (buf != nullptr) {
|
|
// Memory is pinned, use as staging buffer
|
|
std::vector<vk::BufferCopy> slices;
|
|
|
|
for (uint64_t i3 = 0; i3 < ne3; i3++) {
|
|
for (uint64_t i2 = 0; i2 < ne2; i2++) {
|
|
// Find longest contiguous slice
|
|
if (ne1*nb1 == dstnb2) {
|
|
slices.push_back({ buf_offset + i3*nb3 + i2*nb2, offset + i3*dstnb3 + i2*dstnb2, dstnb2 });
|
|
} else {
|
|
for (uint64_t i1 = 0; i1 < ne1; i1++) {
|
|
if (ne0*nb0/bs == dstnb1) {
|
|
slices.push_back({ buf_offset + i3*nb3 + i2*nb2 + i1*nb1, offset + i3*dstnb3 + i2*dstnb2 + i1*dstnb1, dstnb1 });
|
|
} else {
|
|
const uint64_t s_off = buf_offset + i3*nb3 + i2*nb2 + i1*nb1;
|
|
const uint64_t d_off = offset + i3*dstnb3 + i2*dstnb2 + i1*dstnb1;
|
|
for (uint64_t i0 = 0; i0 < ne0; i0++) {
|
|
slices.push_back({ s_off + i1*nb0, d_off + i0*dstnb0, dstnb0 });
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
ggml_vk_sync_buffers(subctx);
|
|
subctx->s->buffer.copyBuffer(buf->buffer, dst->buffer, slices);
|
|
return;
|
|
}
|
|
|
|
if (!sync_staging) {
|
|
GGML_ABORT("Asynchronous write to non-pinned memory not supported");
|
|
}
|
|
|
|
// Staging buffer required
|
|
vk_buffer& staging = ctx->device->sync_staging;
|
|
const uint64_t copy_size = ts*ne/bs;
|
|
ggml_vk_ensure_sync_staging_buffer(ctx->device, copy_size);
|
|
VkBufferCopy buf_copy{ 0, offset, copy_size };
|
|
|
|
ggml_vk_sync_buffers(subctx);
|
|
vkCmdCopyBuffer(subctx->s->buffer, staging->buffer, dst->buffer, 1, &buf_copy);
|
|
|
|
for (uint64_t i3 = 0; i3 < ne3; i3++) {
|
|
for (uint64_t i2 = 0; i2 < ne2; i2++) {
|
|
// Find longest contiguous slice
|
|
if (ne1*nb1 == dstnb2) {
|
|
deferred_memcpy((uint8_t *)staging->ptr + i3*dstnb3 + i2*dstnb2, (const uint8_t *) tensor->data + buf_offset + i3*nb3 + i2*nb2, dstnb2, &subctx->in_memcpys);
|
|
} else {
|
|
for (uint64_t i1 = 0; i1 < ne1; i1++) {
|
|
if (ne0*nb0/bs == dstnb1) {
|
|
deferred_memcpy((uint8_t *)staging->ptr + i3*dstnb3 + i2*dstnb2 + i1*dstnb1, (const uint8_t *) tensor->data + buf_offset + i3*nb3 + i2*nb2 + i1*nb1, dstnb1, &subctx->in_memcpys);
|
|
} else {
|
|
const uint64_t s_off = buf_offset + i3*nb3 + i2*nb2 + i1*nb1;
|
|
const uint64_t d_off = i3*dstnb3 + i2*dstnb2 + i1*dstnb1;
|
|
for (uint64_t i0 = 0; i0 < ne0; i0++) {
|
|
deferred_memcpy((uint8_t *)staging->ptr + d_off + i0*dstnb0, (const uint8_t *) tensor->data + s_off + i0*nb0, dstnb0, &subctx->in_memcpys);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ggml_vk_buffer_write_2d_async(vk_context subctx, vk_buffer& dst, size_t offset, const void * src, size_t spitch, size_t width, size_t height, bool sync_staging = false) {
|
|
VK_LOG_DEBUG("ggml_vk_buffer_write_2d_async(" << width << ", " << height << ")");
|
|
// Buffer is already mapped
|
|
if(dst->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible) {
|
|
std::cerr << "ggml_vulkan: buffer_write_async dst buffer is host_visible. Use synchronous write." << std::endl;
|
|
GGML_ABORT("fatal error");
|
|
}
|
|
// Check if src is pinned memory
|
|
vk_buffer buf = nullptr;
|
|
size_t buf_offset;
|
|
ggml_vk_host_get(dst->device, src, buf, buf_offset);
|
|
|
|
if (buf != nullptr) {
|
|
// Memory is pinned, use as staging buffer
|
|
std::vector<vk::BufferCopy> slices(1);
|
|
if (width == spitch) {
|
|
// Only do single write if stride is equal
|
|
slices[0].srcOffset = buf_offset;
|
|
slices[0].dstOffset = offset;
|
|
slices[0].size = width * height;
|
|
} else {
|
|
slices.resize(height);
|
|
for (size_t i = 0; i < height; i++) {
|
|
slices[i].srcOffset = buf_offset + i * spitch;
|
|
slices[i].dstOffset = offset + i * width;
|
|
slices[i].size = width;
|
|
}
|
|
}
|
|
|
|
ggml_vk_sync_buffers(subctx);
|
|
subctx->s->buffer.copyBuffer(buf->buffer, dst->buffer, slices);
|
|
return;
|
|
}
|
|
VK_LOG_DEBUG("STAGING");
|
|
|
|
if (!sync_staging) {
|
|
GGML_ABORT("Asynchronous write to non-pinned memory not supported");
|
|
}
|
|
|
|
// Staging buffer required
|
|
const size_t copy_size = width*height;
|
|
ggml_vk_ensure_sync_staging_buffer(dst->device, copy_size);
|
|
|
|
vk_buffer& staging_buffer = dst->device->sync_staging;
|
|
|
|
VkBufferCopy buf_copy = {
|
|
0,
|
|
offset,
|
|
copy_size};
|
|
|
|
ggml_vk_sync_buffers(subctx);
|
|
vkCmdCopyBuffer(subctx->s->buffer, staging_buffer->buffer, dst->buffer, 1, &buf_copy);
|
|
|
|
if (width == spitch) {
|
|
deferred_memcpy((uint8_t *)staging_buffer->ptr, src, width * height, &subctx->in_memcpys);
|
|
} else {
|
|
for (size_t i = 0; i < height; i++) {
|
|
deferred_memcpy((uint8_t *)staging_buffer->ptr + i * width, (const uint8_t *) src + i * spitch, width, &subctx->in_memcpys);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ggml_vk_buffer_write_async(vk_context subctx, vk_buffer& dst, size_t offset, const void * src, size_t size, bool sync_staging = false) {
|
|
VK_LOG_DEBUG("ggml_vk_buffer_write_async(" << size << ")");
|
|
return ggml_vk_buffer_write_2d_async(subctx, dst, offset, src, size, size, 1, sync_staging);
|
|
}
|
|
|
|
static void ggml_vk_buffer_write_2d(vk_buffer& dst, size_t offset, const void * src, size_t spitch, size_t width, size_t height) {
|
|
VK_LOG_DEBUG("ggml_vk_buffer_write_2d(" << width << ", " << height << ")");
|
|
// Buffer is already mapped
|
|
if(dst->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible) {
|
|
GGML_ASSERT(dst->memory_property_flags & vk::MemoryPropertyFlagBits::eHostCoherent);
|
|
|
|
for (size_t i = 0; i < height; i++) {
|
|
memcpy((uint8_t *)dst->ptr + offset + i * width, (const uint8_t *) src + i * spitch, width);
|
|
}
|
|
} else {
|
|
vk_context subctx = ggml_vk_create_temporary_context(dst->device->transfer_queue);
|
|
ggml_vk_ctx_begin(dst->device, subctx);
|
|
ggml_vk_buffer_write_2d_async(subctx, dst, offset, src, spitch, width, height, true);
|
|
ggml_vk_ctx_end(subctx);
|
|
|
|
for (auto& cpy : subctx->in_memcpys) {
|
|
memcpy(cpy.dst, cpy.src, cpy.n);
|
|
}
|
|
|
|
ggml_vk_submit(subctx, dst->device->fence);
|
|
VK_CHECK(dst->device->device.waitForFences({ dst->device->fence }, true, UINT64_MAX), "vk_buffer_write_2d waitForFences");
|
|
dst->device->device.resetFences({ dst->device->fence });
|
|
}
|
|
}
|
|
|
|
static void ggml_vk_buffer_write(vk_buffer& dst, size_t offset, const void * src, size_t size) {
|
|
VK_LOG_DEBUG("ggml_vk_buffer_write(" << size << ")");
|
|
ggml_vk_buffer_write_2d(dst, offset, src, 0, size, 1);
|
|
}
|
|
|
|
static void ggml_vk_buffer_read_2d_async(vk_context subctx, vk_buffer& src, size_t offset, void * dst, size_t spitch, size_t dpitch, size_t width, size_t height, bool sync_staging = false) {
|
|
VK_LOG_DEBUG("ggml_vk_buffer_read_2d_async(offset=" << offset << ", width=" << width << ", height=" << height << ")");
|
|
GGML_ASSERT(width > 0);
|
|
GGML_ASSERT(height > 0);
|
|
GGML_ASSERT(src != nullptr);
|
|
|
|
// TODO: staging_offset is not used
|
|
|
|
// Check if dst is pinned memory
|
|
vk_buffer buf = nullptr;
|
|
size_t buf_offset;
|
|
ggml_vk_host_get(src->device, dst, buf, buf_offset);
|
|
|
|
std::vector<vk::BufferCopy> slices(1);
|
|
if (width == spitch && width == dpitch) {
|
|
// Only do single write if stride is equal
|
|
slices[0].srcOffset = offset;
|
|
slices[0].dstOffset = buf_offset;
|
|
slices[0].size = width * height;
|
|
} else {
|
|
slices.resize(height);
|
|
for (size_t i = 0; i < height; i++) {
|
|
slices[i].srcOffset = offset + i * spitch;
|
|
slices[i].dstOffset = buf_offset + i * dpitch;
|
|
slices[i].size = width;
|
|
}
|
|
}
|
|
|
|
if (buf != nullptr) {
|
|
// Memory is pinned, use as staging buffer
|
|
ggml_vk_sync_buffers(subctx);
|
|
subctx->s->buffer.copyBuffer(src->buffer, buf->buffer, slices);
|
|
|
|
return;
|
|
}
|
|
VK_LOG_DEBUG("STAGING");
|
|
|
|
if (!sync_staging) {
|
|
GGML_ABORT("Asynchronous read from non-pinned memory not supported");
|
|
}
|
|
|
|
// Fall back to staging buffer
|
|
const size_t copy_size = dpitch * height;
|
|
ggml_vk_ensure_sync_staging_buffer(src->device, copy_size);
|
|
|
|
vk_buffer& staging_buffer = src->device->sync_staging;
|
|
|
|
ggml_vk_sync_buffers(subctx);
|
|
subctx->s->buffer.copyBuffer(src->buffer, staging_buffer->buffer, slices);
|
|
|
|
deferred_memcpy(dst, staging_buffer->ptr, copy_size, &subctx->out_memcpys);
|
|
}
|
|
|
|
static void ggml_vk_buffer_read_async(vk_context subctx, vk_buffer& src, size_t offset, void * dst, size_t size, bool sync_staging = false) {
|
|
return ggml_vk_buffer_read_2d_async(subctx, src, offset, dst, size, size, size, 1, sync_staging);
|
|
}
|
|
|
|
static void ggml_vk_buffer_read(vk_buffer& src, size_t offset, void * dst, size_t size) {
|
|
VK_LOG_DEBUG("ggml_vk_buffer_read(" << src->buffer << ", " << offset << ", " << size << ")");
|
|
|
|
// If the device is not an UMA device the memory is host-accessible through rebar. While writing
|
|
// through PCIe is sufficient fast reading back data from PCIe is slower than going through
|
|
// the HW device to host copy path.
|
|
if(src->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible && src->device->uma) {
|
|
GGML_ASSERT(src->memory_property_flags & vk::MemoryPropertyFlagBits::eHostCoherent);
|
|
|
|
memcpy(dst, (uint8_t *) src->ptr + offset, size);
|
|
} else {
|
|
vk_context subctx = ggml_vk_create_temporary_context(src->device->transfer_queue);
|
|
ggml_vk_ctx_begin(src->device, subctx);
|
|
ggml_vk_buffer_read_async(subctx, src, offset, dst, size, true);
|
|
ggml_vk_ctx_end(subctx);
|
|
|
|
ggml_vk_submit(subctx, src->device->fence);
|
|
VK_CHECK(src->device->device.waitForFences({ src->device->fence }, true, UINT64_MAX), "vk_buffer_read waitForFences");
|
|
src->device->device.resetFences({ src->device->fence });
|
|
|
|
for (auto& cpy : subctx->out_memcpys) {
|
|
memcpy(cpy.dst, cpy.src, cpy.n);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ggml_vk_buffer_copy_async(vk_context& ctx, vk_buffer& dst, size_t dst_offset, vk_buffer& src, size_t src_offset, size_t size) {
|
|
VK_LOG_DEBUG("ggml_vk_buffer_copy_async(" << size << ")");
|
|
// Make sure both buffers are on same device
|
|
GGML_ASSERT(src->device == dst->device);
|
|
|
|
VkBufferCopy bc{ src_offset, dst_offset, size };
|
|
|
|
vkCmdCopyBuffer(ctx->s->buffer, src->buffer, dst->buffer, 1, &bc);
|
|
}
|
|
|
|
static void ggml_vk_buffer_copy(vk_buffer& dst, size_t dst_offset, vk_buffer& src, size_t src_offset, size_t size) {
|
|
if (src->device == dst->device) {
|
|
VK_LOG_DEBUG("ggml_vk_buffer_copy(SINGLE_DEVICE, " << size << ")");
|
|
// Copy within the device
|
|
vk_context subctx = ggml_vk_create_temporary_context(src->device->transfer_queue);
|
|
ggml_vk_ctx_begin(src->device, subctx);
|
|
ggml_vk_buffer_copy_async(subctx, dst, dst_offset, src, src_offset, size);
|
|
ggml_vk_ctx_end(subctx);
|
|
ggml_vk_submit(subctx, src->device->fence);
|
|
VK_CHECK(src->device->device.waitForFences({ src->device->fence }, true, UINT64_MAX), "vk_buffer_copy waitForFences");
|
|
src->device->device.resetFences({ src->device->fence });
|
|
} else {
|
|
VK_LOG_DEBUG("ggml_vk_buffer_copy(MULTI_DEVICE, " << size << ")");
|
|
// Copy device to device
|
|
ggml_vk_ensure_sync_staging_buffer(src->device, size);
|
|
ggml_vk_ensure_sync_staging_buffer(dst->device, size);
|
|
|
|
// Copy to src staging buffer
|
|
ggml_vk_buffer_copy(src->device->sync_staging, 0, src, src_offset, size);
|
|
// memcpy to dst staging buffer
|
|
memcpy(dst->device->sync_staging->ptr, src->device->sync_staging->ptr, size);
|
|
// Copy to dst buffer
|
|
ggml_vk_buffer_copy(dst, dst_offset, dst->device->sync_staging, 0, size);
|
|
}
|
|
}
|
|
|
|
static void ggml_vk_buffer_memset(vk_buffer& dst, size_t offset, uint32_t c, size_t size) {
|
|
VK_LOG_DEBUG("ggml_vk_buffer_memset(" << offset << ", " << c << ", " << size << ")");
|
|
|
|
vk_context subctx = ggml_vk_create_temporary_context(dst->device->transfer_queue);
|
|
ggml_vk_ctx_begin(dst->device, subctx);
|
|
subctx->s->buffer.fillBuffer(dst->buffer, offset, size, c);
|
|
ggml_vk_ctx_end(subctx);
|
|
|
|
ggml_vk_submit(subctx, dst->device->fence);
|
|
VK_CHECK(dst->device->device.waitForFences({ dst->device->fence }, true, UINT64_MAX), "vk_memset waitForFences");
|
|
dst->device->device.resetFences({ dst->device->fence });
|
|
}
|
|
|
|
static uint32_t ggml_vk_guess_split_k(ggml_backend_vk_context * ctx, int m, int n, int k, const vk_pipeline& pipeline) {
|
|
VK_LOG_DEBUG("ggml_vk_guess_split_k(" << m << ", " << n << ", " << k << ")");
|
|
|
|
uint32_t split_k = 1;
|
|
if (ctx->device->shader_core_count != 0 && m >= (int)pipeline->wg_denoms[0] && n >= (int)pipeline->wg_denoms[1]) {
|
|
// If k is 'large' and the SMs will fill less than halfway, use split_k.
|
|
uint32_t m_tiles = CEIL_DIV(m, pipeline->wg_denoms[0]);
|
|
uint32_t n_tiles = CEIL_DIV(n, pipeline->wg_denoms[1]);
|
|
if (k >= 2048 && m_tiles * n_tiles < ctx->device->shader_core_count / 2) {
|
|
split_k = ctx->device->shader_core_count / (m_tiles * n_tiles);
|
|
// Clamp to 2 or 4
|
|
split_k = std::min(split_k, 4u);
|
|
if (split_k == 3) {
|
|
split_k = 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
return split_k;
|
|
}
|
|
|
|
static vk_pipeline ggml_vk_guess_matmul_pipeline(ggml_backend_vk_context * ctx, vk_matmul_pipeline& mmp, int m, int n, bool aligned, ggml_type type_a) {
|
|
VK_LOG_DEBUG("ggml_vk_guess_matmul_pipeline(" << m << ", " << n << ", " << aligned << ")");
|
|
|
|
if (ctx->device->coopmat2) {
|
|
if ((ctx->device->mul_mat_l && (m % mmp->l->wg_denoms[0]) == 0 && (n % mmp->l->wg_denoms[1]) == 0) || (!ctx->device->mul_mat_m && !ctx->device->mul_mat_s)) {
|
|
return aligned ? mmp->a_l : mmp->l;
|
|
}
|
|
if ((ctx->device->mul_mat_m && (m % mmp->m->wg_denoms[0]) == 0 && (n % mmp->m->wg_denoms[1]) == 0) || !ctx->device->mul_mat_s) {
|
|
return aligned ? mmp->a_m : mmp->m;
|
|
}
|
|
return aligned ? mmp->a_s : mmp->s;
|
|
}
|
|
|
|
if ((ctx->device->mul_mat_s && (m <= 32 || n <= 32)) || (!ctx->device->mul_mat_m && !ctx->device->mul_mat_l)) {
|
|
return aligned ? mmp->a_s : mmp->s;
|
|
}
|
|
if ((ctx->device->mul_mat_m && (m <= 64 || n <= 64)) || !ctx->device->mul_mat_l) {
|
|
return aligned ? mmp->a_m : mmp->m;
|
|
}
|
|
return aligned ? mmp->a_l : mmp->l;
|
|
}
|
|
|
|
static uint32_t ggml_vk_guess_matmul_pipeline_align(ggml_backend_vk_context * ctx, vk_matmul_pipeline& mmp, int m, int n, ggml_type type_a) {
|
|
VK_LOG_DEBUG("ggml_vk_guess_matmul_pipeline_align(" << m << ", " << n << ")");
|
|
return ggml_vk_guess_matmul_pipeline(ctx, mmp, m, n, true, type_a)->align;
|
|
}
|
|
|
|
static void ggml_vk_matmul(
|
|
ggml_backend_vk_context * ctx, vk_context& subctx, vk_pipeline& pipeline,
|
|
vk_subbuffer&& a, vk_subbuffer&& b, vk_subbuffer&& d, vk_subbuffer&& split_k_buffer,
|
|
uint32_t m, uint32_t n, uint32_t k, uint32_t stride_a, uint32_t stride_b, uint32_t stride_d,
|
|
uint32_t batch_stride_a, uint32_t batch_stride_b, uint32_t batch_stride_d,
|
|
uint32_t split_k, uint32_t batch, uint32_t ne02, uint32_t ne12, uint32_t broadcast2, uint32_t broadcast3) {
|
|
VK_LOG_DEBUG("ggml_vk_matmul(a: (" << a.buffer->buffer << ", " << a.offset << ", " << a.size << "), b: (" << b.buffer->buffer << ", " << b.offset << ", " << b.size << "), d: (" << d.buffer->buffer << ", " << d.offset << ", " << d.size << "), split_k: (" << (split_k_buffer.buffer != nullptr ? split_k_buffer.buffer->buffer : VK_NULL_HANDLE) << ", " << split_k_buffer.offset << ", " << split_k_buffer.size << "), m: " << m << ", n: " << n << ", k: " << k << ", stride_a: " << stride_a << ", stride_b: " << stride_b << ", stride_d: " << stride_d << ", batch_stride_a: " << batch_stride_a << ", batch_stride_b: " << batch_stride_b << ", batch_stride_d: " << batch_stride_d << ", split_k: " << split_k << ", batch: " << batch << ", ne02: " << ne02 << ", ne12: " << ne12 << ", broadcast2: " << broadcast2 << ", broadcast3: " << broadcast3 << ")");
|
|
ggml_vk_sync_buffers(subctx);
|
|
if (split_k == 1) {
|
|
const vk_mat_mat_push_constants pc = { m, n, k, stride_a, stride_b, stride_d, batch_stride_a, batch_stride_b, batch_stride_d, k, ne02, ne12, broadcast2, broadcast3 };
|
|
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { a, b, d }, sizeof(vk_mat_mat_push_constants), &pc, { m, n, batch });
|
|
return;
|
|
}
|
|
|
|
GGML_ASSERT(batch_stride_d == m * n);
|
|
|
|
const vk_mat_mat_push_constants pc1 = { m, n, k, stride_a, stride_b, stride_d, batch_stride_a, batch_stride_b, batch_stride_d, CEIL_DIV(k, split_k), ne02, ne12, broadcast2, broadcast3 };
|
|
// Make sure enough workgroups get assigned for split k to work
|
|
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { a, b, split_k_buffer }, sizeof(vk_mat_mat_push_constants), &pc1, { (CEIL_DIV(m, pipeline->wg_denoms[0]) * pipeline->wg_denoms[0]) * split_k, n, batch });
|
|
ggml_vk_sync_buffers(subctx);
|
|
const std::array<uint32_t, 2> pc2 = { (uint32_t)(m * n * batch), split_k };
|
|
ggml_vk_dispatch_pipeline(ctx, subctx, ctx->device->pipeline_matmul_split_k_reduce, { split_k_buffer, d }, pc2.size() * sizeof(uint32_t), pc2.data(), { m * n * batch, 1, 1 });
|
|
}
|
|
|
|
static vk_pipeline ggml_vk_guess_matmul_id_pipeline(ggml_backend_vk_context * ctx, vk_matmul_pipeline& mmp, int m, int n, bool aligned) {
|
|
VK_LOG_DEBUG("ggml_vk_guess_matmul_pipeline(" << m << ", " << n << ", " << aligned << ")");
|
|
|
|
if (ctx->device->coopmat2) {
|
|
if ((ctx->device->mul_mat_id_l && (m % mmp->l->wg_denoms[0]) == 0 && (n % mmp->l->wg_denoms[1]) == 0) || (!ctx->device->mul_mat_id_m && !ctx->device->mul_mat_id_s)) {
|
|
return aligned ? mmp->a_l : mmp->l;
|
|
}
|
|
if ((ctx->device->mul_mat_id_m && (m % mmp->m->wg_denoms[0]) == 0 && (n % mmp->m->wg_denoms[1]) == 0) || !ctx->device->mul_mat_id_s) {
|
|
return aligned ? mmp->a_m : mmp->m;
|
|
}
|
|
return aligned ? mmp->a_s : mmp->s;
|
|
}
|
|
|
|
if ((ctx->device->mul_mat_id_s && (m <= 32 || n <= 32)) || (!ctx->device->mul_mat_id_m && !ctx->device->mul_mat_id_l)) {
|
|
return aligned ? mmp->a_s : mmp->s;
|
|
}
|
|
if ((ctx->device->mul_mat_id_m && (m <= 64 || n <= 64)) || !ctx->device->mul_mat_id_l) {
|
|
return aligned ? mmp->a_m : mmp->m;
|
|
}
|
|
return aligned ? mmp->a_l : mmp->l;
|
|
}
|
|
|
|
static uint32_t ggml_vk_guess_matmul_id_pipeline_align(ggml_backend_vk_context * ctx, vk_matmul_pipeline& mmp, int m, int n) {
|
|
VK_LOG_DEBUG("ggml_vk_guess_matmul_pipeline_align(" << m << ", " << n << ")");
|
|
return ggml_vk_guess_matmul_id_pipeline(ctx, mmp, m, n, true)->align;
|
|
}
|
|
|
|
static void ggml_vk_matmul_id(
|
|
ggml_backend_vk_context * ctx, vk_context& subctx, vk_pipeline& pipeline,
|
|
vk_subbuffer&& a, vk_subbuffer&& b, vk_subbuffer&& d, vk_subbuffer&& ids,
|
|
uint32_t m, uint32_t n, uint32_t k, uint32_t stride_a, uint32_t stride_b, uint32_t stride_d,
|
|
uint32_t batch_stride_a, uint32_t batch_stride_b, uint32_t batch_stride_d,
|
|
uint32_t n_as, uint32_t nei0, uint32_t nei1, uint32_t nbi1, uint32_t ne11) {
|
|
VK_LOG_DEBUG("ggml_vk_matmul_id(a: (" << a.buffer->buffer << ", " << a.offset << ", " << a.size << "), b: (" << b.buffer->buffer << ", " << b.offset << ", " << b.size << "), d: (" << d.buffer->buffer << ", " << d.offset << ", " << d.size << "), ids: (" << ids.buffer->buffer << ", " << ids.offset << ", " << ids.size << "), " <<
|
|
"m: " << m << ", n: " << n << ", k: " << k << ", stride_a: " << stride_a << ", stride_b: " << stride_b << ", stride_d: " << stride_d << ", " <<
|
|
"batch_stride_a: " << batch_stride_a << ", batch_stride_b: " << batch_stride_b << ", batch_stride_d: " << batch_stride_d << ", " <<
|
|
"n_as: " << n_as << ", nei0: " << nei0 << ", nei1: " << nei1 << ", nbi1: " << nbi1 << ", ne11: " << ne11 << ")");
|
|
ggml_vk_sync_buffers(subctx);
|
|
const vk_mat_mat_id_push_constants pc = { m, n, k, stride_a, stride_b, stride_d, batch_stride_a, batch_stride_b, batch_stride_d,
|
|
nei0, nei1, nbi1, ne11 };
|
|
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { a, b, d, ids }, sizeof(vk_mat_mat_id_push_constants), &pc, { m, nei1, n_as });
|
|
}
|
|
|
|
static bool ggml_vk_dim01_contiguous(const ggml_tensor * tensor) {
|
|
return
|
|
tensor->nb[0] == ggml_type_size(tensor->type) &&
|
|
tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
|
|
tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
|
|
}
|
|
|
|
static vk_pipeline ggml_vk_get_cpy_pipeline(ggml_backend_vk_context * ctx, const ggml_tensor * src, const ggml_tensor * dst, ggml_type to) {
|
|
|
|
// Choose "contiguous copy" shader if src/dst are contiguous
|
|
bool contig = ggml_is_contiguous(src) && (!dst || ggml_is_contiguous(dst));
|
|
|
|
if (src->type == GGML_TYPE_F32 && to == GGML_TYPE_F32) {
|
|
if (contig) {
|
|
return ctx->device->pipeline_contig_cpy_f32_f32;
|
|
} else {
|
|
return ctx->device->pipeline_cpy_f32_f32;
|
|
}
|
|
}
|
|
if (src->type == GGML_TYPE_F32 && to == GGML_TYPE_F16) {
|
|
if (contig) {
|
|
return ctx->device->pipeline_contig_cpy_f32_f16;
|
|
} else {
|
|
return ctx->device->pipeline_cpy_f32_f16;
|
|
}
|
|
}
|
|
if (src->type == GGML_TYPE_F16 && to == GGML_TYPE_F16) {
|
|
if (contig) {
|
|
return ctx->device->pipeline_contig_cpy_f16_f16;
|
|
} else {
|
|
return ctx->device->pipeline_cpy_f16_f16;
|
|
}
|
|
}
|
|
|
|
std::cerr << "Missing CPY op for types: " << ggml_type_name(src->type) << " " << ggml_type_name(to) << std::endl;
|
|
GGML_ABORT("fatal error");
|
|
}
|
|
|
|
static void ggml_vk_cpy_to_contiguous(ggml_backend_vk_context * ctx, vk_context& subctx, vk_pipeline pipeline, const ggml_tensor * tensor, vk_subbuffer&& in, vk_subbuffer&& out) {
|
|
VK_LOG_DEBUG("ggml_vk_cpy_to_contiguous((" << tensor << ", type=" << tensor->type << ", ne0=" << tensor->ne[0] << ", ne1=" << tensor->ne[1] << ", ne2=" << tensor->ne[2] << ", ne3=" << tensor->ne[3] << ", nb0=" << tensor->nb[0] << ", nb1=" << tensor->nb[1] << ", nb2=" << tensor->nb[2] << ", nb3=" << tensor->nb[3] << "), ";
|
|
std::cerr << "buffer in size=" << in.buffer->size << ", buffer out size=" << out.buffer->size << ")");
|
|
const int tensor_type_size = ggml_type_size(tensor->type);
|
|
|
|
const uint32_t ne = ggml_nelements(tensor);
|
|
std::array<uint32_t, 3> elements;
|
|
|
|
if (ne > 262144) {
|
|
elements = { 512, 512, CEIL_DIV(ne, 262144) };
|
|
} else if (ne > 512) {
|
|
elements = { 512, CEIL_DIV(ne, 512), 1 };
|
|
} else {
|
|
elements = { ne, 1, 1 };
|
|
}
|
|
|
|
vk_op_unary_push_constants pc = {
|
|
(uint32_t)ne,
|
|
(uint32_t)tensor->ne[0], (uint32_t)tensor->ne[1], (uint32_t)tensor->ne[2], (uint32_t)tensor->ne[3], (uint32_t)tensor->nb[0] / tensor_type_size, (uint32_t)tensor->nb[1] / tensor_type_size, (uint32_t)tensor->nb[2] / tensor_type_size, (uint32_t)tensor->nb[3] / tensor_type_size,
|
|
(uint32_t)tensor->ne[0], (uint32_t)tensor->ne[1], (uint32_t)tensor->ne[2], (uint32_t)tensor->ne[3], 1 , (uint32_t)tensor->ne[0] , (uint32_t)(tensor->ne[0] * tensor->ne[1]) , (uint32_t)(tensor->ne[0] * tensor->ne[1] * tensor->ne[2]),
|
|
0,
|
|
0.0f, 0.0f,
|
|
};
|
|
init_pushconst_fastdiv(pc);
|
|
ggml_vk_sync_buffers(subctx);
|
|
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { in, out }, sizeof(vk_op_unary_push_constants), &pc, elements);
|
|
}
|
|
|
|
static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
|
|
VK_LOG_DEBUG("ggml_vk_mul_mat_q_f16((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
|
|
std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
|
|
std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3];
|
|
std::cerr << "), " << (dryrun ? "dryrun" : "") << ")");
|
|
GGML_ASSERT(ggml_vk_dim01_contiguous(src0) || src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); // NOLINT
|
|
GGML_ASSERT(ggml_vk_dim01_contiguous(src1) || src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16); // NOLINT
|
|
|
|
const uint64_t ne00 = src0->ne[0];
|
|
const uint64_t ne01 = src0->ne[1];
|
|
const uint64_t ne02 = src0->ne[2];
|
|
const uint64_t ne03 = src0->ne[3];
|
|
|
|
const uint64_t ne10 = src1->ne[0];
|
|
const uint64_t ne11 = src1->ne[1];
|
|
const uint64_t ne12 = src1->ne[2];
|
|
const uint64_t ne13 = src1->ne[3];
|
|
|
|
const uint64_t ne20 = dst->ne[0];
|
|
const uint64_t ne21 = dst->ne[1];
|
|
|
|
const uint64_t r2 = ne12 / ne02;
|
|
const uint64_t r3 = ne13 / ne03;
|
|
|
|
ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context;
|
|
ggml_backend_vk_buffer_context * src0_buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context;
|
|
ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context;
|
|
|
|
vk_buffer d_Qx;
|
|
size_t qx_buf_offset = 0;
|
|
vk_buffer d_Qy;
|
|
size_t qy_buf_offset = 0;
|
|
|
|
bool src0_uma = false;
|
|
bool src1_uma = false;
|
|
|
|
if (ctx->device->uma) {
|
|
ggml_vk_host_get(ctx->device, src0->data, d_Qx, qx_buf_offset);
|
|
ggml_vk_host_get(ctx->device, src1->data, d_Qy, qy_buf_offset);
|
|
src0_uma = d_Qx != nullptr;
|
|
src1_uma = d_Qy != nullptr;
|
|
}
|
|
|
|
const bool x_non_contig = !ggml_vk_dim01_contiguous(src0);
|
|
// Reformat and convert to fp16 if src1 is non-contiguous, or for coopmat2 for better perf
|
|
const bool y_non_contig = (ctx->device->coopmat2 && src1->type == GGML_TYPE_F32) ||
|
|
!ggml_vk_dim01_contiguous(src1);
|
|
|
|
const bool y_f32_kernel = src1->type == GGML_TYPE_F32 && !y_non_contig;
|
|
|
|
vk_matmul_pipeline mmp = ggml_vk_get_mul_mat_mat_pipeline(ctx, src0->type, y_non_contig ? GGML_TYPE_F16 : src1->type, (ggml_prec)dst->op_params[0]);
|
|
|
|
const bool qx_needs_dequant = mmp == nullptr || x_non_contig;
|
|
const bool qy_needs_dequant = (src1->type != GGML_TYPE_F16 && !y_f32_kernel) || y_non_contig;
|
|
|
|
if (qx_needs_dequant) {
|
|
// Fall back to dequant + f16 mulmat
|
|
mmp = ggml_vk_get_mul_mat_mat_pipeline(ctx, GGML_TYPE_F16, y_f32_kernel ? GGML_TYPE_F32 : GGML_TYPE_F16, (ggml_prec)dst->op_params[0]);
|
|
}
|
|
|
|
// Not implemented
|
|
GGML_ASSERT(y_non_contig || !qy_needs_dequant); // NOLINT
|
|
|
|
const int x_ne = ne01 * ne00;
|
|
const int y_ne = ne11 * ne10;
|
|
const int d_ne = ne11 * ne01;
|
|
|
|
const uint32_t kpad = ggml_vk_align_size(ne10, ggml_vk_guess_matmul_pipeline_align(ctx, mmp, ne01, ne11, src0->type));
|
|
const bool aligned = ne10 == kpad && ne01 > 8 && ne11 > 8;
|
|
|
|
vk_pipeline pipeline = ggml_vk_guess_matmul_pipeline(ctx, mmp, ne01, ne11, aligned, src0->type);
|
|
|
|
const uint32_t split_k = ggml_vk_guess_split_k(ctx, ne01, ne11, ne10, pipeline);
|
|
|
|
const uint64_t qx_sz = ggml_type_size(src0->type) * x_ne / ggml_blck_size(src0->type);
|
|
const uint64_t qy_sz = ggml_type_size(src1->type) * y_ne / ggml_blck_size(src1->type);
|
|
const uint64_t x_sz = !qx_needs_dequant ? qx_sz : sizeof(ggml_fp16_t) * x_ne;
|
|
const uint64_t y_sz = y_f32_kernel ? sizeof(float) * y_ne : sizeof(ggml_fp16_t) * y_ne;
|
|
const uint64_t d_sz = sizeof(float) * d_ne;
|
|
|
|
vk_pipeline to_fp16_vk_0 = nullptr;
|
|
vk_pipeline to_fp16_vk_1 = nullptr;
|
|
|
|
if (x_non_contig) {
|
|
to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0, nullptr, GGML_TYPE_F16);
|
|
} else {
|
|
to_fp16_vk_0 = ggml_vk_get_to_fp16(ctx, src0->type);
|
|
}
|
|
if (y_non_contig) {
|
|
to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1, nullptr, GGML_TYPE_F16);
|
|
} else {
|
|
to_fp16_vk_1 = ggml_vk_get_to_fp16(ctx, src1->type);
|
|
}
|
|
