mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-10 04:20:24 +01:00
b853d45601
* detect NUMA systems and pin work threads to nodes (linux) * disable mmap prefetch/readahead for NUMA systems * avoid sending finalize op to thread pool if it does nothing * silence robot * fix args * make --numa a param * recommendation that n_nodes evenly divide n_threads did not warrant such aggressive enforcement * lower synchronization overhead * statically allocate * move numa state to g_state * add description for --numa * ggml : minor style changes * ggml : minor style + try fix sanitizer build * llama : allow to initialize backend with NUMA support * llama : avoid ggml include in llama-util.h * ggml : style / formatting * ggml : fix handling of ops with n_threads > n_tasks > 1 * server : utilize numa parameter --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
262 lines
7.4 KiB
C++
262 lines
7.4 KiB
C++
#include "build-info.h"
|
|
|
|
#include "llama.h"
|
|
|
|
#include <cstdio>
|
|
#include <cstring>
|
|
#include <vector>
|
|
#include <string>
|
|
|
|
struct quant_option {
|
|
std::string name;
|
|
llama_ftype ftype;
|
|
std::string desc;
|
|
};
|
|
|
|
static const std::vector<struct quant_option> QUANT_OPTIONS = {
|
|
{
|
|
"Q4_0",
|
|
LLAMA_FTYPE_MOSTLY_Q4_0,
|
|
" 3.50G, +0.2499 ppl @ 7B - small, very high quality loss - legacy, prefer using Q3_K_M",
|
|
},
|
|
{
|
|
"Q4_1",
|
|
LLAMA_FTYPE_MOSTLY_Q4_1,
|
|
" 3.90G, +0.1846 ppl @ 7B - small, substantial quality loss - legacy, prefer using Q3_K_L",
|
|
},
|
|
{
|
|
"Q5_0",
|
|
LLAMA_FTYPE_MOSTLY_Q5_0,
|
|
" 4.30G, +0.0796 ppl @ 7B - medium, balanced quality - legacy, prefer using Q4_K_M",
|
|
},
|
|
{
|
|
"Q5_1",
|
|
LLAMA_FTYPE_MOSTLY_Q5_1,
|
|
" 4.70G, +0.0415 ppl @ 7B - medium, low quality loss - legacy, prefer using Q5_K_M",
|
|
},
|
|
#ifdef GGML_USE_K_QUANTS
|
|
{
|
|
"Q2_K",
|
|
LLAMA_FTYPE_MOSTLY_Q2_K,
|
|
" 2.67G, +0.8698 ppl @ 7B - smallest, extreme quality loss - not recommended",
|
|
},
|
|
{
|
|
"Q3_K",
|
|
LLAMA_FTYPE_MOSTLY_Q3_K_M,
|
|
"alias for Q3_K_M"
|
|
},
|
|
{
|
|
"Q3_K_S",
|
|
LLAMA_FTYPE_MOSTLY_Q3_K_S,
|
|
" 2.75G, +0.5505 ppl @ 7B - very small, very high quality loss",
|
|
},
|
|
{
|
|
"Q3_K_M",
|
|
LLAMA_FTYPE_MOSTLY_Q3_K_M,
|
|
" 3.06G, +0.2437 ppl @ 7B - very small, very high quality loss",
|
|
},
|
|
{
|
|
"Q3_K_L",
|
|
LLAMA_FTYPE_MOSTLY_Q3_K_L,
|
|
" 3.35G, +0.1803 ppl @ 7B - small, substantial quality loss",
|
|
},
|
|
{
|
|
"Q4_K",
|
|
LLAMA_FTYPE_MOSTLY_Q4_K_M,
|
|
"alias for Q4_K_M",
|
|
},
|
|
{
|
|
"Q4_K_S",
|
|
LLAMA_FTYPE_MOSTLY_Q4_K_S,
|
|
" 3.56G, +0.1149 ppl @ 7B - small, significant quality loss",
|
|
},
|
|
{
|
|
"Q4_K_M",
|
|
LLAMA_FTYPE_MOSTLY_Q4_K_M,
|
|
" 3.80G, +0.0535 ppl @ 7B - medium, balanced quality - *recommended*",
|
|
},
|
|
{
|
|
"Q5_K",
|
|
LLAMA_FTYPE_MOSTLY_Q5_K_M,
|
|
"alias for Q5_K_M",
|
|
},
|
|
{
|
|
"Q5_K_S",
|
|
LLAMA_FTYPE_MOSTLY_Q5_K_S,
|
|
" 4.33G, +0.0353 ppl @ 7B - large, low quality loss - *recommended*",
|
|
},
|
|
{
|
|
"Q5_K_M",
|
|
LLAMA_FTYPE_MOSTLY_Q5_K_M,
|
|
" 4.45G, +0.0142 ppl @ 7B - large, very low quality loss - *recommended*",
|
|
},
|
|
{
|
|
"Q6_K",
|
|
LLAMA_FTYPE_MOSTLY_Q6_K,
|
|
" 5.15G, +0.0044 ppl @ 7B - very large, extremely low quality loss",
|
|
},
|
|
#endif
|
|
{
|
|
"Q8_0",
|
|
LLAMA_FTYPE_MOSTLY_Q8_0,
|
|
" 6.70G, +0.0004 ppl @ 7B - very large, extremely low quality loss - not recommended",
|
|
},
|
|
{
|
|
"F16",
|
|
LLAMA_FTYPE_MOSTLY_F16,
|
|
"13.00G @ 7B - extremely large, virtually no quality loss - not recommended",
|
|
},
|
|
{
|
|
"F32",
|
|
LLAMA_FTYPE_ALL_F32,
|
|
"26.00G @ 7B - absolutely huge, lossless - not recommended",
|
|
},
|
|
};
|
|
|
|
|
|
bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftype, std::string & ftype_str_out) {
|
|
std::string ftype_str;
|
|
|
|
for (auto ch : ftype_str_in) {
|
|
ftype_str.push_back(std::toupper(ch));
|
|
}
|
|
