mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-15 14:50:51 +01:00
282 lines
9.2 KiB
Python
Executable File
282 lines
9.2 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# HF falcon--> gguf conversion
|
|
|
|
from __future__ import annotations
|
|
|
|
import argparse
|
|
import json
|
|
import os
|
|
import struct
|
|
import sys
|
|
from pathlib import Path
|
|
from typing import Any
|
|
|
|
import numpy as np
|
|
import torch
|
|
from transformers import AutoTokenizer # type: ignore[import]
|
|
|
|
if 'NO_LOCAL_GGUF' not in os.environ:
|
|
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
|
|
import gguf
|
|
|
|
|
|
def bytes_to_unicode():
|
|
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py
|
|
"""
|
|
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
|
The reversible bpe codes work on unicode strings.
|
|
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
|
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
|
This is a significant percentage of your normal, say, 32K bpe vocab.
|
|
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
|
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
|
"""
|
|
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
|
cs = bs[:]
|
|
n = 0
|
|
for b in range(2**8):
|
|
if b not in bs:
|
|
bs.append(b)
|
|
cs.append(2**8+n)
|
|
n += 1
|
|
return dict(zip(bs, (chr(n) for n in cs)))
|
|
|
|
|
|
def count_model_parts(dir_model: Path) -> int:
|
|
num_parts = 0
|
|
for filename in os.listdir(dir_model):
|
|
if filename.startswith("pytorch_model-"):
|
|
num_parts += 1
|
|
|
|
if num_parts > 0:
|
|
print("gguf: found " + str(num_parts) + " model parts")
|
|
return num_parts
|
|
|
|
|
|
def parse_args() -> argparse.Namespace:
|
|
parser = argparse.ArgumentParser(description="Convert a Falcon model to a GGML compatible file")
|
|
parser.add_argument(
|
|
"--vocab-only", action="store_true",
|
|
help="extract only the vocab",
|
|
)
|
|
parser.add_argument(
|
|
"--outfile", type=Path,
|
|
help="path to write to; default: based on input",
|
|
)
|
|
parser.add_argument(
|
|
"model", type=Path,
|
|
help="directory containing model file, or model file itself (*.bin)",
|
|
)
|
|
parser.add_argument(
|
|
"ftype", type=int, choices=[0, 1], default=1, nargs='?',
|
|
help="output format - use 0 for float32, 1 for float16",
|
|
)
|
|
return parser.parse_args()
|
|
|
|
args = parse_args()
|
|
|
|
dir_model = args.model
|
|
ftype = args.ftype
|
|
if not dir_model.is_dir():
|
|
print(f'Error: {args.model} is not a directory', file = sys.stderr)
|
|
sys.exit(1)
|
|
|
|
# possible tensor data types
|
|
# ftype == 0 -> float32
|
|
# ftype == 1 -> float16
|
|
|
|
# map from ftype to string
|
|
ftype_str = ["f32", "f16"]
|
|
|
|
if args.outfile is not None:
|
|
fname_out = args.outfile
|
|
else:
|
|
# output in the same directory as the model by default
|
|
fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
|
|
|
|
print("gguf: loading model "+dir_model.name)
|
|
|
|
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
|
|
hparams = json.load(f)
|
|
|
|
if hparams["architectures"][0] != "RWForCausalLM":
|
|
print("Model architecture not supported: " + hparams["architectures"][0])
|
|
|
|
sys.exit(1)
|
|
|
|
# get number of model parts
|
|
num_parts = count_model_parts(dir_model)
|
|
|
|
ARCH=gguf.MODEL_ARCH.FALCON
|
|
gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
|
|
|
|
print("gguf: get model metadata")
|
|
|
|
block_count = hparams["n_layer"]
|
|
|
|
gguf_writer.add_name("Falcon")
|
|
gguf_writer.add_context_length(2048) # not in config.json
|
|
gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
|
|
gguf_writer.add_embedding_length(hparams["hidden_size"])
|
|
gguf_writer.add_feed_forward_length(4 * hparams["hidden_size"])
|
|
gguf_writer.add_block_count(block_count)
|
|
gguf_writer.add_head_count(hparams["n_head"])
|
|
if "n_head_kv" in hparams:
|
|
gguf_writer.add_head_count_kv(hparams["n_head_kv"])
|
|
else:
|
|
gguf_writer.add_head_count_kv(1)
|
|
gguf_writer.add_layer_norm_eps(hparams["layer_norm_epsilon"])
|
|
gguf_writer.add_file_type(ftype)
|
|
|
|
# TOKENIZATION
|
|
|
|
print("gguf: get tokenizer metadata")
|
|
|
|
tokens: list[bytearray] = []
|
|
scores: list[float] = []
|
|
toktypes: list[int] = []
|
|
|
|
tokenizer_json_file = dir_model / 'tokenizer.json'
|
|
if not tokenizer_json_file.is_file():
|
|
print(f'Error: Missing {tokenizer_json_file}', file = sys.stderr)
|
|
sys.exit(1)
|
|
|
|
# gpt2 tokenizer
|
|
gguf_writer.add_tokenizer_model("gpt2")
|
|
|
|
with open(tokenizer_json_file, "r", encoding="utf-8") as f:
|
|
tokenizer_json = json.load(f)
|
|
|
|
print("gguf: get gpt2 tokenizer vocab")