GGML_ASSERT(!qx_needs_dequant || to_fp16_vk_0 != nullptr); // NOLINT
|
|
GGML_ASSERT(!qy_needs_dequant || to_fp16_vk_1 != nullptr); // NOLINT
|
|
|
|
if (dryrun) {
|
|
const uint64_t x_sz_upd = x_sz * ne02 * ne03;
|
|
const uint64_t y_sz_upd = y_sz * ne12 * ne13;
|
|
const uint64_t split_k_size = split_k > 1 ? d_sz * ne12 * ne13 * split_k : 0;
|
|
if (
|
|
(qx_needs_dequant && x_sz_upd > ctx->device->max_memory_allocation_size) ||
|
|
(qy_needs_dequant && y_sz_upd > ctx->device->max_memory_allocation_size) ||
|
|
(split_k > 1 && split_k_size > ctx->device->max_memory_allocation_size)) {
|
|
GGML_ABORT("Requested preallocation size is too large");
|
|
}
|
|
if (qx_needs_dequant && ctx->prealloc_size_x < x_sz_upd) {
|
|
ctx->prealloc_size_x = x_sz_upd;
|
|
}
|
|
if (qy_needs_dequant && ctx->prealloc_size_y < y_sz_upd) {
|
|
ctx->prealloc_size_y = y_sz_upd;
|
|
}
|
|
if (split_k > 1 && ctx->prealloc_size_split_k < split_k_size) {
|
|
ctx->prealloc_size_split_k = split_k_size;
|
|
}
|
|
|
|
// Request descriptor sets
|
|
ggml_pipeline_request_descriptor_sets(ctx->device, pipeline, 1);
|
|
if (qx_needs_dequant) {
|
|
ggml_pipeline_request_descriptor_sets(ctx->device, to_fp16_vk_0, 1);
|
|
}
|
|
if (qy_needs_dequant) {
|
|
ggml_pipeline_request_descriptor_sets(ctx->device, to_fp16_vk_1, 1);
|
|
}
|
|
if (split_k > 1) {
|
|
ggml_pipeline_request_descriptor_sets(ctx->device, ctx->device->pipeline_matmul_split_k_reduce, 1);
|
|
}
|
|
return;
|
|
}
|
|
|
|
vk_buffer d_D = dst_buf_ctx->dev_buffer;
|
|
const uint64_t d_buf_offset = vk_tensor_offset(dst) + dst->view_offs;
|
|
GGML_ASSERT(d_D != nullptr);
|
|
GGML_ASSERT(d_D->size >= d_buf_offset + d_sz * ne02 * ne03);
|
|
vk_buffer d_X;
|
|
uint64_t x_buf_offset = 0;
|
|
vk_buffer d_Y;
|
|
uint64_t y_buf_offset = 0;
|
|
if (!src0_uma) {
|
|
d_Qx = src0_buf_ctx->dev_buffer;
|
|
qx_buf_offset = vk_tensor_offset(src0) + src0->view_offs;
|
|
GGML_ASSERT(d_Qx != nullptr);
|
|
}
|
|
if (!src1_uma) {
|
|
d_Qy = src1_buf_ctx->dev_buffer;
|
|
qy_buf_offset = vk_tensor_offset(src1) + src1->view_offs;
|
|
GGML_ASSERT(d_Qy != nullptr);
|
|
}
|
|
if (qx_needs_dequant) {
|
|
d_X = ctx->prealloc_x;
|
|
GGML_ASSERT(d_X->size >= x_sz * ne02 * ne03);
|
|
} else {
|
|
d_X = d_Qx;
|
|
x_buf_offset = qx_buf_offset;
|
|
GGML_ASSERT(qx_sz == x_sz);
|
|
}
|
|
if (qy_needs_dequant) {
|
|
d_Y = ctx->prealloc_y;
|
|
GGML_ASSERT(d_Y->size >= y_sz * ne02 * ne03);
|
|
} else {
|
|
d_Y = d_Qy;
|
|
y_buf_offset = qy_buf_offset;
|
|
GGML_ASSERT(qy_sz == y_sz);
|
|
}
|
|
|
|
if (x_non_contig) {
|
|
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_0, src0, { d_Qx, qx_buf_offset, VK_WHOLE_SIZE }, { d_X, 0, VK_WHOLE_SIZE });
|
|
} else if (qx_needs_dequant) {
|
|
const std::vector<uint32_t> pc = { (uint32_t)ne01, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)(ggml_nelements(src0)) };
|
|
ggml_vk_sync_buffers(subctx);
|
|
ggml_vk_dispatch_pipeline(ctx, subctx, to_fp16_vk_0, { vk_subbuffer{ d_Qx, qx_buf_offset, qx_sz * ne02 * ne03 }, vk_subbuffer{ d_X, 0, x_sz * ne02 * ne03 } }, pc.size() * sizeof(uint32_t), pc.data(), { (uint32_t)(x_ne * ne02 * ne03), 1, 1});
|
|
}
|
|
if (y_non_contig) {
|
|
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE });
|
|
}
|
|
|
|
uint32_t stride_batch_x = ne00*ne01;
|
|
uint32_t stride_batch_y = ne10*ne11;
|
|
|
|
if (!ggml_vk_dim01_contiguous(src0) && !qx_needs_dequant) {
|
|
stride_batch_x = src0->nb[0] / ggml_type_size(src0->type);
|
|
}
|
|
|
|
if (!ggml_vk_dim01_contiguous(src1) && !qy_needs_dequant) {
|
|
stride_batch_y = src1->nb[0] / ggml_type_size(src1->type);
|
|
}
|
|
|
|
// compute
|
|
ggml_vk_matmul(
|
|
ctx, subctx, pipeline,
|
|
{ d_X, x_buf_offset, x_sz * ne02 * ne03 }, { d_Y, y_buf_offset, y_sz * ne12 * ne13 },
|
|
{ d_D, d_buf_offset, d_sz * ne12 * ne13 }, { ctx->prealloc_split_k, 0, d_sz * ne12 * ne13 * split_k },
|
|
ne01, ne11, ne10,
|
|
ne10, ne10, ne01, stride_batch_x, stride_batch_y, ne20*ne21,
|
|
split_k, ne12*ne13, ne02, ne12, r2, r3
|
|
); // NOLINT
|
|
}
|
|
|
|
static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
|
|
VK_LOG_DEBUG("ggml_vk_mul_mat_vec_q_f16((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
|
|
std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
|
|
std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3];
|
|
std::cerr << "), " << (dryrun ? "dryrun" : "") << "),)");
|
|
GGML_ASSERT(ggml_vk_dim01_contiguous(src0) || src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); // NOLINT
|
|
GGML_ASSERT(ggml_vk_dim01_contiguous(src1) || src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16); // NOLINT
|
|
|
|
const uint64_t ne00 = src0->ne[0];
|
|
const uint64_t ne01 = src0->ne[1];
|
|
const uint64_t ne02 = src0->ne[2];
|
|
const uint64_t ne03 = src0->ne[3];
|
|
|
|
const uint64_t ne10 = src1->ne[0];
|
|
const uint64_t ne11 = src1->ne[1];
|
|
const uint64_t ne12 = src1->ne[2];
|
|
const uint64_t ne13 = src1->ne[3];
|
|
|
|
GGML_ASSERT(ne11 == 1);
|
|
|
|
const uint64_t ne20 = dst->ne[0];
|
|
const uint64_t ne21 = dst->ne[1];
|
|
const uint64_t ne22 = dst->ne[2];
|
|
const uint64_t ne23 = dst->ne[3];
|
|
|
|
const uint64_t r2 = ne12 / ne02;
|
|
const uint64_t r3 = ne13 / ne03;
|
|
|
|
ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context;
|
|
ggml_backend_vk_buffer_context * src0_buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context;
|
|
ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context;
|
|
|
|
vk_buffer d_Qx;
|
|
size_t qx_buf_offset = 0;
|
|
vk_buffer d_Qy;
|
|
size_t qy_buf_offset = 0;
|
|
|
|
bool src0_uma = false;
|
|
bool src1_uma = false;
|
|
|
|
if (ctx->device->uma) {
|
|
ggml_vk_host_get(ctx->device, src0->data, d_Qx, qx_buf_offset);
|
|
ggml_vk_host_get(ctx->device, src1->data, d_Qy, qy_buf_offset);
|
|
src0_uma = d_Qx != nullptr;
|
|
src1_uma = d_Qy != nullptr;
|
|
}
|
|
|
|
const bool x_non_contig = !ggml_vk_dim01_contiguous(src0);
|
|
const bool y_non_contig = !ggml_vk_dim01_contiguous(src1);
|
|
|
|
const bool f16_f32_kernel = src1->type == GGML_TYPE_F32;
|
|
|
|
const bool qx_needs_dequant = x_non_contig;
|
|
const bool qy_needs_dequant = (src1->type != GGML_TYPE_F16 && !f16_f32_kernel) || y_non_contig;
|
|
|
|
// Not implemented
|
|
GGML_ASSERT(y_non_contig || !qy_needs_dequant); // NOLINT
|
|
|
|
const uint64_t x_ne = ne01 * ne00;
|
|
const uint64_t y_ne = ne11 * ne10;
|
|
const uint64_t d_ne = ne11 * ne01;
|
|
|
|
const uint64_t qx_sz = ggml_vk_align_size(ggml_type_size(src0->type) * x_ne / ggml_blck_size(src0->type), ctx->device->properties.limits.minStorageBufferOffsetAlignment);
|
|
const uint64_t qy_sz = ggml_type_size(src1->type) * y_ne / ggml_blck_size(src1->type);
|
|
const uint64_t x_sz = x_non_contig ? ggml_vk_align_size(ggml_type_size(src0->type) * x_ne, ctx->device->properties.limits.minStorageBufferOffsetAlignment) : qx_sz;
|
|
const uint64_t y_sz = f16_f32_kernel ? sizeof(float) * y_ne : sizeof(ggml_fp16_t) * y_ne;
|
|
const uint64_t d_sz = sizeof(float) * d_ne;
|
|
|
|
vk_pipeline to_fp16_vk_0 = nullptr;
|
|
vk_pipeline to_fp16_vk_1 = nullptr;
|
|
if (x_non_contig) {
|
|
to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0, nullptr, src0->type);
|
|
}
|
|
if (y_non_contig) {
|
|
to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1, nullptr, src1->type);
|
|
} else {
|
|
to_fp16_vk_1 = ggml_vk_get_to_fp16(ctx, src1->type);
|
|
}
|
|
vk_pipeline dmmv = ggml_vk_get_dequantize_mul_mat_vec(ctx, src0->type, src1->type);
|
|
GGML_ASSERT(!qx_needs_dequant || to_fp16_vk_0 != nullptr); // NOLINT
|
|
GGML_ASSERT(!qy_needs_dequant || to_fp16_vk_1 != nullptr); // NOLINT
|
|
GGML_ASSERT(dmmv != nullptr);
|
|
|
|
if (dryrun) {
|
|
const uint64_t x_sz_upd = x_sz * ne02 * ne03;
|
|
const uint64_t y_sz_upd = y_sz * ne12 * ne13;
|
|
if (
|
|
(qx_needs_dequant && x_sz_upd > ctx->device->max_memory_allocation_size) ||
|
|
(qy_needs_dequant && y_sz_upd > ctx->device->max_memory_allocation_size)) {
|
|
GGML_ABORT("Requested preallocation size is too large");
|
|
}
|
|
if (qx_needs_dequant && ctx->prealloc_size_x < x_sz_upd) {
|
|
ctx->prealloc_size_x = x_sz_upd;
|
|
}
|
|
if (qy_needs_dequant && ctx->prealloc_size_y < y_sz_upd) {
|
|
ctx->prealloc_size_y = y_sz_upd;
|
|
}
|
|
|
|
// Request descriptor sets
|
|
if (qx_needs_dequant) {
|
|
ggml_pipeline_request_descriptor_sets(ctx->device, to_fp16_vk_0, 1);
|
|
}
|
|
if (qy_needs_dequant) {
|
|
ggml_pipeline_request_descriptor_sets(ctx->device, to_fp16_vk_1, 1);
|
|
}
|
|
ggml_pipeline_request_descriptor_sets(ctx->device, dmmv, 1);
|
|
return;
|
|
}
|
|
|
|
vk_buffer d_D = dst_buf_ctx->dev_buffer;
|
|
const uint64_t d_buf_offset = vk_tensor_offset(dst) + dst->view_offs;
|
|
GGML_ASSERT(d_D != nullptr);
|
|
vk_buffer d_X;
|
|
uint64_t x_buf_offset = 0;
|
|
vk_buffer d_Y;
|
|
uint64_t y_buf_offset = 0;
|
|
if(!src0_uma) {
|
|
d_Qx = src0_buf_ctx->dev_buffer;
|
|
qx_buf_offset = vk_tensor_offset(src0) + src0->view_offs;
|
|
GGML_ASSERT(d_Qx != nullptr);
|
|
}
|
|
if(!src1_uma) {
|
|
d_Qy = src1_buf_ctx->dev_buffer;
|
|
qy_buf_offset = vk_tensor_offset(src1) + src1->view_offs;
|
|
GGML_ASSERT(d_Qy != nullptr);
|
|
}
|
|
if (qx_needs_dequant) {
|
|
d_X = ctx->prealloc_x;
|
|
} else {
|
|
d_X = d_Qx;
|
|
x_buf_offset = qx_buf_offset;
|
|
GGML_ASSERT(qx_sz == x_sz);
|
|
}
|
|
if (qy_needs_dequant) {
|
|
d_Y = ctx->prealloc_y;
|
|
} else {
|
|
d_Y = d_Qy;
|
|
y_buf_offset = qy_buf_offset;
|
|
GGML_ASSERT(qy_sz == y_sz);
|
|
}
|
|
|
|
if (x_non_contig) {
|
|
GGML_ASSERT(x_sz == ggml_vk_align_size(ggml_type_size(src0->type) * x_ne, ctx->device->properties.limits.minStorageBufferOffsetAlignment));
|
|
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_0, src0, { d_Qx, qx_buf_offset, VK_WHOLE_SIZE }, { d_X, 0, VK_WHOLE_SIZE });
|
|
}
|
|
if (y_non_contig) {
|
|
GGML_ASSERT(y_sz == ggml_type_size(src1->type) * y_ne);
|
|
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE });
|
|
}
|
|
|
|
uint32_t stride_batch_x = ne00*ne01;
|
|
uint32_t stride_batch_y = ne10*ne11;
|
|
|
|
if (!ggml_vk_dim01_contiguous(src0) && !qx_needs_dequant) {
|
|
stride_batch_x = src0->nb[0] / ggml_type_size(src0->type);
|
|
}
|
|
|
|
if (!ggml_vk_dim01_contiguous(src1) && !qy_needs_dequant) {
|
|
stride_batch_y = src1->nb[0] / ggml_type_size(src1->type);
|
|
}
|
|
|
|
const uint32_t max_groups_x = ctx->device->properties.limits.maxComputeWorkGroupCount[0];
|
|
|
|
uint32_t groups_x = ne01;
|
|
uint32_t groups_z = 1;
|
|
|
|
if (ne01 > max_groups_x) {
|
|
groups_z = 64;
|
|
groups_x = CEIL_DIV(groups_x, groups_z);
|
|
}
|
|
|
|
// compute
|
|
const vk_mat_vec_push_constants pc = {
|
|
(uint32_t)ne00, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)ne01,
|
|
stride_batch_x, stride_batch_y, (uint32_t)(ne20*ne21),
|
|
(uint32_t)ne02, (uint32_t)ne12, (uint32_t)r2, (uint32_t)r3,
|
|
};
|
|
ggml_vk_sync_buffers(subctx);
|
|
ggml_vk_dispatch_pipeline(ctx, subctx, dmmv,
|
|
{ vk_subbuffer{ d_X, x_buf_offset, x_sz * ne02 * ne03 }, vk_subbuffer{ d_Y, y_buf_offset, y_sz * ne12 * ne13 }, vk_subbuffer{ d_D, d_buf_offset, d_sz * ne22 * ne23} },
|
|
sizeof(vk_mat_vec_push_constants), &pc, { groups_x, (uint32_t)(ne12 * ne13), groups_z });
|
|
}
|
|
|
|
static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
|
|
VK_LOG_DEBUG("ggml_vk_mul_mat_p021_f16_f32(" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
|
|
std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
|
|
std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3];
|
|
std::cerr << "), " << (dryrun ? "dryrun" : "") << ")");
|
|
GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
|
|
GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // NOLINT
|
|
GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // NOLINT
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
|
|
|
const uint64_t ne00 = src0->ne[0];
|
|
const uint64_t ne01 = src0->ne[1];
|
|
const uint64_t ne02 = src0->ne[2];
|
|
// const uint64_t ne03 = src0->ne[3];
|
|
|
|
const uint64_t ne10 = src1->ne[0];
|
|
const uint64_t ne11 = src1->ne[1];
|
|
const uint64_t ne12 = src1->ne[2];
|
|
// const uint64_t ne13 = src1->ne[3];
|
|
|
|
GGML_ASSERT(ne11 == 1);
|
|
|
|
ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context;
|
|
ggml_backend_vk_buffer_context * src0_buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context;
|
|
ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context;
|
|
|
|
vk_buffer d_Qy;
|
|
size_t qy_buf_offset = 0;
|
|
|
|
bool src1_uma = false;
|
|
|
|
if (ctx->device->uma) {
|
|
ggml_vk_host_get(ctx->device, src1->data, d_Qy, qy_buf_offset);
|
|
src1_uma = d_Qy != nullptr;
|
|
}
|
|
|
|
const uint64_t x_ne = ne00 * ne01 * ne02;
|
|
const uint64_t y_ne = ne10 * ne11 * ne12;
|
|
const uint64_t d_ne = ne01 * ne11 * ne12;
|
|
|
|
const uint64_t qx_sz = ggml_vk_align_size(ggml_type_size(src0->type) * x_ne / ggml_blck_size(src0->type), ctx->device->properties.limits.minStorageBufferOffsetAlignment);
|
|
const uint64_t qy_sz = ggml_type_size(src1->type) * y_ne / ggml_blck_size(src1->type);
|
|
const uint64_t d_sz = sizeof(float) * d_ne;
|
|
|
|
if (dryrun) {
|
|
// Request descriptor sets
|
|
ggml_pipeline_request_descriptor_sets(ctx->device, ctx->device->pipeline_mul_mat_vec_p021_f16_f32, 1);
|
|
return;
|
|
}
|
|
|
|
vk_buffer d_D = dst_buf_ctx->dev_buffer;
|
|
const uint64_t d_buf_offset = vk_tensor_offset(dst) + dst->view_offs;
|
|
GGML_ASSERT(d_D != nullptr);
|
|
vk_buffer d_Qx = src0_buf_ctx->dev_buffer;
|
|
const uint64_t qx_buf_offset = vk_tensor_offset(src0) + src0->view_offs;
|
|
GGML_ASSERT(d_Qx != nullptr);
|
|
if (!src1_uma) {
|
|
d_Qy = src1_buf_ctx->dev_buffer;
|
|
qy_buf_offset = vk_tensor_offset(src1) + src1->view_offs;
|
|
GGML_ASSERT(d_Qx != nullptr);
|
|
}
|
|
|
|
const uint64_t qy_buffer_offset = (qy_buf_offset / ctx->device->properties.limits.minStorageBufferOffsetAlignment) * ctx->device->properties.limits.minStorageBufferOffsetAlignment;
|
|
const uint64_t qy_shader_offset = qy_buf_offset - qy_buffer_offset;
|
|
|
|
const uint64_t d_buffer_offset = (d_buf_offset / ctx->device->properties.limits.minStorageBufferOffsetAlignment) * ctx->device->properties.limits.minStorageBufferOffsetAlignment;
|
|
const uint64_t d_shader_offset = d_buf_offset - d_buffer_offset;
|
|
|
|
// compute
|
|
const std::array<uint32_t, 6> pc = { (uint32_t)ne00, (uint32_t)ne01, (uint32_t)ne02, (uint32_t)ne12, (uint32_t)(qy_shader_offset / ggml_type_size(src1->type)), (uint32_t)(d_shader_offset / ggml_type_size(dst->type)) };
|
|
ggml_vk_sync_buffers(subctx);
|
|
ggml_vk_dispatch_pipeline(ctx, subctx, ctx->device->pipeline_mul_mat_vec_p021_f16_f32, { vk_subbuffer{ d_Qx, qx_buf_offset, qx_sz }, vk_subbuffer{ d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, vk_subbuffer{ d_D, d_buffer_offset, d_sz + d_shader_offset } }, 6 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, (uint32_t)ne12 });
|
|
}
|
|
|
|
static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
|
|
VK_LOG_DEBUG("ggml_vk_mul_mat_nc_f16_f32((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
|
|
std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
|
|
std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3];
|
|
std::cerr << "), " << (dryrun ? "dryrun" : "") << ")");
|
|
GGML_ASSERT(!ggml_is_transposed(src0));
|
|
GGML_ASSERT(!ggml_is_transposed(src1));
|
|
GGML_ASSERT(!ggml_is_permuted(src0));
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
|
|
|
const uint64_t ne00 = src0->ne[0];
|
|
const uint64_t ne01 = src0->ne[1];
|
|
const uint64_t ne02 = src0->ne[2];
|
|
// const uint64_t ne03 = src0->ne[3];
|
|
|
|
const uint64_t nb01 = src0->nb[1];
|
|
const uint64_t nb02 = src0->nb[2];
|
|
|
|
// const uint64_t ne10 = src1->ne[0];
|
|
const uint64_t ne11 = src1->ne[1];
|
|
const uint64_t ne12 = src1->ne[2];
|
|
// const uint64_t ne13 = src1->ne[3];
|
|
|
|
GGML_ASSERT(ne11 == 1);
|
|
|
|
ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context;
|
|
ggml_backend_vk_buffer_context * src0_buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context;
|
|
ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context;
|
|
|
|
vk_buffer d_Qy = nullptr;
|
|
size_t qy_buf_offset = 0;
|
|
|
|
bool src1_uma = false;
|
|
|
|
if (ctx->device->uma) {
|
|
ggml_vk_host_get(ctx->device, src1->data, d_Qy, qy_buf_offset);
|
|
src1_uma = d_Qy != nullptr;
|
|
}
|
|
|
|
const uint64_t d_ne = ne01 * ne11 * ne12;
|
|
|
|
const uint32_t row_stride_x = nb01 / sizeof(ggml_fp16_t);
|
|
const uint32_t channel_stride_x = nb02 / sizeof(ggml_fp16_t);
|
|
|
|
const uint64_t qx_sz = ggml_nbytes(src0);
|
|
const uint64_t qy_sz = ggml_nbytes(src1);
|
|
const uint64_t d_sz = sizeof(float) * d_ne;
|
|
|
|
if (dryrun) {
|
|
// Request descriptor sets
|
|
ggml_pipeline_request_descriptor_sets(ctx->device, ctx->device->pipeline_mul_mat_vec_nc_f16_f32, 1);
|
|
return;
|
|
}
|
|
|
|
vk_buffer d_D = dst_buf_ctx->dev_buffer;
|
|
const uint64_t d_buf_offset = vk_tensor_offset(dst) + dst->view_offs;
|
|
GGML_ASSERT(d_D != nullptr);
|
|
vk_buffer d_Qx = src0_buf_ctx->dev_buffer;
|
|
const uint64_t qx_buf_offset = vk_tensor_offset(src0) + src0->view_offs;
|
|
GGML_ASSERT(d_Qx != nullptr);
|
|
if (!src1_uma) {
|
|
d_Qy = src1_buf_ctx->dev_buffer;
|
|
qy_buf_offset = vk_tensor_offset(src1) + src1->view_offs;
|
|
GGML_ASSERT(d_Qx != nullptr);
|
|
}
|
|
|
|
const uint64_t qy_buffer_offset = (qy_buf_offset / ctx->device->properties.limits.minStorageBufferOffsetAlignment) * ctx->device->properties.limits.minStorageBufferOffsetAlignment;
|
|
const uint64_t qy_shader_offset = qy_buf_offset - qy_buffer_offset;
|
|
|
|
const uint64_t d_buffer_offset = (d_buf_offset / ctx->device->properties.limits.minStorageBufferOffsetAlignment) * ctx->device->properties.limits.minStorageBufferOffsetAlignment;
|
|
const uint64_t d_shader_offset = d_buf_offset - d_buffer_offset;
|
|
|
|
// compute
|
|
const std::array<uint32_t, 7> pc = { (uint32_t)ne00, (uint32_t)ne01, row_stride_x, channel_stride_x, (uint32_t)(ne12 / ne02), (uint32_t)(qy_shader_offset / ggml_type_size(src1->type)), (uint32_t)(d_shader_offset / ggml_type_size(dst->type)) };
|
|
ggml_vk_sync_buffers(subctx);
|
|
ggml_vk_dispatch_pipeline(ctx, subctx, ctx->device->pipeline_mul_mat_vec_nc_f16_f32,
|
|
{ vk_subbuffer{ d_Qx, qx_buf_offset, qx_sz }, vk_subbuffer{ d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, vk_subbuffer{ d_D, d_buffer_offset, d_sz + d_shader_offset } }, 7 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, (uint32_t)ne12 });
|
|
}
|
|
|
|
static void ggml_vk_mul_mat(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
|
|
VK_LOG_DEBUG("ggml_vk_mul_mat(" << src0 << ", " << src1 << ", " << dst << ")");
|
|
if (src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && dst->ne[1] == 1 &&
|
|
// detect 0213 permutation, and batch size of 1
|
|
src0->nb[0] <= src0->nb[2] &&
|
|
src0->nb[2] <= src0->nb[1] &&
|
|
src0->nb[1] <= src0->nb[3] &&
|
|
src1->nb[0] <= src1->nb[2] &&
|
|
src1->nb[2] <= src1->nb[1] &&
|
|
src1->nb[1] <= src1->nb[3] &&
|
|
src0->ne[3] == 1 &&
|
|
src1->ne[3] == 1) {
|
|
ggml_vk_mul_mat_vec_p021_f16_f32(ctx, subctx, src0, src1, dst, dryrun);
|
|
} else if (src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && dst->ne[1] == 1 &&
|
|
!ggml_is_permuted(src0) && !ggml_is_permuted(src1)) {
|
|
ggml_vk_mul_mat_vec_nc_f16_f32(ctx, subctx, src0, src1, dst, dryrun);
|
|
} else if (dst->ne[1] == 1 && (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type))) {
|
|
ggml_vk_mul_mat_vec_q_f16(ctx, subctx, src0, src1, dst, dryrun);
|
|
} else {
|
|
ggml_vk_mul_mat_q_f16(ctx, subctx, src0, src1, dst, dryrun);
|
|
}
|
|
}
|
|
|
|
static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst, bool dryrun = false) {
|
|
VK_LOG_DEBUG("ggml_vk_mul_mat_id_q_f16((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
|
|
std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
|
|
std::cerr << "), (" << ids << ", name=" << ids->name << ", type=" << ids->type << ", ne0=" << ids->ne[0] << ", ne1=" << ids->ne[1] << ", ne2=" << ids->ne[2] << ", ne3=" << ids->ne[3] << ", nb0=" << ids->nb[0] << ", nb1=" << ids->nb[1] << ", nb2=" << ids->nb[2] << ", nb3=" << ids->nb[3];
|
|
std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "),)");
|
|
GGML_ASSERT(ggml_vk_dim01_contiguous(src1) || src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16); // NOLINT
|
|
GGML_ASSERT(ids->type == GGML_TYPE_I32);
|
|
|
|
const uint64_t ne00 = src0->ne[0];
|
|
const uint64_t ne01 = src0->ne[1];
|
|
const uint64_t ne02 = src0->ne[2];
|
|
const uint64_t ne03 = src0->ne[3];
|
|
|
|
const uint64_t ne10 = src1->ne[0];
|
|
const uint64_t ne11 = src1->ne[1];
|
|
const uint64_t ne12 = src1->ne[2];
|
|
const uint64_t ne13 = src1->ne[3];
|
|
|
|
const uint64_t nei0 = ids->ne[0];
|
|
const uint64_t nei1 = ids->ne[1];
|
|
GGML_ASSERT(nei0 * nei1 <= 3072);
|
|
|
|
const uint32_t nbi1 = ids->nb[1];
|
|
const uint32_t nbi2 = ids->nb[2];
|
|
|
|
const uint64_t ne20 = dst->ne[0];
|
|
const uint64_t ne21 = dst->ne[1];
|
|
const uint64_t ne22 = dst->ne[2];
|
|
const uint64_t ne23 = dst->ne[3];
|
|
|
|
const uint64_t n_as = ne02;
|
|
|
|
ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context;
|
|
ggml_backend_vk_buffer_context * src0_buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context;
|
|
ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context;
|
|
ggml_backend_vk_buffer_context * ids_buf_ctx = (ggml_backend_vk_buffer_context *)ids->buffer->context;
|
|
|
|
vk_buffer d_Qx;
|
|
size_t qx_buf_offset = 0;
|
|
vk_buffer d_Qy;
|
|
size_t qy_buf_offset = 0;
|
|
vk_buffer d_ids;
|
|
size_t ids_buf_offset = 0;
|
|
|
|
bool src0_uma = false;
|
|
bool src1_uma = false;
|
|
bool ids_uma = false;
|
|
|
|
if (ctx->device->uma) {
|
|
ggml_vk_host_get(ctx->device, src0->data, d_Qx, qx_buf_offset);
|
|
ggml_vk_host_get(ctx->device, src1->data, d_Qy, qy_buf_offset);
|
|
ggml_vk_host_get(ctx->device, ids->data, d_ids, ids_buf_offset);
|
|
src0_uma = d_Qx != nullptr;
|
|
src1_uma = d_Qy != nullptr;
|
|
ids_uma = d_ids != nullptr;
|
|
}
|
|
|
|
const bool x_non_contig = !ggml_vk_dim01_contiguous(src0);
|
|
const bool y_non_contig = !ggml_vk_dim01_contiguous(src1);
|
|
|
|
const bool y_f32_kernel = src1->type == GGML_TYPE_F32 && !y_non_contig;
|
|
|
|
vk_matmul_pipeline mmp = ggml_vk_get_mul_mat_mat_id_pipeline(ctx, src0->type, y_non_contig ? GGML_TYPE_F16 : src1->type, (ggml_prec)dst->op_params[0]);
|
|
|
|
const bool qx_needs_dequant = mmp == nullptr || x_non_contig;
|
|
const bool qy_needs_dequant = (src1->type != GGML_TYPE_F16 && !y_f32_kernel) || y_non_contig;
|
|
|
|
if (qx_needs_dequant) {
|
|
GGML_ABORT("fatal error");
|
|
}
|
|
|
|
// Not implemented
|
|
GGML_ASSERT(y_non_contig || !qy_needs_dequant); // NOLINT
|
|
|
|
const uint64_t x_ne = ne01 * ne00;
|
|
const uint64_t y_ne = ne11 * ne10;
|
|
const uint64_t d_ne = ne21 * ne20;
|
|
|
|
const uint32_t kpad = ggml_vk_align_size(ne10, ggml_vk_guess_matmul_id_pipeline_align(ctx, mmp, ne01, nei1));
|
|
const bool aligned = ne10 == kpad && ne01 > 8 && nei1 > 8;
|
|
|
|
vk_pipeline pipeline = ggml_vk_guess_matmul_id_pipeline(ctx, mmp, ne01, nei1, aligned);
|
|
|
|
const uint64_t qx_sz = ggml_type_size(src0->type) * x_ne / ggml_blck_size(src0->type);
|
|
const uint64_t qy_sz = ggml_type_size(src1->type) * y_ne / ggml_blck_size(src1->type);
|
|
const uint64_t x_sz = !qx_needs_dequant ? qx_sz : sizeof(ggml_fp16_t) * x_ne;
|
|
const uint64_t y_sz = y_f32_kernel ? sizeof(float) * y_ne : sizeof(ggml_fp16_t) * y_ne;
|
|
const uint64_t ids_sz = nbi2;
|
|
const uint64_t d_sz = sizeof(float) * d_ne;
|
|
|
|
vk_pipeline to_fp16_vk_0 = nullptr;
|
|
vk_pipeline to_fp16_vk_1 = nullptr;
|
|
|
|
if (x_non_contig) {
|
|
to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0, nullptr, GGML_TYPE_F16);
|
|
} else {
|
|
to_fp16_vk_0 = ggml_vk_get_to_fp16(ctx, src0->type);
|
|
}
|
|
if (y_non_contig) {
|
|
to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1, nullptr, GGML_TYPE_F16);
|
|
} else {
|
|
to_fp16_vk_1 = ggml_vk_get_to_fp16(ctx, src1->type);
|
|
}
|
|
GGML_ASSERT(!qx_needs_dequant || to_fp16_vk_0 != nullptr); // NOLINT
|
|
GGML_ASSERT(!qy_needs_dequant || to_fp16_vk_1 != nullptr); // NOLINT
|
|
|
|
if (dryrun) {
|
|
const uint64_t x_sz_upd = x_sz * ne02 * ne03;
|
|
const uint64_t y_sz_upd = y_sz * ne12 * ne13;
|
|
if (
|
|
(qx_needs_dequant && x_sz_upd > ctx->device->max_memory_allocation_size) ||
|
|
(qy_needs_dequant && y_sz_upd > ctx->device->max_memory_allocation_size)) {
|
|
GGML_ABORT("Requested preallocation size is too large");
|
|
}
|
|
if (qx_needs_dequant && ctx->prealloc_size_x < x_sz_upd) {
|
|
ctx->prealloc_size_x = x_sz_upd;
|
|
}
|
|
if (qy_needs_dequant && ctx->prealloc_size_y < y_sz_upd) {
|
|
ctx->prealloc_size_y = y_sz_upd;
|
|
}
|
|
|
|
// Request descriptor sets
|
|
ggml_pipeline_request_descriptor_sets(ctx->device, pipeline, 1);
|
|
if (qx_needs_dequant) {
|
|
ggml_pipeline_request_descriptor_sets(ctx->device, to_fp16_vk_0, 1);
|
|
}
|
|
if (qy_needs_dequant) {
|
|
ggml_pipeline_request_descriptor_sets(ctx->device, to_fp16_vk_1, 1);
|
|
}
|
|
return;
|
|
}
|
|
|
|
vk_buffer d_D = dst_buf_ctx->dev_buffer;
|
|
const uint64_t d_buf_offset = vk_tensor_offset(dst) + dst->view_offs;
|
|
GGML_ASSERT(d_D != nullptr);
|
|
vk_buffer d_X;
|
|
uint64_t x_buf_offset = 0;
|
|
vk_buffer d_Y;
|
|
uint64_t y_buf_offset = 0;
|
|
if (!src0_uma) {
|
|
d_Qx = src0_buf_ctx->dev_buffer;
|
|
qx_buf_offset = vk_tensor_offset(src0) + src0->view_offs;
|
|
GGML_ASSERT(d_Qx != nullptr);
|
|
}
|
|
if (!src1_uma) {
|
|
d_Qy = src1_buf_ctx->dev_buffer;
|
|
qy_buf_offset = vk_tensor_offset(src1) + src1->view_offs;
|
|
GGML_ASSERT(d_Qy != nullptr);
|
|
}
|
|
if (!ids_uma) {
|
|
d_ids = ids_buf_ctx->dev_buffer;
|
|
ids_buf_offset = vk_tensor_offset(ids) + ids->view_offs;
|
|
GGML_ASSERT(d_ids != nullptr);
|
|
}
|
|
if (qx_needs_dequant) {
|
|
d_X = ctx->prealloc_x;
|
|
GGML_ASSERT(d_X->size >= x_sz * ne02 * ne03);
|
|
} else {
|
|
d_X = d_Qx;
|
|
x_buf_offset = qx_buf_offset;
|
|
GGML_ASSERT(qx_sz == x_sz);
|
|
}
|
|
if (qy_needs_dequant) {
|
|
d_Y = ctx->prealloc_y;
|
|
GGML_ASSERT(d_Y->size >= y_sz * ne02 * ne03);
|
|
} else {
|
|
d_Y = d_Qy;
|
|
y_buf_offset = qy_buf_offset;
|
|
GGML_ASSERT(qy_sz == y_sz);
|
|
}
|
|
|
|
if (x_non_contig) {
|
|
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_0, src0, { d_Qx, qx_buf_offset, VK_WHOLE_SIZE }, { d_X, 0, VK_WHOLE_SIZE });
|
|
} else if (qx_needs_dequant) {
|
|
const std::vector<uint32_t> pc = { (uint32_t)ne01, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)(ggml_nelements(src0)) };
|
|
ggml_vk_sync_buffers(subctx);
|
|
ggml_vk_dispatch_pipeline(ctx, subctx, to_fp16_vk_0,
|
|
{ vk_subbuffer{ d_Qx, qx_buf_offset, qx_sz * ne02 * ne03 }, vk_subbuffer{ d_X, 0, x_sz * ne02 * ne03 } }, pc.size() * sizeof(uint32_t), pc.data(), { (uint32_t)(x_ne * ne02 * ne03), 1, 1});
|
|
}
|
|
if (y_non_contig) {
|
|
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE });
|
|
}
|
|
|
|
uint32_t stride_batch_x = ne00*ne01;
|
|
uint32_t stride_batch_y = ne10*ne11;
|
|
|
|
if (!ggml_vk_dim01_contiguous(src0) && !qx_needs_dequant) {
|
|
