mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-25 22:08:46 +01:00
1948 lines
63 KiB
C++
1948 lines
63 KiB
C++
// Defines fileno on msys:
|
|
#ifndef _GNU_SOURCE
|
|
#define _GNU_SOURCE
|
|
#endif
|
|
|
|
#include "llama_util.h"
|
|
#include "llama.h"
|
|
#include "llama_internal.h"
|
|
|
|
#include "ggml.h"
|
|
|
|
#include <array>
|
|
#include <cinttypes>
|
|
#include <fstream>
|
|
#include <random>
|
|
#include <map>
|
|
#include <unordered_map>
|
|
#include <queue>
|
|
#include <cassert>
|
|
#include <cstring>
|
|
#include <climits>
|
|
#include <memory>
|
|
#include <algorithm>
|
|
#include <initializer_list>
|
|
|
|
#define LLAMA_USE_SCRATCH
|
|
#define LLAMA_MAX_SCRATCH_BUFFERS 16
|
|
|
|
|
|
// available llama models
|
|
enum e_model {
|
|
MODEL_UNKNOWN,
|
|
MODEL_7B,
|
|
MODEL_13B,
|
|
MODEL_30B,
|
|
MODEL_65B,
|
|
};
|
|
|
|
static const size_t MB = 1024*1024;
|
|
|
|
// computed for n_ctx == 2048
|
|
// TODO: dynamically determine these sizes
|
|
// needs modifications in ggml
|
|
|
|
static const std::map<e_model, size_t> MEM_REQ_SCRATCH0 = {
|
|
{ MODEL_7B, 512ull*MB },
|
|
{ MODEL_13B, 512ull*MB },
|
|
{ MODEL_30B, 512ull*MB },
|
|
{ MODEL_65B, 512ull*MB },
|
|
};
|
|
|
|
static const std::map<e_model, size_t> MEM_REQ_SCRATCH1 = {
|
|
{ MODEL_7B, 512ull*MB },
|
|
{ MODEL_13B, 512ull*MB },
|
|
{ MODEL_30B, 512ull*MB },
|
|
{ MODEL_65B, 512ull*MB },
|
|
};
|
|
|
|
// 2*n_embd*n_ctx*n_layer*sizeof(float16)
|
|
static const std::map<e_model, size_t> MEM_REQ_KV_SELF = {
|
|
{ MODEL_7B, 1026ull*MB },
|
|
{ MODEL_13B, 1608ull*MB },
|
|
{ MODEL_30B, 3124ull*MB },
|
|
{ MODEL_65B, 5120ull*MB },
|
|
};
|
|
|
|
// this is mostly needed for temporary mul_mat buffers to dequantize the data
|
|
// not actually needed if BLAS is disabled
|
|
static const std::map<e_model, size_t> MEM_REQ_EVAL = {
|
|
{ MODEL_7B, 768ull*MB },
|
|
{ MODEL_13B, 1024ull*MB },
|
|
{ MODEL_30B, 1280ull*MB },
|
|
{ MODEL_65B, 1536ull*MB },
|
|
};
|
|
|
|
// default hparams (LLaMA 7B)
|
|
struct llama_hparams {
|
|
uint32_t n_vocab = 32000;
|
|
uint32_t n_ctx = 512; // this is provided as user input?
|
|
uint32_t n_embd = 4096;
|
|
uint32_t n_mult = 256;
|
|
uint32_t n_head = 32;
|
|
uint32_t n_layer = 32;
|
|
uint32_t n_rot = 64;
|
|
enum llama_ftype ftype = LLAMA_FTYPE_MOSTLY_F16;
|
|
|
|
bool operator!=(const llama_hparams & other) const {
|
|
return memcmp(this, &other, sizeof(llama_hparams));
|
|
}
|
|
};
|
|
|
|
struct llama_layer {
|
|
// normalization
|
|
struct ggml_tensor * attention_norm;
|
|
|
|
// attention
|
|
struct ggml_tensor * wq;
|
|
struct ggml_tensor * wk;
|
|
struct ggml_tensor * wv;
|
|
struct ggml_tensor * wo;
|
|
|
|
// normalization
|
|
struct ggml_tensor * ffn_norm;
|
|
|
|
// ff
|
|
struct ggml_tensor * w1;
|
|
struct ggml_tensor * w2;
|
|
struct ggml_tensor * w3;
|
|
};
|
|
|
|
struct llama_kv_cache {
|
|
struct ggml_tensor * k;
|
|
struct ggml_tensor * v;
|
|
|
|
struct ggml_context * ctx = NULL;
|
|
|
|
llama_buffer buf;
|
|
|
|
int n; // number of tokens currently in the cache
|
|
|
|
~llama_kv_cache() {
|
|
if (ctx) {
|
|
ggml_free(ctx);
|
|
}
|
|
}
|
|
};
|
|
|
|
struct llama_model {
|
|
e_model type = MODEL_UNKNOWN;
|
|
|
|
llama_hparams hparams;
|
|
|
|
struct ggml_tensor * tok_embeddings;
|
|
|
|
struct ggml_tensor * norm;
|
|
struct ggml_tensor * output;
|
|
|
|
std::vector<llama_layer> layers;
|
|
|
|
// context
|
|
struct ggml_context * ctx = NULL;
|
|
|
|
// key + value cache for the self attention
|
|
// TODO: move to llama_state
|
|
struct llama_kv_cache kv_self;
|
|
|
|
// the model memory buffer
|
|
llama_buffer buf;
|
|
|
|
// model memory mapped file
|
|
std::unique_ptr<llama_mmap> mapping;
|
|
|
|
// objects representing data potentially being locked in memory
|
|
llama_mlock mlock_buf;
|
|
llama_mlock mlock_mmap;
|
|
|
|
// for quantize-stats only
|
|
std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
|
|
|
|
~llama_model() {
|
|
if (ctx) {
|
|
ggml_free(ctx);
|
|
}
|
|
}
|
|
};
|
|
|
|
struct llama_vocab {
|
|
using id = int32_t;
|
|
using token = std::string;
|
|
|
|
struct token_score {
|
|
token tok;
|
|
float score;
|
|
};
|
|
|
|
std::unordered_map<token, id> token_to_id;
|
|
std::vector<token_score> id_to_token;
|
|
};
|
|
|
|
struct llama_context {
|
|
std::mt19937 rng;
|
|
|
|
int64_t t_load_us = 0;
|
|
int64_t t_start_us = 0;
|
|
bool has_evaluated_once = false;
|
|
|
|
int64_t t_sample_us = 0;
|
|
int64_t t_eval_us = 0;
|
|
int64_t t_p_eval_us = 0;
|
|
|
|
int32_t n_sample = 0; // number of tokens sampled
|
|
int32_t n_eval = 0; // number of eval calls
|
|
int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
|
|
|
|
llama_model model;
|
|
llama_vocab vocab;
|
|
|
|
size_t mem_per_token = 0;
|
|
|
|
// decode output (2-dimensional array: [n_tokens][n_vocab])
|
|
std::vector<float> logits;
|
|
bool logits_all = false;
|
|
|
|
// input embedding (1-dimensional array: [n_embd])
|
|
std::vector<float> embedding;
|
|
|
|
// memory buffers used to evaluate the model
|
|
// TODO: move in llama_state
|
|
llama_buffer buf_compute;
|
|
llama_buffer buf_scratch[LLAMA_MAX_SCRATCH_BUFFERS];
|
|
|
|
int buf_last = 0;
|
|
size_t buf_max_size[LLAMA_MAX_SCRATCH_BUFFERS] = { 0 };
|
|
|
|
void use_buf(struct ggml_context * ctx, int i) {
|
|
#if defined(LLAMA_USE_SCRATCH)
|
|
size_t last_size = 0;
|
|
|
|
if (i == -1) {
|
|
last_size = ggml_set_scratch(ctx, { 0, 0, nullptr, });
|
|
} else {
|
|
auto & buf = buf_scratch[i];
|
|
last_size = ggml_set_scratch(ctx, { 0, buf.size, buf.addr, });
|
|
}
|
|
|
|
if (buf_last >= 0) {
|
|
buf_max_size[buf_last] = std::max(buf_max_size[buf_last], last_size);
|
|
}
|
|
|
|
buf_last = i;
|
|
#else
|
|
(void) i;
|
|
(void) ctx;
|
|
#endif
|
|
}
|
|
|
|
size_t get_buf_max_mem(int i) const {
|
|
#if defined(LLAMA_USE_SCRATCH)
|
|
return buf_max_size[i];
|
|
#else
|
|
(void) i;
|
|
return 0;
|
|
#endif
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
static T checked_mul(T a, T b) {
|
|
T ret = a * b;
|
|
if (a != 0 && ret / a != b) {
|
|
throw format("overflow multiplying %llu * %llu",
|
|
(unsigned long long) a, (unsigned long long) b);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static size_t checked_div(size_t a, size_t b) {
|
|
if (b == 0 || a % b != 0) {
|
|
throw format("error dividing %zu / %zu", a, b);
|
|
}
|
|
return a / b;
|
|
}
|
|
|
|
static std::string llama_format_tensor_shape(const std::vector<uint32_t> & ne) {
|
|
std::string ret = "[" + std::to_string(ne.at(0));
|
|
for (size_t i = 1; i < ne.size(); i++) {
|
|
ret += " x " + std::to_string(ne.at(i));
|
|
}
|
|
ret += "]";
|
|
return ret;
|
|
}
|
|
|
|
static const char * llama_format_type(enum ggml_type type) {
|
|
switch (type) {
|
|
case GGML_TYPE_F32: return "f32";
|
|
case GGML_TYPE_F16: return "f16";
|
|
case GGML_TYPE_Q4_0: return "q4_0";
|
|
case GGML_TYPE_Q4_1: return "q4_1";
|
|
default: LLAMA_ASSERT(false);
|
|
}
|
|
}
|
|
|
|
static size_t llama_calc_tensor_size(const std::vector<uint32_t> & ne, enum ggml_type type) {
|
|
size_t size = ggml_type_size(type);
|
|
for (uint32_t dim : ne) {
|
|
size = checked_mul<size_t>(size, dim);
|
|
}
|
|
return size / ggml_blck_size(type);
|
|
}
|
|
|
|
struct llama_load_tensor_shard {
|
|
std::vector<uint32_t> ne;
|
|
size_t size;
|
|
enum ggml_type type;
|
|
size_t file_idx;
|
|
size_t file_off;
|
|
|
|
void calc_size() {
|
|
size = llama_calc_tensor_size(ne, type);
|
|
}
|
|
};
|
|
|
|
enum llama_split_type {
|
|
SPLIT_NONE,
|
|
SPLIT_BY_COLUMNS,
|
|
SPLIT_BY_ROWS
|
|
};
|
|
|
|
struct llama_load_tensor {
|
|
std::vector<llama_load_tensor_shard> shards;
|
|
|
|
std::string name;
|
|
enum ggml_type type = GGML_TYPE_F32;
|
|
llama_split_type split_type = SPLIT_NONE;
|
|
std::vector<uint32_t> ne;
|
|
size_t size;
|
|
struct ggml_tensor * ggml_tensor = NULL;
|
|
uint8_t * data;
|
|
|
|
llama_load_tensor(const std::string & name) : name(name) {}
|
|
|
|
void calc_all() {
|
|
calc_type();
|
|
calc_split_type();
|
|
calc_ne();
|
|
calc_size();
|
|
}
|
|
|
|
void calc_type() {
|
|
const auto & first_shard = shards.at(0);
|
|
for (const auto & shard : shards) {
|
|
if (shard.type != first_shard.type) {
|
|
throw format("inconsistent tensor shard type in '%s'", name.c_str());
|
|
}
|
|
}
|
|
type = first_shard.type;
|
|
}
|
|
|
|
void calc_split_type() {
|
|
if (shards.at(0).ne.size() == 1 || // 1D tensors are just duplicated in every file
|
|
shards.size() == 1) { // only one file?
