mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-01 00:39:00 +01:00
2307523d32
* Vulkan loader code * Fix matmul kernel, continue implementation * Continue implementation * Vulkan memory management * Vulkan development * Matmul call * Add aligned malloc and free for VMA * Continue implementation * First matmul success * GEMM Kernel optimization * 1D Blocktiling * 2D Blocktiling * Write coalescing * Continue vulkan implementation and optimization * First FP16 attempt, disabled for now * Code abstraction, FP16 implementation, fix kernel, add FP16 to FP32 kernel * Enable device extensions properly, restore fp16 matmul op * Fix mulmat_f16 * Output FP32 in fp16 matmul shader * Fix f16_to_f32 kernel * dequant_q4_0 kernel * Add VMA library * Avoid requesting dedicated memory, VMA can decide that by itself * Add bounds checking to matmul kernels, improve implementation, fix command buffers not freed properly * add cmake commands * Add 2d write operation, profiling code * Fix 2d write * Fix queue selection for AMD RADV * Fix trailing whitespace in vk_mem_alloc.h * Add WIP warp tile mat mul shaders * Disable glslc optimization * Disable glslc optimization for CMake * Optimize warptile matmul shader, replace blocktile with it * Add split-k optimization for small matrix multiplication Use semaphores for synchronization instead of fences or waitidle Rework async write/read for synchronization * Fix validation errors, improve compatibility with AMD GPUs * Rework command buffer handling * Variable matmul kernel using specialization constants * Fix synchronization on AMD, add barriers for buffer ownership transfer, add debug flag and prints * Reuse semaphores * Handle stage flags during command buffer submission properly * Increase matmul test runs for consistent results * Fix F32 matmul * Add vectorized loading and zeropadding for matrix multiplication * Use pinned memory for f16 preprocessing * Don't force aligned matmul * Don't free before queue done * Replace VMA library with native Vulkan buffer management * Basic offloading support with mul_f32 and dmmv for q4_0 * Run glslc commands in parallel * Unroll loops in dmmv shader * Reduce usage of waitIdle * Reuse pinned allocation for f16 conversion * Handle devices with only a single queue * Fix trailing whitespace in CMakeLists.txt * Allow parallel execution of kernels, parallelize third and fourth dimension calls * Add fallback for devices only supporting one DescriptorSet per DescriptorPool * Move to graph function similar to CUDA implementation * Use F16 kernel for most things, replace q_f32 with mul_mat_q_f16 function * Add F32 dmmv shaders * Batch submissions * Add .spv to gitignore * Split off matrix vector multiplication for separate optimization * Use single command buffer for matrix vector multiplication ops * Reduce overhead of mul_f32 calls by using a single command buffer * Add submission batching to mul_f32 * Fix tests * Add missing barrier * Add further missing barrier * Add further ops * Replace vk::QueueFamilyIgnored with VK_QUEUE_FAMILY_IGNORED to support more Vulkan header versions * Remove unnecessary cblas link * Fix descriptor set pre-allocation assert * Add runtime shader compilation, start transferring shaders to this approach * Transfer remaining shaders to header and compile on runtime * Fix fp32 fallback if device doesn't support fp16, add force disable env var GGML_VULKAN_DISABLE_F16 * Add support for q4_1, q5_0, q5_1 and q8_0 * Remove unnecessary scalar layout extension * Parse graph early to pre-record command buffers * Add q6_k support * Add multi-submit for command buffers * Fix q6_k dequant shader for AMD * Fix q6_k for GPUs without fp16 support * Simplify q6_k fp16 fix * Minor fixes * Fix wg_denom of m-mulmat shaders * Add Python-based