stride_batch_x = src0->nb[0] / ggml_type_size(src0->type);
|
|
}
|
|
|
|
if (!ggml_vk_dim01_contiguous(src1) && !qy_needs_dequant) {
|
|
stride_batch_y = src1->nb[0] / ggml_type_size(src1->type);
|
|
}
|
|
|
|
// compute
|
|
ggml_vk_matmul_id(
|
|
ctx, subctx, pipeline,
|
|
{ d_X, x_buf_offset, x_sz * ne02 * ne03 }, { d_Y, y_buf_offset, y_sz * ne12 * ne13 },
|
|
{ d_D, d_buf_offset, d_sz * ne22 * ne23 }, { d_ids, ids_buf_offset, ids_sz },
|
|
ne01, ne21, ne10, ne10, ne10, ne01,
|
|
stride_batch_x, stride_batch_y, ne20*ne21,
|
|
n_as, nei0, nei1, nbi1 / ggml_type_size(ids->type), ne11
|
|
); // NOLINT
|
|
}
|
|
|
|
static void ggml_vk_mul_mat_vec_id_q_f16(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * ids, ggml_tensor * dst, bool dryrun = false) {
|
|
VK_LOG_DEBUG("ggml_vk_mul_mat_vec_id_q_f16((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
|
|
std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
|
|
std::cerr << "), (" << ids << ", name=" << ids->name << ", type=" << ids->type << ", ne0=" << ids->ne[0] << ", ne1=" << ids->ne[1] << ", ne2=" << ids->ne[2] << ", ne3=" << ids->ne[3] << ", nb0=" << ids->nb[0] << ", nb1=" << ids->nb[1] << ", nb2=" << ids->nb[2] << ", nb3=" << ids->nb[3];
|
|
std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3];
|
|
std::cerr << "), " << (dryrun ? "dryrun" : "") << ")");
|
|
GGML_ASSERT(ggml_vk_dim01_contiguous(src0) || src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); // NOLINT
|
|
GGML_ASSERT(ggml_vk_dim01_contiguous(src1) || src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16); // NOLINT
|
|
GGML_ASSERT(ids->type == GGML_TYPE_I32);
|
|
|
|
const uint64_t ne00 = src0->ne[0];
|
|
const uint64_t ne01 = src0->ne[1];
|
|
const uint64_t ne02 = src0->ne[2];
|
|
const uint64_t ne03 = src0->ne[3];
|
|
|
|
const uint64_t ne10 = src1->ne[0];
|
|
const uint64_t ne11 = src1->ne[1];
|
|
const uint64_t ne12 = src1->ne[2];
|
|
const uint64_t ne13 = src1->ne[3];
|
|
|
|
const uint64_t nei0 = ids->ne[0];
|
|
const uint64_t nei1 = ids->ne[1];
|
|
|
|
const uint64_t nbi2 = ids->nb[2];
|
|
|
|
GGML_ASSERT(nei1 == 1);
|
|
|
|
const uint64_t ne20 = dst->ne[0];
|
|
const uint64_t ne21 = dst->ne[1];
|
|
const uint64_t ne22 = dst->ne[2];
|
|
const uint64_t ne23 = dst->ne[3];
|
|
|
|
ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context;
|
|
ggml_backend_vk_buffer_context * src0_buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context;
|
|
ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context;
|
|
ggml_backend_vk_buffer_context * ids_buf_ctx = (ggml_backend_vk_buffer_context *)ids->buffer->context;
|
|
|
|
vk_buffer d_Qx;
|
|
size_t qx_buf_offset = 0;
|
|
vk_buffer d_Qy;
|
|
size_t qy_buf_offset = 0;
|
|
vk_buffer d_ids;
|
|
size_t ids_buf_offset = 0;
|
|
|
|
bool src0_uma = false;
|
|
bool src1_uma = false;
|
|
bool ids_uma = false;
|
|
|
|
if (ctx->device->uma) {
|
|
ggml_vk_host_get(ctx->device, src0->data, d_Qx, qx_buf_offset);
|
|
ggml_vk_host_get(ctx->device, src1->data, d_Qy, qy_buf_offset);
|
|
ggml_vk_host_get(ctx->device, ids->data, d_ids, ids_buf_offset);
|
|
src0_uma = d_Qx != nullptr;
|
|
src1_uma = d_Qy != nullptr;
|
|
ids_uma = d_ids != nullptr;
|
|
}
|
|
|
|
const bool x_non_contig = !ggml_vk_dim01_contiguous(src0);
|
|
const bool y_non_contig = !ggml_vk_dim01_contiguous(src1);
|
|
|
|
const bool f16_f32_kernel = src1->type == GGML_TYPE_F32;
|
|
|
|
const bool qx_needs_dequant = x_non_contig;
|
|
const bool qy_needs_dequant = (src1->type != GGML_TYPE_F16 && !f16_f32_kernel) || y_non_contig;
|
|
|
|
// Not implemented
|
|
GGML_ASSERT(y_non_contig || !qy_needs_dequant); // NOLINT
|
|
|
|
const uint64_t x_ne = ne01 * ne00;
|
|
const uint64_t y_ne = ne11 * ne10;
|
|
const uint64_t d_ne = ne21 * ne20;
|
|
|
|
const uint64_t qx_sz = ggml_vk_align_size(ggml_type_size(src0->type) * x_ne / ggml_blck_size(src0->type), ctx->device->properties.limits.minStorageBufferOffsetAlignment);
|
|
const uint64_t qy_sz = ggml_type_size(src1->type) * y_ne / ggml_blck_size(src1->type);
|
|
const uint64_t x_sz = x_non_contig ? ggml_vk_align_size(ggml_type_size(src0->type) * x_ne, ctx->device->properties.limits.minStorageBufferOffsetAlignment) : qx_sz;
|
|
const uint64_t y_sz = f16_f32_kernel ? sizeof(float) * y_ne : sizeof(ggml_fp16_t) * y_ne;
|
|
const uint64_t ids_sz = nbi2;
|
|
const uint64_t d_sz = sizeof(float) * d_ne;
|
|
|
|
vk_pipeline to_fp16_vk_0 = nullptr;
|
|
vk_pipeline to_fp16_vk_1 = nullptr;
|
|
if (x_non_contig) {
|
|
to_fp16_vk_0 = ggml_vk_get_cpy_pipeline(ctx, src0, nullptr, src0->type);
|
|
}
|
|
if (y_non_contig) {
|
|
to_fp16_vk_1 = ggml_vk_get_cpy_pipeline(ctx, src1, nullptr, src1->type);
|
|
} else {
|
|
to_fp16_vk_1 = ggml_vk_get_to_fp16(ctx, src1->type);
|
|
}
|
|
vk_pipeline dmmv = ggml_vk_get_dequantize_mul_mat_vec_id(ctx, src0->type, src1->type);
|
|
GGML_ASSERT(!qx_needs_dequant || to_fp16_vk_0 != nullptr); // NOLINT
|
|
GGML_ASSERT(!qy_needs_dequant || to_fp16_vk_1 != nullptr); // NOLINT
|
|
GGML_ASSERT(dmmv != nullptr);
|
|
|
|
if (dryrun) {
|
|
const uint64_t x_sz_upd = x_sz * ne02 * ne03;
|
|
const uint64_t y_sz_upd = y_sz * ne12 * ne13;
|
|
if (
|
|
(qx_needs_dequant && x_sz_upd > ctx->device->max_memory_allocation_size) ||
|
|
(qy_needs_dequant && y_sz_upd > ctx->device->max_memory_allocation_size)) {
|
|
GGML_ABORT("Requested preallocation size is too large");
|
|
}
|
|
if (qx_needs_dequant && ctx->prealloc_size_x < x_sz_upd) {
|
|
ctx->prealloc_size_x = x_sz_upd;
|
|
}
|
|
if (qy_needs_dequant && ctx->prealloc_size_y < y_sz_upd) {
|
|
ctx->prealloc_size_y = y_sz_upd;
|
|
}
|
|
|
|
// Request descriptor sets
|
|
if (qx_needs_dequant) {
|
|
ggml_pipeline_request_descriptor_sets(ctx->device, to_fp16_vk_0, 1);
|
|
}
|
|
if (qy_needs_dequant) {
|
|
ggml_pipeline_request_descriptor_sets(ctx->device, to_fp16_vk_1, 1);
|
|
}
|
|
ggml_pipeline_request_descriptor_sets(ctx->device, dmmv, 1);
|
|
return;
|
|
}
|
|
|
|
vk_buffer d_D = dst_buf_ctx->dev_buffer;
|
|
const uint64_t d_buf_offset = vk_tensor_offset(dst) + dst->view_offs;
|
|
GGML_ASSERT(d_D != nullptr);
|
|
vk_buffer d_X;
|
|
uint64_t x_buf_offset = 0;
|
|
vk_buffer d_Y;
|
|
uint64_t y_buf_offset = 0;
|
|
if(!src0_uma) {
|
|
d_Qx = src0_buf_ctx->dev_buffer;
|
|
qx_buf_offset = vk_tensor_offset(src0) + src0->view_offs;
|
|
GGML_ASSERT(d_Qx != nullptr);
|
|
}
|
|
if(!src1_uma) {
|
|
d_Qy = src1_buf_ctx->dev_buffer;
|
|
qy_buf_offset = vk_tensor_offset(src1) + src1->view_offs;
|
|
GGML_ASSERT(d_Qy != nullptr);
|
|
}
|
|
if(!ids_uma) {
|
|
d_ids = ids_buf_ctx->dev_buffer;
|
|
ids_buf_offset = vk_tensor_offset(ids) + ids->view_offs;
|
|
GGML_ASSERT(d_ids != nullptr);
|
|
}
|
|
if (qx_needs_dequant) {
|
|
d_X = ctx->prealloc_x;
|
|
} else {
|
|
d_X = d_Qx;
|
|
x_buf_offset = qx_buf_offset;
|
|
GGML_ASSERT(qx_sz == x_sz);
|
|
}
|
|
if (qy_needs_dequant) {
|
|
d_Y = ctx->prealloc_y;
|
|
} else {
|
|
d_Y = d_Qy;
|
|
y_buf_offset = qy_buf_offset;
|
|
GGML_ASSERT(qy_sz == y_sz);
|
|
}
|
|
|
|
if (x_non_contig) {
|
|
GGML_ASSERT(x_sz == ggml_vk_align_size(ggml_type_size(src0->type) * x_ne, ctx->device->properties.limits.minStorageBufferOffsetAlignment));
|
|
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_0, src0, { d_Qx, qx_buf_offset, VK_WHOLE_SIZE }, { d_X, 0, VK_WHOLE_SIZE });
|
|
}
|
|
if (y_non_contig) {
|
|
GGML_ASSERT(y_sz == ggml_type_size(src1->type) * y_ne);
|
|
ggml_vk_cpy_to_contiguous(ctx, subctx, to_fp16_vk_1, src1, { d_Qy, qy_buf_offset, VK_WHOLE_SIZE }, { d_Y, 0, VK_WHOLE_SIZE });
|
|
}
|
|
|
|
uint32_t stride_batch_y = ne10*ne11;
|
|
|
|
if (!ggml_vk_dim01_contiguous(src1) && !qy_needs_dequant) {
|
|
stride_batch_y = src1->nb[0] / ggml_type_size(src1->type);
|
|
}
|
|
|
|
const uint32_t max_groups_x = ctx->device->properties.limits.maxComputeWorkGroupCount[0];
|
|
|
|
uint32_t groups_x = ne01;
|
|
uint32_t groups_z = 1;
|
|
|
|
if (ne01 > max_groups_x) {
|
|
groups_z = 64;
|
|
groups_x = CEIL_DIV(groups_x, groups_z);
|
|
}
|
|
|
|
// compute
|
|
const vk_mat_vec_id_push_constants pc = {
|
|
(uint32_t)ne00, (uint32_t)ne10, (uint32_t)ne10, (uint32_t)ne01,
|
|
(uint32_t)x_ne, stride_batch_y, (uint32_t)(ne20*ne21),
|
|
(uint32_t)nei0, (uint32_t)ne11,
|
|
};
|
|
ggml_vk_sync_buffers(subctx);
|
|
ggml_vk_dispatch_pipeline(ctx, subctx, dmmv,
|
|
{ vk_subbuffer{ d_X, x_buf_offset, x_sz * ne02 * ne03 },
|
|
vk_subbuffer{ d_Y, y_buf_offset, y_sz * ne12 * ne13 }, vk_subbuffer{ d_D, d_buf_offset, d_sz * ne22 * ne23}, vk_subbuffer{ d_ids, ids_buf_offset, ids_sz } },
|
|
sizeof(vk_mat_vec_id_push_constants), &pc, { groups_x, (uint32_t)nei0, groups_z });
|
|
}
|
|
|
|
static void ggml_vk_mul_mat_id(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, bool dryrun = false) {
|
|
VK_LOG_DEBUG("ggml_vk_mul_mat_id(" << src0 << ", " << src1 << ", " << src2 << ", " << dst << ")");
|
|
if (src2->ne[1] == 1 && (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type))) {
|
|
ggml_vk_mul_mat_vec_id_q_f16(ctx, subctx, src0, src1, src2, dst, dryrun);
|
|
} else {
|
|
ggml_vk_mul_mat_id_q_f16(ctx, subctx, src0, src1, src2, dst, dryrun);
|
|
}
|
|
}
|
|
|
|
static void ggml_vk_flash_attn(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * q, const ggml_tensor * k, const ggml_tensor * v, const ggml_tensor * mask, ggml_tensor * dst, bool dryrun = false) {
|
|
VK_LOG_DEBUG("ggml_vk_flash_attn((" << q << ", name=" << q->name << ", type=" << q->type << ", ne0=" << q->ne[0] << ", ne1=" << q->ne[1] << ", ne2=" << q->ne[2] << ", ne3=" << q->ne[3] << ", nb0=" << q->nb[0] << ", nb1=" << q->nb[1] << ", nb2=" << q->nb[2] << ", nb3=" << q->nb[3];
|
|
std::cerr << "), (" << k << ", name=" << k->name << ", type=" << k->type << ", ne0=" << k->ne[0] << ", ne1=" << k->ne[1] << ", ne2=" << k->ne[2] << ", ne3=" << k->ne[3] << ", nb0=" << k->nb[0] << ", nb1=" << k->nb[1] << ", nb2=" << k->nb[2] << ", nb3=" << k->nb[3];
|
|
std::cerr << "), (" << v << ", name=" << v->name << ", type=" << v->type << ", ne0=" << v->ne[0] << ", ne1=" << v->ne[1] << ", ne2=" << v->ne[2] << ", ne3=" << v->ne[3] << ", nb0=" << v->nb[0] << ", nb1=" << v->nb[1] << ", nb2=" << v->nb[2] << ", nb3=" << v->nb[3];
|
|
std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3];
|
|
std::cerr << "), " << (dryrun ? "dryrun" : "") << ")");
|
|
|
|
GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
|
|
GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
|
|
GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
|
|
GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
|
|
GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
|
|
GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
|
|
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
|
|
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
|
|
|
|
const uint32_t nem1 = mask ? mask->ne[1] : 0;
|
|
const uint32_t nbm1 = mask ? mask->nb[1] : 0;
|
|
|
|
const uint32_t D = neq0;
|
|
const uint32_t N = neq1;
|
|
const uint32_t KV = nek1;
|
|
|
|
GGML_ASSERT(ne0 == D);
|
|
GGML_ASSERT(ne2 == N);
|
|
|
|
// input tensor rows must be contiguous
|
|
GGML_ASSERT(nbq0 == ggml_type_size(q->type));
|
|
GGML_ASSERT(nbk0 == ggml_type_size(k->type));
|
|
GGML_ASSERT(nbv0 == ggml_type_size(v->type));
|
|
|
|
GGML_ASSERT(neq0 == D);
|
|
GGML_ASSERT(nek0 == D);
|
|
GGML_ASSERT(nev0 == D);
|
|
|
|
GGML_ASSERT(neq1 == N);
|
|
GGML_ASSERT(nev0 == D);
|
|
|
|
GGML_ASSERT(nev1 == nek1);
|
|
|
|
// dst cannot be transposed or permuted
|
|
GGML_ASSERT(nb0 == sizeof(float));
|
|
GGML_ASSERT(nb0 <= nb1);
|
|
GGML_ASSERT(nb1 <= nb2);
|
|
GGML_ASSERT(nb2 <= nb3);
|
|
|
|
assert(dst->type == GGML_TYPE_F32);
|
|
assert(q->type == GGML_TYPE_F32);
|
|
assert(k->type == v->type);
|
|
|
|
vk_pipeline *pipelines;
|
|
// XXX TODO other backends may be changing accumulator precision to default to f32 soon
|
|
bool f32acc = dst->op_params[3] == GGML_PREC_F32;
|
|
bool small_rows = N <= flash_attention_num_small_rows;
|
|
switch (D) {
|
|
case 64: pipelines = &ctx->device->pipeline_flash_attn_f32_f16_D64[k->type][f32acc][small_rows][0]; break;
|
|
case 80: pipelines = &ctx->device->pipeline_flash_attn_f32_f16_D80[k->type][f32acc][small_rows][0]; break;
|
|
case 96: pipelines = &ctx->device->pipeline_flash_attn_f32_f16_D96[k->type][f32acc][small_rows][0]; break;
|
|
case 112: pipelines = &ctx->device->pipeline_flash_attn_f32_f16_D112[k->type][f32acc][small_rows][0]; break;
|
|
case 128: pipelines = &ctx->device->pipeline_flash_attn_f32_f16_D128[k->type][f32acc][small_rows][0]; break;
|
|
case 256: pipelines = &ctx->device->pipeline_flash_attn_f32_f16_D256[k->type][f32acc][small_rows][0]; break;
|
|
default:
|
|
assert(!"unsupported D value");
|
|
return;
|
|
}
|
|
assert(pipelines);
|
|
|
|
bool aligned = (KV % pipelines[1]->align) == 0;
|
|
vk_pipeline pipeline = pipelines[aligned];
|
|
assert(pipeline);
|
|
|
|
if (dryrun) {
|
|
// Request descriptor sets
|
|
ggml_pipeline_request_descriptor_sets(ctx->device, pipeline, 1);
|
|
return;
|
|
}
|
|
|
|
float scale = 1.0f;
|
|
float max_bias = 0.0f;
|
|
float logit_softcap = 0.0f;
|
|
|
|
memcpy(&scale, (const float *) dst->op_params + 0, sizeof(float));
|
|
memcpy(&max_bias, (const float *) dst->op_params + 1, sizeof(float));
|
|
memcpy(&logit_softcap, (const float *) dst->op_params + 2, sizeof(float));
|
|
|
|
if (logit_softcap != 0) {
|
|
scale /= logit_softcap;
|
|
}
|
|
|
|
const uint32_t n_head_kv = neq2;
|
|
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv));
|
|
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
|
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
|
|
|
ggml_vk_sync_buffers(subctx);
|
|
|
|
vk_buffer d_Q, d_K, d_V, d_D, d_M;
|
|
uint64_t q_buf_offset, k_buf_offset, v_buf_offset, d_buf_offset, m_buf_offset;
|
|
|
|
bool Q_uma = false, K_uma = false, V_uma = false, D_uma = false, M_uma = false;
|
|
|
|
if (ctx->device->uma) {
|
|
ggml_vk_host_get(ctx->device, q->data, d_Q, q_buf_offset);
|
|
ggml_vk_host_get(ctx->device, k->data, d_K, q_buf_offset);
|
|
ggml_vk_host_get(ctx->device, v->data, d_V, q_buf_offset);
|
|
ggml_vk_host_get(ctx->device, dst->data, d_D, q_buf_offset);
|
|
Q_uma = d_Q != nullptr;
|
|
K_uma = d_K != nullptr;
|
|
V_uma = d_V != nullptr;
|
|
D_uma = d_D != nullptr;
|
|
if (mask) {
|
|
ggml_vk_host_get(ctx->device, mask->data, d_M, q_buf_offset);
|
|
M_uma = d_M != nullptr;
|
|
}
|
|
}
|
|
|
|
|
|
ggml_backend_vk_buffer_context * d_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context;
|
|
ggml_backend_vk_buffer_context * q_buf_ctx = (ggml_backend_vk_buffer_context *)q->buffer->context;
|
|
ggml_backend_vk_buffer_context * k_buf_ctx = (ggml_backend_vk_buffer_context *)k->buffer->context;
|
|
ggml_backend_vk_buffer_context * v_buf_ctx = (ggml_backend_vk_buffer_context *)v->buffer->context;
|
|
|
|
if (!Q_uma) {
|
|
d_Q = q_buf_ctx->dev_buffer;
|
|
q_buf_offset = vk_tensor_offset(q) + q->view_offs;
|
|
}
|
|
if (!K_uma) {
|
|
d_K = k_buf_ctx->dev_buffer;
|
|
k_buf_offset = vk_tensor_offset(k) + k->view_offs;
|
|
}
|
|
if (!V_uma) {
|
|
d_V = v_buf_ctx->dev_buffer;
|
|
v_buf_offset = vk_tensor_offset(v) + v->view_offs;
|
|
}
|
|
if (!D_uma) {
|
|
d_D = d_buf_ctx->dev_buffer;
|
|
d_buf_offset = vk_tensor_offset(dst) + dst->view_offs;
|
|
}
|
|
|
|
if (!M_uma) {
|
|
d_M = d_Q;
|
|
m_buf_offset = q_buf_offset;
|
|
if (mask) {
|
|
ggml_backend_vk_buffer_context * m_buf_ctx = (ggml_backend_vk_buffer_context*)mask->buffer->context;
|
|
d_M = m_buf_ctx->dev_buffer;
|
|
m_buf_offset = vk_tensor_offset(mask) + mask->view_offs;
|
|
}
|
|
}
|
|
|
|
const vk_flash_attn_push_constants pc = { N, KV, (uint32_t)ne1, (uint32_t)ne2, (uint32_t)ne3, (uint32_t)neq2, (uint32_t)neq3, (uint32_t)nek2, (uint32_t)nek3, (uint32_t)nev2, (uint32_t)nev3, nem1, (uint32_t)nbq2, (uint32_t)nbq3, (uint32_t)nbk2, (uint32_t)nbk3, (uint32_t)nbv2, (uint32_t)nbv3, nbm1, scale, max_bias, logit_softcap, mask != nullptr, n_head_log2, m0, m1 };
|
|
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline,
|
|
{
|
|
vk_subbuffer{d_Q, q_buf_offset, VK_WHOLE_SIZE},
|
|
vk_subbuffer{d_K, k_buf_offset, VK_WHOLE_SIZE},
|
|
vk_subbuffer{d_V, v_buf_offset, VK_WHOLE_SIZE},
|
|
vk_subbuffer{d_M, m_buf_offset, VK_WHOLE_SIZE},
|
|
vk_subbuffer{d_D, d_buf_offset, VK_WHOLE_SIZE},
|
|
},
|
|
sizeof(vk_flash_attn_push_constants), &pc, { (uint32_t)neq1, (uint32_t)neq2, (uint32_t)neq3 });
|
|
}
|
|
|
|
static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, ggml_op op) {
|
|
switch (op) {
|
|
case GGML_OP_GET_ROWS:
|
|
GGML_ASSERT(src1->type == GGML_TYPE_I32);
|
|
if (dst->type == GGML_TYPE_F16) {
|
|
return ctx->device->pipeline_get_rows[src0->type];
|
|
}
|
|
if (dst->type == GGML_TYPE_F32) {
|
|
return ctx->device->pipeline_get_rows_f32[src0->type];
|
|
}
|
|
return nullptr;
|
|
case GGML_OP_ACC:
|
|
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
|
return ctx->device->pipeline_acc_f32;
|
|
}
|
|
return nullptr;
|
|
case GGML_OP_ADD:
|
|
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
|
return ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_add_f32_norepeat : ctx->device->pipeline_add_f32;
|
|
}
|
|
if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F16) {
|
|
return ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_add_f16_f32_f16_norepeat : ctx->device->pipeline_add_f16_f32_f16;
|
|
}
|
|
return nullptr;
|
|
case GGML_OP_MUL:
|
|
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
|
return ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_mul_f32_norepeat : ctx->device->pipeline_mul_f32;
|
|
}
|
|
return nullptr;
|
|
case GGML_OP_DIV:
|
|
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
|
return ggml_are_same_shape(src0, src1) ? ctx->device->pipeline_div_f32_norepeat : ctx->device->pipeline_div_f32;
|
|
}
|
|
return nullptr;
|
|
case GGML_OP_CONCAT:
|
|
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
|
return ctx->device->pipeline_concat_f32;
|
|
}
|
|
if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
|
|
return ctx->device->pipeline_concat_f16;
|
|
}
|
|
if (src0->type == GGML_TYPE_I32 && src1->type == GGML_TYPE_I32 && dst->type == GGML_TYPE_I32) {
|
|
return ctx->device->pipeline_concat_i32;
|
|
}
|
|
return nullptr;
|
|
case GGML_OP_UPSCALE:
|
|
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
|
return ctx->device->pipeline_upscale_f32;
|
|
}
|
|
return nullptr;
|
|
case GGML_OP_SCALE:
|
|
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
|
return ctx->device->pipeline_scale_f32;
|
|
}
|
|
return nullptr;
|
|
case GGML_OP_SQR:
|
|
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
|
return ctx->device->pipeline_sqr_f32;
|
|
}
|
|
return nullptr;
|
|
case GGML_OP_SIN:
|
|
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
|
return ctx->device->pipeline_sin_f32;
|
|
}
|
|
return nullptr;
|
|
case GGML_OP_COS:
|
|
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
|
return ctx->device->pipeline_cos_f32;
|
|
}
|
|
return nullptr;
|
|
case GGML_OP_CLAMP:
|
|
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
|
return ctx->device->pipeline_clamp_f32;
|
|
}
|
|
return nullptr;
|
|
case GGML_OP_PAD:
|
|
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
|
return ctx->device->pipeline_pad_f32;
|
|
}
|
|
return nullptr;
|
|
case GGML_OP_REPEAT:
|
|
if (ggml_type_size(src0->type) == sizeof(float) && ggml_type_size(dst->type) == sizeof(float)) {
|
|
return ctx->device->pipeline_repeat_f32;
|
|
}
|
|
return nullptr;
|
|
case GGML_OP_CPY:
|
|
case GGML_OP_CONT:
|
|
case GGML_OP_DUP:
|
|
return ggml_vk_get_cpy_pipeline(ctx, src0, dst, dst->type);
|
|
case GGML_OP_NORM:
|
|
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
|
return ctx->device->pipeline_norm_f32;
|
|
}
|
|
return nullptr;
|
|
case GGML_OP_GROUP_NORM:
|
|
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
|
return ctx->device->pipeline_group_norm_f32;
|
|
}
|
|
return nullptr;
|
|
case GGML_OP_RMS_NORM:
|
|
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
|
return ctx->device->pipeline_rms_norm_f32;
|
|
}
|
|
return nullptr;
|
|
case GGML_OP_UNARY:
|
|
switch (ggml_get_unary_op(dst)) {
|
|
case GGML_UNARY_OP_SILU:
|
|
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
|
return ctx->device->pipeline_silu_f32;
|
|
}
|
|
break;
|
|
case GGML_UNARY_OP_GELU:
|
|
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
|
return ctx->device->pipeline_gelu_f32;
|
|
}
|
|
break;
|
|
case GGML_UNARY_OP_GELU_QUICK:
|
|
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
|
return ctx->device->pipeline_gelu_quick_f32;
|
|
}
|
|
break;
|
|
case GGML_UNARY_OP_RELU:
|
|
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
|
return ctx->device->pipeline_relu_f32;
|
|
}
|
|
break;
|
|
case GGML_UNARY_OP_TANH:
|
|
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
|
return ctx->device->pipeline_tanh_f32;
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return nullptr;
|
|
case GGML_OP_DIAG_MASK_INF:
|
|
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
|
return ctx->device->pipeline_diag_mask_inf_f32;
|
|
}
|
|
return nullptr;
|
|
case GGML_OP_SOFT_MAX:
|
|
GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16);
|
|
|
|
if (src0->type == GGML_TYPE_F32 && (src1 == nullptr || src1->type == GGML_TYPE_F32) && dst->type == GGML_TYPE_F32) {
|
|
return src0->ne[0] > 1024 ? ctx->device->pipeline_soft_max_f32_wg512 : ctx->device->pipeline_soft_max_f32;
|
|
}
|
|
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
|
|
return src0->ne[0] > 1024 ? ctx->device->pipeline_soft_max_f32_f16_wg512 : ctx->device->pipeline_soft_max_f32_f16;
|
|
}
|
|
return nullptr;
|
|
case GGML_OP_ROPE:
|
|
{
|
|
const int mode = ((const int32_t *) dst->op_params)[2];
|
|
const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
|
|
|
|
if (is_neox) {
|
|
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
|
return ctx->device->pipeline_rope_neox_f32;
|
|
}
|
|
if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
|
|
return ctx->device->pipeline_rope_neox_f16;
|
|
}
|
|
} else {
|
|
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
|
return ctx->device->pipeline_rope_norm_f32;
|
|
}
|
|
if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
|
|
return ctx->device->pipeline_rope_norm_f16;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
case GGML_OP_ARGSORT:
|
|
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_I32) {
|
|
return ctx->device->pipeline_argsort_f32;
|
|
}
|
|
return nullptr;
|
|
case GGML_OP_SUM_ROWS:
|
|
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
|
return ctx->device->pipeline_sum_rows_f32;
|
|
}
|
|
return nullptr;
|
|
case GGML_OP_IM2COL:
|
|
if (src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
|
return ctx->device->pipeline_im2col_f32;
|
|
}
|
|
if (src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F16) {
|
|
return ctx->device->pipeline_im2col_f32_f16;
|
|
}
|
|
return nullptr;
|
|
case GGML_OP_TIMESTEP_EMBEDDING:
|
|
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
|
return ctx->device->pipeline_timestep_embedding_f32;
|
|
}
|
|
return nullptr;
|
|
case GGML_OP_POOL_2D:
|
|
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
|
return ctx->device->pipeline_pool2d_f32;
|
|
}
|
|
return nullptr;
|
|
case GGML_OP_LEAKY_RELU:
|
|
if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
|
return ctx->device->pipeline_leaky_relu_f32;
|
|
}
|
|
return nullptr;
|
|
default:
|
|
return nullptr;
|
|
}
|
|
|
|
GGML_UNUSED(src2);
|
|
}
|
|
|
|
static bool ggml_vk_op_supports_incontiguous(ggml_op op) {
|
|
switch (op) {
|
|
case GGML_OP_CPY:
|
|
case GGML_OP_GET_ROWS:
|
|
case GGML_OP_ADD:
|
|
case GGML_OP_MUL:
|
|
case GGML_OP_DIV:
|
|
case GGML_OP_CONCAT:
|
|
case GGML_OP_UPSCALE:
|
|
case GGML_OP_SQR:
|
|
case GGML_OP_SIN:
|
|
case GGML_OP_COS:
|
|
case GGML_OP_CLAMP:
|
|
case GGML_OP_PAD:
|
|
case GGML_OP_REPEAT:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
template<typename PC>
|
|
static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, ggml_op op, PC&& pc, bool dryrun = false) {
|
|
VK_LOG_DEBUG("ggml_vk_op_f32((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
|
|
if (src1 != nullptr) {
|
|
std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
|
|
}
|
|
if (src2 != nullptr) {
|
|
std::cerr << "), (" << src2 << ", name=" << src2->name << ", type=" << src2->type << ", ne0=" << src2->ne[0] << ", ne1=" << src2->ne[1] << ", ne2=" << src2->ne[2] << ", ne3=" << src2->ne[3] << ", nb0=" << src2->nb[0] << ", nb1=" << src2->nb[1] << ", nb2=" << src2->nb[2] << ", nb3=" << src2->nb[3];
|
|
}
|
|
std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3];
|
|
std::cerr << "), " << ggml_op_name(op) << ", " << (dryrun ? "dryrun" : "") << ")");
|
|
GGML_ASSERT(op == GGML_OP_GET_ROWS || (!ggml_is_quantized(src0->type) && (src1 == nullptr || !ggml_is_quantized(src1->type)))); // NOLINT
|
|
GGML_ASSERT(ggml_vk_op_supports_incontiguous(op) || ggml_vk_dim01_contiguous(src0)); // NOLINT
|
|
GGML_ASSERT(dst->buffer != nullptr);
|
|
const uint64_t ne00 = src0->ne[0];
|
|
const uint64_t ne01 = src0->ne[1];
|
|
const uint64_t ne02 = src0->ne[2];
|
|
const uint64_t ne03 = src0->ne[3];
|
|
const uint64_t ne0 = ne00 * ne01;
|
|
|
|
const bool use_src1 = src1 != nullptr;
|
|
const uint64_t ne10 = use_src1 ? src1->ne[0] : 0;
|
|
const uint64_t ne11 = use_src1 ? src1->ne[1] : 0;
|
|
const uint64_t ne12 = use_src1 ? src1->ne[2] : 0;
|
|
const uint64_t ne13 = use_src1 ? src1->ne[3] : 0;
|
|
const uint64_t ne1 = ne10 * ne11;
|
|
// const uint64_t nb10 = use_src1 ? src1->nb[0] : 0;
|
|
|
|
const bool use_src2 = src2 != nullptr;
|
|
const uint64_t ne20 = use_src2 ? src2->ne[0] : 0;
|
|
const uint64_t ne21 = use_src2 ? src2->ne[1] : 0;
|
|
const uint64_t ne22 = use_src2 ? src2->ne[2] : 0;
|
|
const uint64_t ne23 = use_src2 ? src2->ne[3] : 0;
|
|
const uint64_t ne2 = ne20 * ne21;
|
|
|
|
const uint64_t ned0 = dst->ne[0];
|
|
const uint64_t ned1 = dst->ne[1];
|
|
const uint64_t ned2 = dst->ne[2];
|
|
const uint64_t ned3 = dst->ne[3];
|
|
const uint64_t ned = ned0 * ned1;
|
|
|
|
init_pushconst_fastdiv(pc);
|
|
|
|
vk_pipeline pipeline = ggml_vk_op_get_pipeline(ctx, src0, src1, src2, dst, op);
|
|
|
|
if (pipeline == nullptr) {
|
|
std::cerr << "ggml_vulkan: Error: Missing op: " << ggml_op_name(op) << " for " << ggml_type_name(src0->type);
|
|
if (src1 != nullptr) {
|
|
std::cerr << " and " << ggml_type_name(src1->type);
|
|
}
|
|
std::cerr << " to " << ggml_type_name(dst->type) << std::endl;
|
|
GGML_ABORT("fatal error");
|
|
}
|
|
|
|
if (dryrun) {
|
|
ggml_pipeline_request_descriptor_sets(ctx->device, pipeline, 1);
|
|
return;
|
|
}
|
|
|
|
const bool op_supports_incontiguous = ggml_vk_op_supports_incontiguous(op);
|
|
|
|
ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context;
|
|
ggml_backend_vk_buffer_context * src0_buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context;
|
|
ggml_backend_vk_buffer_context * src1_buf_ctx = use_src1 ? (ggml_backend_vk_buffer_context *)src1->buffer->context : nullptr;
|
|
ggml_backend_vk_buffer_context * src2_buf_ctx = use_src2 ? (ggml_backend_vk_buffer_context *)src2->buffer->context : nullptr;
|
|
|
|
vk_buffer d_X = nullptr;
|
|
size_t x_buf_offset = 0;
|
|
vk_buffer d_Y = nullptr;