|
|
split_type = SPLIT_NONE;
|
|
} else if (name.find("tok_embeddings.") == 0 ||
|
|
name.find(".attention.wo.weight") != std::string::npos ||
|
|
name.find(".feed_forward.w2.weight") != std::string::npos) {
|
|
split_type = SPLIT_BY_COLUMNS;
|
|
} else {
|
|
split_type = SPLIT_BY_ROWS;
|
|
}
|
|
}
|
|
|
|
void calc_ne() {
|
|
const auto & first_shard = shards.at(0);
|
|
for (const auto & shard : shards) {
|
|
if (shard.ne != first_shard.ne) {
|
|
throw format("inconsistent tensor shard shape in '%s': first was %s, other was %s",
|
|
name.c_str(), llama_format_tensor_shape(first_shard.ne).c_str(), llama_format_tensor_shape(shard.ne).c_str());
|
|
}
|
|
}
|
|
ne = first_shard.ne;
|
|
LLAMA_ASSERT(shards.size() <= UINT32_MAX);
|
|
uint32_t n_shards = (uint32_t) shards.size();
|
|
switch (split_type) {
|
|
case SPLIT_NONE:
|
|
ne = first_shard.ne;
|
|
break;
|
|
case SPLIT_BY_COLUMNS:
|
|
ne = {checked_mul<uint32_t>(first_shard.ne[0], n_shards),
|
|
first_shard.ne[1]};
|
|
break;
|
|
case SPLIT_BY_ROWS:
|
|
ne = {first_shard.ne[0],
|
|
checked_mul<uint32_t>(first_shard.ne[1], n_shards)};
|
|
break;
|
|
}
|
|
}
|
|
|
|
void calc_size() {
|
|
size = llama_calc_tensor_size(ne, type);
|
|
}
|
|
};
|
|
|
|
struct llama_load_tensors_map {
|
|
// tensors is kept in a separate vector to preserve file order
|
|
std::vector<llama_load_tensor> tensors;
|
|
std::unordered_map<std::string, size_t> name_to_idx;
|
|
};
|
|
|
|
enum llama_file_version {
|
|
LLAMA_FILE_VERSION_GGML,
|
|
LLAMA_FILE_VERSION_GGMF_V1, // added version field and scores in vocab
|
|
LLAMA_FILE_VERSION_GGJT_V1, // added padding
|
|
};
|
|
|
|
struct llama_file_loader {
|
|
llama_file file;
|
|
llama_file_version file_version;
|
|
llama_hparams hparams;
|
|
llama_vocab vocab;
|
|
|
|
llama_file_loader(const char * fname, size_t file_idx, llama_load_tensors_map & tensors_map)
|
|
: file(fname, "rb") {
|
|
fprintf(stderr, "llama.cpp: loading model from %s\n", fname);
|
|
read_magic();
|
|
read_hparams();
|
|
read_vocab();
|
|
read_tensor_metadata(file_idx, tensors_map);
|
|
}
|
|
void read_magic() {
|
|
uint32_t magic = file.read_u32();
|
|
uint32_t version = 0;
|
|
|
|
if (magic != 'ggml') {
|
|
version = file.read_u32();
|
|
}
|
|
|
|
if (magic == 'ggml' && version == 0) {
|
|
file_version = LLAMA_FILE_VERSION_GGML;
|
|
} else if (magic == 'ggmf' && version == 1) {
|
|
file_version = LLAMA_FILE_VERSION_GGMF_V1;
|
|
} else if (magic == 'ggjt' && version == 1) {
|
|
file_version = LLAMA_FILE_VERSION_GGJT_V1;
|
|
} else {
|
|
throw format("unknown (magic, version) combination: %08x, %08x; is this really a GGML file?",
|
|
magic, version);
|
|
}
|
|
}
|
|
void read_hparams() {
|
|
hparams.n_vocab = file.read_u32();
|
|
hparams.n_embd = file.read_u32();
|
|
hparams.n_mult = file.read_u32();
|
|
hparams.n_head = file.read_u32();
|
|
hparams.n_layer = file.read_u32();
|
|
hparams.n_rot = file.read_u32();
|
|
hparams.ftype = (enum llama_ftype) file.read_u32();
|
|
}
|
|
void read_vocab() {
|
|
vocab.id_to_token.resize(hparams.n_vocab);
|
|
|
|
for (uint32_t i = 0; i < hparams.n_vocab; i++) {
|
|
uint32_t len = file.read_u32();
|
|
std::string word = file.read_string(len);
|
|
|
|
float score = 0.0f;
|
|
if (file_version >= LLAMA_FILE_VERSION_GGMF_V1) {
|
|
file.read_raw(&score, sizeof(score));
|
|
}
|
|
|
|
vocab.token_to_id[word] = i;
|
|
|
|
auto & tok_score = vocab.id_to_token[i];
|
|
tok_score.tok = std::move(word);
|
|
tok_score.score = score;
|
|
}
|
|
}
|
|
void read_tensor_metadata(size_t file_idx, llama_load_tensors_map & tensors_map) {
|
|
while (file.tell() < file.size) {
|
|
llama_load_tensor_shard shard;
|
|
uint32_t n_dims = file.read_u32();
|
|
uint32_t name_len = file.read_u32();
|
|
shard.type = (enum ggml_type) file.read_u32();
|
|
shard.ne.resize(n_dims);
|
|
file.read_raw(shard.ne.data(), sizeof(shard.ne[0]) * n_dims);
|
|
std::string name = file.read_string(name_len);
|
|
if (n_dims < 1 || n_dims > 2) {
|
|
throw format("llama.cpp: tensor '%s' should not be %u-dimensional", name.c_str(), n_dims);
|
|
}
|
|
switch (shard.type) {
|
|
case GGML_TYPE_F32:
|
|
case GGML_TYPE_F16:
|
|
case GGML_TYPE_Q4_0:
|
|
case GGML_TYPE_Q4_1:
|
|
break;
|
|
default: {
|
|
throw format("unrecognized tensor type %u\n", shard.type);
|
|
}
|
|
}
|
|
|
|
if (file_version >= LLAMA_FILE_VERSION_GGJT_V1) {
|
|
// skip to the next multiple of 32 bytes
|
|
file.seek(-file.tell() & 31, SEEK_CUR);
|
|
}
|
|
shard.file_idx = file_idx;
|
|
shard.file_off = file.tell();
|
|
|
|
shard.calc_size();
|
|
file.seek(shard.size, SEEK_CUR);
|
|
|
|
auto it = tensors_map.name_to_idx.find(name);
|
|
size_t idx;
|
|
if (it != tensors_map.name_to_idx.end()) {
|
|
idx = it->second;
|
|
} else {
|
|
tensors_map.tensors.emplace_back(name);
|
|
idx = tensors_map.tensors.size() - 1;
|
|
tensors_map.name_to_idx.emplace(name, idx);
|
|
}
|
|
tensors_map.tensors.at(idx).shards.push_back(shard);
|
|
}
|
|
}
|
|
};
|
|
|
|
struct llama_file_saver {
|
|
llama_file file;
|
|
llama_file_loader * any_file_loader;
|
|
llama_file_saver(const char * fname, llama_file_loader * any_file_loader, enum llama_ftype new_ftype)
|
|
: file(fname, "wb"), any_file_loader(any_file_loader) {
|
|
fprintf(stderr, "llama.cpp: saving model to %s\n", fname);
|
|
write_magic();
|
|
write_hparams(new_ftype);
|
|
write_vocab();
|
|
}
|
|
void write_magic() {
|
|
file.write_u32('ggjt'); // magic
|
|
file.write_u32(1); // version
|
|
}
|
|
void write_hparams(enum llama_ftype new_ftype) {
|
|
const llama_hparams & hparams = any_file_loader->hparams;
|
|
file.write_u32(hparams.n_vocab);
|
|
file.write_u32(hparams.n_embd);
|
|
file.write_u32(hparams.n_mult);
|
|
file.write_u32(hparams.n_head);
|
|
file.write_u32(hparams.n_layer);
|
|
file.write_u32(hparams.n_rot);
|
|
file.write_u32(new_ftype);
|
|
}
|
|
void write_vocab() {
|
|
if (any_file_loader->file_version == LLAMA_FILE_VERSION_GGML) {
|
|
fprintf(stderr, "llama.cpp: WARNING: input is an old file that doesn't have scores; will add dummy scores\n");
|
|
}
|
|
uint32_t n_vocab = any_file_loader->hparams.n_vocab;
|
|
for (uint32_t i = 0; i < n_vocab; i++) {
|
|
const auto & token_score = any_file_loader->vocab.id_to_token.at(i);
|
|
file.write_u32((uint32_t) token_score.tok.size());
|
|
file.write_raw(token_score.tok.data(), token_score.tok.size());
|
|
file.write_raw(&token_score.score, sizeof(token_score.score));