Vulkan shader generator * Replace shaderc dependency with precompiled shaders Fix python script to generate shaders * Clean up code * Fix shader generator script Windows compatibility Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com> * Close file before deletion * Fix vulkan shader fp32 name * Add q2_k and q3_k support Add validation check to compare shader results to cpu results * Add q4_k support * Add q5_k support * Bake SPIR-V bytecode into the library instead of loading shaders from file * Switch to signal semaphores for flexibility Prepare broadcasting support for mul mat * Finish broadcasting mul mat support for GQA * Clean up unused functions Add repeat op * Add further ops, not yet enabled. Improve semaphore code * Reduce number of used semaphores by utilizing timelines more properly * Remove queue information * Reuse timeline semaphores, allow parallel operation with binary semaphores to work around nvidia driver limitations * Add Vulkan to llama-bench * Remove cblas dependency * Fix matmul k-split bug * Fix q4_k dmmv K_QUANTS_PER_ITERATION 1 shader * Add RMS Norm shader, rework op_f32 shader setup, fix matmul bug * Fix issues with float16 overflows in shaders * Fix issues with older Vulkan headers on Ubuntu 22.04 * Allow multi-op partial offloading by parsing the graph to preallocate enough between-op buffers * Implement further ops, rework op_f32 calls, fix bugs * Finish full offloading support, add last remaining ops, fix bugs, remove redundant code * Upload generated file ggml-vulkan-shaders.hpp, remove redundant shaders * Merge upstream changes, fix conflicts, adapt soft_max op * Fix Python and shader header format * Free model gpu buffers on exit * Use single queue per device to simplify code * Add matmul shader support for running multiple calculations in parallel * Switch from semaphore-synchronized multiple command buffers per op to single command buffer for multiple ops, whole graph if possible * Fix missing event cast * Replace uint64_t(-1) with UINT64_MAX, rename function for clarity * Fix warning about empty C function parameters * Fix compiler warnings * Properly implement Vulkan backend buffer handling * Fix oversized host staging buffers * Simplify barrier synchronization calls * Fix gcc warnings * Implement max_size for backend buffer types to limit the size of a single allocation * Use min of maxMemoryAllocationSize and maxBufferSize for device max allocation size * refactor multi buf * Disable unsupported ops to fix tests * Check for maintenance4 support before using it * Handle devices with only a single queue * Fix single queue logic * propagate buffer usage in multi buffers * Implement rope_neox op * Cleanup header and other files * Simplify gpu_extras by removing events and putting staging memcpys into contexts * Move queue into context Add not-yet-enabled async backend ops * Simplify context use, optimize matmul shader for warp size 64 (AMD GCN), fix split_k matmul shader optimization * Add get_max_size to SYCL backend. Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * llama : fix trailing whitespace --------- Co-authored-by: Henri Vasserman <henv@hot.ee> Co-authored-by: Concedo <39025047+LostRuins@users.noreply.github.com> Co-authored-by: slaren <slarengh@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
893 lines
31 KiB
C
893 lines
31 KiB
C
#include "ggml-alloc.h"
|
|
#include "ggml-backend-impl.h"
|
|
#include "ggml.h"
|
|
#include "ggml-impl.h"
|
|
#include <assert.h>
|
|
#include <limits.h>
|
|
#include <stdarg.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
|
#define MAX_FREE_BLOCKS 256
|
|
|
|
//#define GGML_ALLOCATOR_DEBUG
|
|
|
|
//#define AT_PRINTF(...) fprintf(stderr, __VA_ARGS__)
|
|
#define AT_PRINTF(...)
|
|
|
|
// TODO: GGML_PAD ?