|
|
size_t y_buf_offset = 0;
|
|
vk_buffer d_Z = nullptr;
|
|
size_t z_buf_offset = 0;
|
|
|
|
bool src0_uma = false;
|
|
bool src1_uma = false;
|
|
bool src2_uma = false;
|
|
|
|
if (ctx->device->uma) {
|
|
ggml_vk_host_get(ctx->device, src0->data, d_X, x_buf_offset);
|
|
src0_uma = d_X != nullptr;
|
|
if (use_src1) {
|
|
ggml_vk_host_get(ctx->device, src1->data, d_Y, y_buf_offset);
|
|
src1_uma = d_Y != nullptr;
|
|
}
|
|
if (use_src2) {
|
|
ggml_vk_host_get(ctx->device, src2->data, d_Z, z_buf_offset);
|
|
src2_uma = d_Z != nullptr;
|
|
}
|
|
}
|
|
|
|
uint64_t x_sz = ggml_type_size(src0->type)/ggml_blck_size(src0->type) * ne0;
|
|
uint64_t y_sz = use_src1 ? ggml_type_size(src1->type) * ne1 : 0;
|
|
uint64_t z_sz = use_src2 ? ggml_type_size(src2->type) * ne2 : 0;
|
|
uint64_t d_sz = ggml_type_size(dst->type) * ned;
|
|
|
|
vk_buffer d_D = dst_buf_ctx->dev_buffer;
|
|
|
|
// Workaround for tiny tensor inputs on ROPE
|
|
if (op == GGML_OP_ROPE && use_src1 && y_sz > d_D->size) {
|
|
y_sz = VK_WHOLE_SIZE;
|
|
}
|
|
|
|
GGML_ASSERT(d_D != nullptr);
|
|
uint64_t d_buf_offset = ((vk_tensor_offset(dst) + dst->view_offs) / ctx->device->properties.limits.minStorageBufferOffsetAlignment) * ctx->device->properties.limits.minStorageBufferOffsetAlignment;
|
|
GGML_ASSERT(d_buf_offset == vk_tensor_offset(dst) || op == GGML_OP_CPY); // NOLINT
|
|
if(!src0_uma) {
|
|
d_X = src0_buf_ctx->dev_buffer;
|
|
x_buf_offset = vk_tensor_offset(src0) + src0->view_offs;
|
|
GGML_ASSERT(d_X != nullptr);
|
|
}
|
|
if (use_src1 && !src1_uma) {
|
|
d_Y = src1_buf_ctx->dev_buffer;
|
|
y_buf_offset = vk_tensor_offset(src1) + src1->view_offs;
|
|
GGML_ASSERT(d_Y != nullptr);
|
|
}
|
|
if (use_src2 && !src2_uma) {
|
|
d_Z = src2_buf_ctx->dev_buffer;
|
|
z_buf_offset = vk_tensor_offset(src2) + src2->view_offs;
|
|
GGML_ASSERT(d_Z != nullptr);
|
|
}
|
|
|
|
if (op_supports_incontiguous) {
|
|
x_sz = ggml_nbytes(src0);
|
|
y_sz = use_src1 ? ggml_nbytes(src1) : 0;
|
|
z_sz = use_src2 ? ggml_nbytes(src2) : 0;
|
|
d_sz = ggml_nbytes(dst);
|
|
|
|
if (x_buf_offset + x_sz >= d_X->size) {
|
|
x_sz = VK_WHOLE_SIZE;
|
|
}
|
|
if (use_src1 && y_buf_offset + y_sz >= d_Y->size) {
|
|
y_sz = VK_WHOLE_SIZE;
|
|
}
|
|
if (use_src2 && z_buf_offset + z_sz >= d_Z->size) {
|
|
z_sz = VK_WHOLE_SIZE;
|
|
}
|
|
if (d_buf_offset + d_sz >= d_D->size) {
|
|
d_sz = VK_WHOLE_SIZE;
|
|
}
|
|
}
|
|
|
|
std::array<uint32_t, 3> elements;
|
|
|
|
// Single call if dimension 2 is contiguous
|
|
GGML_ASSERT(op_supports_incontiguous || (ggml_is_contiguous(src0) && (src1 == nullptr || ggml_is_contiguous(src1))));
|
|
|
|
switch (op) {
|
|
case GGML_OP_NORM:
|
|
case GGML_OP_RMS_NORM:
|
|
case GGML_OP_SOFT_MAX:
|
|
case GGML_OP_SUM_ROWS:
|
|
{
|
|
const uint32_t nr = ggml_nrows(src0);
|
|
if (nr > 262144) {
|
|
elements = { 512, 512, CEIL_DIV(nr, 262144) };
|
|
} else if (nr > 512) {
|
|
elements = { 512, CEIL_DIV(nr, 512), 1 };
|
|
} else {
|
|
elements = { nr, 1, 1 };
|
|
}
|
|
} break;
|
|
case GGML_OP_GROUP_NORM:
|
|
{
|
|
const uint32_t num_groups = dst->op_params[0];
|
|
elements = { num_groups * (uint32_t)src0->ne[3], 1, 1 };
|
|
} break;
|
|
case GGML_OP_DIAG_MASK_INF:
|
|
case GGML_OP_ROPE:
|
|
elements = { (uint32_t)ggml_nrows(src0), (uint32_t)ne00, 1 };
|
|
break;
|
|
case GGML_OP_GET_ROWS:
|
|
elements = { (uint32_t)ne00, (uint32_t)ne10, (uint32_t)(ne11 * ne12) };
|
|
break;
|
|
case GGML_OP_ARGSORT:
|
|
elements = { (uint32_t)ne00, (uint32_t)ggml_nrows(src0), 1 };
|
|
break;
|
|
case GGML_OP_IM2COL:
|
|
{
|
|
const bool is_2D = dst->op_params[6] == 1;
|
|
|
|
const uint32_t IC = src1->ne[is_2D ? 2 : 1];
|
|
|
|
const uint32_t KH = is_2D ? src0->ne[1] : 1;
|
|
const uint32_t KW = src0->ne[0];
|
|
|
|
const uint32_t OH = is_2D ? dst->ne[2] : 1;
|
|
const uint32_t OW = dst->ne[1];
|
|
|
|
const uint32_t batch = src1->ne[is_2D ? 3 : 2];
|
|
|
|
elements = { OW * KW * KH, OH, batch * IC };
|
|
} break;
|
|
case GGML_OP_TIMESTEP_EMBEDDING:
|
|
{
|
|
const uint32_t dim = dst->op_params[0];
|
|
uint32_t half_ceil = (dim + 1) / 2;
|
|
elements = { half_ceil, (uint32_t)src0->ne[0], 1 };
|
|
} break;
|
|
case GGML_OP_POOL_2D:
|
|
{
|
|
const uint32_t N = dst->ne[3];
|
|
const uint32_t OC = dst->ne[2];
|
|
const uint32_t OH = dst->ne[1];
|
|
const uint32_t OW = dst->ne[0];
|
|
elements = { N * OC * OH * OW, 1, 1};
|
|
} break;
|
|
case GGML_OP_ADD:
|
|
case GGML_OP_DIV:
|
|
case GGML_OP_MUL:
|
|
case GGML_OP_SCALE:
|
|
case GGML_OP_SQR:
|
|
case GGML_OP_SIN:
|
|
case GGML_OP_COS:
|
|
case GGML_OP_CLAMP:
|
|
case GGML_OP_PAD:
|
|
case GGML_OP_REPEAT:
|
|
case GGML_OP_CPY:
|
|
case GGML_OP_CONCAT:
|
|
case GGML_OP_UPSCALE:
|
|
case GGML_OP_UNARY:
|
|
{
|
|
const uint32_t ne = ggml_nelements(dst);
|
|
if (ne > 262144) {
|
|
elements = { 512, 512, CEIL_DIV(ne, 262144) };
|
|
} else if (ne > 512) {
|
|
elements = { 512, CEIL_DIV(ne, 512), 1 };
|
|
} else {
|
|
elements = { ne, 1, 1 };
|
|
}
|
|
} break;
|
|
default:
|
|
elements = { (uint32_t)ggml_nelements(src0), 1, 1 };
|
|
break;
|
|
}
|
|
|
|
if (!op_supports_incontiguous) {
|
|
if (x_sz != VK_WHOLE_SIZE) {
|
|
x_sz *= ne02 * ne03;
|
|
}
|
|
if (use_src1 && y_sz != VK_WHOLE_SIZE) {
|
|
y_sz *= ne12 * ne13;
|
|
}
|
|
if (use_src2 && z_sz != VK_WHOLE_SIZE) {
|
|
z_sz *= ne22 * ne23;
|
|
}
|
|
if (d_sz != VK_WHOLE_SIZE) {
|
|
d_sz *= ned2 * ned3;
|
|
}
|
|
}
|
|
|
|
if (op == GGML_OP_SOFT_MAX) {
|
|
// Empty src1 is possible in soft_max, but the shader needs a buffer
|
|
vk_subbuffer subbuf_y;
|
|
if (use_src1) {
|
|
subbuf_y = { d_Y, y_buf_offset, y_sz };
|
|
} else {
|
|
subbuf_y = { d_X, 0, x_sz };
|
|
}
|
|
|
|
ggml_vk_sync_buffers(subctx);
|
|
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, subbuf_y, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
|
|
} else if (op == GGML_OP_ROPE) {
|
|
// Empty src2 is possible in rope, but the shader needs a buffer
|
|
vk_subbuffer subbuf_z;
|
|
if (use_src2) {
|
|
subbuf_z = { d_Z, z_buf_offset, z_sz };
|
|
} else {
|
|
subbuf_z = { d_X, 0, x_sz };
|
|
}
|
|
|
|
ggml_vk_sync_buffers(subctx);
|
|
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, vk_subbuffer{ d_Y, y_buf_offset, y_sz }, subbuf_z, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
|
|
} else if (op == GGML_OP_IM2COL) {
|
|
// im2col uses only src1 and dst buffers
|
|
ggml_vk_sync_buffers(subctx);
|
|
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_Y, y_buf_offset, y_sz }, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
|
|
} else if (use_src2) {
|
|
ggml_vk_sync_buffers(subctx);
|
|
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, vk_subbuffer{ d_Y, y_buf_offset, y_sz }, vk_subbuffer{ d_Z, z_buf_offset, z_sz }, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
|
|
} else if (use_src1) {
|
|
ggml_vk_sync_buffers(subctx);
|
|
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, vk_subbuffer{ d_Y, y_buf_offset, y_sz }, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
|
|
} else {
|
|
ggml_vk_sync_buffers(subctx);
|
|
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { vk_subbuffer{ d_X, x_buf_offset, x_sz }, vk_subbuffer{ d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
|
|
}
|
|
}
|
|
|
|
static void ggml_vk_get_rows(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
|
|
const uint32_t src0_type_size = ggml_type_size(src0->type);
|
|
const uint32_t src1_type_size = ggml_type_size(src1->type);
|
|
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
|
|
|
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_GET_ROWS, {
|
|
(uint32_t)ggml_nelements(src0),
|
|
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
|
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
|
|
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
|
|
0,
|
|
0.0f, 0.0f, 0,
|
|
}, dryrun);
|
|
}
|
|
|
|
static void ggml_vk_acc(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
|
|
const uint32_t src0_type_size = ggml_type_size(src0->type);
|
|
const uint32_t src1_type_size = ggml_type_size(src1->type);
|
|
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
|
const uint32_t d_offset = ((vk_tensor_offset(dst) + dst->view_offs) % ctx->device->properties.limits.minStorageBufferOffsetAlignment) / dst_type_size;
|
|
|
|
int nb1 = dst->op_params[0] / 4; // 4 bytes of float32
|
|
int nb2 = dst->op_params[1] / 4; // 4 bytes of float32
|
|
// int nb3 = dst->op_params[2] / 4; // 4 bytes of float32 - unused
|
|
int offset = dst->op_params[3] / 4; // offset in bytes
|
|
|
|
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_ACC, {
|
|
(uint32_t)ggml_nelements(src0),
|
|
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)nb1, (uint32_t)nb2, (uint32_t)src0->nb[3] / src0_type_size,
|
|
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
|
|
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t)nb1, (uint32_t)nb2, (uint32_t) dst->nb[3] / dst_type_size,
|
|
d_offset,
|
|
0.0f, 0.0f, offset,
|
|
}, dryrun);
|
|
}
|
|
|
|
static void ggml_vk_add(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
|
|
const uint32_t src0_type_size = ggml_type_size(src0->type);
|
|
const uint32_t src1_type_size = ggml_type_size(src1->type);
|
|
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
|
|
|
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_ADD, {
|
|
(uint32_t)ggml_nelements(src0),
|
|
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
|
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
|
|
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
|
|
0,
|
|
0.0f, 0.0f, 0,
|
|
}, dryrun);
|
|
}
|
|
|
|
static void ggml_vk_mul(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
|
|
const uint32_t src0_type_size = ggml_type_size(src0->type);
|
|
const uint32_t src1_type_size = ggml_type_size(src1->type);
|
|
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
|
|
|
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_MUL, {
|
|
(uint32_t)ggml_nelements(src0),
|
|
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
|
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
|
|
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
|
|
0,
|
|
0.0f, 0.0f, 0,
|
|
}, dryrun);
|
|
}
|
|
|
|
static void ggml_vk_div(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
|
|
const uint32_t src0_type_size = ggml_type_size(src0->type);
|
|
const uint32_t src1_type_size = ggml_type_size(src1->type);
|
|
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
|
|
|
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_DIV, {
|
|
(uint32_t)ggml_nelements(src0),
|
|
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
|
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
|
|
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
|
|
0,
|
|
0.0f, 0.0f, 0,
|
|
}, dryrun);
|
|
}
|
|
|
|
static void ggml_vk_concat(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
|
|
int * op_params = (int *)dst->op_params;
|
|
|
|
const uint32_t src0_type_size = ggml_type_size(src0->type);
|
|
const uint32_t src1_type_size = ggml_type_size(src1->type);
|
|
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
|
|
|
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_CONCAT, {
|
|
(uint32_t)ggml_nelements(dst),
|
|
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
|
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
|
|
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
|
|
0,
|
|
0.0f, 0.0f, op_params[0],
|
|
}, dryrun);
|
|
}
|
|
|
|
static void ggml_vk_upscale(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
|
|
const uint32_t src0_type_size = ggml_type_size(src0->type);
|
|
|
|
const float sf0 = (float)dst->ne[0] / src0->ne[0];
|
|
const float sf1 = (float)dst->ne[1] / src0->ne[1];
|
|
const float sf2 = (float)dst->ne[2] / src0->ne[2];
|
|
const float sf3 = (float)dst->ne[3] / src0->ne[3];
|
|
|
|
ggml_vk_op_f32<vk_op_upscale_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_UPSCALE, {
|
|
(uint32_t)ggml_nelements(dst), 0,
|
|
(uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
|
(uint32_t)dst->ne[0], (uint32_t)dst->ne[1], (uint32_t)dst->ne[2],(uint32_t)dst->ne[3],
|
|
sf0, sf1, sf2, sf3,
|
|
}, dryrun);
|
|
}
|
|
|
|
static void ggml_vk_scale(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
|
|
float * op_params = (float *)dst->op_params;
|
|
const uint32_t src0_type_size = ggml_type_size(src0->type);
|
|
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
|
|
|
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SCALE, {
|
|
(uint32_t)ggml_nelements(src0),
|
|
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
|
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
|
|
0,
|
|
op_params[0], 0.0f
|
|
}, dryrun);
|
|
}
|
|
|
|
static void ggml_vk_sqr(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
|
|
const uint32_t src0_type_size = ggml_type_size(src0->type);
|
|
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
|
|
|
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SQR, {
|
|
(uint32_t)ggml_nelements(src0),
|
|
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
|
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
|
|
0,
|
|
0.0f, 0.0f,
|
|
}, dryrun);
|
|
}
|
|
|
|
static void ggml_vk_sin(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
|
|
const uint32_t src0_type_size = ggml_type_size(src0->type);
|
|
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
|
|
|
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SIN, {
|
|
(uint32_t)ggml_nelements(src0),
|
|
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
|
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
|
|
0,
|
|
0.0f, 0.0f,
|
|
}, dryrun);
|
|
}
|
|
|
|
static void ggml_vk_cos(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
|
|
const uint32_t src0_type_size = ggml_type_size(src0->type);
|
|
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
|
|
|
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_COS, {
|
|
(uint32_t)ggml_nelements(src0),
|
|
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
|
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
|
|
0,
|
|
0.0f, 0.0f,
|
|
}, dryrun);
|
|
}
|
|
|
|
static void ggml_vk_clamp(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
|
|
float * op_params = (float *)dst->op_params;
|
|
const uint32_t src0_type_size = ggml_type_size(src0->type);
|
|
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
|
|
|
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_CLAMP, {
|
|
(uint32_t)ggml_nelements(src0),
|
|
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
|
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
|
|
0,
|
|
op_params[0], op_params[1],
|
|
}, dryrun);
|
|
}
|
|
|
|
static void ggml_vk_pad(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
|
|
const uint32_t src0_type_size = ggml_type_size(src0->type);
|
|
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
|
|
|
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_PAD, {
|
|
(uint32_t)ggml_nelements(dst),
|
|
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
|
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
|
|
0,
|
|
0.0f, 0.0f,
|
|
}, dryrun);
|
|
}
|
|
|
|
static void ggml_vk_repeat(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
|
|
const uint32_t src0_type_size = ggml_type_size(src0->type);
|
|
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
|
|
|
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_REPEAT, {
|
|
(uint32_t)ggml_nelements(dst),
|
|
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
|
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
|
|
0,
|
|
0.0f, 0.0f,
|
|
}, dryrun);
|
|
}
|
|
|
|
static void ggml_vk_cpy(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
|
|
const uint32_t src0_type_size = ggml_type_size(src0->type);
|
|
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
|
const uint32_t d_offset = ((vk_tensor_offset(dst) + dst->view_offs) % ctx->device->properties.limits.minStorageBufferOffsetAlignment) / dst_type_size;
|
|
|
|
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_CPY, {
|
|
(uint32_t)ggml_nelements(src0),
|
|
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
|
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
|
|
d_offset,
|
|
0.0f, 0.0f,
|
|
}, dryrun);
|
|
}
|
|
|
|
static void ggml_vk_norm(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
|
|
float * op_params = (float *)dst->op_params;
|
|
|
|
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f }, dryrun);
|
|
}
|
|
|
|
static void ggml_vk_group_norm(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
|
|
const int * int_op_params = (const int *)dst->op_params;
|
|
const float * float_op_params = (const float *)dst->op_params;
|
|
|
|
const uint32_t num_groups = int_op_params[0];
|
|
const float eps = float_op_params[1];
|
|
const uint32_t group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups);
|
|
|
|
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_GROUP_NORM, { group_size, 0, eps, 0.0f }, dryrun);
|
|
}
|
|
|
|
static void ggml_vk_rms_norm(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
|
|
float * op_params = (float *)dst->op_params;
|
|
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_RMS_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f }, dryrun);
|
|
}
|
|
|
|
static void ggml_vk_unary(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
|
|
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_UNARY, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f }, dryrun);
|
|
}
|
|
|
|
static void ggml_vk_diag_mask_inf(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
|
|
int32_t * op_params = (int32_t *)dst->op_params;
|
|
ggml_vk_op_f32<vk_op_diag_mask_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_DIAG_MASK_INF, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0] }, dryrun);
|
|
}
|
|
|
|
static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
|
|
float * op_params = (float *)dst->op_params;
|
|
|
|
float scale = op_params[0];
|
|
float max_bias = op_params[1];
|
|
|
|
const uint32_t ncols = (uint32_t)src0->ne[0];
|
|
const uint32_t nrows_x = (uint32_t)ggml_nrows(src0);
|
|
const uint32_t nrows_y = (uint32_t)src0->ne[1];
|
|
|
|
const uint32_t n_head_kv = nrows_x/nrows_y;
|
|
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv));
|
|
|
|
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
|
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
|
|
|
ggml_vk_op_f32<vk_op_soft_max_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_SOFT_MAX, {
|
|
ncols,
|
|
src1 != nullptr ? nrows_y : (uint32_t)0,
|
|
scale, max_bias,
|
|
m0, m1,
|
|
n_head_log2,
|
|
nrows_x,
|
|
}, dryrun);
|
|
}
|
|
|
|
static void ggml_vk_rope(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, bool dryrun = false) {
|
|
const int n_dims = ((int32_t *) dst->op_params)[1];
|
|
// const int mode = ((int32_t *) dst->op_params)[2];
|
|
// const int n_ctx = ((int32_t *) dst->op_params)[3];
|
|
const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
|
|
const float freq_base = ((float *) dst->op_params)[5];
|
|
const float freq_scale = ((float *) dst->op_params)[6];
|
|
const float ext_factor = ((float *) dst->op_params)[7];
|
|
const float attn_factor = ((float *) dst->op_params)[8];
|
|
const float beta_fast = ((float *) dst->op_params)[9];
|
|
const float beta_slow = ((float *) dst->op_params)[10];
|
|
|
|
float corr_dims[2];
|
|
ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
|
|
|
|
const float theta_scale = powf(freq_base, -2.0f/n_dims);
|
|
|
|
ggml_vk_op_f32<vk_op_rope_push_constants>(ctx, subctx, src0, src1, src2, dst, GGML_OP_ROPE, {
|
|
(uint32_t)src0->ne[0], (uint32_t)n_dims, freq_scale, (uint32_t)src0->ne[1],
|
|
freq_base, ext_factor, attn_factor, {corr_dims[0], corr_dims[1]}, theta_scale,
|
|
src2 != nullptr,
|
|
}, dryrun);
|
|
}
|
|
|
|
static void ggml_vk_argsort(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
|
|
int32_t * op_params = (int32_t *)dst->op_params;
|
|
|
|
uint32_t ncols = src0->ne[0];
|
|
|
|
uint32_t ncols_pad = 1;
|
|
while (ncols_pad < ncols) {
|
|
ncols_pad *= 2;
|
|
}
|
|
|
|
GGML_ASSERT(ncols_pad <= 1024);
|
|
|
|
ggml_vk_op_f32<vk_op_argsort_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_ARGSORT, {
|
|
ncols,
|
|
ncols_pad,
|
|
op_params[0],
|
|
}, dryrun);
|
|
}
|
|
|
|
static void ggml_vk_sum_rows(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
|
|
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SUM_ROWS, { (uint32_t)src0->ne[0], 0, 0.0f, 0.0f }, dryrun);
|
|
}
|
|
|
|
static void ggml_vk_im2col(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
|
|
const int32_t s0 = dst->op_params[0];
|
|
const int32_t s1 = dst->op_params[1];
|
|
const int32_t p0 = dst->op_params[2];
|
|
const int32_t p1 = dst->op_params[3];
|
|
const int32_t d0 = dst->op_params[4];
|
|
const int32_t d1 = dst->op_params[5];
|
|
|
|
const bool is_2D = dst->op_params[6] == 1;
|
|
|
|
const uint32_t IC = src1->ne[is_2D ? 2 : 1];
|
|
const uint32_t IH = is_2D ? src1->ne[1] : 1;
|
|
const uint32_t IW = src1->ne[0];
|
|
|
|
const uint32_t KH = is_2D ? src0->ne[1] : 1;
|
|
const uint32_t KW = src0->ne[0];
|
|
|
|
const uint32_t OH = is_2D ? dst->ne[2] : 1;
|
|
const uint32_t OW = dst->ne[1];
|
|
|
|
const uint32_t offset_delta = src1->nb[is_2D ? 2 : 1] / 4; // nb is byte offset, src is type float32
|
|
const uint32_t batch_offset = src1->nb[is_2D ? 3 : 2] / 4; // nb is byte offset, src is type float32
|
|
|
|
const uint32_t pelements = OW * KW * KH;
|
|
|
|
ggml_vk_op_f32<vk_op_im2col_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_IM2COL, {
|
|
batch_offset, offset_delta,
|
|
IC, IW, IH, OW, OH, KW, KH,
|
|
pelements,
|
|
IC * KH * KW,
|
|
s0, s1, p0, p1, d0, d1,
|
|
}, dryrun);
|
|
}
|
|
|
|
static void ggml_vk_timestep_embedding(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
|
|
const uint32_t dim = dst->op_params[0];
|
|
const uint32_t max_period = dst->op_params[1];
|
|
const uint32_t nb1 = dst->nb[1] / ggml_type_size(dst->type);
|
|
|
|
ggml_vk_op_f32<vk_op_timestep_embedding_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_TIMESTEP_EMBEDDING, {
|
|
nb1, dim, max_period,
|
|
}, dryrun);
|
|
}
|
|
|
|
static void ggml_vk_pool_2d(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
|
|
uint32_t op = static_cast<uint32_t>(dst->op_params[0]);
|
|
const int32_t k1 = dst->op_params[1];
|
|
const int32_t k0 = dst->op_params[2];
|
|
const int32_t s1 = dst->op_params[3];
|
|
const int32_t s0 = dst->op_params[4];
|
|
const int32_t p1 = dst->op_params[5];
|
|
const int32_t p0 = dst->op_params[6];
|
|
|
|
const uint32_t IH = src0->ne[1];
|
|
const uint32_t IW = src0->ne[0];
|
|
|
|
const uint32_t N = dst->ne[3];
|
|
|
|
const uint32_t OC = dst->ne[2];
|
|
const uint32_t OH = dst->ne[1];
|
|
const uint32_t OW = dst->ne[0];
|
|
|
|
const uint32_t parallel_elements = N * OC * OH * OW;
|
|
|
|
ggml_vk_op_f32<vk_op_pool2d_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_POOL_2D, {
|
|
IW, IH, OW, OH, OC,
|
|
parallel_elements,
|
|
op,
|
|
k0, k1, s0, s1, p0, p1,
|
|
}, dryrun);
|
|
}
|
|
|
|
static void ggml_vk_leaky_relu(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
|
|
const float * op_params = (const float *)dst->op_params;
|
|
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_LEAKY_RELU, { (uint32_t)ggml_nelements(src0), 0, op_params[0], 0.0f }, dryrun);
|
|
}
|
|
|
|
#ifdef GGML_VULKAN_RUN_TESTS
|
|
static void ggml_vk_print_matrix_area(const void * data, ggml_type type, int ne0, int ne1, int i0, int i1, int i2) {
|
|
if (type != GGML_TYPE_F32 && type != GGML_TYPE_F16) {
|
|
return;
|
|
}
|
|
i0 = std::max(i0, 5);
|
|
i1 = std::max(i1, 5);
|
|
i2 = std::max(i2, 0);
|
|
fprintf(stderr, " ");
|
|
for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) {
|
|
fprintf(stderr, "%7d ", idx1);
|
|
}
|
|
fprintf(stderr, "\n");
|
|
for (int idx0 = i0 - 5; idx0 < i0 + 5; idx0++) {
|
|
fprintf(stderr, "%7d: ", idx0);
|
|
for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) {
|
|
if (idx0 >= 0 && idx0 < ne0 && idx1 >= 0 && idx1 < ne1) {
|
|
float val;
|
|
if (type == GGML_TYPE_F32) {
|
|
val = *((const float *) data + i2*ne1*ne0 + idx1*ne0 + idx0);
|
|
} else if (type == GGML_TYPE_F16) {
|
|
val = ggml_fp16_to_fp32(*((const ggml_fp16_t *) data + i2*ne1*ne0 + idx1*ne0 + idx0));
|
|
} else {
|
|
GGML_ABORT("fatal error");
|
|
}
|
|
fprintf(stderr, "% 7.2f ", val);
|
|
} else {
|
|
fprintf(stderr, " ");
|
|
}
|
|
}
|
|
fprintf(stderr, "\n");
|
|
}
|
|
}
|
|
|
|
template <typename X_TYPE, typename Y_TYPE>
|
|
static void ggml_vk_test_matmul(ggml_backend_vk_context * ctx, size_t m, size_t n, size_t k, size_t batch, size_t num_it, int split_k, int shader_size) {
|
|
VK_LOG_DEBUG("ggml_vk_test_matmul(" << m << ", " << n << ", " << k << ", " << batch << ", " << num_it << ", " << split_k << ", " << shader_size << ")");
|
|
const size_t x_ne = m * k * batch;
|
|
const size_t y_ne = k * n * batch;
|
|
const size_t d_ne = m * n * batch;
|
|
|
|
vk_pipeline p;
|
|
std::string shname;
|
|
if (shader_size == 0) {
|
|
if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
|
|
p = ctx->device->pipeline_matmul_f32->a_s;
|
|
shname = "F32_ALIGNED_S";
|
|
} else if (std::is_same<float, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
|
|
p = ctx->device->pipeline_matmul_f32_f16->a_s;
|
|
shname = "F32_F16_ALIGNED_S";
|
|
} else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
|
|
p = ctx->device->pipeline_matmul_f16_f32.f32acc->a_s;
|
|
shname = "F16_F32_ALIGNED_S";
|
|
} else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
|
|
p = ctx->device->pipeline_matmul_f16.f32acc->a_s;
|
|
shname = "F16_ALIGNED_S";
|
|
} else {
|
|
GGML_ABORT("fatal error");
|
|
}
|
|
} else if (shader_size == 1) {
|
|
if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
|
|
p = ctx->device->pipeline_matmul_f32->a_m;
|
|
shname = "F32_ALIGNED_M";
|
|
} else if (std::is_same<float, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
|
|
p = ctx->device->pipeline_matmul_f32_f16->a_m;
|
|
shname = "F32_F16_ALIGNED_M";
|
|
} else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
|
|
p = ctx->device->pipeline_matmul_f16_f32.f32acc->a_m;
|
|
shname = "F16_F32_ALIGNED_M";
|
|
} else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
|
|
p = ctx->device->pipeline_matmul_f16.f32acc->a_m;
|
|
shname = "F16_ALIGNED_M";
|
|
} else {
|
|
GGML_ABORT("fatal error");
|
|
}
|
|
} else if (shader_size == 2) {
|
|
if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
|
|
p = ctx->device->pipeline_matmul_f32->a_l;
|
|
shname = "F32_ALIGNED_L";
|
|
} else if (std::is_same<float, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
|
|
p = ctx->device->pipeline_matmul_f32_f16->a_l;
|
|
shname = "F32_F16_ALIGNED_L";
|
|
} else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
|
|
p = ctx->device->pipeline_matmul_f16_f32.f32acc->a_l;
|
|
shname = "F16_F32_ALIGNED_L";
|
|
} else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
|
|
p = ctx->device->pipeline_matmul_f16.f32acc->a_l;
|
|
shname = "F16_ALIGNED_L";
|
|
} else {
|
|
GGML_ABORT("fatal error");
|
|
}
|
|
} else {
|
|
GGML_ASSERT(0);
|
|
}
|
|
|
|
const size_t kpad = ggml_vk_align_size(k, p->align);
|
|
|
|