|
|
}
|
|
}
|
|
void write_tensor(llama_load_tensor & tensor, enum ggml_type new_type, const void * new_data, size_t new_size) {
|
|
switch (new_type) {
|
|
case GGML_TYPE_F32:
|
|
case GGML_TYPE_F16:
|
|
case GGML_TYPE_Q4_0:
|
|
case GGML_TYPE_Q4_1:
|
|
break;
|
|
default: LLAMA_ASSERT(false);
|
|
}
|
|
file.write_u32((uint32_t) tensor.ne.size());
|
|
file.write_u32((uint32_t) tensor.name.size());
|
|
file.write_u32(new_type);
|
|
file.write_raw(tensor.ne.data(), sizeof(tensor.ne[0]) * tensor.ne.size());
|
|
file.write_raw(tensor.name.data(), tensor.name.size());
|
|
file.seek(-file.tell() & 31, SEEK_CUR);
|
|
LLAMA_ASSERT(new_size == llama_calc_tensor_size(tensor.ne, new_type));
|
|
file.write_raw(new_data, new_size);
|
|
}
|
|
};
|
|
|
|
struct llama_model_loader {
|
|
std::vector<std::unique_ptr<llama_file_loader>> file_loaders;
|
|
llama_load_tensors_map tensors_map;
|
|
bool use_mmap;
|
|
size_t num_ggml_tensors_created = 0;
|
|
struct ggml_context * ggml_ctx = NULL;
|
|
std::unique_ptr<llama_mmap> mapping;
|
|
|
|
llama_model_loader(const std::string & fname_base, bool use_mmap, bool vocab_only) {
|
|
auto first_file = new llama_file_loader(fname_base.c_str(), 0, tensors_map);
|
|
file_loaders.emplace_back(first_file);
|
|
uint32_t n_parts = vocab_only ? 1 : guess_n_parts();
|
|
for (uint32_t i = 1; i < n_parts; i++) {
|
|
std::string fname = fname_base + "." + std::to_string(i);
|
|
auto ith_file = new llama_file_loader(fname.c_str(), i, tensors_map);
|
|
file_loaders.emplace_back(ith_file);
|
|
if (ith_file->hparams != first_file->hparams) {
|
|
throw format("llama.cpp: hparams inconsistent between files");
|
|
}
|
|
}
|
|
if (!llama_mmap::SUPPORTED) {
|
|
use_mmap = false;
|
|
}
|
|
if (use_mmap && alignment_prevents_mmap()) {
|
|
fprintf(stderr, "llama.cpp: can't use mmap because tensors are not aligned; convert to new format to avoid this\n");
|
|
use_mmap = false;
|
|
}
|
|
this->use_mmap = use_mmap;
|
|
for (llama_load_tensor & lt : tensors_map.tensors) {
|
|
lt.calc_all();
|
|
}
|
|
}
|
|
|
|
bool alignment_prevents_mmap() {
|
|
for (const llama_load_tensor & lt : tensors_map.tensors) {
|
|
for (const llama_load_tensor_shard & shard : lt.shards) {
|
|
if (shard.file_off & 3) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
uint32_t guess_n_parts() const {
|
|
auto it = tensors_map.name_to_idx.find("tok_embeddings.weight");
|
|
if (it == tensors_map.name_to_idx.end()) {
|
|
throw std::string("missing tok_embeddings.weight");
|
|
}
|
|
const llama_load_tensor & lt = tensors_map.tensors.at(it->second);
|
|
return file_loaders.at(0)->hparams.n_embd / lt.shards.at(0).ne.at(0);
|
|
}
|
|
|
|
void calc_sizes(size_t * ctx_size_p, size_t * mmapped_size_p) const {
|
|
*ctx_size_p = *mmapped_size_p = 0;
|
|
for (const llama_load_tensor & lt : tensors_map.tensors) {
|
|
*ctx_size_p += sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE;
|
|
*(use_mmap ? mmapped_size_p : ctx_size_p) += lt.size;
|
|
}
|
|
}
|
|
|
|
struct ggml_tensor * get_tensor(const std::string & name, std::vector<uint32_t> ne) {
|
|
auto it = tensors_map.name_to_idx.find(name);
|
|
if (it == tensors_map.name_to_idx.end()) {
|
|
throw format("llama.cpp: tensor '%s' is missing from model", name.c_str());
|
|
}
|
|
llama_load_tensor & lt = tensors_map.tensors.at(it->second);
|
|
if (lt.ne != ne) {
|
|
throw format("llama.cpp: tensor '%s' has wrong shape; expected %s, got %s",
|
|
name.c_str(), llama_format_tensor_shape(ne).c_str(), llama_format_tensor_shape(lt.ne).c_str());
|
|
}
|
|
return get_tensor_for(lt);
|
|
}
|
|
|
|
struct ggml_tensor * get_tensor_for(llama_load_tensor & lt) {
|
|
struct ggml_tensor * tensor;
|
|
if (lt.ne.size() == 2) {
|
|
tensor = ggml_new_tensor_2d(ggml_ctx, lt.type, lt.ne.at(0), lt.ne.at(1));
|
|
} else {
|
|
LLAMA_ASSERT(lt.ne.size() == 1);
|
|
tensor = ggml_new_tensor_1d(ggml_ctx, lt.type, lt.ne.at(0));
|
|
}
|
|
LLAMA_ASSERT(lt.ggml_tensor == NULL); // if this fails, we called get_tensor twice on the same tensor
|
|
lt.ggml_tensor = tensor;
|
|
num_ggml_tensors_created++;
|
|
return tensor;
|
|
}
|
|
|
|
void done_getting_tensors() {
|
|
if (num_ggml_tensors_created != tensors_map.tensors.size()) {
|
|
throw std::string("llama.cpp: file contained more tensors than expected");
|
|
}
|
|
}
|
|
|
|
void load_all_data(llama_progress_callback progress_callback, void * progress_callback_user_data, llama_mlock * lmlock) {
|
|
size_t data_size = 0;
|
|
for (const llama_load_tensor & lt : tensors_map.tensors) {
|
|
data_size += lt.size;
|
|
}
|
|
|
|
if (use_mmap) {
|
|
mapping.reset(new llama_mmap(&file_loaders.at(0)->file));
|
|
if (!lmlock) {
|
|
// Don't call the callback since the actual loading will be lazy
|
|
// and we can't measure it.
|
|
progress_callback = NULL;
|
|
}
|
|
if (lmlock) {
|
|
lmlock->init(mapping->addr);
|
|
}
|
|
}
|
|
|
|
size_t done_size = 0;
|
|
for (llama_load_tensor & lt : tensors_map.tensors) {
|
|
if (progress_callback) {
|
|
progress_callback((float) done_size / data_size, progress_callback_user_data);
|
|
}
|
|
LLAMA_ASSERT(lt.ggml_tensor); // unused tensors should have been caught by load_data already
|
|
lt.data = (uint8_t *) lt.ggml_tensor->data;
|
|
load_data_for(lt);
|
|
lt.ggml_tensor->data = lt.data;
|
|
done_size += lt.size;
|
|
if (use_mmap && lmlock) {
|
|
lmlock->grow_to(done_size);
|
|
}
|
|
}
|
|
if (progress_callback) {
|
|
progress_callback(1.0f, progress_callback_user_data);
|
|
}
|
|
}
|
|
|
|
void load_data_for(llama_load_tensor & lt) {
|
|
if (use_mmap) {
|
|
LLAMA_ASSERT(lt.shards.size() == 1);
|
|
lt.data = (uint8_t *) mapping->addr + lt.shards.at(0).file_off;
|
|
} else if (lt.split_type == SPLIT_NONE) {
|
|
llama_file & file = file_loaders.at(lt.shards.at(0).file_idx)->file;
|
|
file.seek(lt.shards.at(0).file_off, SEEK_SET);
|
|
file.read_raw(lt.data, lt.size);
|
|
} else if (lt.split_type == SPLIT_BY_ROWS) {
|
|
size_t offset = 0;
|
|
for (llama_load_tensor_shard & shard : lt.shards) {
|
|
llama_file & file = file_loaders.at(shard.file_idx)->file;
|
|
file.seek(shard.file_off, SEEK_SET);
|
|
file.read_raw(lt.data + offset, shard.size);
|
|
offset += shard.size;
|
|
}
|
|
LLAMA_ASSERT(offset == lt.size);
|
|
} else if (lt.split_type == SPLIT_BY_COLUMNS) {
|
|
// Let's load the data into temporary buffers to ensure the OS performs large loads.
