Port of Facebook's LLaMA model in C/C++
Go to file
xaedes 44c117f41e
train : mem usage and other improvements (#2439)
* fix track_max_mem in forward_batch_wo_cache_flash_attn_train

* remove unnecessary Adam(W) optimizer tensors.

reduces optimizer memory overhead from 7*modelsize to 2*modelsize.

additionally allows to optimize models with more than 2^31 parameters by replacing int with int64_t.

bumps training checkpoint file version, but old checkpoints can still be read.
new version with less tensors is saved.

* add gradient clipping to AdamW

* Fix reset of unused g->nodes and g->grads to NULL

* implement gradient checkpointing for training

reduces memory overhead from O(n_layer) to O(sqrt(n_layer))

as explained in readme of https://github.com/cybertronai/gradient-checkpointing

* remove unused compute buffer 3

* add and use function ggml_build_backward_expand to avoid stack overflows with large maximum number of nodes

GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep);

* change AdamW decay parameter to work like the torch AdamW decay parameter

It is now relative to Adam learning rate `alpha*sched`.
Before that it was relative to `sched` only.

`alpha` being the maximum learning rate and `sched` being a scaling parameter in [0..1]

* change default AdamW weight decay parameter used in training to 0.1 as used in nanoGPT

* change default AdamW weight decay parameter defined in ggml to 0.0, making Adam default instead of AdamW

btw: the default weight decay parameter for torch.optim.AdamW is 0.01

* bug fixes for cross entropy loss

ggml_cross_entropy_loss: sums where not correctly added in workload of each thread
ggml_cross_entropy_loss_back: simplify backward process, reducing numerical issues

guard usage of exp f16 lookup in cross entropy by #define GGML_CROSS_ENTROPY_EXP_FP16

cross entropy loss is only used once during training, but it is quite sensitive to numerical errors introduced by exp-f16-lookup.
so exp-f16-lookup for cross entropy loss is disabled by default, trading better gradients for very slightly worse runtime performance.

* fix test-grad0 for cross_entropy_loss

the second argument to cross_entropy_loss must sum up to 1 for each row

* fix test-grad0 for soft_max

dont use only sum as aggregation, because sum of softmax is always 1 -> finite differences should not work
instead use sum(log(soft_max()*(1-eps)+eps)); use eps to avoid log(0)

* improve finite differences of test-grad0 by using double instead of float

* change cross_entropy_loss to output average over all rows

this helps keeping the loss and gradients in a sane range

* improve gradient checkpointing

sqrt(n_layers) is only the best checkpoint step when mem size of checkpoints and mem size of layers are equal.
since layers require more memory than the single-tensor-checkpoint we use, the optimal values are compute different:

```
  given: n, u, v
  objective: minimize(a*u+b*v) where a*b=n, a>0, b>0
  b=n/a
  minimize(a*u+v*n/a)
  diff(a*u+v*n/a, a) = u - (v*n/a)/a
  diff(a*u+v*n/a, a) == 0
  u - (v*n/a)/a == 0
  u == v*n/(a*a)
  u*a*a = v*n
  a*a = v*n/u
  a = sqrt(n*v/u)
```

this change results in more checkpoints, requiring less layers to store between checkpoints, overall improving memory usage.

* disable gradient checkpointing debug output

* llama : fix rope usage in train-text-from-scratch after ChatGLM change

* add more training parameters:

--enable-restart N         Only for Adam optimizer. Enable restarts of cos-decay
--disable-restart N        Only for Adam optimizer. Disable restarts of cos-decay
--opt-past N               Number of optimization iterations to track for delta convergence test. Disabled when zero.
--opt-delta N              Maximum delta for delta convergence test. Disabled when <= zero.
--opt-max-no-improvement N Maximum number of optimization iterations with no improvement. Disabled when <= zero.
--adam-epsf N              AdamW epsilon for convergence test. Disabled when <= zero.
--adam-min-alpha N         Adam minimum learning rate alpha, usually 0.1 * alpha

* replace memcpy with reshape operation so that the graph is not cut at the input

this makes it possible to store other values into the input tensor and then simply recompute the graph without rebuilding it

* remove unused function argument from get_example_targets_batch

* measure and print total training time

* add optimization callback to ggml_opt_resume_g

this callback is called before each iteration with custom data and pointer to learning schedule parameter (only used in Adam(W)).

can be used for dynamic learning schedule and setting input data for batches before each iteration

* use optimization callback in training

allows dynamic learning schedule and different batch data for each iteration without relying on low n_iter and high n_examples parameters

reduces runtime by avoiding restart of optimization function and improves training convergence by providing a different batch for each iteration

* add minimum number of tensor dimensions to apply weight decay (default 2)

this allows to not apply weight decay to bias parameters

* rename training parameter cos-decay-alpha to cos-decay-min and clarify that adam-min-alpha also applies to warmup

* fix increase of model.train_samples and model.train_tokens

now that each optimizer iteration gets its own batch we need to multiply by number of opt iterations

* change sampling parameters for prediction after training to defaults of common.h

and clarify what is context for prediction and what are generated tokens

* tighten abs error bounds for cross_entropy_loss in test-grad0

* add conditional compilation of using F16 exp in flash attention

uncomment `// #define GGML_FLASH_ATTN_EXP_FP16` to enable usage of f16 exp in flash attention

* tighten abs error bounds for flash_attn in test-grad0

* tighten abs error bounds for sqrt in test-grad0

* remove out-commented vectorized code of opt_adam

the vectorized code might be bit faster for low number of parameters, but it had a big memory usage overhead

* ggml : update ggml_rms_norm_back with configurable eps

* llama training : fix ggml_rms_norm_back calls to pass configurable eps

* remove trailing whitespace

* add train function using automatic gradient checkpointing backward pass and allocator

* in train function replace add_inplace by regular add

because using add_inplace seems to result in different gradients

* don't use allocate hash_map on context

because the context has no_alloc=True when using memory allocator resulting in NULL data pointers

* correctly clone reshape and permute operations by also cloning tensor->nb values

* fix variable name and add missing type cast

* terminate recursive tensor cloning when reaching tensor without src tensors

* correctly clone view tensors by setting data pointers

without this the checkpointing would only work when being used together with memory allocator