if (k != kpad) {
|
|
if (shader_size == 0) {
|
|
if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
|
|
p = ctx->device->pipeline_matmul_f32->s;
|
|
shname = "F32_S";
|
|
} else if (std::is_same<float, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
|
|
p = ctx->device->pipeline_matmul_f32_f16->s;
|
|
shname = "F32_F16_S";
|
|
} else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
|
|
p = ctx->device->pipeline_matmul_f16_f32.f32acc->s;
|
|
shname = "F16_F32_S";
|
|
} else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
|
|
p = ctx->device->pipeline_matmul_f16.f32acc->s;
|
|
shname = "F16_S";
|
|
}
|
|
} else if (shader_size == 1) {
|
|
if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
|
|
p = ctx->device->pipeline_matmul_f32->m;
|
|
shname = "F32_M";
|
|
} else if (std::is_same<float, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
|
|
p = ctx->device->pipeline_matmul_f32_f16->m;
|
|
shname = "F32_F16_M";
|
|
} else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
|
|
p = ctx->device->pipeline_matmul_f16_f32.f32acc->m;
|
|
shname = "F16_F32_M";
|
|
} else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
|
|
p = ctx->device->pipeline_matmul_f16.f32acc->m;
|
|
shname = "F16_M";
|
|
}
|
|
} else if (shader_size == 2) {
|
|
if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
|
|
p = ctx->device->pipeline_matmul_f32->l;
|
|
shname = "F32_L";
|
|
} else if (std::is_same<float, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
|
|
p = ctx->device->pipeline_matmul_f32_f16->l;
|
|
shname = "F32_F16_L";
|
|
} else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
|
|
p = ctx->device->pipeline_matmul_f16_f32.f32acc->l;
|
|
shname = "F16_F32_L";
|
|
} else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
|
|
p = ctx->device->pipeline_matmul_f16.f32acc->l;
|
|
shname = "F16_L";
|
|
}
|
|
}
|
|
}
|
|
|
|
ggml_pipeline_request_descriptor_sets(ctx->device, p, num_it);
|
|
if (split_k > 1) {
|
|
ggml_pipeline_request_descriptor_sets(ctx->device, ctx->device->pipeline_matmul_split_k_reduce, num_it);
|
|
|
|
if (ctx->prealloc_split_k == nullptr || ctx->prealloc_split_k->size < sizeof(float) * d_ne * split_k) {
|
|
// Resize buffer
|
|
if (ctx->prealloc_split_k != nullptr) {
|
|
ggml_vk_destroy_buffer(ctx->prealloc_split_k);
|
|
}
|
|
ctx->prealloc_split_k = ggml_vk_create_buffer_check(ctx->device, sizeof(float) * d_ne * split_k, vk::MemoryPropertyFlagBits::eDeviceLocal);
|
|
}
|
|
}
|
|
|
|
ggml_pipeline_allocate_descriptor_sets(ctx->device);
|
|
|
|
vk_buffer d_X = ggml_vk_create_buffer_check(ctx->device, sizeof(X_TYPE) * x_ne, vk::MemoryPropertyFlagBits::eDeviceLocal);
|
|
vk_buffer d_Y = ggml_vk_create_buffer_check(ctx->device, sizeof(Y_TYPE) * y_ne, vk::MemoryPropertyFlagBits::eDeviceLocal);
|
|
vk_buffer d_D = ggml_vk_create_buffer_check(ctx->device, sizeof(float) * d_ne, vk::MemoryPropertyFlagBits::eDeviceLocal);
|
|
|
|
X_TYPE* x = (X_TYPE *) malloc(sizeof(X_TYPE) * x_ne);
|
|
Y_TYPE* y = (Y_TYPE *) malloc(sizeof(Y_TYPE) * y_ne);
|
|
float* d = (float *) malloc(sizeof(float) * d_ne);
|
|
|
|
for (size_t i = 0; i < x_ne; i++) {
|
|
if (std::is_same<float, X_TYPE>()) {
|
|
x[i] = (rand() / (float)RAND_MAX) * 2.0f - 1.0f;
|
|
// x[i] = 1.0f;
|
|
// x[i] = i + 1;
|
|
// x[i] = (i % k == i / k) ? 1.0f : 0.0f;
|
|
} else if (std::is_same<ggml_fp16_t, X_TYPE>()) {
|
|
x[i] = ggml_fp32_to_fp16((rand() / (float)RAND_MAX) * 2.0f - 1.0f);
|
|
// x[i] = ggml_fp32_to_fp16(1.0f);
|
|
// x[i] = ggml_fp32_to_fp16(i + 1);
|
|
// x[i] = ggml_fp32_to_fp16((i % k == i / k) ? 1.0f : 0.0f);
|
|
} else {
|
|
GGML_ABORT("fatal error");
|
|
}
|
|
}
|
|
for (size_t i = 0; i < y_ne; i++) {
|
|
if (std::is_same<float, Y_TYPE>()) {
|
|
y[i] = (rand() / (float)RAND_MAX) * 2.0f - 1.0f;
|
|
// y[i] = (i % k == i / k) ? 1.0f : 0.0f;
|
|
// y[i] = i + 1;
|
|
} else if (std::is_same<ggml_fp16_t, Y_TYPE>()) {
|
|
y[i] = ggml_fp32_to_fp16((rand() / (float)RAND_MAX) * 2.0f - 1.0f);
|
|
// y[i] = ggml_fp32_to_fp16((i % k == i / k) ? 1.0f : 0.0f);
|
|
// y[i] = ggml_fp32_to_fp16(i + 1);
|
|
} else {
|
|
GGML_ABORT("fatal error");
|
|
}
|
|
}
|
|
|
|
ggml_vk_buffer_write(d_X, 0, x, sizeof(X_TYPE) * k * m * batch);
|
|
ggml_vk_buffer_write(d_Y, 0, y, sizeof(Y_TYPE) * k * n * batch);
|
|
|
|
vk_context subctx = ggml_vk_create_context(ctx, ctx->device->compute_queue);
|
|
ggml_vk_ctx_begin(ctx->device, subctx);
|
|
for (size_t i = 0; i < num_it; i++) {
|
|
ggml_vk_matmul(
|
|
ctx, subctx, p, ggml_vk_subbuffer(d_X), ggml_vk_subbuffer(d_Y), ggml_vk_subbuffer(d_D), ggml_vk_subbuffer(ctx->prealloc_split_k),
|
|
m, n, k,
|
|
k, k, m, k*m, k*n, m*n,
|
|
split_k, batch, batch, batch, 1, 1
|
|
);
|
|
}
|
|
ggml_vk_ctx_end(subctx);
|
|
|
|
auto begin = std::chrono::high_resolution_clock::now();
|
|
ggml_vk_submit(subctx, ctx->fence);
|
|
VK_CHECK(ctx->device->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "ggml_vk_test_matmul waitForFences");
|
|
ctx->device->device.resetFences({ ctx->fence });
|
|
|
|
auto end = std::chrono::high_resolution_clock::now();
|
|
double time = std::chrono::duration_cast<std::chrono::microseconds>(end-begin).count() / 1000.0;
|
|
|
|
// copy dst to host
|
|
ggml_vk_buffer_read(d_D, 0, d, sizeof(float) * d_ne);
|
|
|
|
float * d_chk = (float *) malloc(sizeof(float) * d_ne);
|
|
|
|
ggml_init_params iparams = {
|
|
/*.mem_size =*/ 1024*1024*1024,
|
|
/*.mem_buffer =*/ NULL,
|
|
/*.no_alloc =*/ true,
|
|
};
|
|
|
|
ggml_context * ggml_ctx = ggml_init(iparams);
|
|
|
|
ggml_type src0_type;
|
|
ggml_type src1_type;
|
|
|
|
if (std::is_same<float, X_TYPE>()) {
|
|
src0_type = GGML_TYPE_F32;
|
|
} else if (std::is_same<ggml_fp16_t, X_TYPE>()) {
|
|
src0_type = GGML_TYPE_F16;
|
|
} else {
|
|
GGML_ABORT("fatal error");
|
|
}
|
|
if (std::is_same<float, Y_TYPE>()) {
|
|
src1_type = GGML_TYPE_F32;
|
|
} else if (std::is_same<ggml_fp16_t, Y_TYPE>()) {
|
|
src1_type = GGML_TYPE_F16;
|
|
} else {
|
|
GGML_ABORT("fatal error");
|
|
}
|
|
|
|
ggml_tensor * src0_ggml = ggml_new_tensor_3d(ggml_ctx, src0_type, k, m, batch);
|
|
ggml_tensor * src1_ggml = ggml_new_tensor_3d(ggml_ctx, src1_type, k, n, batch);
|
|
ggml_tensor * tensor_ggml = ggml_mul_mat(ggml_ctx, src0_ggml, src1_ggml);
|
|
|
|
src0_ggml->data = x;
|
|
src1_ggml->data = y;
|
|
tensor_ggml->data = d_chk;
|
|
|
|
ggml_cgraph * cgraph = ggml_new_graph(ggml_ctx);
|
|
ggml_build_forward_expand(cgraph, tensor_ggml);
|
|
|
|
ggml_graph_compute_with_ctx(ggml_ctx, cgraph, 1);
|
|
|
|
ggml_free(ggml_ctx);
|
|
|
|
double avg_err = 0.0;
|
|
int first_err_n = -1;
|
|
int first_err_m = -1;
|
|
int first_err_b = -1;
|
|
|
|
for (size_t i = 0; i < m*n*batch; i++) {
|
|
double err = std::fabs(d[i] - d_chk[i]);
|
|
avg_err += err;
|
|
|
|
if ((err > 0.05f || std::isnan(err)) && first_err_n == -1) {
|
|
first_err_b = i / (m * n);
|
|
first_err_n = (i % (m * n)) / m;
|
|
first_err_m = (i % (m * n)) % m;
|
|
}
|
|
}
|
|
|
|
avg_err /= m * n;
|
|
|
|
double tflops = 2.0*m*n*k*batch*num_it / (time / 1000.0) / (1000.0*1000.0*1000.0*1000.0);
|
|
|
|
std::cerr << "TEST " << shname << " m=" << m << " n=" << n << " k=" << k << " batch=" << batch << " split_k=" << split_k << " matmul " << time / num_it << "ms " << tflops << " TFLOPS avg_err=" << avg_err << std::endl;
|
|
|
|
if (avg_err > 0.1 || std::isnan(avg_err)) {
|
|
std::cerr << "m = " << first_err_m << " n = " << first_err_n << " b = " << first_err_b << std::endl;
|
|
std::cerr << "Actual result: " << std::endl << std::endl;
|
|
ggml_vk_print_matrix_area(d, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
|
|
std::cerr << "Expected result: " << std::endl << std::endl;
|
|
ggml_vk_print_matrix_area(d_chk, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
|
|
|
|
if (split_k > 1) {
|
|
float * split_k_buf = (float *) malloc(sizeof(float) * d_ne * split_k);
|
|
ggml_vk_buffer_read(ctx->prealloc_split_k, 0, split_k_buf, sizeof(float) * d_ne * split_k);
|
|
|
|
std::cerr << "d_buf0: " << std::endl << std::endl;
|
|
ggml_vk_print_matrix_area(split_k_buf, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
|
|
|
|
std::cerr << "d_buf1: " << std::endl << std::endl;
|
|
ggml_vk_print_matrix_area(split_k_buf + d_ne, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
|
|
|
|
std::cerr << "d_buf2: " << std::endl << std::endl;
|
|
ggml_vk_print_matrix_area(split_k_buf + 2 * d_ne, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
|
|
|
|
std::cerr << "d_buf3: " << std::endl << std::endl;
|
|
ggml_vk_print_matrix_area(split_k_buf + 3 * d_ne, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
|
|
|
|
free(split_k_buf);
|
|
}
|
|
}
|
|
|
|
free(d_chk);
|
|
|
|
ggml_vk_queue_cleanup(ctx->device, ctx->device->transfer_queue);
|
|
ggml_vk_queue_cleanup(ctx->device, ctx->device->compute_queue);
|
|
|
|
ggml_vk_destroy_buffer(d_X);
|
|
ggml_vk_destroy_buffer(d_Y);
|
|
ggml_vk_destroy_buffer(d_D);
|
|
|
|
ggml_pipeline_cleanup(p);
|
|
ggml_pipeline_cleanup(ctx->device->pipeline_matmul_split_k_reduce);
|
|
|
|
free(x);
|
|
free(y);
|
|
free(d);
|
|
}
|
|
|
|
static void ggml_vk_print_tensor_area(const ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
|
|
if (tensor->type != GGML_TYPE_F32 && tensor->type != GGML_TYPE_F16) {
|
|
return;
|
|
}
|
|
i0 = std::max(i0, 5);
|
|
i1 = std::max(i1, 5);
|
|
i2 = std::max(i2, 0);
|
|
i3 = std::max(i3, 0);
|
|
fprintf(stderr, " ");
|
|
for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) {
|
|
fprintf(stderr, "%7d ", idx1);
|
|
}
|
|
fprintf(stderr, "\n");
|
|
for (int idx0 = i0 - 5; idx0 < i0 + 5; idx0++) {
|
|
fprintf(stderr, "%7d: ", idx0);
|
|
for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) {
|
|
if (idx0 >= 0 && idx0 < tensor->ne[0] && idx1 >= 0 && idx1 < tensor->ne[1] && i2 >= 0 && i2 < tensor->ne[2] && i3 >= 0 && i3 < tensor->ne[3]) {
|
|
float val;
|
|
if (tensor->type == GGML_TYPE_F32) {
|
|
val = *(float *) ((char *) tensor->data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]);
|
|
} else if (tensor->type == GGML_TYPE_F16) {
|
|
val = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) tensor->data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]));
|
|
} else {
|
|
GGML_ABORT("fatal error");
|
|
}
|
|
fprintf(stderr, "% 7.2f ", val);
|
|
} else {
|
|
fprintf(stderr, " ");
|
|
}
|
|
}
|
|
fprintf(stderr, "\n");
|
|
}
|
|
}
|
|
|
|
static void ggml_vk_quantize_data(const float * from, void * to, size_t ne, ggml_type quant) {
|
|
ggml_quantize_chunk(quant, from, to, 0, 1, ne, nullptr);
|
|
}
|
|
|
|
static void ggml_vk_dequantize_data(const void * from, float * to, size_t ne, ggml_type quant) {
|
|
if (quant == GGML_TYPE_F32) {
|
|
memcpy(to, from, sizeof(float) * ne);
|
|
return;
|
|
}
|
|
|
|
const auto * tt = ggml_get_type_traits(quant);
|
|
|
|
ggml_to_float_t dequant_fn = tt->to_float;
|
|
|
|
dequant_fn(from, to, ne);
|
|
}
|
|
|
|
static void ggml_vk_test_dequant(ggml_backend_vk_context * ctx, size_t ne, ggml_type quant) {
|
|
VK_LOG_DEBUG("ggml_vk_test_dequant(" << ne << ")");
|
|
const size_t x_sz = sizeof(float) * ne;
|
|
const size_t x_sz_f16 = sizeof(ggml_fp16_t) * ne;
|
|
const size_t qx_sz = ne * ggml_type_size(quant)/ggml_blck_size(quant);
|
|
float * x = (float *) malloc(x_sz);
|
|
void * qx = malloc(qx_sz);
|
|
vk_buffer qx_buf = ggml_vk_create_buffer_check(ctx->device, qx_sz, vk::MemoryPropertyFlagBits::eDeviceLocal);
|
|
vk_buffer x_buf = ggml_vk_create_buffer_check(ctx->device, x_sz_f16, vk::MemoryPropertyFlagBits::eDeviceLocal);
|
|
float * x_ref = (float *) malloc(x_sz);
|
|
ggml_fp16_t * x_chk = (ggml_fp16_t *) malloc(x_sz_f16);
|
|
|
|
for (size_t i = 0; i < ne; i++) {
|
|
x[i] = rand() / (float)RAND_MAX;
|
|
}
|
|
|
|
vk_pipeline p = ggml_vk_get_to_fp16(ctx, quant);
|
|
|
|
ggml_vk_quantize_data(x, qx, ne, quant);
|
|
ggml_vk_dequantize_data(qx, x_ref, ne, quant);
|
|
|
|
ggml_pipeline_request_descriptor_sets(ctx->device, p, 1);
|
|
|
|
ggml_pipeline_allocate_descriptor_sets(ctx->device);
|
|
|
|
ggml_vk_buffer_write(qx_buf, 0, qx, qx_sz);
|
|
|
|
vk_context subctx = ggml_vk_create_context(ctx, ctx->device->compute_queue);
|
|
ggml_vk_ctx_begin(ctx->device, subctx);
|
|
const std::vector<uint32_t> pc = { 1, (uint32_t)ne, (uint32_t)ne, (uint32_t)ne, (uint32_t)ne };
|
|
ggml_vk_dispatch_pipeline(ctx, subctx, p, { vk_subbuffer{ qx_buf, 0, qx_sz }, vk_subbuffer{ x_buf, 0, x_sz_f16 } }, pc.size() * sizeof(int), pc.data(), { (uint32_t)ne, 1, 1});
|
|
ggml_vk_ctx_end(subctx);
|
|
|
|
auto begin = std::chrono::high_resolution_clock::now();
|
|
|
|
ggml_vk_submit(subctx, ctx->fence);
|
|
VK_CHECK(ctx->device->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "ggml_vk_test_dequant waitForFences");
|
|
ctx->device->device.resetFences({ ctx->fence });
|
|
|
|
auto end = std::chrono::high_resolution_clock::now();
|
|
|
|
double ms_dequant = std::chrono::duration_cast<std::chrono::microseconds>(end-begin).count() / 1000.0;
|
|
ggml_vk_buffer_read(x_buf, 0, x_chk, x_sz_f16);
|
|
|
|
int first_err = -1;
|
|
|
|
double avg_err = 0.0;
|
|
for (size_t i = 0; i < ne; i++) {
|
|
double error = std::fabs(x_ref[i] - ggml_fp16_to_fp32(x_chk[i]));
|
|
avg_err += error;
|
|
|
|
if (first_err < 0 && error > 0.05) {
|
|
first_err = i;
|
|
}
|
|
}
|
|
|
|
avg_err /= ne;
|
|
|
|
std::cerr << "TEST DEQUANT " << ggml_type_name(quant) << " time=" << ms_dequant << "ms avg_err=" << avg_err << std::endl;
|
|
|
|
if (avg_err > 0.1) {
|
|
std::cerr << "first_error = " << first_err << std::endl;
|
|
std::cerr << "Actual result: " << std::endl << std::endl;
|
|
for (int i = std::max(0, first_err - 5); i < std::min((int)ne, first_err + 5); i++) {
|
|
std::cerr << ggml_fp16_to_fp32(x_chk[i]) << ", ";
|
|
}
|
|
std::cerr << std::endl << "Expected result: " << std::endl << std::endl;
|
|
for (int i = std::max(0, first_err - 5); i < std::min((int)ne, first_err + 5); i++) {
|
|
std::cerr << x_ref[i] << ", ";
|
|
}
|
|
std::cerr << std::endl;
|
|
}
|
|
|
|
ggml_vk_destroy_buffer(x_buf);
|
|
ggml_vk_destroy_buffer(qx_buf);
|
|
|
|
free(x);
|
|
free(qx);
|
|
free(x_ref);
|
|
free(x_chk);
|
|
}
|
|
|
|
static void ggml_vk_test_dequant_matmul(ggml_backend_vk_context * ctx, size_t m, size_t n, size_t k, size_t batch, size_t num_it, size_t split_k, size_t shader_size, ggml_type quant) {
|
|
VK_LOG_DEBUG("ggml_vk_test_dequant_matmul(" << m << ", " << n << ", " << k << ", " << batch << ", " << num_it << ", " << split_k << ", " << ggml_type_name(quant) << ")");
|
|
const size_t x_ne = m * k * batch;
|
|
const size_t y_ne = k * n * batch;
|
|
const size_t d_ne = m * n * batch;
|
|
|
|
vk_pipeline p;
|
|
std::string shname;
|
|
if (shader_size == 0) {
|
|
p = ctx->device->fp16 ? ctx->device->pipeline_dequant_mul_mat_mat[quant].f16acc->a_s : ctx->device->pipeline_dequant_mul_mat_mat[quant].f32acc->a_s;
|
|
shname = std::string(ggml_type_name(quant)) + "_ALIGNED_S";
|
|
} else if (shader_size == 1) {
|
|
p = ctx->device->fp16 ? ctx->device->pipeline_dequant_mul_mat_mat[quant].f16acc->a_m : ctx->device->pipeline_dequant_mul_mat_mat[quant].f32acc->a_m;
|
|
shname = std::string(ggml_type_name(quant)) + "_ALIGNED_M";
|
|
} else if (shader_size == 2) {
|
|
p = ctx->device->fp16 ? ctx->device->pipeline_dequant_mul_mat_mat[quant].f16acc->a_l : ctx->device->pipeline_dequant_mul_mat_mat[quant].f32acc->a_l;
|
|
shname = std::string(ggml_type_name(quant)) + "_ALIGNED_L";
|
|
} else {
|
|
GGML_ASSERT(0);
|
|
}
|
|
|
|
const size_t kpad = ggml_vk_align_size(k, p->align);
|
|
|
|
if (k != kpad) {
|
|
if (shader_size == 0) {
|
|
p = ctx->device->fp16 ? ctx->device->pipeline_dequant_mul_mat_mat[quant].f16acc->s : ctx->device->pipeline_dequant_mul_mat_mat[quant].f32acc->s;
|
|
shname = std::string(ggml_type_name(quant)) + "_S";
|
|
} else if (shader_size == 1) {
|
|
p = ctx->device->fp16 ? ctx->device->pipeline_dequant_mul_mat_mat[quant].f16acc->m : ctx->device->pipeline_dequant_mul_mat_mat[quant].f32acc->m;
|
|
shname = std::string(ggml_type_name(quant)) + "_M";
|
|
} else if (shader_size == 2) {
|
|
p = ctx->device->fp16 ? ctx->device->pipeline_dequant_mul_mat_mat[quant].f16acc->l : ctx->device->pipeline_dequant_mul_mat_mat[quant].f32acc->l;
|
|
shname = std::string(ggml_type_name(quant)) + "_L";
|
|
} else {
|
|
GGML_ASSERT(0);
|
|
}
|
|
}
|
|
|
|
const size_t x_sz = sizeof(float) * x_ne;
|
|
const size_t y_sz = sizeof(float) * y_ne;
|
|
const size_t qx_sz = x_ne * ggml_type_size(quant)/ggml_blck_size(quant);
|
|
const size_t d_sz = sizeof(float) * d_ne;
|
|
float * x = (float *) malloc(x_sz);
|
|
float * y = (float *) malloc(y_sz);
|
|
void * qx = malloc(qx_sz);
|
|
vk_buffer qx_buf = ggml_vk_create_buffer_check(ctx->device, qx_sz, vk::MemoryPropertyFlagBits::eDeviceLocal);
|
|
vk_buffer y_buf = ggml_vk_create_buffer_check(ctx->device, y_sz, vk::MemoryPropertyFlagBits::eDeviceLocal);
|
|
vk_buffer d_buf = ggml_vk_create_buffer_check(ctx->device, d_sz, vk::MemoryPropertyFlagBits::eDeviceLocal);
|
|
float * d = (float *) malloc(d_sz);
|
|
float * d_chk = (float *) malloc(d_sz);
|
|
|
|
for (size_t i = 0; i < x_ne; i++) {
|
|
x[i] = (rand() / (float)RAND_MAX) * 2.0f - 1.0f;
|
|
}
|
|
|
|
ggml_vk_quantize_data(x, qx, x_ne, quant);
|
|
|
|
for (size_t i = 0; i < y_ne; i++) {
|
|
// y[i] = rand() / (float)RAND_MAX;
|
|
y[i] = (i % k == i / k) ? 1.0f : 0.0f;
|
|
}
|
|
|
|
ggml_pipeline_request_descriptor_sets(ctx->device, p, num_it);
|
|
if (split_k > 1) {
|
|
ggml_pipeline_request_descriptor_sets(ctx->device, ctx->device->pipeline_matmul_split_k_reduce, num_it);
|
|
|
|
if (ctx->prealloc_split_k == nullptr || ctx->prealloc_split_k->size < sizeof(float) * d_ne * split_k) {
|
|
// Resize buffer
|
|
if (ctx->prealloc_split_k != nullptr) {
|
|
ggml_vk_destroy_buffer(ctx->prealloc_split_k);
|
|
}
|
|
ctx->prealloc_split_k = ggml_vk_create_buffer_check(ctx->device, sizeof(float) * d_ne * split_k, vk::MemoryPropertyFlagBits::eDeviceLocal);
|
|
}
|
|
}
|
|
|
|
ggml_pipeline_allocate_descriptor_sets(ctx->device);
|
|
|
|
ggml_vk_buffer_write(qx_buf, 0, qx, qx_sz);
|
|
ggml_vk_buffer_write(y_buf, 0, y, y_sz);
|
|
|
|
vk_context subctx = ggml_vk_create_context(ctx, ctx->device->compute_queue);
|
|
ggml_vk_ctx_begin(ctx->device, subctx);
|
|
for (size_t i = 0; i < num_it; i++) {
|
|
ggml_vk_matmul(
|
|
ctx, subctx, p, ggml_vk_subbuffer(qx_buf), ggml_vk_subbuffer(y_buf), ggml_vk_subbuffer(d_buf), ggml_vk_subbuffer(ctx->prealloc_split_k),
|
|
m, n, k,
|
|
k, k, m, k*m, k*n, m*n,
|
|
split_k, batch, batch, batch, 1, 1
|
|
);
|
|
}
|
|
ggml_vk_ctx_end(subctx);
|
|
|
|
auto begin = std::chrono::high_resolution_clock::now();
|
|
|
|
ggml_vk_submit(subctx, ctx->fence);
|
|
VK_CHECK(ctx->device->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "ggml_vk_test_dequant waitForFences");
|
|
ctx->device->device.resetFences({ ctx->fence });
|
|
|
|
auto end = std::chrono::high_resolution_clock::now();
|
|
|
|
double time_ms = std::chrono::duration_cast<std::chrono::microseconds>(end-begin).count() / 1000.0;
|
|
ggml_vk_buffer_read(d_buf, 0, d, d_sz);
|
|
|
|
ggml_init_params iparams = {
|
|
/*.mem_size =*/ 1024*1024*1024,
|
|
/*.mem_buffer =*/ NULL,
|
|
/*.no_alloc =*/ true,
|
|
};
|
|
|
|
ggml_context * ggml_ctx = ggml_init(iparams);
|
|
|
|
ggml_tensor * src0_ggml = ggml_new_tensor_3d(ggml_ctx, quant, k, m, batch);
|
|
ggml_tensor * src1_ggml = ggml_new_tensor_3d(ggml_ctx, GGML_TYPE_F32, k, n, batch);
|
|
ggml_tensor * tensor_ggml = ggml_mul_mat(ggml_ctx, src0_ggml, src1_ggml);
|
|
|
|
src0_ggml->data = qx;
|
|
src1_ggml->data = y;
|
|
tensor_ggml->data = d_chk;
|
|
|
|
ggml_cgraph * cgraph = ggml_new_graph(ggml_ctx);
|
|
ggml_build_forward_expand(cgraph, tensor_ggml);
|
|
|
|
ggml_graph_compute_with_ctx(ggml_ctx, cgraph, 1);
|
|
|
|
ggml_free(ggml_ctx);
|
|
|
|
double avg_err = 0.0;
|
|
int first_err_n = -1;
|
|
int first_err_m = -1;
|
|
int first_err_b = -1;
|
|
|
|
for (size_t i = 0; i < m*n*batch; i++) {
|
|
double err = std::fabs(d[i] - d_chk[i]);
|
|
avg_err += err;
|
|
|
|
if ((err > 0.05f || std::isnan(err)) && first_err_n == -1) {
|
|
first_err_b = i / (m * n);
|
|
first_err_n = (i % (m * n)) / m;
|
|
first_err_m = (i % (m * n)) % m;
|
|
}
|
|
}
|
|
|
|
avg_err /= m * n;
|
|
|
|
double tflops = 2.0*m*n*k*batch*num_it / (time_ms / 1000.0) / (1000.0*1000.0*1000.0*1000.0);
|
|
|
|
std::cerr << "TEST MMQ " << shname << " m=" << m << " n=" << n << " k=" << k << " batch=" << batch << " split_k=" << split_k << " matmul " << time_ms / num_it << "ms " << tflops << " TFLOPS avg_err=" << avg_err << std::endl;
|
|
|
|
if (avg_err > 0.01 || std::isnan(avg_err)) {
|
|
std::cerr << "m = " << first_err_m << " n = " << first_err_n << " b = " << first_err_b << std::endl;
|
|
std::cerr << "Actual result: " << std::endl << std::endl;
|
|
ggml_vk_print_matrix_area(d, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
|
|
std::cerr << std::endl;
|
|
std::cerr << "Expected result: " << std::endl << std::endl;
|
|
ggml_vk_print_matrix_area(d_chk, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
|
|
|
|
if (split_k > 1) {
|
|
float * split_k_buf = (float *) malloc(sizeof(float) * d_ne * split_k);
|
|
ggml_vk_buffer_read(ctx->prealloc_split_k, 0, split_k_buf, sizeof(float) * d_ne * split_k);
|
|
|
|
std::cerr << "d_buf0: " << std::endl << std::endl;
|
|
ggml_vk_print_matrix_area(split_k_buf, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
|
|
|
|
std::cerr << "d_buf1: " << std::endl << std::endl;
|
|
ggml_vk_print_matrix_area(split_k_buf + d_ne, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
|
|
|
|
std::cerr << "d_buf2: " << std::endl << std::endl;
|
|
ggml_vk_print_matrix_area(split_k_buf + 2 * d_ne, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
|
|
|
|
std::cerr << "d_buf3: " << std::endl << std::endl;
|
|
ggml_vk_print_matrix_area(split_k_buf + 3 * d_ne, GGML_TYPE_F32, m, n, first_err_m, first_err_n, first_err_b);
|
|
|
|
free(split_k_buf);
|
|
}
|
|
}
|
|
|
|
ggml_vk_destroy_buffer(qx_buf);
|
|
ggml_vk_destroy_buffer(y_buf);
|
|
ggml_vk_destroy_buffer(d_buf);
|
|
|
|
free(x);
|
|
free(qx);
|
|
free(y);
|
|
free(d);
|
|
free(d_chk);
|
|
}
|
|
#endif
|
|
|
|
static void ggml_vk_preallocate_buffers(ggml_backend_vk_context * ctx) {
|
|
#if defined(GGML_VULKAN_RUN_TESTS)
|
|
const std::vector<size_t> vals {
|
|
512, 512, 128,
|
|
128, 512, 512,
|
|
4096, 512, 4096,
|
|
11008, 512, 4096,
|
|
4096, 512, 11008,
|
|
32000, 512, 4096,
|
|
8, 8, 8,
|
|
100, 46, 576,
|
|
623, 111, 128,
|
|
100, 46, 558,
|
|
512, 1, 256,
|
|
128, 110, 622,
|
|
511, 511, 127,
|
|
511, 511, 7,
|
|
511, 511, 17,
|
|
49, 49, 128,
|
|
128, 49, 49,
|
|
4096, 49, 4096,
|
|
};
|
|
const size_t num_it = 100;
|
|
|
|
for (size_t i = 0; i < vals.size(); i += 3) {
|
|
ggml_vk_test_matmul<ggml_fp16_t, float>(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 1, 0);
|
|
ggml_vk_test_matmul<ggml_fp16_t, float>(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 1, 1);
|
|
ggml_vk_test_matmul<ggml_fp16_t, float>(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 1, 2);
|
|
std::cerr << '\n';
|
|
ggml_vk_test_matmul<ggml_fp16_t, float>(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 2, 0);
|
|
ggml_vk_test_matmul<ggml_fp16_t, float>(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 2, 1);
|
|
ggml_vk_test_matmul<ggml_fp16_t, float>(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 2, 2);
|
|
std::cerr << '\n';
|
|
ggml_vk_test_matmul<ggml_fp16_t, float>(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 4, 0);
|
|
ggml_vk_test_matmul<ggml_fp16_t, float>(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 4, 1);
|
|
ggml_vk_test_matmul<ggml_fp16_t, float>(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 4, 2);
|
|
std::cerr << '\n' << std::endl;
|
|
|
|
if (vals[i + 2] % 32 == 0) {
|
|
ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 1, 0, GGML_TYPE_Q4_0);
|
|
ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 1, 1, GGML_TYPE_Q4_0);
|
|
ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 1, 2, GGML_TYPE_Q4_0);
|
|
std::cerr << '\n';
|
|
ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 2, 0, GGML_TYPE_Q4_0);
|
|
ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 2, 1, GGML_TYPE_Q4_0);
|
|
ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 2, 2, GGML_TYPE_Q4_0);
|
|
std::cerr << '\n';
|
|
ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 4, 0, GGML_TYPE_Q4_0);
|
|
ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 4, 1, GGML_TYPE_Q4_0);
|
|
ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 4, 2, GGML_TYPE_Q4_0);
|
|
std::cerr << '\n' << std::endl;
|
|
}
|
|
|
|
if (vals[i + 2] % 256 == 0) {
|
|
ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 1, 0, GGML_TYPE_Q4_K);
|
|
ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 1, 1, GGML_TYPE_Q4_K);
|
|
ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 1, 2, GGML_TYPE_Q4_K);
|
|
std::cerr << '\n';
|
|
ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 2, 0, GGML_TYPE_Q4_K);
|
|
ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 2, 1, GGML_TYPE_Q4_K);
|
|
ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 2, 2, GGML_TYPE_Q4_K);
|
|
std::cerr << '\n';
|
|
ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 4, 0, GGML_TYPE_Q4_K);
|
|
ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 4, 1, GGML_TYPE_Q4_K);
|
|
ggml_vk_test_dequant_matmul(ctx, vals[i], vals[i + 1], vals[i + 2], 2, num_it, 4, 2, GGML_TYPE_Q4_K);
|
|
std::cerr << '\n' << std::endl;
|
|
}
|
|
}
|
|
|
|
GGML_ABORT("fatal error");
|
|
#endif
|
|
|
|
if (ctx->prealloc_x == nullptr || (ctx->prealloc_size_x > 0 && ctx->prealloc_x->size < ctx->prealloc_size_x)) {
|
|
VK_LOG_MEMORY("ggml_vk_preallocate_buffers(x_size: " << ctx->prealloc_size_x << ")");
|
|
// Resize buffer
|
|
if (ctx->prealloc_x != nullptr) {
|
|
ggml_vk_destroy_buffer(ctx->prealloc_x);
|
|
}
|
|
ctx->prealloc_x = ggml_vk_create_buffer_device(ctx->device, ctx->prealloc_size_x);
|
|
}
|
|
if (ctx->prealloc_y == nullptr || (ctx->prealloc_size_y > 0 && ctx->prealloc_y->size < ctx->prealloc_size_y)) {
|
|
VK_LOG_MEMORY("ggml_vk_preallocate_buffers(y_size: " << ctx->prealloc_size_y << ")");
|
|
// Resize buffer
|
|
if (ctx->prealloc_y != nullptr) {
|
|
ggml_vk_destroy_buffer(ctx->prealloc_y);
|
|
}
|
|
ctx->prealloc_y = ggml_vk_create_buffer_device(ctx->device, ctx->prealloc_size_y);
|
|
}
|
|
if (ctx->prealloc_split_k == nullptr || (ctx->prealloc_size_split_k > 0 && ctx->prealloc_split_k->size < ctx->prealloc_size_split_k)) {
|
|
VK_LOG_MEMORY("ggml_vk_preallocate_buffers(split_k_size: " << ctx->prealloc_size_split_k << ")");
|
|
// Resize buffer
|
|
if (ctx->prealloc_split_k != nullptr) {
|
|
ggml_vk_destroy_buffer(ctx->prealloc_split_k);
|
|
}
|
|
ctx->prealloc_split_k = ggml_vk_create_buffer_device(ctx->device, ctx->prealloc_size_split_k);
|
|
}
|
|
}
|
|
|
|
static bool ggml_vk_compute_forward(ggml_backend_vk_context* ctx, ggml_tensor* tensor, int tensor_idx, bool use_fence);
|
|
|
|
// Returns true if node has enqueued work into the queue, false otherwise
|
|
// If submit is true the current all operations queued so far are being submitted to Vulkan to overlap cmdlist creation and GPU execution.