|
|
static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) {
|
|
assert(alignment && !(alignment & (alignment - 1))); // power of 2
|
|
size_t align = (alignment - (((uintptr_t)buffer + offset) % alignment)) % alignment;
|
|
return offset + align;
|
|
}
|
|
|
|
struct free_block {
|
|
void * addr;
|
|
size_t size;
|
|
};
|
|
|
|
struct ggml_tallocr {
|
|
struct ggml_backend_buffer * buffer;
|
|
bool buffer_owned;
|
|
void * base;
|
|
size_t alignment;
|
|
|
|
int n_free_blocks;
|
|
struct free_block free_blocks[MAX_FREE_BLOCKS];
|
|
|
|
size_t max_size;
|
|
|
|
bool measure;
|
|
|
|
#ifdef GGML_ALLOCATOR_DEBUG
|
|
struct ggml_tensor * allocated_tensors[1024];
|
|
#endif
|
|
};
|
|
|
|
#ifdef GGML_ALLOCATOR_DEBUG
|
|
static void add_allocated_tensor(ggml_tallocr_t alloc, struct ggml_tensor * tensor) {
|
|
for (int i = 0; i < 1024; i++) {
|
|
if (alloc->allocated_tensors[i] == NULL) {
|
|
alloc->allocated_tensors[i] = tensor;
|
|
return;
|
|
}
|
|
}
|
|
GGML_ASSERT(!"out of allocated_tensors");
|
|
}
|
|
static void remove_allocated_tensor(ggml_tallocr_t alloc, struct ggml_tensor * tensor) {
|
|
for (int i = 0; i < 1024; i++) {
|
|
if (alloc->allocated_tensors[i] == tensor ||
|
|
(alloc->allocated_tensors[i] != NULL && alloc->allocated_tensors[i]->data == tensor->data)) {
|
|
alloc->allocated_tensors[i] = NULL;
|
|
return;
|
|
}
|
|
}
|
|
printf("tried to free tensor %s not found\n", tensor->name);
|
|
GGML_ASSERT(!"tensor not found");
|
|
}
|
|
#endif
|
|
|
|
// check if a tensor is allocated by this buffer
|
|
static bool ggml_tallocr_is_own(ggml_tallocr_t alloc, const struct ggml_tensor * tensor) {
|
|
return tensor->buffer == alloc->buffer && (!tensor->view_src || tensor->view_src->buffer == alloc->buffer);
|
|
}
|
|
|
|
static bool ggml_is_view(struct ggml_tensor * t) {
|
|
return t->view_src != NULL;
|
|
}
|
|
|
|
void ggml_tallocr_alloc(ggml_tallocr_t alloc, struct ggml_tensor * tensor) {
|
|
GGML_ASSERT(!ggml_is_view(tensor)); // views generally get data pointer from one of their sources
|
|
GGML_ASSERT(tensor->data == NULL); // avoid allocating tensor which already has memory allocated
|
|
|
|
size_t size = ggml_backend_buffer_get_alloc_size(alloc->buffer, tensor);
|
|
size = aligned_offset(NULL, size, alloc->alignment);
|
|
|
|
AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size);
|
|
|
|
size_t max_avail = 0;
|
|
|
|
// find the best fitting free block besides the last block
|
|
int best_fit_block = -1;
|
|
size_t best_fit_size = SIZE_MAX;
|
|
for (int i = 0; i < alloc->n_free_blocks - 1; i++) {
|
|
struct free_block * block = &alloc->free_blocks[i];
|
|
max_avail = MAX(max_avail, block->size);
|
|
if (block->size >= size && block->size <= best_fit_size) {
|
|
best_fit_block = i;
|
|
best_fit_size = block->size;
|
|
}
|
|
}
|
|
|
|
if (best_fit_block == -1) {
|
|
// the last block is our last resort
|
|
struct free_block * block = &alloc->free_blocks[alloc->n_free_blocks - 1];
|
|
max_avail = MAX(max_avail, block->size);
|
|
if (block->size >= size) {
|
|
best_fit_block = alloc->n_free_blocks - 1;
|
|
} else {
|
|
fprintf(stderr, "%s: not enough space in the buffer to allocate %s (needed %zu, largest block available %zu)\n",
|
|
__func__, tensor->name, size, max_avail);
|
|
GGML_ASSERT(!"not enough space in the buffer");
|
|
return;
|
|
}
|
|
}
|
|
|
|