|
|
std::vector<llama_buffer> tmp_bufs;
|
|
tmp_bufs.resize(lt.shards.size());
|
|
for (size_t i = 0; i < lt.shards.size(); i++) {
|
|
llama_load_tensor_shard & shard = lt.shards.at(i);
|
|
llama_file & file = file_loaders.at(shard.file_idx)->file;
|
|
file.seek(shard.file_off, SEEK_SET);
|
|
tmp_bufs.at(i).resize(shard.size);
|
|
file.read_raw(tmp_bufs.at(i).addr, shard.size);
|
|
}
|
|
// Then reshape.
|
|
size_t num_rows = lt.ne.at(1);
|
|
size_t per_shard_row_size = lt.shards.at(0).size / num_rows;
|
|
size_t out_offset = 0;
|
|
for (size_t row = 0; row < num_rows; row++) {
|
|
for (llama_buffer & tmp_buf : tmp_bufs) {
|
|
memcpy(lt.data + out_offset,
|
|
tmp_buf.addr + row * per_shard_row_size,
|
|
per_shard_row_size);
|
|
out_offset += per_shard_row_size;
|
|
}
|
|
}
|
|
LLAMA_ASSERT(out_offset == lt.size);
|
|
}
|
|
if (0) {
|
|
print_checksum(lt);
|
|
}
|
|
}
|
|
|
|
static void print_checksum(llama_load_tensor & lt) {
|
|
uint32_t sum = 0;
|
|
for (size_t i = 0; i < lt.size; i++) {
|
|
uint8_t byte = lt.data[i];
|
|
sum = byte + (sum << 6) + (sum << 16) - sum; // sdbm hash
|
|
}
|
|
fprintf(stderr, "%s checksum: %#08x (%s, size %zu)\n", lt.name.c_str(), sum,
|
|
llama_format_tensor_shape(lt.ne).c_str(), lt.size);
|
|
}
|
|
|
|
};
|
|
|
|
|
|
//
|
|
// kv cache
|
|
//
|
|
|
|
static bool kv_cache_init(
|
|
const struct llama_hparams & hparams,
|
|
struct llama_kv_cache & cache,
|
|
ggml_type wtype,
|
|
int n_ctx) {
|
|
const int n_embd = hparams.n_embd;
|
|
const int n_layer = hparams.n_layer;
|
|
|
|
const int64_t n_mem = (int64_t)n_layer*n_ctx;
|
|
const int64_t n_elements = n_embd*n_mem;
|
|
|
|
cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB);
|
|
|
|
struct ggml_init_params params;
|
|
params.mem_size = cache.buf.size;
|
|
params.mem_buffer = cache.buf.addr;
|
|
params.no_alloc = false;
|
|
|
|
cache.ctx = ggml_init(params);
|
|
|
|
if (!cache.ctx) {
|
|
fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__);
|
|
return false;
|
|
}
|
|
|
|
cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
|
|
cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
|
|
|
|
return true;
|
|
}
|
|
|
|
struct llama_context_params llama_context_default_params() {
|
|
struct llama_context_params result = {
|
|
/*.n_ctx =*/ 512,
|
|
/*.n_parts =*/ -1,
|
|
/*.seed =*/ 0,
|
|
/*.f16_kv =*/ false,
|
|
/*.logits_all =*/ false,
|
|
/*.vocab_only =*/ false,
|
|
/*.use_mmap =*/ true,
|
|
/*.use_mlock =*/ false,
|
|
/*.embedding =*/ false,
|
|
/*.progress_callback =*/ nullptr,
|
|
/*.progress_callback_user_data =*/ nullptr,
|
|
};
|
|
|
|
return result;
|
|
}
|
|
|
|
bool llama_mmap_supported() {
|
|
return llama_mmap::SUPPORTED;
|
|
}
|
|
|
|
bool llama_mlock_supported() {
|
|
return llama_mlock::SUPPORTED;
|
|
}
|
|
|
|
//
|
|
// model loading
|
|
//
|
|
|
|
static const char *llama_file_version_name(llama_file_version version) {
|
|
switch (version) {
|
|
case LLAMA_FILE_VERSION_GGML: return "'ggml' (old version with low tokenizer quality and no mmap support)";
|
|
case LLAMA_FILE_VERSION_GGMF_V1: return "ggmf v1 (old version with no mmap support)";
|
|
case LLAMA_FILE_VERSION_GGJT_V1: return "ggjt v1 (latest)";
|
|
default: LLAMA_ASSERT(false);
|
|
}
|
|
}
|
|
|
|
static const char *llama_ftype_name(enum llama_ftype ftype) {
|
|
switch (ftype) {
|
|
case LLAMA_FTYPE_ALL_F32: return "all F32";
|
|
case LLAMA_FTYPE_MOSTLY_F16: return "mostly F16";
|
|
case LLAMA_FTYPE_MOSTLY_Q4_0: return "mostly Q4_0";
|
|
case LLAMA_FTYPE_MOSTLY_Q4_1: return "mostly Q4_1";
|
|
case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
|
|
return "mostly Q4_1, some F16";
|
|
default: return "unknown, may not work";
|
|
}
|
|
}
|
|
|
|
static const char *llama_model_type_name(e_model type) {
|
|
switch (type) {
|
|
case MODEL_7B: return "7B";
|
|
case MODEL_13B: return "13B";
|
|
case MODEL_30B: return "30B";
|
|
case MODEL_65B: return "65B";
|
|
default: LLAMA_ASSERT(false);
|
|
}
|
|
}
|
|
|
|
static void llama_model_load_internal(
|
|
const std::string & fname,
|
|
llama_context & lctx,
|
|
int n_ctx,
|
|
ggml_type memory_type,
|
|
bool use_mmap,
|
|
bool use_mlock,
|
|
bool vocab_only,
|
|
llama_progress_callback progress_callback,
|
|
void * progress_callback_user_data) {
|
|
|
|
lctx.t_start_us = ggml_time_us();
|
|
|
|
std::unique_ptr<llama_model_loader> ml(new llama_model_loader(fname, use_mmap, vocab_only));
|
|
|
|
lctx.vocab = std::move(ml->file_loaders.at(0)->vocab);
|
|
auto & model = lctx.model;
|
|
model.hparams = ml->file_loaders.at(0)->hparams;
|
|
llama_file_version file_version = ml->file_loaders.at(0)->file_version;
|
|
auto & hparams = model.hparams;
|
|
uint32_t n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult;
|
|
|
|
{
|
|
switch (hparams.n_layer) {
|
|
case 32: model.type = e_model::MODEL_7B; break;
|
|
case 40: model.type = e_model::MODEL_13B; break;
|
|
case 60: model.type = e_model::MODEL_30B; break;
|
|
case 80: model.type = e_model::MODEL_65B; break;
|
|
}
|
|
|
|
hparams.n_ctx = n_ctx;
|
|
}
|
|
|
|
{
|
|
fprintf(stderr, "%s: format = %s\n", __func__, llama_file_version_name(file_version));
|
|
fprintf(stderr, "%s: n_vocab = %u\n", __func__, hparams.n_vocab);
|
|
fprintf(stderr, "%s: n_ctx = %u\n", __func__, hparams.n_ctx);
|
|
fprintf(stderr, "%s: n_embd = %u\n", __func__, hparams.n_embd);
|
|
fprintf(stderr, "%s: n_mult = %u\n", __func__, hparams.n_mult);
|
|
fprintf(stderr, "%s: n_head = %u\n", __func__, hparams.n_head);
|
|
fprintf(stderr, "%s: n_layer = %u\n", __func__, hparams.n_layer);
|
|
fprintf(stderr, "%s: n_rot = %u\n", __func__, hparams.n_rot);
|
|
fprintf(stderr, "%s: ftype = %u (%s)\n", __func__, hparams.ftype, llama_ftype_name(hparams.ftype));
|
|
fprintf(stderr, "%s: n_ff = %u\n", __func__, n_ff);
|
|
fprintf(stderr, "%s: n_parts = %zu\n", __func__, ml->file_loaders.size());
|
|
fprintf(stderr, "%s: model size = %s\n", __func__, llama_model_type_name(model.type));
|
|
}
|
|
|
|
if (vocab_only) {
|
|
return;
|
|
}
|
|
|
|
auto & ctx = model.ctx;
|
|
|
|
size_t ctx_size, mmapped_size;
|
|
ml->calc_sizes(&ctx_size, &mmapped_size);
|
|
fprintf(stderr, "%s: ggml ctx size = %6.2f KB\n", __func__, ctx_size/1024.0);
|
|
|
|
// print memory requirements
|
|
{
|
|
const size_t scale = memory_type == GGML_TYPE_F32 ? 2 : 1;
|
|
|
|
// this is the total memory required to run the inference
|
|
const size_t mem_required =
|
|
ctx_size +
|
|
mmapped_size +
|
|
MEM_REQ_SCRATCH0.at(model.type) +
|
|
MEM_REQ_SCRATCH1.at(model.type) +
|
|
MEM_REQ_EVAL.at (model.type);
|
|
|
|
// this is the memory required by one llama_state
|
|
const size_t mem_required_state =
|
|
scale*MEM_REQ_KV_SELF.at(model.type);
|
|
|
|
fprintf(stderr, "%s: mem required = %7.2f MB (+ %7.2f MB per state)\n", __func__,
|
|
mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0);
|
|
}
|
|
|
|
// create the ggml context
|
|
{
|
|
lctx.model.buf.resize(ctx_size);
|
|
if (use_mlock) {
|
|
lctx.model.mlock_buf.init(lctx.model.buf.addr);
|
|
lctx.model.mlock_buf.grow_to(lctx.model.buf.size);
|
|