|
|
static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * node, int node_idx, ggml_tensor *node_begin, int node_idx_begin, bool dryrun, bool last_node, bool submit){
|
|
if (ggml_is_empty(node) || !node->buffer) {
|
|
return false;
|
|
}
|
|
|
|
VK_LOG_DEBUG("ggml_vk_build_graph(" << node << ", " << ggml_op_name(node->op) << ")");
|
|
ctx->semaphore_idx = 0;
|
|
|
|
const ggml_tensor * src0 = node->src[0];
|
|
const ggml_tensor * src1 = node->src[1];
|
|
const ggml_tensor * src2 = node->src[2];
|
|
const ggml_tensor * src3 = node->src[3];
|
|
|
|
switch (node->op) {
|
|
// Return on empty ops to avoid generating a compute_ctx and setting exit_tensor
|
|
case GGML_OP_RESHAPE:
|
|
case GGML_OP_VIEW:
|
|
case GGML_OP_PERMUTE:
|
|
case GGML_OP_TRANSPOSE:
|
|
case GGML_OP_NONE:
|
|
return false;
|
|
case GGML_OP_UNARY:
|
|
switch (ggml_get_unary_op(node)) {
|
|
case GGML_UNARY_OP_SILU:
|
|
case GGML_UNARY_OP_GELU:
|
|
case GGML_UNARY_OP_GELU_QUICK:
|
|
case GGML_UNARY_OP_RELU:
|
|
case GGML_UNARY_OP_TANH:
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
break;
|
|
case GGML_OP_REPEAT:
|
|
case GGML_OP_GET_ROWS:
|
|
case GGML_OP_ADD:
|
|
case GGML_OP_ACC:
|
|
case GGML_OP_MUL:
|
|
case GGML_OP_DIV:
|
|
case GGML_OP_CONCAT:
|
|
case GGML_OP_UPSCALE:
|
|
case GGML_OP_SCALE:
|
|
case GGML_OP_SQR:
|
|
case GGML_OP_SIN:
|
|
case GGML_OP_COS:
|
|
case GGML_OP_CLAMP:
|
|
case GGML_OP_PAD:
|
|
case GGML_OP_CPY:
|
|
case GGML_OP_CONT:
|
|
case GGML_OP_DUP:
|
|
case GGML_OP_NORM:
|
|
case GGML_OP_GROUP_NORM:
|
|
case GGML_OP_RMS_NORM:
|
|
case GGML_OP_DIAG_MASK_INF:
|
|
case GGML_OP_SOFT_MAX:
|
|
case GGML_OP_ROPE:
|
|
case GGML_OP_MUL_MAT:
|
|
case GGML_OP_MUL_MAT_ID:
|
|
case GGML_OP_ARGSORT:
|
|
case GGML_OP_SUM_ROWS:
|
|
case GGML_OP_IM2COL:
|
|
case GGML_OP_TIMESTEP_EMBEDDING:
|
|
case GGML_OP_POOL_2D:
|
|
case GGML_OP_LEAKY_RELU:
|
|
case GGML_OP_FLASH_ATTN_EXT:
|
|
break;
|
|
default:
|
|
std::cerr << "ggml_vulkan: Error: Missing op: " << ggml_op_name(node->op) << std::endl;
|
|
GGML_ABORT("fatal error");
|
|
return false;
|
|
}
|
|
|
|
vk_context compute_ctx;
|
|
|
|
if (!dryrun) {
|
|
if (ctx->compute_ctx.expired()) {
|
|
compute_ctx = ggml_vk_create_context(ctx, ctx->device->compute_queue);
|
|
ctx->compute_ctx = compute_ctx;
|
|
ggml_vk_ctx_begin(ctx->device, compute_ctx);
|
|
} else {
|
|
compute_ctx = ctx->compute_ctx.lock();
|
|
}
|
|
} else {
|
|
switch (node->op) {
|
|
case GGML_OP_REPEAT:
|
|
case GGML_OP_ACC:
|
|
case GGML_OP_GET_ROWS:
|
|
case GGML_OP_ADD:
|
|
case GGML_OP_MUL:
|
|
case GGML_OP_DIV:
|
|
case GGML_OP_CONCAT:
|
|
case GGML_OP_UPSCALE:
|
|
case GGML_OP_SCALE:
|
|
case GGML_OP_SQR:
|
|
case GGML_OP_SIN:
|
|
case GGML_OP_COS:
|
|
case GGML_OP_CLAMP:
|
|
case GGML_OP_PAD:
|
|
case GGML_OP_CPY:
|
|
case GGML_OP_CONT:
|
|
case GGML_OP_DUP:
|
|
case GGML_OP_NORM:
|
|
case GGML_OP_GROUP_NORM:
|
|
case GGML_OP_RMS_NORM:
|
|
case GGML_OP_UNARY:
|
|
case GGML_OP_DIAG_MASK_INF:
|
|
case GGML_OP_SOFT_MAX:
|
|
case GGML_OP_ROPE:
|
|
case GGML_OP_ARGSORT:
|
|
case GGML_OP_SUM_ROWS:
|
|
case GGML_OP_IM2COL:
|
|
case GGML_OP_TIMESTEP_EMBEDDING:
|
|
case GGML_OP_POOL_2D:
|
|
case GGML_OP_LEAKY_RELU:
|
|
{
|
|
// These operations all go through ggml_vk_op_f32, so short-circuit and
|
|
// do the only thing needed for the dryrun.
|
|
vk_pipeline pipeline = ggml_vk_op_get_pipeline(ctx, src0, src1, src2, node, node->op);
|
|
ggml_pipeline_request_descriptor_sets(ctx->device, pipeline, 1);
|
|
return false;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
switch (node->op) {
|
|
case GGML_OP_REPEAT:
|
|
ggml_vk_repeat(ctx, compute_ctx, src0, node, dryrun);
|
|
|
|
break;
|
|
case GGML_OP_ACC:
|
|
ggml_vk_acc(ctx, compute_ctx, src0, src1, node, dryrun);
|
|
|
|
break;
|
|
case GGML_OP_GET_ROWS:
|
|
ggml_vk_get_rows(ctx, compute_ctx, src0, src1, node, dryrun);
|
|
|
|
break;
|
|
case GGML_OP_ADD:
|
|
ggml_vk_add(ctx, compute_ctx, src0, src1, node, dryrun);
|
|
|
|
break;
|
|
case GGML_OP_MUL:
|
|
ggml_vk_mul(ctx, compute_ctx, src0, src1, node, dryrun);
|
|
|
|
break;
|
|
case GGML_OP_DIV:
|
|
ggml_vk_div(ctx, compute_ctx, src0, src1, node, dryrun);
|
|
|
|
break;
|
|
case GGML_OP_CONCAT:
|
|
ggml_vk_concat(ctx, compute_ctx, src0, src1, node, dryrun);
|
|
|
|
break;
|
|
case GGML_OP_UPSCALE:
|
|
ggml_vk_upscale(ctx, compute_ctx, src0, node, dryrun);
|
|
|
|
break;
|
|
case GGML_OP_SCALE:
|
|
ggml_vk_scale(ctx, compute_ctx, src0, node, dryrun);
|
|
|
|
break;
|
|
case GGML_OP_SQR:
|
|
ggml_vk_sqr(ctx, compute_ctx, src0, node, dryrun);
|
|
|
|
break;
|
|
case GGML_OP_SIN:
|
|
ggml_vk_sin(ctx, compute_ctx, src0, node, dryrun);
|
|
|
|
break;
|
|
case GGML_OP_COS:
|
|
ggml_vk_cos(ctx, compute_ctx, src0, node, dryrun);
|
|
|
|
break;
|
|
case GGML_OP_CLAMP:
|
|
ggml_vk_clamp(ctx, compute_ctx, src0, node, dryrun);
|
|
|
|
break;
|
|
case GGML_OP_PAD:
|
|
ggml_vk_pad(ctx, compute_ctx, src0, node, dryrun);
|
|
|
|
break;
|
|
case GGML_OP_CPY:
|
|
case GGML_OP_CONT:
|
|
case GGML_OP_DUP:
|
|
ggml_vk_cpy(ctx, compute_ctx, src0, node, dryrun);
|
|
|
|
break;
|
|
case GGML_OP_NORM:
|
|
ggml_vk_norm(ctx, compute_ctx, src0, node, dryrun);
|
|
|
|
break;
|
|
case GGML_OP_GROUP_NORM:
|
|
ggml_vk_group_norm(ctx, compute_ctx, src0, node, dryrun);
|
|
|
|
break;
|
|
case GGML_OP_RMS_NORM:
|
|
ggml_vk_rms_norm(ctx, compute_ctx, src0, node, dryrun);
|
|
|
|
break;
|
|
case GGML_OP_UNARY:
|
|
switch (ggml_get_unary_op(node)) {
|
|
case GGML_UNARY_OP_SILU:
|
|
case GGML_UNARY_OP_GELU:
|
|
case GGML_UNARY_OP_GELU_QUICK:
|
|
case GGML_UNARY_OP_RELU:
|
|
case GGML_UNARY_OP_TANH:
|
|
ggml_vk_unary(ctx, compute_ctx, src0, node, dryrun);
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
break;
|
|
case GGML_OP_DIAG_MASK_INF:
|
|
ggml_vk_diag_mask_inf(ctx, compute_ctx, src0, node, dryrun);
|
|
|
|
break;
|
|
case GGML_OP_SOFT_MAX:
|
|
ggml_vk_soft_max(ctx, compute_ctx, src0, src1, node, dryrun);
|
|
|
|
break;
|
|
case GGML_OP_ROPE:
|
|
ggml_vk_rope(ctx, compute_ctx, src0, src1, src2, node, dryrun);
|
|
|
|
break;
|
|
case GGML_OP_ARGSORT:
|
|
ggml_vk_argsort(ctx, compute_ctx, src0, node, dryrun);
|
|
|
|
break;
|
|
case GGML_OP_SUM_ROWS:
|
|
ggml_vk_sum_rows(ctx, compute_ctx, src0, node, dryrun);
|
|
|
|
break;
|
|
case GGML_OP_IM2COL:
|
|
ggml_vk_im2col(ctx, compute_ctx, src0, src1, node, dryrun);
|
|
|
|
break;
|
|
case GGML_OP_TIMESTEP_EMBEDDING:
|
|
ggml_vk_timestep_embedding(ctx, compute_ctx, src0, node, dryrun);
|
|
|
|
break;
|
|
case GGML_OP_POOL_2D:
|
|
ggml_vk_pool_2d(ctx, compute_ctx, src0, node, dryrun);
|
|
|
|
break;
|
|
case GGML_OP_LEAKY_RELU:
|
|
ggml_vk_leaky_relu(ctx, compute_ctx, src0, node, dryrun);
|
|
|
|
break;
|
|
case GGML_OP_MUL_MAT:
|
|
ggml_vk_mul_mat(ctx, compute_ctx, src0, src1, node, dryrun);
|
|
|
|
break;
|
|
case GGML_OP_MUL_MAT_ID:
|
|
ggml_vk_mul_mat_id(ctx, compute_ctx, src0, src1, src2, node, dryrun);
|
|
|
|
break;
|
|
|
|
case GGML_OP_FLASH_ATTN_EXT:
|
|
ggml_vk_flash_attn(ctx, compute_ctx, src0, src1, src2, src3, node, dryrun);
|
|
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
if (dryrun) {
|
|
return false;
|
|
}
|
|
|
|
ctx->tensor_ctxs[node_idx] = compute_ctx;
|
|
|
|
#if defined(GGML_VULKAN_CHECK_RESULTS) || defined(GGML_VULKAN_PERF)
|
|
// Force context reset on each node so that each tensor ends up in its own context
|
|
// and can be run and compared to its CPU equivalent separately
|
|
last_node = true;
|
|
#endif
|
|
|
|
if (submit || last_node) {
|
|
ggml_vk_ctx_end(compute_ctx);
|
|
|
|
// TODO probably it'd be better to pass a exit_node flag to ggml_vk_compute_forward
|
|
if (last_node) {
|
|
compute_ctx->exit_tensor_idx = node_idx_begin;
|
|
}
|
|
else {
|
|
compute_ctx->exit_tensor_idx = -1;
|
|
}
|
|
|
|
ctx->compute_ctx.reset();
|
|
|
|
bool ok = ggml_vk_compute_forward(ctx, node_begin, node_idx_begin, false);
|
|
if (!ok) {
|
|
if (node->op == GGML_OP_UNARY) {
|
|
std::cerr << __func__ << ": error: op not supported UNARY " << node->name << " (" << ggml_unary_op_name(static_cast<ggml_unary_op>(node->op_params[0])) << ")" << std::endl;
|
|
}
|
|
else {
|
|
std::cerr << __func__ << ": error: op not supported " << node->name << " (" << ggml_op_name(node->op) << ")" << std::endl;
|
|
}
|
|
}
|
|
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor * tensor, int tensor_idx, bool use_fence = true){
|
|
ggml_backend_buffer * buf = nullptr;
|
|
|
|
switch (tensor->op) {
|
|
case GGML_OP_ADD:
|
|
case GGML_OP_ACC:
|
|
case GGML_OP_GET_ROWS:
|
|
case GGML_OP_MUL:
|
|
case GGML_OP_DIV:
|
|
case GGML_OP_CONCAT:
|
|
case GGML_OP_UPSCALE:
|
|
case GGML_OP_SCALE:
|
|
case GGML_OP_SQR:
|
|
case GGML_OP_SIN:
|
|
case GGML_OP_COS:
|
|
case GGML_OP_CLAMP:
|
|
case GGML_OP_PAD:
|
|
case GGML_OP_CPY:
|
|
case GGML_OP_CONT:
|
|
case GGML_OP_DUP:
|
|
case GGML_OP_NORM:
|
|
case GGML_OP_GROUP_NORM:
|
|
case GGML_OP_RMS_NORM:
|
|
case GGML_OP_DIAG_MASK_INF:
|
|
case GGML_OP_SOFT_MAX:
|
|
case GGML_OP_ROPE:
|
|
case GGML_OP_RESHAPE:
|
|
case GGML_OP_VIEW:
|
|
case GGML_OP_PERMUTE:
|
|
case GGML_OP_TRANSPOSE:
|
|
case GGML_OP_NONE:
|
|
case GGML_OP_ARGSORT:
|
|
case GGML_OP_SUM_ROWS:
|
|
case GGML_OP_IM2COL:
|
|
case GGML_OP_TIMESTEP_EMBEDDING:
|
|
case GGML_OP_POOL_2D:
|
|
case GGML_OP_LEAKY_RELU:
|
|
case GGML_OP_REPEAT:
|
|
buf = tensor->buffer;
|
|
|
|
break;
|
|
case GGML_OP_UNARY:
|
|
switch (ggml_get_unary_op(tensor)) {
|
|
case GGML_UNARY_OP_SILU:
|
|
case GGML_UNARY_OP_GELU:
|
|
case GGML_UNARY_OP_GELU_QUICK:
|
|
case GGML_UNARY_OP_RELU:
|
|
case GGML_UNARY_OP_TANH:
|
|
buf = tensor->buffer;
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
break;
|
|
case GGML_OP_MUL_MAT:
|
|
case GGML_OP_MUL_MAT_ID:
|
|
case GGML_OP_FLASH_ATTN_EXT:
|
|
buf = tensor->buffer;
|
|
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
if (buf == nullptr) {
|
|
return false;
|
|
}
|
|
|
|
VK_LOG_DEBUG("ggml_vk_compute_forward(" << tensor << ", name=" << tensor->name << ", op=" << ggml_op_name(tensor->op) << ", type=" << tensor->type << ", ne0=" << tensor->ne[0] << ", ne1=" << tensor->ne[1] << ", ne2=" << tensor->ne[2] << ", ne3=" << tensor->ne[3] << ", nb0=" << tensor->nb[0] << ", nb1=" << tensor->nb[1] << ", nb2=" << tensor->nb[2] << ", nb3=" << tensor->nb[3] << ", view_src=" << tensor->view_src << ", view_offs=" << tensor->view_offs << ")");
|
|
|
|
vk_context subctx = ctx->tensor_ctxs[tensor_idx].lock();
|
|
|
|
// always wait for the GPU work to be done for the last submit
|
|
if (tensor_idx == subctx->exit_tensor_idx) {
|
|
use_fence = true;
|
|
}
|
|
|
|
// Only run if ctx hasn't been submitted yet
|
|
if (!subctx->seqs.empty()) {
|
|
#ifdef GGML_VULKAN_CHECK_RESULTS
|
|
ggml_vk_check_results_0(tensor);
|
|
use_fence = true;
|
|
#endif
|
|
|
|
// Do staging buffer copies
|
|
for (auto& cpy : subctx->in_memcpys) {
|
|
memcpy(cpy.dst, cpy.src, cpy.n);
|
|
}
|
|
|
|
ggml_vk_submit(subctx, use_fence ? ctx->fence : vk::Fence{});
|
|
|
|
if (use_fence) {
|
|
VK_CHECK(ctx->device->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "ggml_vk_compute_forward waitForFences");
|
|
|
|
ctx->device->device.resetFences({ ctx->fence });
|
|
}
|
|
#ifdef GGML_VULKAN_CHECK_RESULTS
|
|
ggml_vk_check_results_1(tensor);
|
|
#endif
|
|
}
|
|
|
|
if (tensor_idx == subctx->exit_tensor_idx) {
|
|
// Do staging buffer copies
|
|
for (auto& cpy : subctx->out_memcpys) {
|
|
memcpy(cpy.dst, cpy.src, cpy.n);
|
|
}
|
|
subctx->in_memcpys.clear();
|
|
subctx->out_memcpys.clear();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Clean up after graph processing is done
|
|
static void ggml_vk_graph_cleanup(ggml_backend_vk_context * ctx) {
|
|
VK_LOG_DEBUG("ggml_vk_graph_cleanup()");
|
|
for (auto& buffer : ctx->gc.temp_buffers) {
|
|
ggml_vk_pool_free(ctx, buffer);
|
|
}
|
|
ctx->gc.temp_buffers.clear();
|
|
|
|
for (auto& dsr : ctx->device->pipeline_descriptor_set_requirements) {
|
|
vk_pipeline_ref plr = ctx->device->pipelines[dsr.first];
|
|
|
|
if (plr.expired()) {
|
|
continue;
|
|
}
|
|
|
|
vk_pipeline pl = plr.lock();
|
|
ggml_pipeline_cleanup(pl);
|
|
}
|
|
|
|
ggml_vk_queue_cleanup(ctx->device, ctx->device->compute_queue);
|
|
ggml_vk_queue_cleanup(ctx->device, ctx->device->transfer_queue);
|
|
|
|
for (size_t i = 0; i < ctx->gc.semaphores.size(); i++) {
|
|
ctx->device->device.destroySemaphore({ ctx->gc.semaphores[i].s });
|
|
}
|
|
ctx->gc.semaphores.clear();
|
|
|
|
for (size_t i = 0; i < ctx->gc.tl_semaphores.size(); i++) {
|
|
ctx->device->device.destroySemaphore({ ctx->gc.tl_semaphores[i].s });
|
|
}
|
|
ctx->gc.tl_semaphores.clear();
|
|
ctx->semaphore_idx = 0;
|
|
|
|
ctx->event_idx = 0;
|
|
|
|
for (auto& event : ctx->gc.events) {
|
|
ctx->device->device.resetEvent(event);
|
|
}
|
|
|
|
ctx->tensor_ctxs.clear();
|
|
ctx->gc.contexts.clear();
|
|
ctx->device->pipeline_descriptor_set_requirements.clear();
|
|
}
|
|
|
|
// Clean up on backend free
|
|
static void ggml_vk_cleanup(ggml_backend_vk_context * ctx) {
|
|
VK_LOG_DEBUG("ggml_vk_cleanup(" << ctx->name << ")");
|
|
ggml_vk_graph_cleanup(ctx);
|
|
|
|
ggml_vk_destroy_buffer(ctx->prealloc_x);
|
|
ggml_vk_destroy_buffer(ctx->prealloc_y);
|
|
ggml_vk_destroy_buffer(ctx->prealloc_split_k);
|
|
|
|
for (auto& buffer : ctx->buffer_pool) {
|
|
ggml_vk_destroy_buffer(buffer);
|
|
}
|
|
|
|
ctx->prealloc_size_x = 0;
|
|
ctx->prealloc_size_y = 0;
|
|
ctx->prealloc_size_split_k = 0;
|
|
|
|
for (auto& event : ctx->gc.events) {
|
|
ctx->device->device.destroyEvent(event);
|
|
}
|
|
ctx->gc.events.clear();
|
|
|
|
ctx->device->device.destroyFence(ctx->fence);
|
|
}
|
|
|
|
static int ggml_vk_get_device_count() {
|
|
ggml_vk_instance_init();
|
|
|
|
return vk_instance.device_indices.size();
|
|
}
|
|
|
|
static void ggml_vk_get_device_description(int device, char * description, size_t description_size) {
|
|
ggml_vk_instance_init();
|
|
|
|
std::vector<vk::PhysicalDevice> devices = vk_instance.instance.enumeratePhysicalDevices();
|
|
|
|
vk::PhysicalDeviceProperties props;
|
|
devices[device].getProperties(&props);
|
|
|
|
snprintf(description, description_size, "%s", props.deviceName.data());
|
|
}
|
|
|
|
// backend interface
|
|
|
|
#define UNUSED GGML_UNUSED
|
|
|
|
// device backend
|
|
|
|
static bool ggml_backend_buffer_is_vk(ggml_backend_buffer_t buffer) {
|
|
return buffer->buft->iface.get_name == ggml_backend_vk_buffer_type_name;
|
|
}
|
|
|
|
static void ggml_backend_vk_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
|
VK_LOG_MEMORY("ggml_backend_vk_buffer_free_buffer()");
|
|
ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
|
|
ggml_vk_destroy_buffer(ctx->dev_buffer);
|
|
delete ctx;
|
|
}
|
|
|
|
static void * ggml_backend_vk_buffer_get_base(ggml_backend_buffer_t buffer) {
|
|
return vk_ptr_base;
|
|
|
|
UNUSED(buffer);
|
|
}
|
|
|
|
static void ggml_backend_vk_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
|
|
VK_LOG_DEBUG("ggml_backend_vk_buffer_init_tensor(" << buffer << " (" << buffer->context << "), " << tensor << ")");
|
|
if (tensor->view_src != nullptr) {
|
|
GGML_ASSERT(tensor->view_src->buffer->buft == buffer->buft);
|
|
}
|
|
}
|
|
|
|
static void ggml_backend_vk_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
|
VK_LOG_DEBUG("ggml_backend_vk_buffer_set_tensor(" << buffer << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")");
|
|
ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)buffer->context;
|
|
vk_buffer buf = buf_ctx->dev_buffer;
|
|
|
|
ggml_vk_buffer_write(buf, vk_tensor_offset(tensor) + tensor->view_offs + offset, data, size);
|
|
}
|
|
|
|
static void ggml_backend_vk_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
|
VK_LOG_DEBUG("ggml_backend_vk_buffer_get_tensor(" << buffer << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")");
|
|
ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)buffer->context;
|
|
|
|
vk_buffer buf = buf_ctx->dev_buffer;
|
|
|
|
ggml_vk_buffer_read(buf, vk_tensor_offset(tensor) + tensor->view_offs + offset, data, size);
|
|
}
|
|
|
|
static bool ggml_backend_vk_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
|
|
if (ggml_backend_buffer_is_vk(src->buffer)) {
|
|
ggml_backend_vk_buffer_context * src_buf_ctx = (ggml_backend_vk_buffer_context *)src->buffer->context;
|
|
ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context;
|
|
|
|
vk_buffer src_buf = src_buf_ctx->dev_buffer;
|
|
vk_buffer dst_buf = dst_buf_ctx->dev_buffer;
|
|
|
|
ggml_vk_buffer_copy(dst_buf, vk_tensor_offset(dst) + dst->view_offs, src_buf, vk_tensor_offset(src) + src->view_offs, ggml_nbytes(src));
|
|
|
|
return true;
|
|
}
|
|
return false;
|
|
|
|
UNUSED(buffer);
|
|
}
|
|
|
|
static void ggml_backend_vk_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
|
ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
|
|
|
|
ggml_vk_buffer_memset(ctx->dev_buffer, 0, value, buffer->size);
|
|
}
|
|
|
|
static ggml_backend_buffer_i ggml_backend_vk_buffer_interface = {
|
|
/* .free_buffer = */ ggml_backend_vk_buffer_free_buffer,
|
|
/* .get_base = */ ggml_backend_vk_buffer_get_base,
|
|
/* .init_tensor = */ ggml_backend_vk_buffer_init_tensor,
|
|
/* .memset_tensor = */ NULL,
|
|
/* .set_tensor = */ ggml_backend_vk_buffer_set_tensor,
|
|
/* .get_tensor = */ ggml_backend_vk_buffer_get_tensor,
|
|
/* .cpy_tensor = */ ggml_backend_vk_buffer_cpy_tensor,
|
|
/* .clear = */ ggml_backend_vk_buffer_clear,
|
|
/* .reset = */ NULL,
|
|
};
|
|
|
|
// vk buffer type
|
|
static const char * ggml_backend_vk_buffer_type_name(ggml_backend_buffer_type_t buft) {
|
|
ggml_backend_vk_buffer_type_context * ctx = (ggml_backend_vk_buffer_type_context *)buft->context;
|
|
|
|
return ctx->name.c_str();
|
|
}
|
|
|
|
static ggml_backend_buffer_t ggml_backend_vk_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
|
VK_LOG_MEMORY("ggml_backend_vk_buffer_type_alloc_buffer(" << size << ")");
|
|
ggml_backend_vk_buffer_type_context * ctx = (ggml_backend_vk_buffer_type_context *) buft->context;
|
|
|
|
vk_buffer dev_buffer = nullptr;
|
|
try {
|
|
dev_buffer = ggml_vk_create_buffer_device(ctx->device, size);
|
|
} catch (const vk::SystemError& e) {
|
|
return nullptr;
|
|
}
|
|
|
|
ggml_backend_vk_buffer_context * bufctx = new ggml_backend_vk_buffer_context(ctx->device, std::move(dev_buffer), ctx->name);
|
|
|
|
return ggml_backend_buffer_init(buft, ggml_backend_vk_buffer_interface, bufctx, size);
|
|
}
|
|
|
|
static size_t ggml_backend_vk_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
|
|
ggml_backend_vk_buffer_type_context * ctx = (ggml_backend_vk_buffer_type_context *) buft->context;
|
|
return ctx->device->properties.limits.minStorageBufferOffsetAlignment;
|
|
}
|
|
|
|
static size_t ggml_backend_vk_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
|
|
ggml_backend_vk_buffer_type_context * ctx = (ggml_backend_vk_buffer_type_context *) buft->context;
|
|
return ctx->device->max_memory_allocation_size;
|
|
}
|
|
|
|
static size_t ggml_backend_vk_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
|
|
return ggml_nbytes(tensor);
|
|
|
|
UNUSED(buft);
|
|
}
|
|
|
|
ggml_backend_buffer_type_t ggml_backend_vk_buffer_type(size_t dev_num) {
|
|
ggml_vk_instance_init();
|
|
|
|
VK_LOG_DEBUG("ggml_backend_vk_buffer_type(" << dev_num << ")");
|
|
|
|
vk_device dev = ggml_vk_get_device(dev_num);
|
|
|
|
return &dev->buffer_type;
|
|
}
|
|
|
|
// host buffer type
|
|
|
|
static const char * ggml_backend_vk_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
|
|
return GGML_VK_NAME "_Host";
|
|
|
|
UNUSED(buft);
|
|
}
|
|
|
|
static const char * ggml_backend_vk_host_buffer_name(ggml_backend_buffer_t buffer) {
|
|
return GGML_VK_NAME "_Host";
|
|
|
|
UNUSED(buffer);
|
|
}
|
|
|
|
static void ggml_backend_vk_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
|
VK_LOG_MEMORY("ggml_backend_vk_host_buffer_free_buffer()");
|
|
ggml_vk_host_free(vk_instance.devices[0], buffer->context);
|
|
}
|
|
|
|
static ggml_backend_buffer_t ggml_backend_vk_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
|
VK_LOG_MEMORY("ggml_backend_vk_host_buffer_type_alloc_buffer(" << size << ")");
|
|
|
|
size += 32; // Behave like the CPU buffer type
|
|
void * ptr = nullptr;
|
|
try {
|
|
ptr = ggml_vk_host_malloc(vk_instance.devices[0], size);
|
|
} catch (vk::SystemError& e) {
|
|
std::cerr << "ggml_vulkan: Failed to allocate pinned memory." << std::endl;
|
|
std::cerr << "ggml_vulkan: " << e.what() << std::endl;
|
|
// fallback to cpu buffer
|
|
return ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size);
|
|
}
|
|
|
|
ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
|
|
buffer->buft = buft;
|
|
buffer->iface.free_buffer = ggml_backend_vk_host_buffer_free_buffer;
|
|
|
|
return buffer;
|
|
|
|
UNUSED(buft);
|
|
}
|
|
|
|
static size_t ggml_backend_vk_host_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
|
|
return vk_instance.devices[0]->properties.limits.minMemoryMapAlignment;
|
|
|
|
UNUSED(buft);
|
|
}
|
|
|
|
// Should be changed to return device-specific host buffer type
|
|
// but that probably requires changes in llama.cpp
|
|
ggml_backend_buffer_type_t ggml_backend_vk_host_buffer_type() {
|
|
static struct ggml_backend_buffer_type ggml_backend_vk_buffer_type_host = {
|
|
/* .iface = */ {
|
|
/* .get_name = */ ggml_backend_vk_host_buffer_type_name,
|
|
/* .alloc_buffer = */ ggml_backend_vk_host_buffer_type_alloc_buffer,
|
|
/* .get_alignment = */ ggml_backend_vk_host_buffer_type_get_alignment,
|
|
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
|
|
/* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
|
|
/* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host,
|
|
},
|
|
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_vk_reg(), 0),
|
|
/* .context = */ nullptr,
|
|
};
|
|
|
|
// Make sure device 0 is initialized
|
|
ggml_vk_instance_init();
|
|
ggml_vk_get_device(0);
|
|
|
|
return &ggml_backend_vk_buffer_type_host;
|
|
}
|
|
|
|
|
|
// backend
|
|
|
|
static const char * ggml_backend_vk_name(ggml_backend_t backend) {
|
|
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
|
|
|
|
return ctx->name.c_str();
|
|
}
|
|
|
|
static void ggml_backend_vk_free(ggml_backend_t backend) {
|
|
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
|
|
VK_LOG_DEBUG("ggml_backend_vk_free(" << ctx->name << ")");
|
|
|
|
ggml_vk_cleanup(ctx);
|
|
|
|
delete ctx;
|
|
delete backend;
|
|
}
|
|
|
|
static ggml_backend_buffer_type_t ggml_backend_vk_get_default_buffer_type(ggml_backend_t backend) {
|
|
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
|
|
|
|
return &ctx->device->buffer_type;
|
|
}
|
|
|
|
static void ggml_backend_vk_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
|
VK_LOG_DEBUG("ggml_backend_vk_set_tensor_async(" << size << ")");
|
|
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
|
|
GGML_ASSERT((tensor->buffer->buft == ggml_backend_vk_get_default_buffer_type(backend) || tensor->buffer->buft == ggml_backend_vk_host_buffer_type()) && "unsupported buffer type");
|
|
|
|
ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)tensor->buffer->context;
|
|
|
|
vk_context transfer_ctx;
|
|
|
|
if (ctx->transfer_ctx.expired()) {
|
|
// Initialize new transfer context
|
|
transfer_ctx = ggml_vk_create_context(ctx, ctx->device->transfer_queue);
|
|
ctx->transfer_ctx = transfer_ctx;
|
|
ggml_vk_ctx_begin(ctx->device, transfer_ctx);
|
|
} else {
|
|
transfer_ctx = ctx->transfer_ctx.lock();
|
|
}
|
|
|
|
vk_buffer buf = buf_ctx->dev_buffer;
|
|
|
|
ggml_vk_buffer_write_async(transfer_ctx, buf, vk_tensor_offset(tensor) + tensor->view_offs + offset, data, size);
|
|
}
|
|
|
|
static void ggml_backend_vk_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
|
VK_LOG_DEBUG("ggml_backend_vk_get_tensor_async(" << size << ")");
|
|
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
|
|
GGML_ASSERT((tensor->buffer->buft == ggml_backend_vk_get_default_buffer_type(backend) || tensor->buffer->buft == ggml_backend_vk_host_buffer_type()) && "unsupported buffer type");
|
|
|
|
ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)tensor->buffer->context;
|
|
|
|
vk_context transfer_ctx;
|
|
|
|
if (ctx->transfer_ctx.expired()) {
|
|
// Initialize new transfer context
|
|
transfer_ctx = ggml_vk_create_context(ctx, ctx->device->transfer_queue);
|
|
ctx->transfer_ctx = transfer_ctx;
|
|
ggml_vk_ctx_begin(ctx->device, transfer_ctx);
|
|
} else {
|
|
transfer_ctx = ctx->transfer_ctx.lock();
|
|
}
|
|
|
|
vk_buffer buf = buf_ctx->dev_buffer;
|
|
|
|
ggml_vk_buffer_read_async(transfer_ctx, buf, vk_tensor_offset(tensor) + tensor->view_offs + offset, data, size);
|
|
}
|
|
|
|
static bool ggml_backend_vk_cpy_tensor_async(ggml_backend_t backend, const ggml_tensor * src, ggml_tensor * dst) {
|
|
VK_LOG_DEBUG("ggml_backend_vk_cpy_tensor_async()");
|
|
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
|
|
if ((dst->buffer->buft == ggml_backend_vk_get_default_buffer_type(backend) || dst->buffer->buft == ggml_backend_vk_host_buffer_type()) && ggml_backend_buffer_is_vk(src->buffer)) {
|
|
ggml_backend_vk_buffer_context * src_buf_ctx = (ggml_backend_vk_buffer_context *)src->buffer->context;
|
|
ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context;
|
|
|
|
vk_context transfer_ctx;
|
|
|
|
if (ctx->transfer_ctx.expired()) {
|
|
// Initialize new transfer context
|
|
transfer_ctx = ggml_vk_create_context(ctx, ctx->device->transfer_queue);
|
|
ctx->transfer_ctx = transfer_ctx;
|
|
ggml_vk_ctx_begin(ctx->device, transfer_ctx);
|
|
} else {
|
|
transfer_ctx = ctx->transfer_ctx.lock();
|
|
}
|
|
|
|
vk_buffer src_buf = src_buf_ctx->dev_buffer;
|
|
vk_buffer dst_buf = dst_buf_ctx->dev_buffer;
|
|
|
|
ggml_vk_buffer_copy_async(transfer_ctx, dst_buf, vk_tensor_offset(dst) + dst->view_offs, src_buf, vk_tensor_offset(src) + src->view_offs, ggml_nbytes(src));
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void ggml_backend_vk_synchronize(ggml_backend_t backend) {
|
|
VK_LOG_DEBUG("ggml_backend_vk_synchronize()");
|
|
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
|
|
if(ctx->transfer_ctx.expired()) {
|
|
return;
|
|
}
|
|
|
|
vk_context transfer_ctx = ctx->transfer_ctx.lock();
|
|
|
|
ggml_vk_ctx_end(transfer_ctx);
|
|
|
|
for (auto& cpy : transfer_ctx->in_memcpys) {
|
|
memcpy(cpy.dst, cpy.src, cpy.n);
|
|
}
|
|
|
|
ggml_vk_submit(transfer_ctx, ctx->fence);
|
|
VK_CHECK(ctx->device->device.waitForFences({ ctx->fence }, true, UINT64_MAX), "ggml_backend_vk_synchronize waitForFences");
|
|
ctx->device->device.resetFences({ ctx->fence });
|
|
|
|
for (auto& cpy : transfer_ctx->out_memcpys) {
|
|
memcpy(cpy.dst, cpy.src, cpy.n);
|
|
}
|
|
|
|
ctx->transfer_ctx.reset();
|
|
}
|
|
|
|
static bool ggml_vk_is_empty(ggml_tensor * node) {
|
|
return ggml_is_empty(node) || node->op == GGML_OP_NONE || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE;
|
|
}
|
|
|
|
static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
|
|
VK_LOG_DEBUG("ggml_backend_vk_graph_compute(" << cgraph->n_nodes << " nodes)");
|
|
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
|
|
|
|
for (int i = 0; i < cgraph->n_nodes; i++) {
|
|
ggml_vk_build_graph(ctx, cgraph->nodes[i], i, nullptr, 0, true, false, false);
|
|
}
|
|
ggml_vk_preallocate_buffers(ctx);
|
|
ggml_pipeline_allocate_descriptor_sets(ctx->device);
|
|
|
|
int last_node = cgraph->n_nodes - 1;
|
|
|
|
// If the last op in the cgraph isn't backend GPU, the command buffer doesn't get closed properly
|
|
while (last_node > 0 && ggml_vk_is_empty(cgraph->nodes[last_node])) {
|
|
last_node -= 1;
|
|
}
|
|
|
|
// Reserve tensor context space for all nodes
|
|
ctx->tensor_ctxs.resize(cgraph->n_nodes);
|
|
|
|
bool first_node_in_batch = true; // true if next node will be first node in a batch
|
|
int submit_node_idx = 0; // index to first node in a batch
|
|
|
|
// Submit work every nodes_per_submit nodes to overlap CPU cmdbuffer generation with GPU execution.