* fix variable names

* swap arguments to commutative ops to be the same as in `forward_batch_wo_cache_flash_attn`

* add input tensors as checkpoints

so that recursive tensor cloning of gradient checkpointing terminates on input tensors

* fix variable name and add missing boolean negation

* make sure some tensors are not reallocated by inserting new temporary nodes depending on them:

output and parameter gradient tensors need to be available at the end of the graph execution

parameter gradient tensors also need to be available before the graph execution because they are set to zero before each optimizer iteration

checkpoint tensors are allocated all together to reduce memory allocator fragmentation

afterwards, in addition to the temporary nodes, we also need to reset the temporary leafs

* fix ASSERT to work with zero layers

* add training options whether to use allocator and/or unified training function

* integrate unified training function which may use memory allocator

the unified training function also supports arguments whether to use flash attention and/or gradient checkpointing

* format name of cloned tensors with " (clone)" suffix

* set names for tensors in unified train function for easier debugging

* allocate graph on context using ggml_new_graph

* remove handwritten training functions

* remove unused training parameters "use_scratch" and "use_unified"

* remove trailing whitespace

* remove unused train params: mem_compute1_gb & mem_compute2_gb

mem_compute_gb is used for compute when automatic memory allocator is not enabled, otherwise it can be very small to only hold the tensor definitions
mem_compute0_gb is used for automatic memory allocator (as long as measurement of max required size is not implemented)

* remove unused forward_batch function

* add debug asserts in ggml_allocr_alloc to some common pitfalls when using this function directly

* only use ggml_allocr_alloc when tensor has NULL data and is no view

* fix test when to create temporary backward graph

temporary backward graph is only necessary when using checkpointing

* fix memory "leak" in optimizers

each iteration a new cplan with new memory for work data was allocated.
now cplan creation only happens at the start of optimization, with each iteration reusing the cplan and its work data.

* reverse order of for loop in ggml_build_backward_expand to save memory when using gradient checkpointing and allocator

with this loop order gradient checkpointing with allocator on 16 layer model saves 13% memory; 2 layer memory it saves 2% memory.

the computation results are the same

* add missing lctx argument to get_example_targets_batch

* implement llama model file saving using gguf

checkpoint loading and saving disabled, to be replaced by loading and saving via gguf

* implement loading/saving of checkpointing files using GGUF

* bug fixes

* add checkpoint file version for future compatibility

* update readme with gguf filenames

* save & load opt->just_initialized value

* add first draft for checkpoint conversion script

* add gguf arch and ftype

* save opt parameter counter as uint64

* add gguf key and tensor names for optimizer and training

* add layer_norm_rms_eps to checkpoint convert script

* use same GGUF_GET_KEY macro as in llama.cpp

* use norm_rms_eps, and rope parameters and command line options to set them

* fix memory corruption bug in gguf

ctx->kv and ctx->infos was reallocated using not-aligned realloc, but freed with aligned free.
to fix this a GGML_ALIGNED_REALLOC was added, but there is no posix_memalign_realloc function.
so on non-windows and non-mingw32 platforms we fall back to aligned malloc, followed by copying
and freeing the old data.

* add gguf example cmake file

* bug fixes in tokenize_file

* bug fixes in load_llama_model_gguf

* bug fix: init model when no checkpoint was loaded

* bug fix in read_tensor_by_name

* bug fix in load_opt_context_gguf

* avoid printing lots of spaced on the unusual case that loss gets nan

* set name of tensors with empty name from what was read from gguf

* remove trailing whitespace

* print data checksums before saving and after loading to verify correctness

* bug fixes for convert-train-checkpoint-to-gguf

* temporarily add code to write old checkpoint files

used to verify that old checkpoint files are correctly converted to gguf

* bug fixes for convert-train-checkpoint-to-gguf.py loading checkpoints with opt_version=0

* remove code used to verify correctness of checkpoint file conversion

* remove trailing whitespace

* remove prediction related code

use main for prediction, it is better optimized

* update train-text-from-scratch README.md

* fix non-windows GGML_ALIGNED_REALLOC

* add missing blank line at end of file

* remove GGML_ALIGNED_REALLOC and use normal malloc/realloc/free for gguf ctx->kv & ctx->infos