}
|
|
|
|
struct ggml_init_params params = {
|
|
/*.mem_size =*/ lctx.model.buf.size,
|
|
/*.mem_buffer =*/ lctx.model.buf.addr,
|
|
/*.no_alloc =*/ ml->use_mmap,
|
|
};
|
|
|
|
model.ctx = ggml_init(params);
|
|
if (!model.ctx) {
|
|
throw format("ggml_init() failed");
|
|
}
|
|
}
|
|
|
|
// prepare memory for the weights
|
|
{
|
|
const auto & hparams = model.hparams;
|
|
|
|
const uint32_t n_embd = hparams.n_embd;
|
|
const uint32_t n_layer = hparams.n_layer;
|
|
const uint32_t n_vocab = hparams.n_vocab;
|
|
|
|
ml->ggml_ctx = ctx;
|
|
|
|
model.tok_embeddings = ml->get_tensor("tok_embeddings.weight", {n_embd, n_vocab});
|
|
model.norm = ml->get_tensor("norm.weight", {n_embd});
|
|
model.output = ml->get_tensor("output.weight", {n_embd, n_vocab});
|
|
|
|
model.layers.resize(n_layer);
|
|
for (uint32_t i = 0; i < n_layer; ++i) {
|
|
auto & layer = model.layers[i];
|
|
|
|
std::string layers_i = "layers." + std::to_string(i);
|
|
|
|
layer.attention_norm = ml->get_tensor(layers_i + ".attention_norm.weight", {n_embd});
|
|
|
|
layer.wq = ml->get_tensor(layers_i + ".attention.wq.weight", {n_embd, n_embd});
|
|
layer.wk = ml->get_tensor(layers_i + ".attention.wk.weight", {n_embd, n_embd});
|
|
layer.wv = ml->get_tensor(layers_i + ".attention.wv.weight", {n_embd, n_embd});
|
|
layer.wo = ml->get_tensor(layers_i + ".attention.wo.weight", {n_embd, n_embd});
|
|
|
|
layer.ffn_norm = ml->get_tensor(layers_i + ".ffn_norm.weight", {n_embd});
|
|
|
|
layer.w1 = ml->get_tensor(layers_i + ".feed_forward.w1.weight", {n_embd, n_ff});
|
|
layer.w2 = ml->get_tensor(layers_i + ".feed_forward.w2.weight", { n_ff, n_embd});
|
|
layer.w3 = ml->get_tensor(layers_i + ".feed_forward.w3.weight", {n_embd, n_ff});
|
|
}
|
|
}
|
|
|
|
ml->done_getting_tensors();
|
|
|
|
// populate `tensors_by_name`
|
|
for (llama_load_tensor & lt : ml->tensors_map.tensors) {
|
|
model.tensors_by_name.emplace_back(lt.name, lt.ggml_tensor);
|
|
}
|
|
|
|
ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &lctx.model.mlock_mmap : NULL);
|
|
|
|
model.mapping = std::move(ml->mapping);
|
|
|
|
// loading time will be recalculate after the first eval, so
|
|
// we take page faults deferred by mmap() into consideration
|
|
lctx.t_load_us = ggml_time_us() - lctx.t_start_us;
|
|
}
|
|
|
|
static bool llama_model_load(
|
|
const std::string & fname,
|
|
llama_context & lctx,
|
|
int n_ctx,
|
|
ggml_type memory_type,
|
|
bool use_mmap,
|
|
bool use_mlock,
|
|
bool vocab_only,
|
|
llama_progress_callback progress_callback,
|
|
void *progress_callback_user_data) {
|
|
try {
|
|
llama_model_load_internal(fname, lctx, n_ctx, memory_type, use_mmap, use_mlock,
|
|
vocab_only, progress_callback, progress_callback_user_data);
|
|
return true;
|
|
} catch (const std::string & err) {
|
|
fprintf(stderr, "error loading model: %s\n", err.c_str());
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// evaluate the transformer
|
|
//
|
|
// - lctx: llama context
|
|
// - tokens: new batch of tokens to process
|
|
// - n_past: the context size so far
|
|
// - n_threads: number of threads to use
|
|
//
|
|
static bool llama_eval_internal(
|
|
llama_context & lctx,
|
|
const llama_token * tokens,
|
|
const int n_tokens,
|
|
const int n_past,
|
|
const int n_threads) {
|
|
const int64_t t_start_us = ggml_time_us();
|
|
|
|
const int N = n_tokens;
|
|
|
|
const auto & model = lctx.model;
|
|
const auto & hparams = model.hparams;
|
|
|
|
auto & kv_self = model.kv_self;
|
|
|
|
LLAMA_ASSERT(!!kv_self.ctx);
|
|
|
|
const int n_embd = hparams.n_embd;
|
|
const int n_layer = hparams.n_layer;
|
|
const int n_ctx = hparams.n_ctx;
|
|
const int n_head = hparams.n_head;
|
|
const int n_vocab = hparams.n_vocab;
|
|
const int n_rot = hparams.n_embd/hparams.n_head;
|
|
|
|
auto & mem_per_token = lctx.mem_per_token;
|
|
auto & buf_compute = lctx.buf_compute;
|
|
|
|
struct ggml_init_params params = {
|
|
/*.mem_size =*/ buf_compute.size,
|
|
/*.mem_buffer =*/ buf_compute.addr,
|
|
/*.no_alloc =*/ false,
|
|
};
|
|
|
|
struct ggml_context * ctx0 = ggml_init(params);
|
|
|
|
// for big prompts, if BLAS is enabled, it is better to use only one thread
|
|
// otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
|
|
ggml_cgraph gf = {};
|
|
gf.n_threads = N >= 32 && ggml_cpu_has_blas() ? 1 : n_threads;
|
|
|
|
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
|
|
memcpy(embd->data, tokens, N*ggml_element_size(embd));
|
|
|
|
struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.tok_embeddings, embd);
|
|
|
|
for (int il = 0; il < n_layer; ++il) {
|
|
struct ggml_tensor * inpSA = inpL;
|
|
|
|
struct ggml_tensor * cur;
|
|
|
|
lctx.use_buf(ctx0, 0);
|
|
|
|
// norm
|
|
{
|
|
cur = ggml_rms_norm(ctx0, inpL);
|
|
|
|
// cur = attention_norm*cur
|
|
cur = ggml_mul(ctx0,
|
|
ggml_repeat(ctx0, model.layers[il].attention_norm, cur),
|
|
cur);
|
|
}
|
|
|
|
// self-attention
|
|
{
|
|
// compute Q and K and RoPE them
|
|
struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0);
|
|
struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0);
|
|
|
|
// store key and value to memory
|
|
{
|
|
// compute the transposed [N, n_embd] V matrix
|
|
struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), n_embd, N));
|
|
|
|
struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past));
|
|
struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd,
|
|
( n_ctx)*ggml_element_size(kv_self.v),
|
|
(il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v));
|
|
|
|
// important: storing RoPE-ed version of K in the KV cache!
|
|
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
|
|
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
|
|
}
|
|
|
|
struct ggml_tensor * Q =
|
|
ggml_permute(ctx0,
|
|
Qcur,
|
|
0, 2, 1, 3);
|
|
|
|
struct ggml_tensor * K =
|
|
ggml_permute(ctx0,
|
|
ggml_reshape_3d(ctx0,
|
|
ggml_view_1d(ctx0, kv_self.k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kv_self.k)*n_embd),
|
|
n_embd/n_head, n_head, n_past + N),
|
|
0, 2, 1, 3);
|
|
|
|
// K * Q
|
|
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
|
|
|
|
// KQ_scaled = KQ / sqrt(n_embd/n_head)
|
|
struct ggml_tensor * KQ_scaled =
|
|
ggml_scale(ctx0,
|
|
KQ,
|
|
ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head)));
|
|
|
|
// KQ_masked = mask_past(KQ_scaled)
|
|
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past);
|
|
|
|
// KQ = soft_max(KQ_masked)
|
|
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
|
|
|
|
// split cached V into n_head heads
|
|
struct ggml_tensor * V =
|
|
ggml_view_3d(ctx0, kv_self.v,
|
|
n_past + N, n_embd/n_head, n_head,
|
|
n_ctx*ggml_element_size(kv_self.v),
|
|
n_ctx*ggml_element_size(kv_self.v)*n_embd/n_head,
|
|
il*n_ctx*ggml_element_size(kv_self.v)*n_embd);
|
|
|
|
#if 1
|
|
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
|
|
#else
|
|
// make V contiguous in memory to speed up the matmul, however we waste time on the copy
|
|
// on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation
|
|
// is there a better way?