|
|
|
|
# The number of tokens in tokenizer.json can differ from the expected vocab size.
|
|
# This causes downstream issues with mismatched tensor sizes when running the inference
|
|
vocab_size = hparams["vocab_size"] if "vocab_size" in hparams else len(tokenizer_json["model"]["vocab"])
|
|
|
|
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
|
|
tokenizer = AutoTokenizer.from_pretrained(dir_model)
|
|
|
|
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
|
|
byte_encoder = bytes_to_unicode()
|
|
byte_decoder = {v: k for k, v in byte_encoder.items()}
|
|
|
|
for i in range(vocab_size):
|
|
if i in reverse_vocab:
|
|
try:
|
|
text = bytearray([byte_decoder[c] for c in reverse_vocab[i]])
|
|
except KeyError:
|
|
text = bytearray()
|
|
for c in reverse_vocab[i]:
|
|
if ord(c) < 256: # single byte character
|
|
text.append(byte_decoder[ord(c)])
|
|
else: # multibyte special token character
|
|
text.extend(c.encode('utf-8'))
|
|
else:
|
|
print(f"Key {i} not in tokenizer vocabulary. Padding with an arbitrary token.")
|
|
pad_token = f"[PAD{i}]".encode("utf8")
|
|
text = bytearray(pad_token)
|
|
|
|
tokens.append(text)
|
|
scores.append(0.0) # dymmy
|
|
toktypes.append(gguf.TokenType.NORMAL) # dummy
|
|
|
|
gguf_writer.add_token_list(tokens)
|
|
gguf_writer.add_token_scores(scores)
|
|
gguf_writer.add_token_types(toktypes)
|
|
|
|
special_vocab = gguf.SpecialVocab(dir_model, load_merges = True)
|
|
special_vocab.add_to_gguf(gguf_writer)
|
|
|
|
# TENSORS
|
|
|
|
tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
|
|
|
|
# params for qkv transform
|
|
n_head = hparams["n_head"]
|
|
n_head_kv = hparams["n_head_kv"] if "n_head_kv" in hparams else 1
|
|
|
|
head_dim = hparams["hidden_size"] // n_head
|
|
|
|
# tensor info
|
|
print("gguf: get tensor metadata")
|
|
|
|
if num_parts == 0:
|
|
part_names = iter(("pytorch_model.bin",))
|
|
else:
|
|
part_names = (
|
|
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
|
|
)
|
|
|
|
for part_name in part_names:
|
|
if args.vocab_only:
|
|
break
|
|
print("gguf: loading model part '" + part_name + "'")
|
|
model_part = torch.load(dir_model / part_name, map_location="cpu")
|
|
|
|
for name in model_part.keys():
|
|
data = model_part[name]
|
|
|
|
old_dtype = data.dtype
|
|
|
|
# convert any unsupported data types to float32
|
|
if data.dtype != torch.float16 and data.dtype != torch.float32:
|
|
data = data.to(torch.float32)
|
|
|
|
# QKV tensor transform
|
|
# The original query_key_value tensor contains n_head_kv "kv groups",
|
|
# each consisting of n_head/n_head_kv query weights followed by one key
|
|
# and one value weight (shared by all query heads in the kv group).
|
|
# This layout makes it a big pain to work with in GGML.
|
|
# So we rearrange them here,, so that we have n_head query weights
|
|
# followed by n_head_kv key weights followed by n_head_kv value weights,
|
|
# in contiguous fashion.
|
|
# ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
|
|
|
|
if "query_key_value" in name:
|
|
qkv = data.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
|
|
q = qkv[:, :-2 ].reshape(n_head * head_dim, head_dim * n_head)
|
|
k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
|
|
v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
|
|
data = torch.cat((q,k,v)).reshape_as(data)
|
|
|
|
data = data.squeeze().numpy()
|
|
|
|
# map tensor names
|
|
new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
|
|
if new_name is None:
|
|
print("Can not map tensor '" + name + "'")
|
|
sys.exit()
|
|
|
|
n_dims = len(data.shape)
|
|
data_dtype = data.dtype
|
|
|
|
# if f32 desired, convert any float16 to float32
|
|
if ftype == 0 and data_dtype == np.float16:
|
|
data = data.astype(np.float32)
|
|
|
|
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
|
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
|
data = data.astype(np.float32)
|
|
|
|
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
|
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
|
data = data.astype(np.float16)
|
|
|
|
print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
|
|
|
|
gguf_writer.add_tensor(new_name, data)
|
|
|
|
|
|
print("gguf: write header")
|
|
gguf_writer.write_header_to_file()
|
|
print("gguf: write metadata")
|
|
gguf_writer.write_kv_data_to_file()
|
|
if not args.vocab_only:
|
|
print("gguf: write tensors")
|
|
gguf_writer.write_tensors_to_file()
|
|
|
|
gguf_writer.close()
|
|
|
|
print(f"gguf: model successfully exported to '{fname_out}'")
|
|
print("")
|