struct free_block * block = &alloc->free_blocks[best_fit_block];
|
|
void * addr = block->addr;
|
|
block->addr = (char*)block->addr + size;
|
|
block->size -= size;
|
|
if (block->size == 0) {
|
|
// remove block if empty
|
|
alloc->n_free_blocks--;
|
|
for (int j = best_fit_block; j < alloc->n_free_blocks; j++) {
|
|
alloc->free_blocks[j] = alloc->free_blocks[j+1];
|
|
}
|
|
}
|
|
|
|
AT_PRINTF("block %d, addr %p\n", best_fit_block, addr);
|
|
|
|
tensor->data = addr;
|
|
tensor->buffer = alloc->buffer;
|
|
if (!alloc->measure) {
|
|
ggml_backend_buffer_init_tensor(alloc->buffer, tensor);
|
|
}
|
|
|
|
#ifdef GGML_ALLOCATOR_DEBUG
|
|
add_allocated_tensor(alloc, tensor);
|
|
size_t cur_max = (char*)addr - (char*)alloc->base + size;
|
|
if (cur_max > alloc->max_size) {
|
|
printf("max_size = %.2f MB: tensors: ", cur_max / 1024.0 / 1024.0);
|
|
for (int i = 0; i < 1024; i++) {
|
|
if (alloc->allocated_tensors[i]) {
|
|
printf("%s (%.2f MB) ", alloc->allocated_tensors[i]->name, ggml_nbytes(alloc->allocated_tensors[i]) / 1024.0 / 1024.0);
|
|
}
|
|
}
|
|
printf("\n");
|
|
}
|
|
#endif
|
|
|
|
alloc->max_size = MAX(alloc->max_size, (char*)addr - (char*)alloc->base + size);
|
|
}
|
|
|
|
// this is a very naive implementation, but for our case the number of free blocks should be very small
|
|
static void ggml_tallocr_free_tensor(ggml_tallocr_t alloc, struct ggml_tensor * tensor) {
|
|
if (ggml_tallocr_is_own(alloc, tensor) == false) {
|
|
// the tensor was not allocated in this buffer
|
|
// this can happen because the graph allocator will try to free weights and other tensors from different buffers
|
|
// the easiest way to deal with this is just to ignore it
|
|
// AT_PRINTF("ignoring %s (their buffer: %p, our buffer: %p)\n", tensor->name, (void *)tensor->buffer, (void *)alloc->buffer);
|
|
return;
|
|
}
|
|
|
|
void * ptr = tensor->data;
|
|
|
|
size_t size = ggml_backend_buffer_get_alloc_size(alloc->buffer, tensor);
|
|
size = aligned_offset(NULL, size, alloc->alignment);
|
|
AT_PRINTF("%s: freeing %s at %p (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, ptr, size, alloc->n_free_blocks);
|
|
|
|
#ifdef GGML_ALLOCATOR_DEBUG
|
|
remove_allocated_tensor(alloc, tensor);
|
|
#endif
|
|
|
|
// see if we can merge with an existing block
|
|
for (int i = 0; i < alloc->n_free_blocks; i++) {
|
|
struct free_block * block = &alloc->free_blocks[i];
|
|
// check if ptr is at the end of the block
|
|
if ((char*)block->addr + block->size == ptr) {
|
|
block->size += size;
|
|
// check if we can merge with the next block
|
|
if (i < alloc->n_free_blocks - 1 && (char*)block->addr + block->size == alloc->free_blocks[i+1].addr) {
|
|
block->size += alloc->free_blocks[i+1].size;
|
|
alloc->n_free_blocks--;
|
|
for (int j = i+1; j < alloc->n_free_blocks; j++) {
|
|
alloc->free_blocks[j] = alloc->free_blocks[j+1];
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
// check if ptr is at the beginning of the block
|
|
if ((char*)ptr + size == block->addr) {
|
|
block->addr = ptr;
|
|
block->size += size;
|
|
// check if we can merge with the previous block
|
|
if (i > 0 && (char*)alloc->free_blocks[i-1].addr + alloc->free_blocks[i-1].size == block->addr) {
|
|
alloc->free_blocks[i-1].size += block->size;
|
|
alloc->n_free_blocks--;
|
|
for (int j = i; j < alloc->n_free_blocks; j++) {
|
|