|
|
struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_embd/n_head, n_head));
|
|
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max);
|
|
#endif
|
|
|
|
// KQV_merged = KQV.permute(0, 2, 1, 3)
|
|
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
|
|
|
|
// cur = KQV_merged.contiguous().view(n_embd, N)
|
|
cur = ggml_cpy(ctx0,
|
|
KQV_merged,
|
|
ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
|
|
|
|
// projection (no bias)
|
|
cur = ggml_mul_mat(ctx0,
|
|
model.layers[il].wo,
|
|
cur);
|
|
}
|
|
|
|
lctx.use_buf(ctx0, 1);
|
|
|
|
struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
|
|
|
|
// feed-forward network
|
|
{
|
|
// norm
|
|
{
|
|
cur = ggml_rms_norm(ctx0, inpFF);
|
|
|
|
// cur = ffn_norm*cur
|
|
cur = ggml_mul(ctx0,
|
|
ggml_repeat(ctx0, model.layers[il].ffn_norm, cur),
|
|
cur);
|
|
}
|
|
|
|
struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
|
|
model.layers[il].w3,
|
|
cur);
|
|
|
|
cur = ggml_mul_mat(ctx0,
|
|
model.layers[il].w1,
|
|
cur);
|
|
|
|
// SILU activation
|
|
cur = ggml_silu(ctx0, cur);
|
|
|
|
cur = ggml_mul(ctx0, cur, tmp);
|
|
|
|
cur = ggml_mul_mat(ctx0,
|
|
model.layers[il].w2,
|
|
cur);
|
|
}
|
|
|
|
cur = ggml_add(ctx0, cur, inpFF);
|
|
|
|
// input for next layer
|
|
inpL = cur;
|
|
}
|
|
|
|
lctx.use_buf(ctx0, 0);
|
|
|
|
// used at the end to optionally extract the embeddings
|
|
struct ggml_tensor * embeddings = NULL;
|
|
|
|
// norm
|
|
{
|
|
|
|
inpL = ggml_rms_norm(ctx0, inpL);
|
|
|
|
// inpL = norm*inpL
|
|
inpL = ggml_mul(ctx0,
|
|
ggml_repeat(ctx0, model.norm, inpL),
|
|
inpL);
|
|
|
|
embeddings = inpL;
|
|
}
|
|
|
|
// lm_head
|
|
inpL = ggml_mul_mat(ctx0, model.output, inpL);
|
|
|
|
lctx.use_buf(ctx0, -1);
|
|
|
|
// logits -> probs
|
|
//inpL = ggml_soft_max(ctx0, inpL);
|
|
|
|
// run the computation
|
|
ggml_build_forward_expand(&gf, inpL);
|
|
ggml_graph_compute (ctx0, &gf);
|
|
|
|
// print timing information per ggml operation (for debugging purposes)
|
|
// requires GGML_PERF to be defined
|
|
//ggml_graph_print(&gf);
|
|
|
|
// plot the computation graph in dot format (for debugging purposes)
|
|
//if (n_past%100 == 0) {
|
|
// ggml_graph_dump_dot(&gf, NULL, "llama.dot");
|
|
//}
|
|
|
|
//embd_w.resize(n_vocab*N);
|
|
//memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
|
|
|
|
// extract logits
|
|
{
|
|
auto & logits_out = lctx.logits;
|
|
|
|
if (lctx.logits_all) {
|
|
logits_out.resize(n_vocab * N);
|
|
memcpy(logits_out.data(), (float *) ggml_get_data(inpL), sizeof(float)*n_vocab*N);
|
|
} else {
|
|
// return result for just the last token
|
|
logits_out.resize(n_vocab);
|
|
memcpy(logits_out.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
|
|
}
|
|
}
|
|
|
|
// extract embeddings
|
|
if (lctx.embedding.size()) {
|
|
auto & embedding_out = lctx.embedding;
|
|
|
|
embedding_out.resize(n_embd);
|
|
memcpy(embedding_out.data(), (float *) ggml_get_data(embeddings) + (n_embd*(N - 1)), sizeof(float)*n_embd);
|
|
}
|
|
|
|
if (mem_per_token == 0) {
|
|
mem_per_token = ggml_used_mem(ctx0)/N;
|
|
}
|
|
|
|
#if 0
|
|
printf("\n%s: used_mem = %.3f MB, scratch -- %.3f MB %.3f MB\n", __func__,
|
|
ggml_used_mem(ctx0)/1024.0/1024.0,
|
|
lctx.get_buf_max_mem(0)/1024.0/1024.0,
|
|
lctx.get_buf_max_mem(1)/1024.0/1024.0);
|
|
#endif
|
|
|
|
ggml_free(ctx0);
|
|
|
|
// measure the performance only for the single-token evals
|
|
if (N == 1) {
|
|
lctx.t_eval_us += ggml_time_us() - t_start_us;
|
|
lctx.n_eval++;
|
|
}
|
|
else if (N > 1) {
|
|
lctx.t_p_eval_us += ggml_time_us() - t_start_us;
|
|
lctx.n_p_eval += N;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//
|
|
// tokenizer
|
|
//
|
|
|
|
static size_t utf8_len(char src) {
|
|
const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
|
|
uint8_t highbits = static_cast<uint8_t>(src) >> 4;
|
|
return lookup[highbits];
|
|
}
|
|
|
|
struct llama_sp_symbol {
|
|
using index = int;
|
|
index prev;
|
|
index next;
|
|
const char * text;
|
|
size_t n;
|
|
};
|
|
|
|
struct llama_sp_bigram {
|
|
struct comparator {
|
|
bool operator()(llama_sp_bigram & l, llama_sp_bigram & r) {
|
|
return (l.score < r.score) || (l.score == r.score && l.left > r.left);
|
|
}
|
|
};
|
|
using queue_storage = std::vector<llama_sp_bigram>;
|
|
using queue = std::priority_queue<llama_sp_bigram, queue_storage, comparator>;
|
|
llama_sp_symbol::index left;
|
|
llama_sp_symbol::index right;
|
|
float score;
|
|
size_t size;
|
|
};
|
|
|
|
// original implementation:
|
|
// https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
|
|
struct llama_tokenizer {
|
|
llama_tokenizer(const llama_vocab & vocab): vocab_(vocab) {}
|
|
|
|
void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
|
|
// split string into utf8 chars
|
|
int index = 0;
|
|
size_t offs = 0;
|
|
while (offs < text.size()) {
|
|
llama_sp_symbol sym;
|
|
size_t char_len = std::min(text.size() - offs, utf8_len(text[offs]));
|
|
sym.text = text.c_str() + offs;
|
|
sym.n = char_len;
|
|
offs += char_len;
|
|
sym.prev = index - 1;
|
|
sym.next = offs == text.size() ? -1 : index + 1;
|
|
index++;
|
|
symbols_.emplace_back(std::move(sym));
|
|
}
|
|
|
|
// seed the work queue with all possible 2-character tokens.
|
|
for (size_t i = 1; i < symbols_.size(); ++i) {
|
|
try_add_bigram(i - 1, i);
|
|
}
|
|
|
|
// keep substituting the highest frequency pairs for as long as we can.
|
|
while (!work_queue_.empty()) {
|
|
auto bigram = work_queue_.top();
|
|
work_queue_.pop();
|
|
|
|
auto & left_sym = symbols_[bigram.left];
|
|
auto & right_sym = symbols_[bigram.right];
|
|
|
|
// if one of the symbols already got merged, skip it.
|
|
if (left_sym.n == 0 || right_sym.n == 0 ||
|
|
left_sym.n + right_sym.n != bigram.size) {
|
|
continue;
|
|
}
|
|
|
|
// merge the right sym into the left one
|
|
left_sym.n += right_sym.n;
|
|
right_sym.n = 0;
|
|
|
|
//printf("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
|
|
|
|
// remove the right sym from the chain
|
|
left_sym.next = right_sym.next;
|
|
if (right_sym.next >= 0) {
|
|
symbols_[right_sym.next].prev = bigram.left;
|
|
}
|
|
|
|
// find more substitutions
|
|
try_add_bigram(left_sym.prev, bigram.left);
|
|
try_add_bigram(bigram.left, left_sym.next);
|
|
}
|
|
|
|
for (int i = 0; i != -1; i = symbols_[i].next) {
|
|
auto & symbol = symbols_[i];
|
|
auto token = vocab_.token_to_id.find(std::string(symbol.text, symbol.n));
|
|
|
|
if (token == vocab_.token_to_id.end()) {
|
|
// output any symbols that did not form tokens as bytes.