* train : fix compile warnings

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-08-28 22:51:47 +03:00
.devops devops : added systemd units and set versioning to use date. (#2835) 2023-08-28 09:31:24 +03:00
.github Tag release with build number (#2732) 2023-08-24 15:58:02 +02:00
ci ci : add LoRA test to CI (#2650) 2023-08-27 10:03:27 +03:00
common train : mem usage and other improvements (#2439) 2023-08-28 22:51:47 +03:00
docs gguf : new file format with flexible meta data (beta) (#2398) 2023-08-21 23:07:43 +03:00
examples train : mem usage and other improvements (#2439) 2023-08-28 22:51:47 +03:00
gguf-py gguf : add 64-bit support (GGUF v2) (#2821) 2023-08-27 14:19:54 +03:00
grammars docs : add grammar docs (#2701) 2023-08-22 21:01:57 -04:00
media media : add logos and banners 2023-04-05 18:58:31 +03:00
models gguf : new file format with flexible meta data (beta) (#2398) 2023-08-21 23:07:43 +03:00
pocs ggml : generalize quantize_fns for simpler FP16 handling (#1237) 2023-07-05 19:13:06 +03:00
prompts prompts : model agnostic DAN (#1304) 2023-05-11 18:10:19 +03:00
scripts scripts : helper convert script 2023-08-27 15:24:58 +03:00
spm-headers swift : Package compile breaks due to ggml-metal.metal (#1831) 2023-06-15 20:47:04 +03:00
tests train : mem usage and other improvements (#2439) 2023-08-28 22:51:47 +03:00
.clang-tidy clang-tidy : restore dot file from accidental deletion 2023-06-08 10:09:08 +03:00
.dockerignore ROCm Port (#1087) 2023-08-25 12:09:42 +03:00
.ecrc Fix whitespace, add .editorconfig, add GitHub workflow (#883) 2023-04-11 19:45:44 +00:00
.editorconfig do not force the prompt file to end with a new line (#908) 2023-04-13 11:33:16 +02:00
.flake8 hooks : setting up flake8 and pre-commit hooks (#1681) 2023-06-17 13:32:48 +03:00
.gitignore make : fix tests build (#2855) 2023-08-28 18:38:35 +03:00
.pre-commit-config.yaml hooks : setting up flake8 and pre-commit hooks (#1681) 2023-06-17 13:32:48 +03:00
build.zig [Zig] Fixing Zig build and improvements (#2554) 2023-08-17 23:11:18 +03:00
CMakeLists.txt ROCm Port (#1087) 2023-08-25 12:09:42 +03:00
convert-falcon-hf-to-gguf.py falcon : write file type 2023-08-24 19:58:30 +03:00
convert-gptneox-hf-to-gguf.py chmod : make scripts executable (#2675) 2023-08-23 17:29:09 +03:00
convert-llama-7b-pth-to-gguf.py chmod : make scripts executable (#2675) 2023-08-23 17:29:09 +03:00
convert-llama-ggmlv3-to-gguf.py chmod : make scripts executable (#2675) 2023-08-23 17:29:09 +03:00
convert-llama-hf-to-gguf.py chmod : make scripts executable (#2675) 2023-08-23 17:29:09 +03:00
convert-lora-to-ggml.py fix convert-lora-to-ggml.py (#2738) 2023-08-23 16:46:54 +02:00
convert.py convert.py : advanced option (#2753) 2023-08-26 23:13:36 +03:00
flake.lock flake.nix : add rocm support and cleanup (#2808) 2023-08-26 21:19:44 +03:00
flake.nix flake.nix : add rocm support and cleanup (#2808) 2023-08-26 21:19:44 +03:00
ggml-alloc.c train : mem usage and other improvements (#2439) 2023-08-28 22:51:47 +03:00
ggml-alloc.h llm : add Falcon support (#2717) 2023-08-23 23:08:04 +03:00
ggml-cuda.cu CUDA: fix RoPE asserts, block sizes (#2833) 2023-08-28 14:23:55 +03:00
ggml-cuda.h ROCm Port (#1087) 2023-08-25 12:09:42 +03:00
ggml-metal.h metal : fix memory leak (#2762) 2023-08-28 10:59:08 +03:00
ggml-metal.m metal : fix memory leak (#2762) 2023-08-28 10:59:08 +03:00
ggml-metal.metal metal : add Q8_0 support (#2763) 2023-08-24 16:19:57 +03:00
ggml-mpi.c ggml : remove src0 and src1 from ggml_tensor and rename opt to src (#2178) 2023-07-11 19:31:10 +03:00
ggml-mpi.h mpi : add support for distributed inference via MPI (#2099) 2023-07-10 18:49:56 +03:00
ggml-opencl.cpp Fix opencl by wrap #if-else-endif with \n (#2086) 2023-07-07 05:34:18 +02:00
ggml-opencl.h Leverage mmap for offloading tensors to GPU (#1597) 2023-06-12 14:44:16 +02:00
ggml.c train : mem usage and other improvements (#2439) 2023-08-28 22:51:47 +03:00
ggml.h train : mem usage and other improvements (#2439) 2023-08-28 22:51:47 +03:00
k_quants.c ggml : tiny ggml_vec_dot_q4_K_q8_K AVX2 improvement (#2819) 2023-08-28 15:51:08 +03:00
k_quants.h ggml : fix static_assert with older compilers #2024 (#2218) 2023-07-14 21:55:56 +03:00
LICENSE Add LICENSE (#21) 2023-03-12 08:36:03 +02:00
llama.cpp train : mem usage and other improvements (#2439) 2023-08-28 22:51:47 +03:00
llama.h YAML result logging + preset script (#2657) 2023-08-28 17:59:39 +02:00
Makefile make : fix tests build (#2855) 2023-08-28 18:38:35 +03:00
Package.swift swift : Package compile breaks due to ggml-metal.metal (#1831) 2023-06-15 20:47:04 +03:00
README.md readme : fix headings 2023-08-27 15:52:34 +03:00
requirements.txt gguf : make gguf pip-installable 2023-08-25 09:26:05 +03:00
run_with_preset.py YAML result logging + preset script (#2657) 2023-08-28 17:59:39 +02:00
SHA256SUMS Update SHA256SUMS with current hashes for models quantized using q4_0 (#1798) 2023-06-11 12:38:53 +03:00

llama.cpp

llama

Actions Status License: MIT

Roadmap / Manifesto / ggml

Inference of LLaMA model in pure C/C++

Hot topics


Table of Contents
  1. Description
  2. Usage
  3. Contributing
  4. Coding guidelines
  5. Docs

Description

The main goal of llama.cpp is to run the LLaMA model using 4-bit integer quantization on a MacBook

  • Plain C/C++ implementation without dependencies
  • Apple silicon first-class citizen - optimized via ARM NEON, Accelerate and Metal frameworks
  • AVX, AVX2 and AVX512 support for x86 architectures
  • Mixed F16 / F32 precision
  • 2-bit, 3-bit, 4-bit, 5-bit, 6-bit and 8-bit integer quantization support
  • CUDA, Metal and OpenCL GPU backend support

The original implementation of llama.cpp was hacked in an evening. Since then, the project has improved significantly thanks to many contributions. This project is mainly for educational purposes and serves as the main playground for developing new features for the ggml library.