alloc->free_blocks[j] = alloc->free_blocks[j+1];
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
// otherwise, add a new block
|
|
GGML_ASSERT(alloc->n_free_blocks < MAX_FREE_BLOCKS && "out of free blocks");
|
|
// insert the new block in the correct position to keep the array sorted by address (to make merging blocks faster)
|
|
int insert_pos = 0;
|
|
while (insert_pos < alloc->n_free_blocks && alloc->free_blocks[insert_pos].addr < ptr) {
|
|
insert_pos++;
|
|
}
|
|
// shift all blocks from insert_pos onward to make room for the new block
|
|
for (int i = alloc->n_free_blocks; i > insert_pos; i--) {
|
|
alloc->free_blocks[i] = alloc->free_blocks[i-1];
|
|
}
|
|
// insert the new block
|
|
alloc->free_blocks[insert_pos].addr = ptr;
|
|
alloc->free_blocks[insert_pos].size = size;
|
|
alloc->n_free_blocks++;
|
|
}
|
|
|
|
void ggml_tallocr_reset(ggml_tallocr_t alloc) {
|
|
alloc->n_free_blocks = 1;
|
|
size_t align_offset = aligned_offset(alloc->base, 0, alloc->alignment);
|
|
alloc->free_blocks[0].addr = (char *)alloc->base + align_offset;
|
|
|
|
if (alloc->measure) {
|
|
alloc->free_blocks[0].size = SIZE_MAX/2; // restrict maximum size of a measure allocator to half size_t max to avoid overflows
|
|
} else {
|
|
alloc->free_blocks[0].size = ggml_backend_buffer_get_size(alloc->buffer) - align_offset;
|
|
ggml_backend_buffer_reset(alloc->buffer);
|
|
}
|
|
}
|
|
|
|
ggml_tallocr_t ggml_tallocr_new(void * data, size_t size, size_t alignment) {
|
|
struct ggml_backend_buffer * buffer = ggml_backend_cpu_buffer_from_ptr(data, size);
|
|
|
|
ggml_tallocr_t alloc = (ggml_tallocr_t)malloc(sizeof(struct ggml_tallocr));
|
|
|
|
*alloc = (struct ggml_tallocr) {
|
|
/*.buffer = */ buffer,
|
|
/*.buffer_owned = */ true,
|
|
/*.base = */ ggml_backend_buffer_get_base(buffer),
|
|
/*.alignment = */ alignment,
|
|
/*.n_free_blocks = */ 0,
|
|
/*.free_blocks = */ {{0}},
|
|
/*.max_size = */ 0,
|
|
/*.measure = */ false,
|
|
#ifdef GGML_ALLOCATOR_DEBUG
|
|
/*.allocated_tensors = */ {0},
|
|
#endif
|
|
};
|
|
|
|
ggml_tallocr_reset(alloc);
|
|
|
|
return alloc;
|
|
}
|
|
|
|
ggml_tallocr_t ggml_tallocr_new_measure(size_t alignment) {
|
|
ggml_tallocr_t alloc = ggml_tallocr_new((void *)0x1000, SIZE_MAX/2, alignment);
|
|
alloc->measure = true;
|
|
|
|
return alloc;
|
|
}
|
|
|
|
ggml_tallocr_t ggml_tallocr_new_measure_from_buft(struct ggml_backend_buffer_type * buft) {
|
|
// create a backend buffer to get the correct tensor allocation sizes
|
|
ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, 1);
|
|
|
|
// TODO: move alloc initialization to a common ggml_tallocr_new_impl function
|
|
ggml_tallocr_t alloc = ggml_tallocr_new_from_buffer(buffer);
|
|
alloc->buffer_owned = true;
|
|
alloc->measure = true;
|
|
ggml_tallocr_reset(alloc);
|
|
return alloc;
|
|
}
|
|
|
|
ggml_tallocr_t ggml_tallocr_new_measure_from_backend(struct ggml_backend * backend) {
|
|
return ggml_tallocr_new_measure_from_buft(ggml_backend_get_default_buffer_type(backend));
|
|
}
|
|
|
|
ggml_tallocr_t ggml_tallocr_new_from_buft(struct ggml_backend_buffer_type * buft, size_t size) {
|
|
// create a backend buffer to get the correct tensor allocation sizes
|
|
ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, size);
|
|
ggml_tallocr_t alloc = ggml_tallocr_new_from_buffer(buffer);
|
|
alloc->buffer_owned = true;
|
|
return alloc;
|
|
}