|
|
for (int j = 0; j < (int) symbol.n; ++j) {
|
|
llama_vocab::id token_id = static_cast<uint8_t>(symbol.text[j]) + 3;
|
|
output.push_back(token_id);
|
|
}
|
|
} else {
|
|
output.push_back((*token).second);
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
void try_add_bigram(int left, int right) {
|
|
if (left == -1 || right == -1) {
|
|
return;
|
|
}
|
|
|
|
const std::string text = std::string(symbols_[left].text, symbols_[left].n + symbols_[right].n);
|
|
auto token = vocab_.token_to_id.find(text);
|
|
|
|
if (token == vocab_.token_to_id.end()) {
|
|
return;
|
|
}
|
|
|
|
if (static_cast<size_t>((*token).second) >= vocab_.id_to_token.size()) {
|
|
return;
|
|
}
|
|
|
|
const auto &tok_score = vocab_.id_to_token[(*token).second];
|
|
|
|
llama_sp_bigram bigram;
|
|
bigram.left = left;
|
|
bigram.right = right;
|
|
bigram.score = tok_score.score;
|
|
bigram.size = text.size();
|
|
work_queue_.push(bigram);
|
|
}
|
|
|
|
const llama_vocab & vocab_;
|
|
std::vector<llama_sp_symbol> symbols_;
|
|
llama_sp_bigram::queue work_queue_;
|
|
};
|
|
|
|
static std::vector<llama_vocab::id> llama_tokenize(const llama_vocab & vocab, const std::string & text, bool bos) {
|
|
llama_tokenizer tokenizer(vocab);
|
|
std::vector<llama_vocab::id> output;
|
|
|
|
if (text.size() == 0) {
|
|
return output;
|
|
}
|
|
|
|
if (bos) {
|
|
output.push_back(1);
|
|
}
|
|
|
|
tokenizer.tokenize(text, output);
|
|
return output;
|
|
}
|
|
|
|
//
|
|
// sampling
|
|
//
|
|
|
|
static void sample_top_k(std::vector<std::pair<float, llama_vocab::id>> & logits_id, int top_k) {
|
|
// find the top k tokens
|
|
std::partial_sort(
|
|
logits_id.begin(),
|
|
logits_id.begin() + top_k, logits_id.end(),
|
|
[](const std::pair<float, llama_vocab::id> & a, const std::pair<float, llama_vocab::id> & b) {
|
|
return a.first > b.first;
|
|
});
|
|
|
|
logits_id.resize(top_k);
|
|
}
|
|
|
|
static llama_vocab::id llama_sample_top_p_top_k(
|
|
llama_context & lctx,
|
|
const std::vector<llama_vocab::id> & last_n_tokens,
|
|
int top_k,
|
|
float top_p,
|
|
float temp,
|
|
float repeat_penalty) {
|
|
auto & rng = lctx.rng;
|
|
|
|
const int n_logits = lctx.model.hparams.n_vocab;
|
|
|
|
const auto & logits = lctx.logits;
|
|
const auto * plogits = logits.data() + logits.size() - n_logits;
|
|
|
|
if (temp <= 0) {
|
|
// select the token with the highest logit directly
|
|
float max_logit = plogits[0];
|
|
llama_vocab::id max_id = 0;
|
|
|
|
for (int i = 1; i < n_logits; ++i) {
|
|
if (plogits[i] > max_logit) {
|
|
max_logit = plogits[i];
|
|
max_id = i;
|
|
}
|
|
}
|
|
return max_id;
|
|
}
|
|
|
|
std::vector<std::pair<float, llama_vocab::id>> logits_id;
|
|
logits_id.reserve(n_logits);
|
|
|
|
{
|
|
const float scale = 1.0f/temp;
|
|
for (int i = 0; i < n_logits; ++i) {
|
|
// repetition penalty from ctrl paper (https://arxiv.org/abs/1909.05858)
|
|
// credit https://github.com/facebookresearch/llama/compare/main...shawwn:llama:main
|
|
if (std::find(last_n_tokens.begin(), last_n_tokens.end(), i) != last_n_tokens.end()) {
|
|
// if score < 0 then repetition penalty has to multiplied to reduce the previous token probability
|
|
if (plogits[i] < 0.0f) {
|
|
logits_id.push_back(std::make_pair(plogits[i]*scale*repeat_penalty, i));
|
|
} else {
|
|
logits_id.push_back(std::make_pair(plogits[i]*scale/repeat_penalty, i));
|
|
}
|
|
} else {
|
|
logits_id.push_back(std::make_pair(plogits[i]*scale, i));
|
|
}
|
|
}
|
|
}
|
|
|
|
sample_top_k(logits_id, top_k > 0 ? std::min(top_k, n_logits) : n_logits);
|
|
|
|
// compute probs for the top k tokens
|
|
std::vector<float> probs;
|
|
probs.reserve(logits_id.size());
|
|
|
|
float maxl = logits_id[0].first;
|
|
double sum = 0.0;
|
|
for (const auto & kv : logits_id) {
|
|
const float p = expf(kv.first - maxl);
|
|
probs.push_back(p);
|
|
sum += p;
|
|
}
|
|
|
|
// normalize the probs
|
|
for (auto & p : probs) {
|
|
p /= sum;
|
|
}
|
|
|
|
if (top_p < 1.0) {
|
|
double cumsum = 0.0;
|
|
for (int i = 0; i < (int) probs.size(); i++) {
|
|
cumsum += probs[i];
|
|
if (cumsum >= top_p) {
|
|
probs.resize(i + 1);
|
|
logits_id.resize(i + 1);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
//printf("\n");
|
|
//for (int i = 0; i < (int) 10; i++) {
|
|
// printf("%d: '%s' %f\n", i, lctx.vocab.id_to_token.at(logits_id[i].second).tok.c_str(), probs[i]);
|
|
//}
|
|
//printf("\n\n");
|
|
//exit(0);
|
|
|
|
std::discrete_distribution<> dist(probs.begin(), probs.end());
|
|
int idx = dist(rng);
|
|
|
|
return logits_id[idx].second;
|
|
}
|
|
|
|
//
|
|
// quantization
|
|
//
|
|
|
|
static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, enum llama_ftype ftype) {
|
|
ggml_type quantized_type;
|
|
switch (ftype) {
|
|
case LLAMA_FTYPE_MOSTLY_Q4_0: quantized_type = GGML_TYPE_Q4_0; break;
|
|
case LLAMA_FTYPE_MOSTLY_Q4_1: quantized_type = GGML_TYPE_Q4_1; break;
|
|
default: throw format("invalid output file type %d\n", ftype);
|
|
};
|
|
|
|
std::unique_ptr<llama_model_loader> model_loader(new llama_model_loader(fname_inp.c_str(), /*use_mmap*/ false,
|
|
/*vocab_only*/ false));
|
|
llama_file_saver file_saver(fname_out.c_str(), model_loader->file_loaders.at(0).get(), ftype);
|
|
|
|
size_t total_size_org = 0;
|
|
size_t total_size_new = 0;
|
|
std::vector<int64_t> hist_all(1 << 4, 0);
|
|
|
|
size_t idx = 0;
|
|
for (llama_load_tensor & tensor : model_loader->tensors_map.tensors) {
|
|
llama_buffer read_data;
|
|
read_data.resize(tensor.size);
|
|
tensor.data = read_data.addr;
|
|
model_loader->load_data_for(tensor);
|
|
|
|
printf("[%zu/%zu] %36s - %s, type = %6s, ",
|
|
++idx, model_loader->tensors_map.tensors.size(),
|
|
tensor.name.c_str(), llama_format_tensor_shape(tensor.ne).c_str(),
|
|
llama_format_type(tensor.type));
|
|
|
|
// This used to be a regex, but <regex> has an extreme cost to compile times.
|
|
bool quantize = tensor.name.rfind("weight") == tensor.name.size() - 6; // ends with 'weight'?
|
|
|
|
// quantize only 2D tensors
|
|
quantize &= (tensor.ne.size() == 2);
|
|
|
|
enum ggml_type new_type;
|
|
void * new_data;
|
|
size_t new_size;
|
|
llama_buffer work;
|
|
|
|
if (!quantize) {
|
|
new_type = tensor.type;
|
|
new_data = tensor.data;
|
|
new_size = tensor.size;
|
|
printf("size = %8.3f MB\n", tensor.size/1024.0/1024.0);
|
|
} else {
|
|
new_type = quantized_type;
|
|
float * f32_data;
|
|
size_t nelements = tensor.ne.at(0) * tensor.ne.at(1);
|
|
llama_buffer f32_conv_buf;
|
|
if (tensor.type == GGML_TYPE_F32) {
|
|
f32_data = (float *) tensor.data;
|
|
} else if (tensor.type == GGML_TYPE_F16) {
|
|
f32_conv_buf.resize(nelements * sizeof(float));
|
|
f32_data = (float *) f32_conv_buf.addr;
|
|
auto f16_data = (const ggml_fp16_t *) tensor.data;
|
|
for (size_t i = 0; i < nelements; i++) {
|
|
f32_data[i] = ggml_fp16_to_fp32(f16_data[i]);
|
|
}
|
|
} else {
|
|
throw format("type %s unsupported for integer quantization", llama_format_type(tensor.type));
|
|
}
|
|
|
|
printf("quantizing .. ");
|
|
fflush(stdout);
|
|
|
|
work.resize(nelements * 4); // upper bound on size
|
|
new_data = work.addr;
|
|
std::vector<int64_t> hist_cur(1 << 4, 0);
|
|
|
|
switch (new_type) {
|
|
case GGML_TYPE_Q4_0:
|
|
{
|
|
new_size = ggml_quantize_q4_0(f32_data, new_data, nelements, (int) tensor.ne.at(0), hist_cur.data());
|
|
} break;
|
|
case GGML_TYPE_Q4_1:
|
|
{
|
|
new_size = ggml_quantize_q4_1(f32_data, new_data, nelements, (int) tensor.ne.at(0), hist_cur.data());
|
|
} break;
|
|
default:
|
|
LLAMA_ASSERT(false);
|
|
}
|
|
|
|
printf("size = %8.2f MB -> %8.2f MB | hist: ", tensor.size/1024.0/1024.0, new_size/1024.0/1024.0);
|
|
for (size_t i = 0; i < hist_cur.size(); i++) {
|
|
hist_all[i] += hist_cur[i];
|
|
}
|
|
|
|
for (size_t i = 0; i < hist_cur.size(); i++) {
|
|
printf("%5.3f ", hist_cur[i] / float(nelements));
|
|
}
|
|
printf("\n");
|
|
}
|
|
total_size_org += tensor.size;
|
|
total_size_new += new_size;
|
|
file_saver.write_tensor(tensor, new_type, new_data, new_size);
|
|
}
|
|
|
|
printf("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
|
|
printf("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
|
|
|
|
{
|
|
int64_t sum_all = 0;
|
|
for (size_t i = 0; i < hist_all.size(); i++) {
|
|
sum_all += hist_all[i];
|
|
}
|
|
|
|
printf("%s: hist: ", __func__);
|
|
for (size_t i = 0; i < hist_all.size(); i++) {
|
|
printf("%5.3f ", hist_all[i] / float(sum_all));
|
|
}
|
|
printf("\n");
|
|
}
|
|
}
|
|
|
|
//
|
|