Supported platforms:

  • Mac OS
  • Linux
  • Windows (via CMake)
  • Docker

Supported models:

Bindings:

UI:


Here is a typical run using LLaMA v2 13B on M2 Ultra:

$ make -j && ./main -m models/llama-13b-v2/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e
I llama.cpp build info:
I UNAME_S:  Darwin
I UNAME_P:  arm
I UNAME_M:  arm64
I CFLAGS:   -I.            -O3 -std=c11   -fPIC -DNDEBUG -Wall -Wextra -Wpedantic -Wcast-qual -Wdouble-promotion -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes -pthread -DGGML_USE_K_QUANTS -DGGML_USE_ACCELERATE
I CXXFLAGS: -I. -I./common -O3 -std=c++11 -fPIC -DNDEBUG -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wno-multichar -pthread -DGGML_USE_K_QUANTS
I LDFLAGS:   -framework Accelerate
I CC:       Apple clang version 14.0.3 (clang-1403.0.22.14.1)
I CXX:      Apple clang version 14.0.3 (clang-1403.0.22.14.1)

make: Nothing to be done for `default'.
main: build = 1041 (cf658ad)
main: seed  = 1692823051
llama_model_loader: loaded meta data with 16 key-value pairs and 363 tensors from models/llama-13b-v2/ggml-model-q4_0.gguf (version GGUF V1 (latest))
llama_model_loader: - type  f32:   81 tensors
llama_model_loader: - type q4_0:  281 tensors
llama_model_loader: - type q6_K:    1 tensors
llm_load_print_meta: format         = GGUF V1 (latest)
llm_load_print_meta: arch           = llama
llm_load_print_meta: vocab type     = SPM
llm_load_print_meta: n_vocab        = 32000
llm_load_print_meta: n_merges       = 0
llm_load_print_meta: n_ctx_train    = 4096
llm_load_print_meta: n_ctx          = 512
llm_load_print_meta: n_embd         = 5120
llm_load_print_meta: n_head         = 40
llm_load_print_meta: n_head_kv      = 40
llm_load_print_meta: n_layer        = 40
llm_load_print_meta: n_rot          = 128
llm_load_print_meta: n_gqa          = 1
llm_load_print_meta: f_norm_eps     = 1.0e-05
llm_load_print_meta: f_norm_rms_eps = 1.0e-05
llm_load_print_meta: n_ff           = 13824
llm_load_print_meta: freq_base      = 10000.0
llm_load_print_meta: freq_scale     = 1
llm_load_print_meta: model type     = 13B
llm_load_print_meta: model ftype    = mostly Q4_0
llm_load_print_meta: model size     = 13.02 B
llm_load_print_meta: general.name   = LLaMA v2
llm_load_print_meta: BOS token = 1 '<s>'
llm_load_print_meta: EOS token = 2 '</s>'
llm_load_print_meta: UNK token = 0 '<unk>'
llm_load_print_meta: LF token  = 13 '<0x0A>'
llm_load_tensors: ggml ctx size =    0.11 MB
llm_load_tensors: mem required  = 7024.01 MB (+  400.00 MB per state)
...................................................................................................
llama_new_context_with_model: kv self size  =  400.00 MB
llama_new_context_with_model: compute buffer total size =   75.41 MB

system_info: n_threads = 16 / 24 | AVX = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 0 | NEON = 1 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | VSX = 0 |
sampling: repeat_last_n = 64, repeat_penalty = 1.100000, presence_penalty = 0.000000, frequency_penalty = 0.000000, top_k = 40, tfs_z = 1.000000, top_p = 0.950000, typical_p = 1.000000, temp = 0.800000, mirostat = 0, mirostat_lr = 0.100000, mirostat_ent = 5.000000
generate: n_ctx = 512, n_batch = 512, n_predict = 400, n_keep = 0


 Building a website can be done in 10 simple steps:
Step 1: Find the right website platform.
Step 2: Choose your domain name and hosting plan.
Step 3: Design your website layout.
Step 4: Write your website content and add images.
Step 5: Install security features to protect your site from hackers or spammers
Step 6: Test your website on multiple browsers, mobile devices, operating systems etc
Step 7: Test it again with people who are not related to you personally  friends or family members will work just fine!
Step 8: Start marketing and promoting the website via social media channels or paid ads
Step 9: Analyze how many visitors have come to your site so far, what type of people visit more often than others (e.g., men vs women) etc
Step 10: Continue to improve upon all aspects mentioned above by following trends in web design and staying up-to-date on new technologies that can enhance user experience even further!
How does a Website Work?
A website works by having pages, which are made of HTML code. This code tells your computer how to display the content on each page you visit  whether its an image or text file (like PDFs). In order for someone elses browser not only be able but also want those same results when accessing any given URL; some additional steps need taken by way of programming scripts that will add functionality such as making links clickable!
The most common type is called static HTML pages because they remain unchanged over time unless modified manually (either through editing files directly or using an interface such as WordPress). They are usually served up via HTTP protocols  this means anyone can access them without having any special privileges like being part of a group who is allowed into restricted areas online; however, there may still exist some limitations depending upon where one lives geographically speaking.
How to
llama_print_timings:        load time =   576.45 ms
llama_print_timings:      sample time =   283.10 ms /   400 runs   (    0.71 ms per token,  1412.91 tokens per second)
llama_print_timings: prompt eval time =   599.83 ms /    19 tokens (   31.57 ms per token,    31.68 tokens per second)
llama_print_timings:        eval time = 24513.59 ms /   399 runs   (   61.44 ms per token,    16.28 tokens per second)
llama_print_timings:       total time = 25431.49 ms

And here is another demo of running both LLaMA-7B and whisper.cpp on a single M1 Pro MacBook:

https://user-images.githubusercontent.com/1991296/224442907-7693d4be-acaa-4e01-8b4f-add84093ffff.mp4

Usage

Here are the steps for the LLaMA-7B model.

Get the Code

git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp

Build

In order to build llama.cpp you have three different options.

  • Using make:

    • On Linux or MacOS:

      make
      
    • On Windows:

      1. Download the latest fortran version of w64devkit.
      2. Extract w64devkit on your pc.
      3. Run w64devkit.exe.
      4. Use the cd command to reach the llama.cpp folder.
      5. From here you can run:
        make
        
  • Using CMake:

    mkdir build
    cd build
    cmake ..
    cmake --build . --config Release
    
  • Using Zig (version 0.11 or later):

    Building for optimization levels and CPU features can be accomplished using standard build arguments, for example AVX2, FMA, F16C, it's also possible to cross compile for other operating systems and architectures:

    zig build -Doptimize=ReleaseFast -Dtarget=x86_64-windows-gnu -Dcpu=x86_64+avx2+fma+f16c
    

    The zig targets command will give you valid options to use.