|
|
|
|
ggml_tallocr_t ggml_tallocr_new_from_backend(struct ggml_backend * backend, size_t size) {
|
|
return ggml_tallocr_new_from_buft(ggml_backend_get_default_buffer_type(backend), size);
|
|
}
|
|
|
|
ggml_tallocr_t ggml_tallocr_new_from_buffer(struct ggml_backend_buffer * buffer) {
|
|
ggml_tallocr_t alloc = (ggml_tallocr_t)malloc(sizeof(struct ggml_tallocr));
|
|
|
|
*alloc = (struct ggml_tallocr) {
|
|
/*.buffer = */ buffer,
|
|
/*.buffer_owned = */ false,
|
|
/*.base = */ ggml_backend_buffer_get_base(buffer),
|
|
/*.alignment = */ ggml_backend_buffer_get_alignment(buffer),
|
|
/*.n_free_blocks = */ 0,
|
|
/*.free_blocks = */ {{0}},
|
|
/*.max_size = */ 0,
|
|
/*.measure = */ false,
|
|
#ifdef GGML_ALLOCATOR_DEBUG
|
|
/*.allocated_tensors = */ {0},
|
|
#endif
|
|
};
|
|
|
|
ggml_tallocr_reset(alloc);
|
|
|
|
return alloc;
|
|
}
|
|
|
|
struct ggml_backend_buffer * ggml_tallocr_get_buffer(ggml_tallocr_t alloc) {
|
|
return alloc->buffer;
|
|
}
|
|
|
|
void ggml_tallocr_free(ggml_tallocr_t alloc) {
|
|
if (alloc == NULL) {
|
|
return;
|
|
}
|
|
|
|
if (alloc->buffer_owned) {
|
|
ggml_backend_buffer_free(alloc->buffer);
|
|
}
|
|
free(alloc);
|
|
}
|
|
|
|
bool ggml_tallocr_is_measure(ggml_tallocr_t alloc) {
|
|
return alloc->measure;
|
|
}
|
|
|
|
size_t ggml_tallocr_max_size(ggml_tallocr_t alloc) {
|
|
// FIXME: changes in the tensor sizes compared to the measure graph may cause allocations to fail
|
|
// to avoid this, we add a 10% margin to the buffer size
|
|
return alloc->max_size + alloc->max_size/10;
|
|
}
|
|
|
|
// graph allocator
|
|
|
|
struct hash_node {
|
|
int n_children;
|
|
int n_views;
|
|
};
|
|
|
|
struct ggml_gallocr {
|
|
ggml_tallocr_t talloc;
|
|
struct ggml_hash_set hash_set;
|
|
struct hash_node * hash_values;
|
|
size_t hash_values_size;
|
|
ggml_tallocr_t * hash_allocs;
|
|
int * parse_seq;
|
|
int parse_seq_len;
|
|
};
|
|
|
|
ggml_gallocr_t ggml_gallocr_new(void) {
|
|
ggml_gallocr_t galloc = (ggml_gallocr_t)malloc(sizeof(struct ggml_gallocr));
|
|
|
|
*galloc = (struct ggml_gallocr) {
|
|
/*.talloc = */ NULL,
|
|
/*.hash_set = */ {0},
|
|
/*.hash_values = */ NULL,
|
|
/*.hash_values_size = */ 0,
|
|
/*.hash_allocs = */ NULL,
|
|
/*.parse_seq = */ NULL,
|
|
/*.parse_seq_len = */ 0,
|
|
};
|
|
|
|
return galloc;
|
|
}
|
|
|
|
void ggml_gallocr_free(ggml_gallocr_t galloc) {
|
|
if (galloc == NULL) {
|
|
return;
|
|
}
|
|
|
|
if (galloc->hash_set.keys != NULL) {
|
|
free(galloc->hash_set.keys);
|
|
}
|
|
if (galloc->hash_values != NULL) {
|
|
free(galloc->hash_values);
|
|
}
|
|
if (galloc->hash_allocs != NULL) {
|
|
free(galloc->hash_allocs);
|
|
}
|
|
if (galloc->parse_seq != NULL) {
|
|
free(galloc->parse_seq);
|
|
}
|
|
free(galloc);
|
|
}
|
|
|
|
void ggml_gallocr_set_parse_seq(ggml_gallocr_t galloc, const int * list, int n) {
|
|
free(galloc->parse_seq);
|
|
galloc->parse_seq = malloc(sizeof(int) * n);
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
galloc->parse_seq[i] = list[i];
|
|
}
|
|
galloc->parse_seq_len = n;
|
|
}
|
|
|
|
static struct hash_node * hash_get(ggml_gallocr_t galloc, struct ggml_tensor * t) {
|
|
size_t i = ggml_hash_find_or_insert(galloc->hash_set, t);
|
|
return &galloc->hash_values[i];
|
|
}
|
|
|
|
static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
|
|
if (a->type != b->type) {
|
|
return false;
|
|
}
|
|