|
|
// Start with a smaller count to get work submitted right away, and increase it after each submit.
|
|
int nodes_per_submit = 20;
|
|
int submitted_nodes = 0;
|
|
int submit_count = 0;
|
|
for (int i = 0; i < cgraph->n_nodes; i++) {
|
|
if (first_node_in_batch) {
|
|
submit_node_idx = i;
|
|
}
|
|
|
|
bool submit = (submitted_nodes >= nodes_per_submit) || (i == last_node);
|
|
|
|
bool enqueued = ggml_vk_build_graph(ctx, cgraph->nodes[i], i, cgraph->nodes[submit_node_idx], submit_node_idx, false, i == last_node, submit);
|
|
|
|
if (enqueued) {
|
|
++submitted_nodes;
|
|
|
|
#ifndef GGML_VULKAN_CHECK_RESULTS
|
|
if (first_node_in_batch) {
|
|
first_node_in_batch = false;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
if (submit) {
|
|
first_node_in_batch = true;
|
|
submitted_nodes = 0;
|
|
switch (submit_count) {
|
|
case 0:
|
|
nodes_per_submit = 50;
|
|
break;
|
|
default:
|
|
nodes_per_submit = 100;
|
|
break;
|
|
}
|
|
submit_count++;
|
|
}
|
|
}
|
|
|
|
#ifdef GGML_VULKAN_PERF
|
|
ctx->device->perf_logger->print_timings();
|
|
#endif
|
|
|
|
ggml_vk_graph_cleanup(ctx);
|
|
|
|
return GGML_STATUS_SUCCESS;
|
|
|
|
UNUSED(backend);
|
|
}
|
|
|
|
// TODO: enable async and synchronize
|
|
static ggml_backend_i ggml_backend_vk_interface = {
|
|
/* .get_name = */ ggml_backend_vk_name,
|
|
/* .free = */ ggml_backend_vk_free,
|
|
/* .set_tensor_async = */ NULL, // ggml_backend_vk_set_tensor_async,
|
|
/* .get_tensor_async = */ NULL, // ggml_backend_vk_get_tensor_async,
|
|
/* .cpy_tensor_async = */ NULL, // ggml_backend_vk_cpy_tensor_async,
|
|
/* .synchronize = */ NULL, // ggml_backend_vk_synchronize,
|
|
/* .graph_plan_create = */ NULL,
|
|
/* .graph_plan_free = */ NULL,
|
|
/* .graph_plan_update = */ NULL,
|
|
/* .graph_plan_compute = */ NULL,
|
|
/* .graph_compute = */ ggml_backend_vk_graph_compute,
|
|
/* .event_record = */ NULL,
|
|
/* .event_wait = */ NULL,
|
|
};
|
|
|
|
static ggml_guid_t ggml_backend_vk_guid() {
|
|
static ggml_guid guid = { 0xb8, 0xf7, 0x4f, 0x86, 0x40, 0x3c, 0xe1, 0x02, 0x91, 0xc8, 0xdd, 0xe9, 0x02, 0x3f, 0xc0, 0x2b };
|
|
return &guid;
|
|
}
|
|
|
|
ggml_backend_t ggml_backend_vk_init(size_t dev_num) {
|
|
VK_LOG_DEBUG("ggml_backend_vk_init(" << dev_num << ")");
|
|
|
|
ggml_backend_vk_context * ctx = new ggml_backend_vk_context;
|
|
ggml_vk_init(ctx, dev_num);
|
|
|
|
ggml_backend_t vk_backend = new ggml_backend {
|
|
/* .guid = */ ggml_backend_vk_guid(),
|
|
/* .interface = */ ggml_backend_vk_interface,
|
|
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_vk_reg(), dev_num),
|
|
/* .context = */ ctx,
|
|
};
|
|
|
|
return vk_backend;
|
|
}
|
|
|
|
bool ggml_backend_is_vk(ggml_backend_t backend) {
|
|
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_vk_guid());
|
|
}
|
|
|
|
int ggml_backend_vk_get_device_count() {
|
|
return ggml_vk_get_device_count();
|
|
}
|
|
|
|
void ggml_backend_vk_get_device_description(int device, char * description, size_t description_size) {
|
|
GGML_ASSERT(device < (int) vk_instance.device_indices.size());
|
|
int dev_idx = vk_instance.device_indices[device];
|
|
ggml_vk_get_device_description(dev_idx, description, description_size);
|
|
}
|
|
|
|
void ggml_backend_vk_get_device_memory(int device, size_t * free, size_t * total) {
|
|
GGML_ASSERT(device < (int) vk_instance.device_indices.size());
|
|
|
|
vk::PhysicalDevice vkdev = vk_instance.instance.enumeratePhysicalDevices()[vk_instance.device_indices[device]];
|
|
|
|
vk::PhysicalDeviceMemoryProperties memprops = vkdev.getMemoryProperties();
|
|
|
|
for (const vk::MemoryHeap& heap : memprops.memoryHeaps) {
|
|
if (heap.flags & vk::MemoryHeapFlagBits::eDeviceLocal) {
|
|
*total = heap.size;
|
|
*free = heap.size;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
//////////////////////////
|
|
|
|
struct ggml_backend_vk_device_context {
|
|
size_t device;
|
|
std::string name;
|
|
std::string description;
|
|
};
|
|
|
|
static const char * ggml_backend_vk_device_get_name(ggml_backend_dev_t dev) {
|
|
ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
|
|
return ctx->name.c_str();
|
|
}
|
|
|
|
static const char * ggml_backend_vk_device_get_description(ggml_backend_dev_t dev) {
|
|
ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
|
|
return ctx->description.c_str();
|
|
}
|
|
|
|
static void ggml_backend_vk_device_get_memory(ggml_backend_dev_t device, size_t * free, size_t * total) {
|
|
ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)device->context;
|
|
ggml_backend_vk_get_device_memory(ctx->device, free, total);
|
|
}
|
|
|
|
static ggml_backend_buffer_type_t ggml_backend_vk_device_get_buffer_type(ggml_backend_dev_t dev) {
|
|
ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
|
|
return ggml_backend_vk_buffer_type(ctx->device);
|
|
}
|
|
|
|
static ggml_backend_buffer_type_t ggml_backend_vk_device_get_host_buffer_type(ggml_backend_dev_t dev) {
|
|
UNUSED(dev);
|
|
return ggml_backend_vk_host_buffer_type();
|
|
}
|
|
|
|
static enum ggml_backend_dev_type ggml_backend_vk_device_get_type(ggml_backend_dev_t dev) {
|
|
UNUSED(dev);
|
|
return GGML_BACKEND_DEVICE_TYPE_GPU;
|
|
}
|
|
|
|
static void ggml_backend_vk_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
|
|
props->name = ggml_backend_vk_device_get_name(dev);
|
|
props->description = ggml_backend_vk_device_get_description(dev);
|
|
props->type = ggml_backend_vk_device_get_type(dev);
|
|
ggml_backend_vk_device_get_memory(dev, &props->memory_free, &props->memory_total);
|
|
props->caps = {
|
|
/* .async = */ false,
|
|
/* .host_buffer = */ true,
|
|
/* .buffer_from_host_ptr = */ false,
|
|
/* .events = */ false,
|
|
};
|
|
}
|
|
|
|
static ggml_backend_t ggml_backend_vk_device_init(ggml_backend_dev_t dev, const char * params) {
|
|
UNUSED(params);
|
|
ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
|
|
return ggml_backend_vk_init(ctx->device);
|
|
}
|
|
|
|
static bool ggml_backend_vk_device_supports_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
|
|
switch (op->op) {
|
|
case GGML_OP_UNARY:
|
|
switch (ggml_get_unary_op(op)) {
|
|
case GGML_UNARY_OP_GELU:
|
|
case GGML_UNARY_OP_GELU_QUICK:
|
|
case GGML_UNARY_OP_SILU:
|
|
case GGML_UNARY_OP_RELU:
|
|
case GGML_UNARY_OP_TANH:
|
|
return ggml_is_contiguous(op->src[0]);
|
|
default:
|
|
return false;
|
|
}
|
|
break;
|
|
case GGML_OP_MUL_MAT:
|
|
case GGML_OP_MUL_MAT_ID:
|
|
{
|
|
ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
|
|
const vk_device& device = ggml_vk_get_device(ctx->device);
|
|
if (op->op == GGML_OP_MUL_MAT_ID && !device->mul_mat_id_s && !device->mul_mat_id_m && !device->mul_mat_id_l) {
|
|
// If there's not enough shared memory for row_ids and the result tile, fallback to CPU
|
|
return false;
|
|
}
|
|
switch (op->src[0]->type) {
|
|
case GGML_TYPE_F32:
|
|
case GGML_TYPE_F16:
|
|
case GGML_TYPE_Q4_0:
|
|
case GGML_TYPE_Q4_1:
|
|
case GGML_TYPE_Q5_0:
|
|
case GGML_TYPE_Q5_1:
|
|
case GGML_TYPE_Q8_0:
|
|
case GGML_TYPE_Q2_K:
|
|
case GGML_TYPE_Q3_K:
|
|
case GGML_TYPE_Q4_K:
|
|
case GGML_TYPE_Q5_K:
|
|
case GGML_TYPE_Q6_K:
|
|
case GGML_TYPE_IQ4_NL:
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
struct ggml_tensor * a;
|
|
struct ggml_tensor * b;
|
|
if (op->op == GGML_OP_MUL_MAT) {
|
|
a = op->src[0];
|
|
b = op->src[1];
|
|
} else {
|
|
a = op->src[2];
|
|
b = op->src[1];
|
|
}
|
|
if (a->ne[3] != b->ne[3]) {
|
|
return false;
|
|
}
|
|
if (!(ggml_vk_dim01_contiguous(op->src[0]) || op->src[0]->type == GGML_TYPE_F32 || op->src[0]->type == GGML_TYPE_F16) ||
|
|
!(ggml_vk_dim01_contiguous(op->src[1]) || op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == GGML_TYPE_F16)) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
} break;
|
|
case GGML_OP_FLASH_ATTN_EXT:
|
|
{
|
|
ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
|
|
if (!ggml_vk_get_device(ctx->device)->coopmat2) {
|
|
return false;
|
|
}
|
|
switch (op->src[0]->ne[0]) {
|
|
case 64:
|
|
case 80:
|
|
case 96:
|
|
case 112:
|
|
case 128:
|
|
case 256:
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
if (op->src[0]->type != GGML_TYPE_F32) {
|
|
return false;
|
|
}
|
|
if (op->type != GGML_TYPE_F32) {
|
|
return false;
|
|
}
|
|
if (op->src[3] && op->src[3]->type != GGML_TYPE_F16) {
|
|
return false;
|
|
}
|
|
// It's straightforward to support different K/V dequant, but would
|
|
// significantly increase the number of pipelines
|
|
if (op->src[1]->type != op->src[2]->type) {
|
|
return false;
|
|
}
|
|
switch (op->src[1]->type) {
|
|
case GGML_TYPE_F16:
|
|
case GGML_TYPE_Q4_0:
|
|
case GGML_TYPE_Q4_1:
|
|
case GGML_TYPE_Q5_0:
|
|
case GGML_TYPE_Q5_1:
|
|
case GGML_TYPE_Q8_0:
|
|
// K dequants currently disabled because D dimension is rounded up to 256 and runs inefficiently
|
|
//case GGML_TYPE_Q2_K:
|
|
//case GGML_TYPE_Q3_K:
|
|
//case GGML_TYPE_Q4_K:
|
|
//case GGML_TYPE_Q5_K:
|
|
//case GGML_TYPE_Q6_K:
|
|
case GGML_TYPE_IQ4_NL:
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
case GGML_OP_GET_ROWS:
|
|
{
|
|
switch (op->src[0]->type) {
|
|
case GGML_TYPE_F32:
|
|
case GGML_TYPE_F16:
|
|
case GGML_TYPE_Q4_0:
|
|
case GGML_TYPE_Q4_1:
|
|
case GGML_TYPE_Q5_0:
|
|
case GGML_TYPE_Q5_1:
|
|
case GGML_TYPE_Q8_0:
|
|
case GGML_TYPE_IQ4_NL:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
} break;
|
|
case GGML_OP_CONT:
|
|
case GGML_OP_CPY:
|
|
case GGML_OP_DUP:
|
|
{
|
|
ggml_type src0_type = op->src[0]->type;
|
|
ggml_type src1_type = op->src[1] != nullptr ? op->src[1]->type : src0_type;
|
|
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
|
|
return true;
|
|
}
|
|
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F16) {
|
|
return true;
|
|
}
|
|
if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) {
|
|
return true;
|
|
}
|
|
return false;
|
|
} break;
|
|
case GGML_OP_REPEAT:
|
|
return ggml_type_size(op->type) == sizeof(float) && ggml_type_size(op->src[0]->type) == sizeof(float);
|
|
case GGML_OP_ROPE:
|
|
return ggml_is_contiguous(op->src[0]);
|
|
case GGML_OP_NONE:
|
|
case GGML_OP_RESHAPE:
|
|
case GGML_OP_VIEW:
|
|
case GGML_OP_PERMUTE:
|
|
case GGML_OP_TRANSPOSE:
|
|
case GGML_OP_NORM:
|
|
case GGML_OP_GROUP_NORM:
|
|
case GGML_OP_RMS_NORM:
|
|
case GGML_OP_ADD:
|
|
case GGML_OP_ACC:
|
|
case GGML_OP_MUL:
|
|
case GGML_OP_DIV:
|
|
case GGML_OP_CONCAT:
|
|
case GGML_OP_UPSCALE:
|
|
case GGML_OP_SCALE:
|
|
case GGML_OP_SQR:
|
|
case GGML_OP_SIN:
|
|
case GGML_OP_COS:
|
|
case GGML_OP_CLAMP:
|
|
case GGML_OP_PAD:
|
|
case GGML_OP_DIAG_MASK_INF:
|
|
case GGML_OP_SOFT_MAX:
|
|
case GGML_OP_ARGSORT:
|
|
case GGML_OP_SUM_ROWS:
|
|
case GGML_OP_IM2COL:
|
|
case GGML_OP_TIMESTEP_EMBEDDING:
|
|
case GGML_OP_POOL_2D:
|
|
case GGML_OP_LEAKY_RELU:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
UNUSED(dev);
|
|
}
|
|
|
|
static bool ggml_backend_vk_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
|
|
if (buft->iface.get_name != ggml_backend_vk_buffer_type_name) {
|
|
return false;
|
|
}
|
|
|
|
ggml_backend_vk_device_context * ctx = (ggml_backend_vk_device_context *)dev->context;
|
|
ggml_backend_vk_buffer_type_context * buft_ctx = (ggml_backend_vk_buffer_type_context *)buft->context;
|
|
|
|
return buft_ctx->device->idx == ctx->device;
|
|
}
|
|
|
|
static bool ggml_backend_vk_device_offload_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
|
|
const int min_batch_size = 32;
|
|
|
|
return (op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS) ||
|
|
(op->ne[2] >= min_batch_size && op->op == GGML_OP_MUL_MAT_ID);
|
|
|
|
UNUSED(dev);
|
|
}
|
|
|
|
static const struct ggml_backend_device_i ggml_backend_vk_device_i = {
|
|
/* .get_name = */ ggml_backend_vk_device_get_name,
|
|
/* .get_description = */ ggml_backend_vk_device_get_description,
|
|
/* .get_memory = */ ggml_backend_vk_device_get_memory,
|
|
/* .get_type = */ ggml_backend_vk_device_get_type,
|
|
/* .get_props = */ ggml_backend_vk_device_get_props,
|
|
/* .init_backend = */ ggml_backend_vk_device_init,
|
|
/* .get_buffer_type = */ ggml_backend_vk_device_get_buffer_type,
|
|
/* .get_host_buffer_type = */ ggml_backend_vk_device_get_host_buffer_type,
|
|
/* .buffer_from_host_ptr = */ NULL,
|
|
/* .supports_op = */ ggml_backend_vk_device_supports_op,
|
|
/* .supports_buft = */ ggml_backend_vk_device_supports_buft,
|
|
/* .offload_op = */ ggml_backend_vk_device_offload_op,
|
|
/* .event_new = */ NULL,
|
|
/* .event_free = */ NULL,
|
|
/* .event_synchronize = */ NULL,
|
|
};
|
|
|
|
static const char * ggml_backend_vk_reg_get_name(ggml_backend_reg_t reg) {
|
|
UNUSED(reg);
|
|
return GGML_VK_NAME;
|
|
}
|
|
|
|
static size_t ggml_backend_vk_reg_get_device_count(ggml_backend_reg_t reg) {
|
|
UNUSED(reg);
|
|
return ggml_backend_vk_get_device_count();
|
|
}
|
|
|
|
static ggml_backend_dev_t ggml_backend_vk_reg_get_device(ggml_backend_reg_t reg, size_t device) {
|
|
static std::vector<ggml_backend_dev_t> devices;
|
|
|
|
static bool initialized = false;
|
|
|
|
{
|
|
static std::mutex mutex;
|
|
std::lock_guard<std::mutex> lock(mutex);
|
|
if (!initialized) {
|
|
for (int i = 0; i < ggml_backend_vk_get_device_count(); i++) {
|
|
ggml_backend_vk_device_context * ctx = new ggml_backend_vk_device_context;
|
|
char desc[256];
|
|
ggml_backend_vk_get_device_description(i, desc, sizeof(desc));
|
|
ctx->device = i;
|
|
ctx->name = GGML_VK_NAME + std::to_string(i);
|
|
ctx->description = desc;
|
|
devices.push_back(new ggml_backend_device {
|
|
/* .iface = */ ggml_backend_vk_device_i,
|
|
/* .reg = */ reg,
|
|
/* .context = */ ctx,
|
|
});
|
|
}
|
|
initialized = true;
|
|
}
|
|
}
|
|
|
|
GGML_ASSERT(device < devices.size());
|
|
return devices[device];
|
|
}
|
|
|
|
static const struct ggml_backend_reg_i ggml_backend_vk_reg_i = {
|
|
/* .get_name = */ ggml_backend_vk_reg_get_name,
|
|
/* .get_device_count = */ ggml_backend_vk_reg_get_device_count,
|
|
/* .get_device = */ ggml_backend_vk_reg_get_device,
|
|
/* .get_proc_address = */ NULL,
|
|
};
|
|
|
|
ggml_backend_reg_t ggml_backend_vk_reg() {
|
|
static ggml_backend_reg reg = {
|
|
/* .api_version = */ GGML_BACKEND_API_VERSION,
|
|
/* .iface = */ ggml_backend_vk_reg_i,
|
|
/* .context = */ nullptr,
|
|
};
|
|
|
|
return ®
|
|
}
|
|
|
|
// Extension availability
|
|
static bool ggml_vk_instance_validation_ext_available(const std::vector<vk::ExtensionProperties>& instance_extensions) {
|
|
#ifdef GGML_VULKAN_VALIDATE
|
|
bool portability_enumeration_ext = false;
|
|
// Check for portability enumeration extension for MoltenVK support
|
|
for (const auto& properties : instance_extensions) {
|
|
if (strcmp("VK_KHR_portability_enumeration", properties.extensionName) == 0) {
|
|
return true;
|
|
}
|
|
}
|
|
if (!portability_enumeration_ext) {
|
|
std::cerr << "ggml_vulkan: WARNING: Instance extension VK_KHR_portability_enumeration not found." << std::endl;
|
|
}
|
|
#endif
|
|
return false;
|
|
|
|
UNUSED(instance_extensions);
|
|
}
|
|
static bool ggml_vk_instance_portability_enumeration_ext_available(const std::vector<vk::ExtensionProperties>& instance_extensions) {
|
|
#ifdef __APPLE__
|
|
bool portability_enumeration_ext = false;
|
|
// Check for portability enumeration extension for MoltenVK support
|
|
for (const auto& properties : instance_extensions) {
|
|
if (strcmp("VK_KHR_portability_enumeration", properties.extensionName) == 0) {
|
|
return true;
|
|
}
|
|
}
|
|
if (!portability_enumeration_ext) {
|
|
std::cerr << "ggml_vulkan: WARNING: Instance extension VK_KHR_portability_enumeration not found." << std::endl;
|
|
}
|
|
#endif
|
|
return false;
|
|
|
|
UNUSED(instance_extensions);
|
|
}
|
|
|
|
// checks
|
|
|
|
#ifdef GGML_VULKAN_CHECK_RESULTS
|
|
static void ggml_vk_print_graph_origin(const ggml_tensor * tensor, std::vector<const ggml_tensor *>& done, int level = 0) {
|
|
if (std::find(done.begin(), done.end(), tensor) != done.end() || level > 10) {
|
|
return;
|
|
}
|
|
for (int j = 0; j < level; j++) {
|
|
std::cerr << " ";
|
|
}
|
|
std::cerr << ggml_op_name(tensor->op) << " gpu=" << (tensor->extra != nullptr) << std::endl;
|
|
|
|
done.push_back(tensor);
|
|
|
|
for (int i = 0; i < GGML_MAX_SRC; i++) {
|
|
if (tensor->src[i] != nullptr) {
|
|
ggml_vk_print_graph_origin(tensor->src[i], done, level + 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ggml_vk_print_tensor_area(const ggml_tensor * tensor, const void * data, int i0, int i1, int i2, int i3) {
|
|
if (tensor->type != GGML_TYPE_F32 && tensor->type != GGML_TYPE_F16 && tensor->type != GGML_TYPE_I32) {
|
|
return;
|
|
}
|
|
i0 = std::max(i0, 5);
|
|
i1 = std::max(i1, 5);
|
|
i2 = std::max(i2, 0);
|
|
i3 = std::max(i3, 0);
|
|
fprintf(stderr, " ");
|
|
for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) {
|
|
fprintf(stderr, "%7d ", idx1);
|
|
}
|
|
fprintf(stderr, "\n");
|
|
for (int idx0 = i0 - 5; idx0 < i0 + 5; idx0++) {
|
|
fprintf(stderr, "%7d: ", idx0);
|
|
for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) {
|
|
if (idx0 >= 0 && idx0 < tensor->ne[0] && idx1 >= 0 && idx1 < tensor->ne[1] && i2 >= 0 && i2 < tensor->ne[2] && i3 >= 0 && i3 < tensor->ne[3]) {
|
|
float val;
|
|
if (tensor->type == GGML_TYPE_F32) {
|
|
val = *(const float *) ((const char *) data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]);
|
|
} else if (tensor->type == GGML_TYPE_F16) {
|
|
val = ggml_fp16_to_fp32(*(const ggml_fp16_t *) ((const char *) data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]));
|
|
} else if (tensor->type == GGML_TYPE_I32) {
|
|
val = *(const int32_t *) ((const char *) data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]);
|
|
} else {
|
|
GGML_ABORT("fatal error");
|
|
}
|
|
fprintf(stderr, "% 7.2f ", val);
|
|
} else {
|
|
fprintf(stderr, " ");
|
|
}
|
|
}
|
|
fprintf(stderr, "\n");
|
|
}
|
|
}
|
|
|
|
static void ggml_vk_print_tensor(const ggml_tensor * tensor, const char * name) {
|
|
void * tensor_data = tensor->data;
|
|
|
|
const bool is_gpu = tensor->buffer != nullptr && ggml_backend_buffer_is_vk(tensor->buffer);
|
|
|
|
if (is_gpu) {
|
|
const size_t tensor_size = ggml_nbytes(tensor);
|
|
tensor_data = malloc(tensor_size);
|
|
|
|
ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)tensor->buffer->context;
|
|
|
|
vk_buffer buffer_gpu = buf_ctx->dev_buffer;
|
|
ggml_vk_buffer_read(buffer_gpu, vk_tensor_offset(tensor) + tensor->view_offs, tensor_data, tensor_size);
|
|
}
|
|
|
|
std::cerr << "TENSOR CHECK " << name << " (" << tensor->name << "): " << ggml_op_name(tensor->op) << std::endl;
|
|
std::cerr << "tensor=" << tensor << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << std::endl;
|
|
if (tensor->src[0] != nullptr) {
|
|
std::cerr << "tensor->src[0]=" << tensor->src[0] << " name=" << tensor->src[0]->name << " op=" << ggml_op_name(tensor->src[0]->op) << " type=" << ggml_type_name(tensor->src[0]->type) << " ne0=" << tensor->src[0]->ne[0] << " nb0=" << tensor->src[0]->nb[0] << " ne1=" << tensor->src[0]->ne[1] << " nb1=" << tensor->src[0]->nb[1] << " ne2=" << tensor->src[0]->ne[2] << " nb2=" << tensor->src[0]->nb[2] << " ne3=" << tensor->src[0]->ne[3] << " nb3=" << tensor->src[0]->nb[3] << std::endl;
|
|
}
|
|
if (tensor->src[1] != nullptr) {
|
|
std::cerr << "tensor->src[1]=" << tensor->src[1] << " name=" << tensor->src[1]->name << " op=" << ggml_op_name(tensor->src[1]->op) << " type=" << ggml_type_name(tensor->src[1]->type) << " ne0=" << tensor->src[1]->ne[0] << " nb0=" << tensor->src[1]->nb[0] << " ne1=" << tensor->src[1]->ne[1] << " nb1=" << tensor->src[1]->nb[1] << " ne2=" << tensor->src[1]->ne[2] << " nb2=" << tensor->src[1]->nb[2] << " ne3=" << tensor->src[1]->ne[3] << " nb3=" << tensor->src[1]->nb[3] << std::endl;
|
|
}
|
|
std::cerr << std::endl << "Result:" << std::endl;
|
|
ggml_vk_print_tensor_area(tensor, tensor_data, 5, 5, 0, 0);
|
|
std::cerr << std::endl;
|
|
std::vector<const ggml_tensor *> done;
|
|
ggml_vk_print_graph_origin(tensor, done);
|
|
|
|
if (is_gpu) {
|
|
free(tensor_data);
|
|
}
|
|
}
|
|
|
|
void * comp_result;
|
|
size_t comp_size;
|
|
size_t comp_nb[GGML_MAX_DIMS];
|
|
size_t check_counter = 0;
|
|
static void ggml_vk_check_results_0(ggml_tensor * tensor) {
|
|
if (tensor->op == GGML_OP_TRANSPOSE) {
|
|
return;
|
|
}
|
|
|
|
check_counter++;
|
|
if (!(vk_output_tensor > 0 && vk_output_tensor == check_counter) && check_counter <= vk_skip_checks) {
|
|
return;
|
|
}
|
|
|
|
VK_LOG_DEBUG("ggml_vk_check_results_0(" << tensor->name << ")");
|
|
|
|
ggml_tensor * src0 = tensor->src[0];
|
|
ggml_tensor * src1 = tensor->src[1];
|
|
ggml_tensor * src2 = tensor->src[2];
|
|
ggml_tensor * src3 = tensor->src[3];
|
|
|
|
struct ggml_init_params iparams = {
|
|
/*.mem_size =*/ 2ul*1024ul*1024ul*1024ul,
|
|
/*.mem_buffer =*/ NULL,
|
|
/*.no_alloc =*/ false,
|
|
};
|
|
|
|
struct ggml_context * ggml_ctx = ggml_init(iparams);
|
|
|
|
struct ggml_tensor * src0_clone = nullptr;
|
|
struct ggml_tensor * src1_clone = nullptr;
|
|
struct ggml_tensor * src2_clone = nullptr;
|
|
struct ggml_tensor * src3_clone = nullptr;
|
|
struct ggml_tensor * tensor_clone = nullptr;
|
|
|
|
size_t src0_size;
|
|
size_t src1_size;
|
|
size_t src2_size;
|
|
size_t src3_size;
|
|
|
|
void * src0_buffer = nullptr;
|
|
void * src1_buffer = nullptr;
|
|
void * src2_buffer = nullptr;
|
|
void * src3_buffer = nullptr;
|
|
|
|
if (src0 != nullptr) {
|
|
src0_clone = ggml_dup_tensor(ggml_ctx, src0);
|
|
|
|
src0_size = ggml_nbytes(src0);
|
|
|
|
src0_buffer = malloc(src0_size);
|
|
src0_clone->data = src0_buffer;
|
|
if (ggml_backend_buffer_is_host(src0->buffer)) {
|
|
memcpy(src0_clone->data, src0->data, src0_size);
|
|
memcpy(src0_clone->nb, src0->nb, sizeof(size_t) * GGML_MAX_DIMS);
|
|
} else if (ggml_backend_buffer_is_vk(src0->buffer)) {
|
|
ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context;
|
|
vk_buffer& buffer_gpu = buf_ctx->dev_buffer;
|
|
uint64_t offset = vk_tensor_offset(src0) + src0->view_offs;
|
|
if (!ggml_is_contiguous(src0) && ggml_vk_dim01_contiguous(src0)) {
|
|
for (int i3 = 0; i3 < src0->ne[3]; i3++) {
|
|
for (int i2 = 0; i2 < src0->ne[2]; i2++) {
|
|
const int idx = i3*src0->ne[2] + i2;
|
|
ggml_vk_buffer_read(buffer_gpu, offset + idx * src0->nb[2], ((char *)src0_clone->data + idx * src0_clone->nb[2]), src0->ne[1] * src0->nb[1]);
|
|
}
|
|
}
|
|
|
|
src0_clone->nb[0] = src0->nb[0];
|
|
src0_clone->nb[1] = src0->nb[1];
|
|
for (int i = 2; i < GGML_MAX_DIMS; i++) {
|
|
src0_clone->nb[i] = src0_clone->nb[i - 1]*src0_clone->ne[i - 1];
|
|
}
|
|
} else {
|
|
if (offset + src0_size >= buffer_gpu->size) {
|
|
src0_size = buffer_gpu->size - offset;
|
|
}
|
|
ggml_vk_buffer_read(buffer_gpu, offset, src0_clone->data, src0_size);
|
|
memcpy(src0_clone->nb, src0->nb, sizeof(size_t) * GGML_MAX_DIMS);
|
|
}
|
|
} else {
|
|
GGML_ABORT("fatal error");
|
|
}
|
|
|
|
if (vk_output_tensor > 0 && vk_output_tensor == check_counter) {
|
|
ggml_vk_print_tensor(src0, "src0");
|
|
}
|
|
}
|
|
if (src1 != nullptr) {
|
|
src1_clone = ggml_dup_tensor(ggml_ctx, src1);
|
|
|
|
src1_size = ggml_nbytes(src1);
|
|
|
|
src1_buffer = malloc(src1_size);
|
|
src1_clone->data = src1_buffer;
|
|
if (ggml_backend_buffer_is_host(src1->buffer)) {
|
|
memcpy(src1_clone->data, src1->data, src1_size);
|
|
memcpy(src1_clone->nb, src1->nb, sizeof(size_t) * GGML_MAX_DIMS);
|
|
} else if (ggml_backend_buffer_is_vk(src1->buffer)) {
|
|
ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context;
|
|
vk_buffer& buffer_gpu = buf_ctx->dev_buffer;
|
|
uint64_t offset = vk_tensor_offset(src1) + src1->view_offs;
|
|