  • Using gmake (FreeBSD):

    1. Install and activate DRM in FreeBSD

    2. Add your user to video group

    3. Install compilation dependencies.

      sudo pkg install gmake automake autoconf pkgconf llvm15 clinfo clover \
          opencl clblast openblas
      
          gmake CC=/usr/local/bin/clang15 CXX=/usr/local/bin/clang++15 -j4
      

    Notes: With this packages you can build llama.cpp with OPENBLAS and CLBLAST support for use OpenCL GPU acceleration in FreeBSD. Please read the instructions for use and activate this options in this document below.

Metal Build

Using Metal allows the computation to be executed on the GPU for Apple devices:

  • Using make:

    LLAMA_METAL=1 make
    
  • Using CMake:

    mkdir build-metal
    cd build-metal
    cmake -DLLAMA_METAL=ON ..
    cmake --build . --config Release
    

When built with Metal support, you can enable GPU inference with the --gpu-layers|-ngl command-line argument. Any value larger than 0 will offload the computation to the GPU. For example:

./main -m ./models/7B/ggml-model-q4_0.gguf -n 128 -ngl 1

MPI Build

MPI lets you distribute the computation over a cluster of machines. Because of the serial nature of LLM prediction, this won't yield any end-to-end speed-ups, but it will let you run larger models than would otherwise fit into RAM on a single machine.

First you will need MPI libraries installed on your system. The two most popular (only?) options are MPICH and OpenMPI. Either can be installed with a package manager (apt, Homebrew, MacPorts, etc).

Next you will need to build the project with LLAMA_MPI set to true on all machines; if you're building with make, you will also need to specify an MPI-capable compiler (when building with CMake, this is configured automatically):

  • Using make:

    make CC=mpicc CXX=mpicxx LLAMA_MPI=1
    
  • Using CMake:

    cmake -S . -B build -DLLAMA_MPI=ON
    

Once the programs are built, download/convert the weights on all of the machines in your cluster. The paths to the weights and programs should be identical on all machines.

Next, ensure password-less SSH access to each machine from the primary host, and create a hostfile with a list of the hostnames and their relative "weights" (slots). If you want to use localhost for computation, use its local subnet IP address rather than the loopback address or "localhost".

Here is an example hostfile:

192.168.0.1:2
malvolio.local:1

The above will distribute the computation across 2 processes on the first host and 1 process on the second host. Each process will use roughly an equal amount of RAM. Try to keep these numbers small, as inter-process (intra-host) communication is expensive.

Finally, you're ready to run a computation using mpirun:

mpirun -hostfile hostfile -n 3 ./main -m ./models/7B/ggml-model-q4_0.gguf -n 128

BLAS Build

Building the program with BLAS support may lead to some performance improvements in prompt processing using batch sizes higher than 32 (the default is 512). BLAS doesn't affect the normal generation performance. There are currently three different implementations of it:

  • Accelerate Framework:

    This is only available on Mac PCs and it's enabled by default. You can just build using the normal instructions.

  • OpenBLAS:

    This provides BLAS acceleration using only the CPU. Make sure to have OpenBLAS installed on your machine.

    • Using make:

      • On Linux:

        make LLAMA_OPENBLAS=1
        
      • On Windows:

        1. Download the latest fortran version of w64devkit.

        2. Download the latest version of OpenBLAS for Windows.

        3. Extract w64devkit on your pc.

        4. From the OpenBLAS zip that you just downloaded copy libopenblas.a, located inside the lib folder, inside w64devkit\x86_64-w64-mingw32\lib.

        5. From the same OpenBLAS zip copy the content of the include folder inside w64devkit\x86_64-w64-mingw32\include.

        6. Run w64devkit.exe.

        7. Use the cd command to reach the llama.cpp folder.

        8. From here you can run:

          make LLAMA_OPENBLAS=1
          
    • Using CMake on Linux:

      mkdir build
      cd build
      cmake .. -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS
      cmake --build . --config Release
      
  • BLIS

    Check BLIS.md for more information.

  • Intel MKL

    By default, LLAMA_BLAS_VENDOR is set to Generic, so if you already sourced intel environment script and assign -DLLAMA_BLAS=ON in cmake, the mkl version of Blas will automatically been selected. You may also specify it by:

    mkdir build
    cd build
    cmake .. -DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=Intel10_64lp -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
    cmake --build . --config Release
    
  • cuBLAS

    This provides BLAS acceleration using the CUDA cores of your Nvidia GPU. Make sure to have the CUDA toolkit installed. You can download it from your Linux distro's package manager or from here: CUDA Toolkit.

    • Using make:

      make LLAMA_CUBLAS=1
      
    • Using CMake:

      mkdir build
      cd build
      cmake .. -DLLAMA_CUBLAS=ON
      cmake --build . --config Release
      

    The environment variable CUDA_VISIBLE_DEVICES can be used to specify which GPU(s) will be used. The following compilation options are also available to tweak performance:

Option Legal values Default Description
LLAMA_CUDA_FORCE_DMMV Boolean false Force the use of dequantization + matrix vector multiplication kernels instead of using kernels that do matrix vector multiplication on quantized data. By default the decision is made based on compute capability (MMVQ for 6.1/Pascal/GTX 1000 or higher). Does not affect k-quants.
LLAMA_CUDA_DMMV_X Positive integer >= 32 32 Number of values in x direction processed by the CUDA dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants.
LLAMA_CUDA_MMV_Y Positive integer 1 Block size in y direction for the CUDA mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended.
LLAMA_CUDA_F16 Boolean false If enabled, use half-precision floating point arithmetic for the CUDA dequantization + mul mat vec kernels and for the q4_1 and q5_1 matrix matrix multiplication kernels. Can improve performance on relatively recent GPUs.
LLAMA_CUDA_KQUANTS_ITER 1 or 2 2 Number of values processed per iteration and per CUDA thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs.
  • hipBLAS

    This provide BLAS acceleation on HIP supported GPU like AMD GPU. Make sure to have ROCm installed. You can download it from your Linux distro's package manager or from here: ROCm Quick Start (Linux). Windows support is coming soon...

    • Using make:
      make LLAMA_HIPBLAS=1
      
    • Using CMake:
      mkdir build
      cd build
      CC=/opt/rocm/llvm/bin/clang CXX=/opt/rocm/llvm/bin/clang++ cmake .. -DLLAMA_HIPBLAS=ON
      cmake --build .
      