for (auto & it : QUANT_OPTIONS) {
|
|
if (it.name == ftype_str) {
|
|
ftype = it.ftype;
|
|
ftype_str_out = it.name;
|
|
return true;
|
|
}
|
|
}
|
|
try {
|
|
int ftype_int = std::stoi(ftype_str);
|
|
for (auto & it : QUANT_OPTIONS) {
|
|
if (it.ftype == ftype_int) {
|
|
ftype = it.ftype;
|
|
ftype_str_out = it.name;
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
catch (...) {
|
|
// stoi failed
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// usage:
|
|
// ./quantize [--allow-requantize] [--leave-output-tensor] models/llama/ggml-model.bin [models/llama/ggml-model-quant.bin] type [nthreads]
|
|
//
|
|
void usage(const char * executable) {
|
|
fprintf(stderr, "usage: %s [--help] [--allow-requantize] [--leave-output-tensor] model-f32.bin [model-quant.bin] type [nthreads]\n\n", executable);
|
|
fprintf(stderr, " --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
|
|
fprintf(stderr, " --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n");
|
|
fprintf(stderr, "\nAllowed quantization types:\n");
|
|
for (auto & it : QUANT_OPTIONS) {
|
|
printf(" %2d or %-6s : %s\n", it.ftype, it.name.c_str(), it.desc.c_str());
|
|
}
|
|
exit(1);
|
|
}
|
|
|
|
int main(int argc, char ** argv) {
|
|
if (argc < 3) {
|
|
usage(argv[0]);
|
|
}
|
|
|
|
llama_model_quantize_params params = llama_model_quantize_default_params();
|
|
|
|
int arg_idx = 1;
|
|
|
|
for (; arg_idx < argc && strncmp(argv[arg_idx], "--", 2) == 0; arg_idx++) {
|
|
if (strcmp(argv[arg_idx], "--leave-output-tensor") == 0) {
|
|
params.quantize_output_tensor = false;
|
|
} else if (strcmp(argv[arg_idx], "--allow-requantize") == 0) {
|
|
params.allow_requantize = true;
|
|
} else {
|
|
usage(argv[0]);
|
|
}
|
|
}
|
|
|
|
if (argc - arg_idx < 3) {
|
|
usage(argv[0]);
|
|
}
|
|
|
|
llama_init_backend(false);
|
|
|
|
// parse command line arguments
|
|
const std::string fname_inp = argv[arg_idx];
|
|
arg_idx++;
|
|
std::string fname_out;
|
|
|
|
std::string ftype_str;
|
|
if (try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) {
|
|
std::string fpath;
|
|
const size_t pos = fname_inp.find_last_of('/');
|
|
if (pos != std::string::npos) {
|
|
fpath = fname_inp.substr(0, pos + 1);
|
|
}
|
|
// export as [inp path]/ggml-model-[ftype].bin
|
|
fname_out = fpath + "ggml-model-" + ftype_str + ".bin";
|
|
arg_idx++;
|
|
}
|
|
else {
|
|
fname_out = argv[arg_idx];
|
|
arg_idx++;
|
|
|
|
if (argc <= arg_idx) {
|
|
fprintf(stderr, "%s: missing ftype\n", __func__);
|
|
return 1;
|
|
}
|
|
if (!try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) {
|
|
fprintf(stderr, "%s: invalid ftype '%s'\n", __func__, argv[3]);
|
|
return 1;
|
|
}
|
|
arg_idx++;
|
|
}
|
|
|
|
// parse nthreads
|
|
if (argc > arg_idx) {
|
|
try {
|
|
params.nthread = std::stoi(argv[arg_idx]);
|
|
}
|
|
catch (const std::exception & e) {
|
|
fprintf(stderr, "%s: invalid nthread '%s' (%s)\n", __func__, argv[arg_idx], e.what());
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
|
|
|
|
fprintf(stderr, "%s: quantizing '%s' to '%s' as %s", __func__, fname_inp.c_str(), fname_out.c_str(), ftype_str.c_str());
|
|
if (params.nthread > 0) {
|
|
fprintf(stderr, " using %d threads", params.nthread);
|
|
}
|
|
fprintf(stderr, "\n");
|
|
|
|
const int64_t t_main_start_us = llama_time_us();
|
|
|
|
int64_t t_quantize_us = 0;
|
|
|
|
// load the model
|
|
{
|
|
const int64_t t_start_us = llama_time_us();
|
|
|
|
if (llama_model_quantize(fname_inp.c_str(), fname_out.c_str(), ¶ms)) {
|
|
fprintf(stderr, "%s: failed to quantize model from '%s'\n", __func__, fname_inp.c_str());
|
|
return 1;
|
|
}
|
|
|
|
t_quantize_us = llama_time_us() - t_start_us;
|
|
}
|
|
|
|
// report timing
|
|
{
|
|
const int64_t t_main_end_us = llama_time_us();
|
|
|
|
printf("\n");
|
|
printf("%s: quantize time = %8.2f ms\n", __func__, t_quantize_us/1000.0);
|
|
printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0);
|
|
}
|
|
|
|
return 0;
|
|
}
|