// interface implementation
|
|
//
|
|
|
|
struct llama_context * llama_init_from_file(
|
|
const char * path_model,
|
|
struct llama_context_params params) {
|
|
ggml_time_init();
|
|
|
|
llama_context * ctx = new llama_context;
|
|
|
|
if (params.seed <= 0) {
|
|
params.seed = time(NULL);
|
|
}
|
|
|
|
unsigned cur_percentage = 0;
|
|
if (params.progress_callback == NULL) {
|
|
params.progress_callback_user_data = &cur_percentage;
|
|
params.progress_callback = [](float progress, void * ctx) {
|
|
unsigned * cur_percentage_p = (unsigned *) ctx;
|
|
unsigned percentage = (unsigned) (100 * progress);
|
|
while (percentage > *cur_percentage_p) {
|
|
++*cur_percentage_p;
|
|
fprintf(stderr, ".");
|
|
fflush(stderr);
|
|
if (percentage >= 100) {
|
|
fprintf(stderr, "\n");
|
|
}
|
|
}
|
|
};
|
|
}
|
|
|
|
ctx->rng = std::mt19937(params.seed);
|
|
ctx->logits_all = params.logits_all;
|
|
|
|
ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
|
|
|
|
if (!llama_model_load(path_model, *ctx, params.n_ctx, memory_type,
|
|
params.use_mmap, params.use_mlock, params.vocab_only,
|
|
params.progress_callback, params.progress_callback_user_data)) {
|
|
fprintf(stderr, "%s: failed to load model\n", __func__);
|
|
llama_free(ctx);
|
|
return nullptr;
|
|
}
|
|
|
|
// reserve memory for context buffers
|
|
if (!params.vocab_only) {
|
|
if (!kv_cache_init(ctx->model.hparams, ctx->model.kv_self, memory_type, ctx->model.hparams.n_ctx)) {
|
|
fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__);
|
|
llama_free(ctx);
|
|
return nullptr;
|
|
}
|
|
|
|
{
|
|
const size_t memory_size = ggml_nbytes(ctx->model.kv_self.k) + ggml_nbytes(ctx->model.kv_self.v);
|
|
fprintf(stderr, "%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
|
|
}
|
|
|
|
const auto & hparams = ctx->model.hparams;
|
|
|
|
// resized during inference
|
|
if (params.logits_all) {
|
|
ctx->logits.reserve(hparams.n_ctx*hparams.n_vocab);
|
|
} else {
|
|
ctx->logits.reserve(hparams.n_ctx);
|
|
}
|
|
|
|
if (params.embedding){
|
|
ctx->embedding.resize(hparams.n_embd);
|
|
}
|
|
|
|
ctx->buf_compute.resize(MEM_REQ_EVAL.at(ctx->model.type));
|
|
|
|
ctx->buf_scratch[0].resize(MEM_REQ_SCRATCH0.at(ctx->model.type));
|
|
ctx->buf_scratch[1].resize(MEM_REQ_SCRATCH1.at(ctx->model.type));
|
|
}
|
|
|
|
return ctx;
|
|
}
|
|
|
|
void llama_free(struct llama_context * ctx) {
|
|
delete ctx;
|
|
}
|
|
|
|
int llama_model_quantize(
|
|
const char * fname_inp,
|
|
const char * fname_out,
|
|
enum llama_ftype ftype) {
|
|
try {
|
|
llama_model_quantize_internal(fname_inp, fname_out, ftype);
|
|
return 0;
|
|
} catch (const std::string & err) {
|
|
fprintf(stderr, "%s: failed to quantize: %s\n", __func__, err.c_str());
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
// Returns the KV cache that will contain the context for the
|
|
// ongoing prediction with the model.
|
|
const uint8_t * llama_get_kv_cache(struct llama_context * ctx) {
|
|
return ctx->model.kv_self.buf.addr;
|
|
}
|
|
|
|
// Returns the size of the KV cache
|
|
size_t llama_get_kv_cache_size(struct llama_context * ctx) {
|
|
return ctx->model.kv_self.buf.size;
|
|
}
|
|
|
|
int llama_get_kv_cache_token_count(struct llama_context * ctx) {
|
|
return ctx->model.kv_self.n;
|
|
}
|
|
|
|
// Sets the KV cache containing the current context for the model
|
|
void llama_set_kv_cache(
|
|
struct llama_context * ctx,
|
|
const uint8_t * kv_cache,
|
|
size_t n_size,
|
|
int n_token_count) {
|
|
// Make sure we have the same kv cache setup
|
|
LLAMA_ASSERT(ctx->model.kv_self.buf.size == n_size);
|
|
memcpy(ctx->model.kv_self.buf.addr, kv_cache, n_size);
|
|
ctx->model.kv_self.n = n_token_count;
|
|
}
|
|
|
|
int llama_eval(
|
|
struct llama_context * ctx,
|
|
const llama_token * tokens,
|
|
int n_tokens,
|
|
int n_past,
|
|
int n_threads) {
|
|
if (!llama_eval_internal(*ctx, tokens, n_tokens, n_past, n_threads)) {
|
|
fprintf(stderr, "%s: failed to eval\n", __func__);
|
|
return 1;
|
|
}
|
|
// get a more accurate load time, upon first eval
|
|
if (!ctx->has_evaluated_once) {
|
|
ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
|
|
ctx->has_evaluated_once = true;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int llama_tokenize(
|
|
struct llama_context * ctx,
|
|
const char * text,
|
|
llama_token * tokens,
|
|
int n_max_tokens,
|
|
bool add_bos) {
|
|
auto res = llama_tokenize(ctx->vocab, text, add_bos);
|
|
|
|
if (n_max_tokens < (int) res.size()) {
|
|
fprintf(stderr, "%s: too many tokens\n", __func__);
|
|
return -((int) res.size());
|
|
}
|
|
|
|
for (size_t i = 0; i < res.size(); i++) {
|
|
tokens[i] = res[i];
|
|
}
|
|
|
|
return res.size();
|
|
}
|
|
|
|
int llama_n_vocab(struct llama_context * ctx) {
|
|
return ctx->vocab.id_to_token.size();
|
|
}
|
|
|
|
int llama_n_ctx(struct llama_context * ctx) {
|
|
return ctx->model.hparams.n_ctx;
|
|
}
|
|
|
|
int llama_n_embd(struct llama_context * ctx) {
|
|
return ctx->model.hparams.n_embd;
|
|
}
|
|
|
|
float * llama_get_logits(struct llama_context * ctx) {
|
|
return ctx->logits.data();
|
|
}
|
|
|
|
float * llama_get_embeddings(struct llama_context * ctx) {
|
|
return ctx->embedding.data();
|
|
}
|
|
|
|
const char * llama_token_to_str(struct llama_context * ctx, llama_token token) {
|
|
if (token >= llama_n_vocab(ctx)) {
|
|
return nullptr;
|
|
}
|
|
|
|
return ctx->vocab.id_to_token[token].tok.c_str();
|
|
}
|
|
|
|
llama_token llama_token_bos() {
|
|
return 1;
|
|
}
|
|
|
|
llama_token llama_token_eos() {
|
|
return 2;
|
|
}
|
|
|
|
llama_token llama_sample_top_p_top_k(
|
|
llama_context * ctx,
|
|
const llama_token * last_n_tokens_data,
|
|
int last_n_tokens_size,
|
|
int top_k,
|
|
float top_p,
|
|
float temp,
|
|
float repeat_penalty) {
|
|
const int64_t t_start_sample_us = ggml_time_us();
|
|
|
|
llama_token result = 0;
|
|
|
|
// TODO: avoid this ...
|
|
const auto last_n_tokens = std::vector<llama_token>(last_n_tokens_data, last_n_tokens_data + last_n_tokens_size);
|
|
|
|
result = llama_sample_top_p_top_k(
|
|
*ctx,
|
|
last_n_tokens,
|
|
top_k,
|
|
top_p,
|
|
temp,
|
|
repeat_penalty);
|
|
|
|
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
|
|
ctx->n_sample++;
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
void llama_print_timings(struct llama_context * ctx) {
|
|
const int64_t t_end_us = ggml_time_us();
|
|
|
|
const int32_t n_sample = std::max(1, ctx->n_sample);
|
|
const int32_t n_eval = std::max(1, ctx->n_eval);
|
|
const int32_t n_p_eval = std::max(1, ctx->n_p_eval);
|
|
|
|
fprintf(stderr, "\n");
|
|
fprintf(stderr, "%s: load time = %8.2f ms\n", __func__, ctx->t_load_us / 1000.0);
|
|
fprintf(stderr, "%s: sample time = %8.2f ms / %5d runs (%8.2f ms per run)\n", __func__, 1e-3 * ctx->t_sample_us, n_sample, 1e-3 * ctx->t_sample_us / n_sample);
|
|
fprintf(stderr, "%s: prompt eval time = %8.2f ms / %5d tokens (%8.2f ms per token)\n", __func__, 1e-3 * ctx->t_p_eval_us, n_p_eval, 1e-3 * ctx->t_p_eval_us / n_p_eval);
|
|
fprintf(stderr, "%s: eval time = %8.2f ms / %5d runs (%8.2f ms per run)\n", __func__, 1e-3 * ctx->t_eval_us, n_eval, 1e-3 * ctx->t_eval_us / n_eval);
|
|
fprintf(stderr, "%s: total time = %8.2f ms\n", __func__, (t_end_us - ctx->t_start_us)/1000.0);
|
|
}
|
|
|
|
void llama_reset_timings(struct llama_context * ctx) {
|
|
ctx->t_start_us = ggml_time_us();
|
|
ctx->t_sample_us = ctx->n_sample = 0;
|
|
ctx->t_eval_us = ctx->n_eval = 0;
|
|
ctx->t_p_eval_us = ctx->n_p_eval = 0;
|
|
}
|
|
|
|
const char * llama_print_system_info(void) {
|
|
static std::string s;
|
|
|
|
s = "";
|
|
s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
|
|
s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
|
|
s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
|
|
s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
|
|
s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
|
|
s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
|
|
s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
|
|
s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
|
|
s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
|
|
s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
|
|
s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
|
|
s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
|
|
|
|
return s.c_str();
|
|
}
|
|
|
|
// For internal test use
|
|
std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx) {
|
|
return ctx->model.tensors_by_name;
|
|
}
|