    The environment variable HIP_VISIBLE_DEVICES can be used to specify which GPU(s) will be used. If your GPU is not officialy supported you can use the environment variable [HSA_OVERRIDE_GFX_VERSION] set to a similar GPU, for example 10.3.0 on RDNA2 or 11.0.0 on RDNA3. The following compilation options are also available to tweak performance (yes, they refer to CUDA, not HIP, because it uses the same code as the cuBLAS version above):

    Option Legal values Default Description
    LLAMA_CUDA_DMMV_X Positive integer >= 32 32 Number of values in x direction processed by the HIP dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants.
    LLAMA_CUDA_MMV_Y Positive integer 1 Block size in y direction for the HIP mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. Does not affect k-quants.
    LLAMA_CUDA_KQUANTS_ITER 1 or 2 2 Number of values processed per iteration and per HIP thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs.
  • CLBlast

    OpenCL acceleration is provided by the matrix multiplication kernels from the CLBlast project and custom kernels for ggml that can generate tokens on the GPU.

    You will need the OpenCL SDK.

    • For Ubuntu or Debian, the packages opencl-headers, ocl-icd may be needed.

    • Installing the OpenCL SDK from source
      git clone --recurse-submodules https://github.com/KhronosGroup/OpenCL-SDK.git
      mkdir OpenCL-SDK/build
      cd OpenCL-SDK/build
      cmake .. -DBUILD_DOCS=OFF \
        -DBUILD_EXAMPLES=OFF \
        -DBUILD_TESTING=OFF \
        -DOPENCL_SDK_BUILD_SAMPLES=OFF \
        -DOPENCL_SDK_TEST_SAMPLES=OFF
      cmake --build . --config Release
      cmake --install . --prefix /some/path
      

    Installing CLBlast: it may be found in your operating system's packages.

    • If not, then installing from source:
      git clone https://github.com/CNugteren/CLBlast.git
      mkdir CLBlast/build
      cd CLBlast/build
      cmake .. -DBUILD_SHARED_LIBS=OFF -DTUNERS=OFF
      cmake --build . --config Release
      cmake --install . --prefix /some/path
      

      Where /some/path is where the built library will be installed (default is /usr/local).

    Building:

    • Build with make:
      make LLAMA_CLBLAST=1
      
    • CMake:
      mkdir build
      cd build
      cmake .. -DLLAMA_CLBLAST=ON -DCLBlast_dir=/some/path
      cmake --build . --config Release
      

    Running:

    The CLBlast build supports --gpu-layers|-ngl like the CUDA version does.

    To select the correct platform (driver) and device (GPU), you can use the environment variables GGML_OPENCL_PLATFORM and GGML_OPENCL_DEVICE. The selection can be a number (starting from 0) or a text string to search:

    GGML_OPENCL_PLATFORM=1 ./main ...
    GGML_OPENCL_DEVICE=2 ./main ...
    GGML_OPENCL_PLATFORM=Intel ./main ...
    GGML_OPENCL_PLATFORM=AMD GGML_OPENCL_DEVICE=1 ./main ...
    

    The default behavior is to find the first GPU device, but when it is an integrated GPU on a laptop, for instance, the selectors are useful. Using the variables it is possible to select a CPU-based driver as well, if so desired.

    You can get a list of platforms and devices from the clinfo -l command, etc.

Prepare Data & Run

# obtain the original LLaMA model weights and place them in ./models
ls ./models
65B 30B 13B 7B tokenizer_checklist.chk tokenizer.model
  # [Optional] for models using BPE tokenizers
  ls ./models
  65B 30B 13B 7B vocab.json

# install Python dependencies
python3 -m pip install -r requirements.txt

# convert the 7B model to ggml FP16 format
python3 convert.py models/7B/

  # [Optional] for models using BPE tokenizers
  python convert.py models/7B/ --vocabtype bpe

# quantize the model to 4-bits (using q4_0 method)
./quantize ./models/7B/ggml-model-f16.gguf ./models/7B/ggml-model-q4_0.gguf q4_0

# run the inference
./main -m ./models/7B/ggml-model-q4_0.gguf -n 128

When running the larger models, make sure you have enough disk space to store all the intermediate files.

Memory/Disk Requirements

As the models are currently fully loaded into memory, you will need adequate disk space to save them and sufficient RAM to load them. At the moment, memory and disk requirements are the same.

Model Original size Quantized size (4-bit)
7B 13 GB 3.9 GB
13B 24 GB 7.8 GB
30B 60 GB 19.5 GB
65B 120 GB 38.5 GB

Quantization

Several quantization methods are supported. They differ in the resulting model disk size and inference speed.

(outdated)

Model Measure F16 Q4_0 Q4_1 Q5_0 Q5_1 Q8_0
7B perplexity 5.9066 6.1565 6.0912 5.9862 5.9481 5.9070
7B file size 13.0G 3.5G 3.9G 4.3G 4.7G 6.7G
7B ms/tok @ 4th 127 55 54 76 83 72
7B ms/tok @ 8th 122 43 45 52 56 67
7B bits/weight 16.0 4.5 5.0 5.5 6.0 8.5
13B perplexity 5.2543 5.3860 5.3608 5.2856 5.2706 5.2548
13B file size 25.0G 6.8G 7.6G 8.3G 9.1G 13G
13B ms/tok @ 4th - 103 105 148 160 131
13B ms/tok @ 8th - 73 82 98 105 128
13B bits/weight 16.0 4.5 5.0 5.5 6.0 8.5

Perplexity (measuring model quality)

You can use the perplexity example to measure perplexity over a given prompt (lower perplexity is better). For more information, see https://huggingface.co/docs/transformers/perplexity.

The perplexity measurements in table above are done against the wikitext2 test dataset (https://paperswithcode.com/dataset/wikitext-2), with context length of 512. The time per token is measured on a MacBook M1 Pro 32GB RAM using 4 and 8 threads.