if (!ggml_is_contiguous(src1) && ggml_vk_dim01_contiguous(src1)) {
|
|
for (int i3 = 0; i3 < src1->ne[3]; i3++) {
|
|
for (int i2 = 0; i2 < src1->ne[2]; i2++) {
|
|
const int idx = i3*src1->ne[2] + i2;
|
|
ggml_vk_buffer_read(buffer_gpu, offset + idx * src1->nb[2], ((char *)src1_clone->data + idx * src1_clone->nb[2]), src1->ne[1] * src1->nb[1]);
|
|
}
|
|
}
|
|
|
|
src1_clone->nb[0] = src1->nb[0];
|
|
src1_clone->nb[1] = src1->nb[1];
|
|
for (int i = 2; i < GGML_MAX_DIMS; i++) {
|
|
src1_clone->nb[i] = src1_clone->nb[i - 1]*src1_clone->ne[i - 1];
|
|
}
|
|
} else {
|
|
if (offset + src1_size >= buffer_gpu->size) {
|
|
src1_size = buffer_gpu->size - offset;
|
|
}
|
|
ggml_vk_buffer_read(buffer_gpu, offset, src1_clone->data, src1_size);
|
|
memcpy(src1_clone->nb, src1->nb, sizeof(size_t) * GGML_MAX_DIMS);
|
|
}
|
|
} else {
|
|
GGML_ABORT("fatal error");
|
|
}
|
|
|
|
if (vk_output_tensor > 0 && vk_output_tensor == check_counter) {
|
|
ggml_vk_print_tensor(src1, "src1");
|
|
}
|
|
}
|
|
if (src2 != nullptr) {
|
|
src2_clone = ggml_dup_tensor(ggml_ctx, src2);
|
|
|
|
src2_size = ggml_nbytes(src2);
|
|
|
|
src2_buffer = malloc(src2_size);
|
|
src2_clone->data = src2_buffer;
|
|
if (ggml_backend_buffer_is_host(src2->buffer)) {
|
|
memcpy(src2_clone->data, src2->data, src2_size);
|
|
memcpy(src2_clone->nb, src2->nb, sizeof(size_t) * GGML_MAX_DIMS);
|
|
} else if (ggml_backend_buffer_is_vk(src2->buffer)) {
|
|
ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)src2->buffer->context;
|
|
vk_buffer& buffer_gpu = buf_ctx->dev_buffer;
|
|
uint64_t offset = vk_tensor_offset(src2) + src2->view_offs;
|
|
if (!ggml_is_contiguous(src2) && ggml_vk_dim01_contiguous(src2)) {
|
|
for (int i3 = 0; i3 < src2->ne[3]; i3++) {
|
|
for (int i2 = 0; i2 < src2->ne[2]; i2++) {
|
|
const int idx = i3*src2->ne[2] + i2;
|
|
ggml_vk_buffer_read(buffer_gpu, offset + idx * src2->nb[2], ((char *)src2_clone->data + idx * src2_clone->nb[2]), src2->ne[1] * src2->nb[1]);
|
|
}
|
|
}
|
|
|
|
src2_clone->nb[0] = src2->nb[0];
|
|
src2_clone->nb[1] = src2->nb[1];
|
|
for (int i = 2; i < GGML_MAX_DIMS; i++) {
|
|
src2_clone->nb[i] = src2_clone->nb[i - 1]*src2_clone->ne[i - 1];
|
|
}
|
|
} else {
|
|
if (offset + src2_size >= buffer_gpu->size) {
|
|
src2_size = buffer_gpu->size - offset;
|
|
}
|
|
ggml_vk_buffer_read(buffer_gpu, offset, src2_clone->data, src2_size);
|
|
memcpy(src2_clone->nb, src2->nb, sizeof(size_t) * GGML_MAX_DIMS);
|
|
}
|
|
} else {
|
|
GGML_ABORT("fatal error");
|
|
}
|
|
|
|
if (vk_output_tensor > 0 && vk_output_tensor == check_counter) {
|
|
ggml_vk_print_tensor(src2, "src2");
|
|
}
|
|
}
|
|
if (src3 != nullptr) {
|
|
src3_clone = ggml_dup_tensor(ggml_ctx, src3);
|
|
|
|
src3_size = ggml_nbytes(src3);
|
|
|
|
src3_buffer = malloc(src3_size);
|
|
src3_clone->data = src3_buffer;
|
|
if (ggml_backend_buffer_is_host(src3->buffer)) {
|
|
memcpy(src3_clone->data, src3->data, src3_size);
|
|
memcpy(src3_clone->nb, src3->nb, sizeof(size_t) * GGML_MAX_DIMS);
|
|
} else if (ggml_backend_buffer_is_vk(src3->buffer)) {
|
|
ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)src3->buffer->context;
|
|
vk_buffer& buffer_gpu = buf_ctx->dev_buffer;
|
|
uint64_t offset = vk_tensor_offset(src3) + src3->view_offs;
|
|
if (!ggml_is_contiguous(src3) && ggml_vk_dim01_contiguous(src3)) {
|
|
for (int i3 = 0; i3 < src3->ne[3]; i3++) {
|
|
for (int i2 = 0; i2 < src3->ne[2]; i2++) {
|
|
const int idx = i3*src3->ne[2] + i2;
|
|
ggml_vk_buffer_read(buffer_gpu, offset + idx * src3->nb[2], ((char *)src3_clone->data + idx * src3_clone->nb[2]), src3->ne[1] * src3->nb[1]);
|
|
}
|
|
}
|
|
|
|
src3_clone->nb[0] = src3->nb[0];
|
|
src3_clone->nb[1] = src3->nb[1];
|
|
for (int i = 2; i < GGML_MAX_DIMS; i++) {
|
|
src3_clone->nb[i] = src3_clone->nb[i - 1]*src3_clone->ne[i - 1];
|
|
}
|
|
} else {
|
|
if (offset + src3_size >= buffer_gpu->size) {
|
|
src3_size = buffer_gpu->size - offset;
|
|
}
|
|
ggml_vk_buffer_read(buffer_gpu, offset, src3_clone->data, src3_size);
|
|
memcpy(src3_clone->nb, src3->nb, sizeof(size_t) * GGML_MAX_DIMS);
|
|
}
|
|
} else {
|
|
GGML_ABORT("fatal error");
|
|
}
|
|
|
|
if (vk_output_tensor > 0 && vk_output_tensor == check_counter) {
|
|
ggml_vk_print_tensor(src3, "src3");
|
|
}
|
|
}
|
|
|
|
if (tensor->op == GGML_OP_FLASH_ATTN_EXT) {
|
|
const float *params = (const float *)tensor->op_params;
|
|
tensor_clone = ggml_flash_attn_ext(ggml_ctx, src0_clone, src1_clone, src2_clone, src3_clone, params[0], params[1], params[2]);
|
|
} else if (tensor->op == GGML_OP_MUL_MAT) {
|
|
tensor_clone = ggml_mul_mat(ggml_ctx, src0_clone, src1_clone);
|
|
} else if (tensor->op == GGML_OP_MUL_MAT_ID) {
|
|
tensor_clone = ggml_mul_mat_id(ggml_ctx, src0_clone, src1_clone, src2_clone);
|
|
} else if (tensor->op == GGML_OP_MUL) {
|
|
tensor_clone = ggml_mul(ggml_ctx, src0_clone, src1_clone);
|
|
} else if (tensor->op == GGML_OP_DIV) {
|
|
tensor_clone = ggml_div(ggml_ctx, src0_clone, src1_clone);
|
|
} else if (tensor->op == GGML_OP_CONCAT) {
|
|
tensor_clone = ggml_concat(ggml_ctx, src0_clone, src1_clone, *(int *)tensor->op_params);
|
|
} else if (tensor->op == GGML_OP_UPSCALE) {
|
|
tensor_clone = ggml_upscale_ext(ggml_ctx, src0_clone, tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]);
|
|
} else if (tensor->op == GGML_OP_SCALE) {
|
|
tensor_clone = ggml_scale(ggml_ctx, src0_clone, ((float *)tensor->op_params)[0]);
|
|
} else if (tensor->op == GGML_OP_SQR) {
|
|
tensor_clone = ggml_sqr(ggml_ctx, src0_clone);
|
|
} else if (tensor->op == GGML_OP_SIN) {
|
|
tensor_clone = ggml_sin(ggml_ctx, src0_clone);
|
|
} else if (tensor->op == GGML_OP_COS) {
|
|
tensor_clone = ggml_cos(ggml_ctx, src0_clone);
|
|
} else if (tensor->op == GGML_OP_CLAMP) {
|
|
tensor_clone = ggml_clamp(ggml_ctx, src0_clone, ((float *)tensor->op_params)[0], ((float *)tensor->op_params)[1]);
|
|
} else if (tensor->op == GGML_OP_PAD) {
|
|
tensor_clone = ggml_pad(ggml_ctx, src0_clone, tensor->ne[0] - src0_clone->ne[0], tensor->ne[1] - src0_clone->ne[1], tensor->ne[2] - src0_clone->ne[2], tensor->ne[3] - src0_clone->ne[3]);
|
|
} else if (tensor->op == GGML_OP_REPEAT) {
|
|
tensor_clone = ggml_repeat(ggml_ctx, src0_clone, tensor);
|
|
} else if (tensor->op == GGML_OP_ADD) {
|
|
tensor_clone = ggml_add(ggml_ctx, src0_clone, src1_clone);
|
|
} else if (tensor->op == GGML_OP_ACC) {
|
|
tensor_clone = ggml_acc(ggml_ctx, src0_clone, src1_clone, tensor->op_params[0], tensor->op_params[1], tensor->op_params[2], tensor->op_params[3]);
|
|
} else if (tensor->op == GGML_OP_NORM) {
|
|
tensor_clone = ggml_norm(ggml_ctx, src0_clone, *(float *)tensor->op_params);
|
|
} else if (tensor->op == GGML_OP_GROUP_NORM) {
|
|
tensor_clone = ggml_group_norm(ggml_ctx, src0_clone, *(int *)tensor->op_params, ((float *)tensor->op_params)[1]);
|
|
} else if (tensor->op == GGML_OP_RMS_NORM) {
|
|
tensor_clone = ggml_rms_norm(ggml_ctx, src0_clone, *(float *)tensor->op_params);
|
|
} else if (tensor->op == GGML_OP_SOFT_MAX) {
|
|
if (src1 != nullptr) {
|
|
tensor_clone = ggml_soft_max_ext(ggml_ctx, src0_clone, src1_clone, ((float *)tensor->op_params)[0], ((float *)tensor->op_params)[1]);
|
|
} else {
|
|
tensor_clone = ggml_soft_max(ggml_ctx, src0_clone);
|
|
}
|
|
} else if (tensor->op == GGML_OP_DIAG_MASK_INF) {
|
|
tensor_clone = ggml_diag_mask_inf(ggml_ctx, src0_clone, *(int *)tensor->op_params);
|
|
} else if (tensor->op == GGML_OP_ROPE) {
|
|
const int n_dims = ((int32_t *) tensor->op_params)[1];
|
|
const int mode = ((int32_t *) tensor->op_params)[2];
|
|
//const int n_ctx_ggml = ((int32_t *) tensor->op_params)[3];
|
|
const int n_ctx_orig_ggml = ((int32_t *) tensor->op_params)[4];
|
|
const float freq_base = ((float *) tensor->op_params)[5];
|
|
const float freq_scale = ((float *) tensor->op_params)[6];
|
|
const float ext_factor = ((float *) tensor->op_params)[7];
|
|
const float attn_factor = ((float *) tensor->op_params)[8];
|
|
const float beta_fast = ((float *) tensor->op_params)[9];
|
|
const float beta_slow = ((float *) tensor->op_params)[10];
|
|
tensor_clone = ggml_rope_ext(ggml_ctx, src0_clone, src1_clone, src2_clone, n_dims, mode, n_ctx_orig_ggml, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow);
|
|
} else if (tensor->op == GGML_OP_UNARY) {
|
|
switch (ggml_get_unary_op(tensor)) {
|
|
case GGML_UNARY_OP_SILU:
|
|
tensor_clone = ggml_silu(ggml_ctx, src0_clone);
|
|
break;
|
|
case GGML_UNARY_OP_GELU:
|
|
tensor_clone = ggml_gelu(ggml_ctx, src0_clone);
|
|
break;
|
|
case GGML_UNARY_OP_GELU_QUICK:
|
|
tensor_clone = ggml_gelu_quick(ggml_ctx, src0_clone);
|
|
break;
|
|
case GGML_UNARY_OP_RELU:
|
|
tensor_clone = ggml_relu(ggml_ctx, src0_clone);
|
|
break;
|
|
case GGML_UNARY_OP_TANH:
|
|
tensor_clone = ggml_tanh(ggml_ctx, src0_clone);
|
|
break;
|
|
default:
|
|
std::cerr << "Missing vk_check_results OP: " << ggml_op_name(tensor->op) << std::endl;
|
|
GGML_ABORT("fatal error");
|
|
}
|
|
} else if (tensor->op == GGML_OP_CPY || tensor->op == GGML_OP_DUP) {
|
|
if (src1 == nullptr) {
|
|
tensor_clone = ggml_dup(ggml_ctx, src0_clone);
|
|
tensor_clone->type = tensor->type;
|
|
} else {
|
|
tensor_clone = ggml_cpy(ggml_ctx, src0_clone, src1_clone);
|
|
}
|
|
} else if (tensor->op == GGML_OP_CONT) {
|
|
tensor_clone = ggml_cont_4d(ggml_ctx, src0_clone, tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]);
|
|
} else if (tensor->op == GGML_OP_RESHAPE) {
|
|
tensor_clone = ggml_reshape_4d(ggml_ctx, src0_clone, tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3]);
|
|
} else if (tensor->op == GGML_OP_VIEW) {
|
|
tensor_clone = ggml_view_4d(ggml_ctx, src0_clone, tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3], tensor->nb[1], tensor->nb[2], tensor->nb[3], ((int32_t *) tensor->op_params)[0]);
|
|
} else if (tensor->op == GGML_OP_PERMUTE) {
|
|
int32_t * params = (int32_t *)tensor->op_params;
|
|
tensor_clone = ggml_permute(ggml_ctx, src0_clone, params[0], params[1], params[2], params[3]);
|
|
} else if (tensor->op == GGML_OP_TRANSPOSE) {
|
|
tensor_clone = ggml_transpose(ggml_ctx, src0_clone);
|
|
} else if (tensor->op == GGML_OP_GET_ROWS) {
|
|
tensor_clone = ggml_get_rows(ggml_ctx, src0_clone, src1_clone);
|
|
} else if (tensor->op == GGML_OP_ARGSORT) {
|
|
tensor_clone = ggml_argsort(ggml_ctx, src0_clone, (ggml_sort_order) *(int *)tensor->op_params);
|
|
} else if (tensor->op == GGML_OP_SUM_ROWS) {
|
|
tensor_clone = ggml_sum_rows(ggml_ctx, src0_clone);
|
|
} else if (tensor->op == GGML_OP_IM2COL) {
|
|
const int32_t s0 = tensor->op_params[0];
|
|
const int32_t s1 = tensor->op_params[1];
|
|
const int32_t p0 = tensor->op_params[2];
|
|
const int32_t p1 = tensor->op_params[3];
|
|
const int32_t d0 = tensor->op_params[4];
|
|
const int32_t d1 = tensor->op_params[5];
|
|
|
|
const bool is_2D = tensor->op_params[6] == 1;
|
|
tensor_clone = ggml_im2col(ggml_ctx, src0_clone, src1_clone, s0, s1, p0, p1, d0, d1, is_2D, tensor->type);
|
|
} else if (tensor->op == GGML_OP_TIMESTEP_EMBEDDING) {
|
|
const int32_t dim = tensor->op_params[0];
|
|
const int32_t max_period = tensor->op_params[1];
|
|
tensor_clone = ggml_timestep_embedding(ggml_ctx, src0_clone, dim, max_period);
|
|
} else if (tensor->op == GGML_OP_POOL_2D) {
|
|
enum ggml_op_pool op = static_cast<ggml_op_pool>(tensor->op_params[0]);
|
|
const int32_t k0 = tensor->op_params[1];
|
|
const int32_t k1 = tensor->op_params[2];
|
|
const int32_t s0 = tensor->op_params[3];
|
|
const int32_t s1 = tensor->op_params[4];
|
|
const int32_t p0 = tensor->op_params[5];
|
|
const int32_t p1 = tensor->op_params[6];
|
|
|
|
tensor_clone = ggml_pool_2d(ggml_ctx, src0_clone, op, k0, k1, s0, s1, p0, p1);
|
|
} else if (tensor->op == GGML_OP_LEAKY_RELU) {
|
|
const float * op_params = (const float *)tensor->op_params;
|
|
tensor_clone = ggml_leaky_relu(ggml_ctx, src0_clone, op_params[0], false);
|
|
} else {
|
|
std::cerr << "Missing vk_check_results OP: " << ggml_op_name(tensor->op) << std::endl;
|
|
GGML_ABORT("fatal error");
|
|
}
|
|
|
|
ggml_cgraph * cgraph = ggml_new_graph(ggml_ctx);
|
|
ggml_build_forward_expand(cgraph, tensor_clone);
|
|
|
|
ggml_graph_compute_with_ctx(ggml_ctx, cgraph, 8);
|
|
|
|
if (vk_output_tensor > 0 && vk_output_tensor == check_counter) {
|
|
ggml_vk_print_tensor(tensor_clone, "tensor_clone");
|
|
}
|
|
|
|
comp_size = ggml_nbytes(tensor_clone);
|
|
|
|
comp_result = malloc(comp_size);
|
|
memcpy(comp_result, tensor_clone->data, comp_size);
|
|
memcpy(comp_nb, tensor_clone->nb, sizeof(size_t) * GGML_MAX_DIMS);
|
|
|
|
if (src0 != nullptr) {
|
|
free(src0_buffer);
|
|
}
|
|
if (src1 != nullptr) {
|
|
free(src1_buffer);
|
|
}
|
|
|
|
ggml_free(ggml_ctx);
|
|
|
|
VK_LOG_DEBUG("END ggml_vk_check_results_0(" << tensor->name << ")");
|
|
}
|
|
|
|
static void ggml_vk_check_results_1(ggml_tensor * tensor) {
|
|
if (tensor->op == GGML_OP_TRANSPOSE) {
|
|
return;
|
|
}
|
|
if (!(vk_output_tensor > 0 && vk_output_tensor == check_counter) && check_counter <= vk_skip_checks) {
|
|
return;
|
|
}
|
|
|
|
VK_LOG_DEBUG("ggml_vk_check_results_1(" << tensor->name << ")");
|
|
|
|
ggml_tensor * src0 = tensor->src[0];
|
|
ggml_tensor * src1 = tensor->src[1];
|
|
ggml_tensor * src2 = tensor->src[2];
|
|
|
|
void * tensor_data = tensor->data;
|
|
|
|
if (ggml_backend_buffer_is_vk(tensor->buffer)) {
|
|
size_t tensor_size = ggml_nbytes(tensor);
|
|
tensor_data = malloc(tensor_size);
|
|
|
|
ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)tensor->buffer->context;
|
|
|
|
vk_buffer& buffer_gpu = buf_ctx->dev_buffer;
|
|
uint64_t offset = vk_tensor_offset(tensor) + tensor->view_offs;
|
|
if (offset + tensor_size >= buffer_gpu->size) {
|
|
tensor_size = buffer_gpu->size - offset;
|
|
}
|
|
|
|
ggml_vk_buffer_read(buffer_gpu, offset, tensor_data, tensor_size);
|
|
}
|
|
|
|
float first_error_result = -1.0f;
|
|
float first_error_correct = -1.0f;
|
|
std::array<int, 4> first_error = { -1, -1, -1, -1 };
|
|
double avg_err = 0.0;
|
|
size_t counter = 0;
|
|
|
|
for (int i3 = 0; i3 < tensor->ne[3]; i3++) {
|
|
for (int i2 = 0; i2 < tensor->ne[2]; i2++) {
|
|
for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
|
|
for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
|
|
const bool buffer_size_fit = i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0] < comp_size;
|
|
float correct = 0.0f;
|
|
float result = 0.0f;
|
|
|
|
if (buffer_size_fit) {
|
|
if (tensor->type == GGML_TYPE_F32) {
|
|
correct = *(float *) ((char *) comp_result + i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0]);
|
|
result = *(float *) ((char *) tensor_data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]);
|
|
} else if (tensor->type == GGML_TYPE_F16) {
|
|
correct = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) comp_result + i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0]));
|
|
result = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) tensor_data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]));
|
|
} else if (tensor->type == GGML_TYPE_I32) {
|
|
correct = *(int32_t *) ((char *) comp_result + i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0]);
|
|
result = *(int32_t *) ((char *) tensor_data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]);
|
|
} else {
|
|
std::cerr << "Results check not implemented for type " << ggml_type_name(tensor->type) << std::endl;
|
|
}
|
|
} else {
|
|
std::cerr << "Missing debug code for type " << ggml_type_name(tensor->type) << std::endl;
|
|
GGML_ABORT("fatal error");
|
|
}
|
|
|
|
if ((std::isnan(correct) != std::isnan(result)) || (std::isinf(correct) != std::isinf(result)) || !buffer_size_fit) {
|
|
std::cerr << "ERROR: Invalid value in " << ggml_op_name(tensor->op) << " i3=" << i3 << " i2=" << i2 << " i1=" << i1 << " i0=" << i0 << " result=" << result << " correct=" << correct << " avg_err=" << (avg_err / counter) << std::endl;
|
|
std::cerr << "tensor=" << tensor << " tensor->name=" << tensor->name << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << " offset=" << tensor->view_offs << std::endl;
|
|
if (src0 != nullptr) {
|
|
std::cerr << "src0=" << src0 << " src0->name=" << src0->name << " op=" << ggml_op_name(src0->op) << " type=" << ggml_type_name(src0->type) << " ne0=" << src0->ne[0] << " nb0=" << src0->nb[0] << " ne1=" << src0->ne[1] << " nb1=" << src0->nb[1] << " ne2=" << src0->ne[2] << " nb2=" << src0->nb[2] << " ne3=" << src0->ne[3] << " nb3=" << src0->nb[3] << " offset=" << src0->view_offs << std::endl;
|
|
}
|
|
if (src1 != nullptr) {
|
|
std::cerr << "src1=" << src1 << " src1->name=" << src1->name << " op=" << ggml_op_name(src1->op) << " type=" << ggml_type_name(src1->type) << " ne0=" << src1->ne[0] << " nb0=" << src1->nb[0] << " ne1=" << src1->ne[1] << " nb1=" << src1->nb[1] << " ne2=" << src1->ne[2] << " nb2=" << src1->nb[2] << " ne3=" << src1->ne[3] << " nb3=" << src1->nb[3] << " offset=" << src1->view_offs << std::endl;
|
|
}
|
|
if (src2 != nullptr) {
|
|
std::cerr << "src2=" << src2 << " src2->name=" << src2->name << " op=" << ggml_op_name(src2->op) << " type=" << ggml_type_name(src2->type) << " ne0=" << src2->ne[0] << " nb0=" << src2->nb[0] << " ne1=" << src2->ne[1] << " nb1=" << src2->nb[1] << " ne2=" << src2->ne[2] << " nb2=" << src2->nb[2] << " ne3=" << src2->ne[3] << " nb3=" << src2->nb[3] << " offset=" << src2->view_offs << std::endl;
|
|
}
|
|
std::cerr << "First error: result=" << first_error_result << " correct=" << first_error_correct << " i3=" << first_error[3] << " i2=" << first_error[2] << " i1=" << first_error[1] << " i0=" << first_error[0] << std::endl;
|
|
std::cerr << std::endl << "Result:" << std::endl;
|
|
ggml_vk_print_tensor_area(tensor, tensor_data, i0, i1, i2, i3);
|
|
std::cerr << std::endl << "Correct:" << std::endl;
|
|
ggml_vk_print_tensor_area(tensor, comp_result, i0, i1, i2, i3);
|
|
std::cerr << std::endl;
|
|
std::vector<const ggml_tensor *> done;
|
|
ggml_vk_print_graph_origin(tensor, done);
|
|
GGML_ABORT("fatal error");
|
|
}
|
|
if (first_error[0] == -1 && std::fabs(correct - result) > 0.1f) {
|
|
first_error[0] = i0;
|
|
first_error[1] = i1;
|
|
first_error[2] = i2;
|
|
first_error[3] = i3;
|
|
first_error_result = result;
|
|
first_error_correct = correct;
|
|
}
|
|
|
|
// Special case, value is infinite, avoid NaN result in avg_err
|
|
// NaN also appears in results, if both are nan error is 0
|
|
if (!std::isinf(correct) && !std::isinf(result) && !std::isnan(correct) && !std::isnan(result)) {
|
|
avg_err += std::fabs(correct - result);
|
|
}
|
|
counter++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
avg_err /= counter;
|
|
|
|
if (vk_output_tensor > 0 && vk_output_tensor == check_counter) {
|
|
std::cerr << "TENSOR CHECK: avg_err=" << avg_err << " in " << ggml_op_name(tensor->op) << " (check " << check_counter << ")" << std::endl;
|
|
std::cerr << "tensor=" << tensor << " tensor->name=" << tensor->name << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << " offset=" << tensor->view_offs << std::endl;
|
|
if (src0 != nullptr) {
|
|
std::cerr << "src0=" << src0 << " op=" << ggml_op_name(src0->op) << " type=" << ggml_type_name(src0->type) << " ne0=" << src0->ne[0] << " nb0=" << src0->nb[0] << " ne1=" << src0->ne[1] << " nb1=" << src0->nb[1] << " ne2=" << src0->ne[2] << " nb2=" << src0->nb[2] << " ne3=" << src0->ne[3] << " nb3=" << src0->nb[3] << " offset=" << src0->view_offs << std::endl;
|
|
}
|
|
if (src1 != nullptr) {
|
|
std::cerr << "src1=" << src1 << " op=" << ggml_op_name(src1->op) << " type=" << ggml_type_name(src1->type) << " ne0=" << src1->ne[0] << " nb0=" << src1->nb[0] << " ne1=" << src1->ne[1] << " nb1=" << src1->nb[1] << " ne2=" << src1->ne[2] << " nb2=" << src1->nb[2] << " ne3=" << src1->ne[3] << " nb3=" << src1->nb[3] << " offset=" << src1->view_offs << std::endl;
|
|
}
|
|
if (src2 != nullptr) {
|
|
std::cerr << "src2=" << src2 << " op=" << ggml_op_name(src2->op) << " type=" << ggml_type_name(src2->type) << " ne0=" << src2->ne[0] << " nb0=" << src2->nb[0] << " ne1=" << src2->ne[1] << " nb1=" << src2->nb[1] << " ne2=" << src2->ne[2] << " nb2=" << src2->nb[2] << " ne3=" << src2->ne[3] << " nb3=" << src2->nb[3] << " offset=" << src2->view_offs << std::endl;
|
|
}
|
|
std::cerr << "First error: result=" << first_error_result << " correct=" << first_error_correct << " i3=" << first_error[3] << " i2=" << first_error[2] << " i1=" << first_error[1] << " i0=" << first_error[0] << std::endl;
|
|
std::cerr << std::endl << "Result:" << std::endl;
|
|
ggml_vk_print_tensor_area(tensor, tensor_data, 5, 5, 0, 0);
|
|
std::cerr << std::endl << "Correct:" << std::endl;
|
|
ggml_vk_print_tensor_area(tensor, comp_result, 5, 5, 0, 0);
|
|
std::cerr << std::endl;
|
|
std::vector<const ggml_tensor *> done;
|
|
ggml_vk_print_graph_origin(tensor, done);
|
|
}
|
|
|
|
if (avg_err > 0.05 || std::isnan(avg_err)) {
|
|
std::cerr << "ERROR: avg_err=" << avg_err << " in " << ggml_op_name(tensor->op) << " (check " << check_counter << ")" << std::endl;
|
|
std::cerr << "tensor=" << tensor << " tensor->name=" << tensor->name << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << " offset=" << tensor->view_offs << std::endl;
|
|
if (src0 != nullptr) {
|
|
std::cerr << "src0=" << src0 << " op=" << ggml_op_name(src0->op) << " type=" << ggml_type_name(src0->type) << " ne0=" << src0->ne[0] << " nb0=" << src0->nb[0] << " ne1=" << src0->ne[1] << " nb1=" << src0->nb[1] << " ne2=" << src0->ne[2] << " nb2=" << src0->nb[2] << " ne3=" << src0->ne[3] << " nb3=" << src0->nb[3] << " offset=" << src0->view_offs << std::endl;
|
|
}
|
|
if (src1 != nullptr) {
|
|
std::cerr << "src1=" << src1 << " op=" << ggml_op_name(src1->op) << " type=" << ggml_type_name(src1->type) << " ne0=" << src1->ne[0] << " nb0=" << src1->nb[0] << " ne1=" << src1->ne[1] << " nb1=" << src1->nb[1] << " ne2=" << src1->ne[2] << " nb2=" << src1->nb[2] << " ne3=" << src1->ne[3] << " nb3=" << src1->nb[3] << " offset=" << src1->view_offs << std::endl;
|
|
}
|
|
if (src2 != nullptr) {
|
|
std::cerr << "src2=" << src2 << " op=" << ggml_op_name(src2->op) << " type=" << ggml_type_name(src2->type) << " ne0=" << src2->ne[0] << " nb0=" << src2->nb[0] << " ne1=" << src2->ne[1] << " nb1=" << src2->nb[1] << " ne2=" << src2->ne[2] << " nb2=" << src2->nb[2] << " ne3=" << src2->ne[3] << " nb3=" << src2->nb[3] << " offset=" << src2->view_offs << std::endl;
|
|
}
|
|
std::cerr << "First error: result=" << first_error_result << " correct=" << first_error_correct << " i3=" << first_error[3] << " i2=" << first_error[2] << " i1=" << first_error[1] << " i0=" << first_error[0] << std::endl;
|
|
std::cerr << std::endl << "Result:" << std::endl;
|
|
ggml_vk_print_tensor_area(tensor, tensor_data, first_error[0], first_error[1], first_error[2], first_error[3]);
|
|
std::cerr << std::endl << "Correct:" << std::endl;
|
|
ggml_vk_print_tensor_area(tensor, comp_result, first_error[0], first_error[1], first_error[2], first_error[3]);
|
|
std::cerr << std::endl;
|
|
std::vector<const ggml_tensor *> done;
|
|
ggml_vk_print_graph_origin(tensor, done);
|
|
GGML_ABORT("fatal error");
|
|
} else {
|
|
std::cerr << check_counter << " " << tensor->name << " op=" << ggml_op_name(tensor->op) << " avg_err=" << avg_err << std::endl;
|
|
}
|
|
|
|
free(comp_result);
|
|
comp_result = nullptr;
|
|
comp_size = 0;
|
|
|
|
if (ggml_backend_buffer_is_vk(tensor->buffer)) {
|
|
free(tensor_data);
|
|
}
|
|
|
|
VK_LOG_DEBUG("END ggml_vk_check_results_1(" << tensor->name << ")");
|
|
}
|
|
#endif
|
|
|
|
GGML_BACKEND_DL_IMPL(ggml_backend_vk_reg)
|