Interactive mode

If you want a more ChatGPT-like experience, you can run in interactive mode by passing -i as a parameter. In this mode, you can always interrupt generation by pressing Ctrl+C and entering one or more lines of text, which will be converted into tokens and appended to the current context. You can also specify a reverse prompt with the parameter -r "reverse prompt string". This will result in user input being prompted whenever the exact tokens of the reverse prompt string are encountered in the generation. A typical use is to use a prompt that makes LLaMa emulate a chat between multiple users, say Alice and Bob, and pass -r "Alice:".

Here is an example of a few-shot interaction, invoked with the command

# default arguments using a 7B model
./examples/chat.sh

# advanced chat with a 13B model
./examples/chat-13B.sh

# custom arguments using a 13B model
./main -m ./models/13B/ggml-model-q4_0.gguf -n 256 --repeat_penalty 1.0 --color -i -r "User:" -f prompts/chat-with-bob.txt

Note the use of --color to distinguish between user input and generated text. Other parameters are explained in more detail in the README for the main example program.

image

Persistent Interaction

The prompt, user inputs, and model generations can be saved and resumed across calls to ./main by leveraging --prompt-cache and --prompt-cache-all. The ./examples/chat-persistent.sh script demonstrates this with support for long-running, resumable chat sessions. To use this example, you must provide a file to cache the initial chat prompt and a directory to save the chat session, and may optionally provide the same variables as chat-13B.sh. The same prompt cache can be reused for new chat sessions. Note that both prompt cache and chat directory are tied to the initial prompt (PROMPT_TEMPLATE) and the model file.

# Start a new chat
PROMPT_CACHE_FILE=chat.prompt.bin CHAT_SAVE_DIR=./chat/default ./examples/chat-persistent.sh

# Resume that chat
PROMPT_CACHE_FILE=chat.prompt.bin CHAT_SAVE_DIR=./chat/default ./examples/chat-persistent.sh

# Start a different chat with the same prompt/model
PROMPT_CACHE_FILE=chat.prompt.bin CHAT_SAVE_DIR=./chat/another ./examples/chat-persistent.sh

# Different prompt cache for different prompt/model
PROMPT_TEMPLATE=./prompts/chat-with-bob.txt PROMPT_CACHE_FILE=bob.prompt.bin \
    CHAT_SAVE_DIR=./chat/bob ./examples/chat-persistent.sh

Constrained output with grammars

llama.cpp supports grammars to constrain model output. For example, you can force the model to output JSON only:

./main -m ./models/13B/ggml-model-q4_0.gguf -n 256 --grammar-file grammars/json.gbnf -p 'Request: schedule a call at 8pm; Command:'

The grammars/ folder contains a handful of sample grammars. To write your own, check out the GBNF Guide.

Instruction mode with Alpaca

  1. First, download the ggml Alpaca model into the ./models folder
  2. Run the main tool like this:
./examples/alpaca.sh

Sample run:

== Running in interactive mode. ==
 - Press Ctrl+C to interject at any time.
 - Press Return to return control to LLaMa.
 - If you want to submit another line, end your input in '\'.

 Below is an instruction that describes a task. Write a response that appropriately completes the request.

> How many letters are there in the English alphabet?
There 26 letters in the English Alphabet
> What is the most common way of transportation in Amsterdam?
The majority (54%) are using public transit. This includes buses, trams and metros with over 100 lines throughout the city which make it very accessible for tourists to navigate around town as well as locals who commute by tram or metro on a daily basis
> List 5 words that start with "ca".
cadaver, cauliflower, cabbage (vegetable), catalpa (tree) and Cailleach.
>

Using OpenLLaMA

OpenLLaMA is an openly licensed reproduction of Meta's original LLaMA model. It uses the same architecture and is a drop-in replacement for the original LLaMA weights.

  • Download the 3B, 7B, or 13B model from Hugging Face.
  • Convert the model to ggml FP16 format using python convert.py <path to OpenLLaMA directory>

Using GPT4All

Note: these instructions are likely obsoleted by the GGUF update

  • Obtain the tokenizer.model file from LLaMA model and put it to models
  • Obtain the added_tokens.json file from Alpaca model and put it to models
  • Obtain the gpt4all-lora-quantized.bin file from GPT4All model and put it to models/gpt4all-7B
  • It is distributed in the old ggml format which is now obsoleted
  • You have to convert it to the new format using convert.py:
python3 convert.py models/gpt4all-7B/gpt4all-lora-quantized.bin
  • You can now use the newly generated models/gpt4all-7B/ggml-model-q4_0.bin model in exactly the same way as all other models

  • The newer GPT4All-J model is not yet supported!

Using Pygmalion 7B & Metharme 7B

python3 convert.py pygmalion-7b/ --outtype q4_1

The Pygmalion 7B & Metharme 7B weights are saved in bfloat16 precision. If you wish to convert to ggml without quantizating, please specify the --outtype as f32 instead of f16.

Obtaining the Facebook LLaMA original model and Stanford Alpaca model data

  • Under no circumstances should IPFS, magnet links, or any other links to model downloads be shared anywhere in this repository, including in issues, discussions, or pull requests. They will be immediately deleted.
  • The LLaMA models are officially distributed by Facebook and will never be provided through this repository.
  • Refer to Facebook's LLaMA repository if you need to request access to the model data.

Obtaining and using the Facebook LLaMA 2 model

Verifying the model files

Please verify the sha256 checksums of all downloaded model files to confirm that you have the correct model data files before creating an issue relating to your model files.

  • The following python script will verify if you have all possible latest files in your self-installed ./models subdirectory:
# run the verification script
./scripts/verify-checksum-models.py
  • On linux or macOS it is also possible to run the following commands to verify if you have all possible latest files in your self-installed ./models subdirectory:
    • On Linux: sha256sum --ignore-missing -c SHA256SUMS
    • on macOS: shasum -a 256 --ignore-missing -c SHA256SUMS

Seminal papers and background on the models

If your issue is with model generation quality, then please at least scan the following links and papers to understand the limitations of LLaMA models. This is especially important when choosing an appropriate model size and appreciating both the significant and subtle differences between LLaMA models and ChatGPT:

How to run

  1. Download/extract: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
  2. Run ./perplexity -m models/7B/ggml-model-q4_0.gguf -f wiki.test.raw
  3. Output:
perplexity : calculating perplexity over 655 chunks
24.43 seconds per pass - ETA 4.45 hours
[1]4.5970,[2]5.1807,[3]6.0382,...

And after 4.45 hours, you will have the final perplexity.

Android

Building the Project using Android NDK

You can easily run llama.cpp on Android device with termux.

First, install the essential packages for termux:

pkg install clang wget git cmake

Second, obtain the Android NDK and then build with CMake:

$ mkdir build-android
$ cd build-android
$ export NDK=<your_ndk_directory>
$ cmake -DCMAKE_TOOLCHAIN_FILE=$NDK/build/cmake/android.toolchain.cmake -DANDROID_ABI=arm64-v8a -DANDROID_PLATFORM=android-23 -DCMAKE_C_FLAGS=-march=armv8.4a+dotprod ..
$ make

Install termux on your device and run termux-setup-storage to get access to your SD card. Finally, copy the llama binary and the model files to your device storage. Here is a demo of an interactive session running on Pixel 5 phone:

https://user-images.githubusercontent.com/271616/225014776-1d567049-ad71-4ef2-b050-55b0b3b9274c.mp4

Building the Project using Termux (F-Droid)

Termux from F-Droid offers an alternative route to execute the project on an Android device. This method empowers you to construct the project right from within the terminal, negating the requirement for a rooted device or SD Card.

Outlined below are the directives for installing the project using OpenBLAS and CLBlast. This combination is specifically designed to deliver peak performance on recent devices that feature a GPU.

If you opt to utilize OpenBLAS, you'll need to install the corresponding package.

apt install libopenblas

Subsequently, if you decide to incorporate CLBlast, you'll first need to install the requisite OpenCL packages:

apt install ocl-icd opencl-headers opencl-clhpp clinfo

In order to compile CLBlast, you'll need to first clone the respective Git repository, which can be found at this URL: https://github.com/CNugteren/CLBlast. Alongside this, clone this repository into your home directory. Once this is done, navigate to the CLBlast folder and execute the commands detailed below:

cmake .
make
cp libclblast.so* $PREFIX/lib
cp ./include/clblast.h ../llama.cpp

Following the previous steps, navigate to the LlamaCpp directory. To compile it with OpenBLAS and CLBlast, execute the command provided below:

cp /data/data/com.termux/files/usr/include/openblas/cblas.h .
cp /data/data/com.termux/files/usr/include/openblas/openblas_config.h .
make LLAMA_CLBLAST=1 //(sometimes you need to run this command twice)

Upon completion of the aforementioned steps, you will have successfully compiled the project. To run it using CLBlast, a slight adjustment is required: a command must be issued to direct the operations towards your device's physical GPU, rather than the virtual one. The necessary command is detailed below:

GGML_OPENCL_PLATFORM=0
GGML_OPENCL_DEVICE=0
export LD_LIBRARY_PATH=/vendor/lib64:$LD_LIBRARY_PATH

(Note: some Android devices, like the Zenfone 8, need the following command instead - "export LD_LIBRARY_PATH=/system/vendor/lib64:$LD_LIBRARY_PATH". Source: https://www.reddit.com/r/termux/comments/kc3ynp/opencl_working_in_termux_more_in_comments/ )

For easy and swift re-execution, consider documenting this final part in a .sh script file. This will enable you to rerun the process with minimal hassle.

Place your desired model into the ~/llama.cpp/models/ directory and execute the ./main (...) script.

Docker

Prerequisites

  • Docker must be installed and running on your system.
  • Create a folder to store big models & intermediate files (ex. /llama/models)

Images

We have two Docker images available for this project:

  1. ghcr.io/ggerganov/llama.cpp:full: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization.
  2. ghcr.io/ggerganov/llama.cpp:light: This image only includes the main executable file.

Usage

The easiest way to download the models, convert them to ggml and optimize them is with the --all-in-one command which includes the full docker image.

Replace /path/to/models below with the actual path where you downloaded the models.

docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:full --all-in-one "/models/" 7B

On completion, you are ready to play!

docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:full --run -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512

or with a light image:

docker run -v /path/to/models:/models ghcr.io/ggerganov/llama.cpp:light -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512

Docker With CUDA

Assuming one has the nvidia-container-toolkit properly installed on Linux, or is using a GPU enabled cloud, cuBLAS should be accessible inside the container.

Building Locally

docker build -t local/llama.cpp:full-cuda -f .devops/full-cuda.Dockerfile .
docker build -t local/llama.cpp:light-cuda -f .devops/main-cuda.Dockerfile .

You may want to pass in some different ARGS, depending on the CUDA environment supported by your container host, as well as the GPU architecture.

The defaults are:

  • CUDA_VERSION set to 11.7.1
  • CUDA_DOCKER_ARCH set to all

The resulting images, are essentially the same as the non-CUDA images:

  1. local/llama.cpp:full-cuda: This image includes both the main executable file and the tools to convert LLaMA models into ggml and convert into 4-bit quantization.
  2. local/llama.cpp:light-cuda: This image only includes the main executable file.

Usage

After building locally, Usage is similar to the non-CUDA examples, but you'll need to add the --gpus flag. You will also want to use the --n-gpu-layers flag.

docker run --gpus all -v /path/to/models:/models local/llama.cpp:full-cuda --run -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1
docker run --gpus all -v /path/to/models:/models local/llama.cpp:light-cuda -m /models/7B/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1

Contributing

  • Contributors can open PRs
  • Collaborators can push to branches in the llama.cpp repo and merge PRs into the master branch
  • Collaborators will be invited based on contributions
  • Any help with managing issues and PRs is very appreciated!
  • Make sure to read this: Inference at the edge
  • A bit of backstory for those who are interested: Changelog podcast

Coding guidelines

  • Avoid adding third-party dependencies, extra files, extra headers, etc.
  • Always consider cross-compatibility with other operating systems and architectures
  • Avoid fancy looking modern STL constructs, use basic for loops, avoid templates, keep it simple
  • There are no strict rules for the code style, but try to follow the patterns in the code (indentation, spaces, etc.). Vertical alignment makes things more readable and easier to batch edit
  • Clean-up any trailing whitespaces, use 4 spaces for indentation, brackets on the same line, void * ptr, int & a
  • See good first issues for tasks suitable for first contributions

Docs