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
|
if (a->ne[i] != b->ne[i]) {
|
|
return false;
|
|
}
|
|
if (a->nb[i] != b->nb[i]) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool ggml_op_can_inplace(enum ggml_op op) {
|
|
switch (op) {
|
|
case GGML_OP_SCALE:
|
|
case GGML_OP_DIAG_MASK_ZERO:
|
|
case GGML_OP_DIAG_MASK_INF:
|
|
case GGML_OP_ADD:
|
|
case GGML_OP_ADD1:
|
|
case GGML_OP_SUB:
|
|
case GGML_OP_MUL:
|
|
case GGML_OP_DIV:
|
|
case GGML_OP_SQR:
|
|
case GGML_OP_SQRT:
|
|
case GGML_OP_LOG:
|
|
case GGML_OP_UNARY:
|
|
case GGML_OP_ROPE:
|
|
case GGML_OP_RMS_NORM:
|
|
case GGML_OP_SOFT_MAX:
|
|
return true;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static ggml_tallocr_t node_tallocr(ggml_gallocr_t galloc, struct ggml_tensor * node) {
|
|
if (galloc->talloc != NULL) {
|
|
return galloc->talloc;
|
|
}
|
|
|
|
return galloc->hash_allocs[ggml_hash_find_or_insert(galloc->hash_set, node)];
|
|
}
|
|
|
|
static void init_view(ggml_gallocr_t galloc, struct ggml_tensor * view, bool update_backend) {
|
|
ggml_tallocr_t alloc = node_tallocr(galloc, view);
|
|
|
|
GGML_ASSERT(view->view_src != NULL && view->view_src->data != NULL);
|
|
if (update_backend) {
|
|
view->backend = view->view_src->backend;
|
|
}
|
|
// views are initialized in the alloc buffer rather than the view_src buffer
|
|
view->buffer = alloc->buffer;
|
|
view->data = (char *)view->view_src->data + view->view_offs;
|
|
|
|
assert(ggml_tallocr_is_measure(alloc) || !view->buffer || view->buffer->buft == alloc->buffer->buft);
|
|
|
|
if (!alloc->measure) {
|
|
ggml_backend_buffer_init_tensor(alloc->buffer, view);
|
|
}
|
|
}
|
|
|
|
static void allocate_node(ggml_gallocr_t galloc, struct ggml_tensor * node) {
|
|
ggml_tallocr_t alloc = node_tallocr(galloc, node);
|
|
|
|
if (node->data == NULL) {
|
|
if (ggml_is_view(node)) {
|
|
init_view(galloc, node, true);
|
|
} else {
|
|
// see if we can reuse a parent's buffer (inplace)
|
|
if (ggml_op_can_inplace(node->op)) {
|
|
for (int i = 0; i < GGML_MAX_SRC; i++) {
|
|
struct ggml_tensor * parent = node->src[i];
|
|
if (parent == NULL) {
|
|
break;
|
|
}
|
|
|
|
// if the node's data is external, then we cannot re-use it
|
|
if (ggml_tallocr_is_own(alloc, parent) == false) {
|
|
AT_PRINTF("not reusing parent %s for %s as %p is external\n", parent->name, node->name, parent->data);
|
|
continue;
|
|
}
|
|
|
|
struct hash_node * p_hn = hash_get(galloc, parent);
|
|
if (parent->data != NULL && p_hn->n_children == 1 && p_hn->n_views == 0 && ggml_are_same_layout(node, parent)) {
|
|
if (ggml_is_view(parent)) {
|
|
struct ggml_tensor * view_src = parent->view_src;
|
|
struct hash_node * view_src_hn = hash_get(galloc, view_src);
|
|
if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) {
|
|
// TODO: the offset of the view parent must be kept to ensure that the op doesn't overwrite
|
|
// the parent's data that it will need later (same layout requirement). the problem is that then
|
|
// we cannot free the tensor because the original address of the allocation is lost.
|
|
// adding a view_src pointer to the tensor would solve this and simplify the code dealing with views
|
|
// for now, we only reuse the parent's data if the offset is zero (view_src->data == parent->data)
|
|
AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name);
|
|
node->view_src = view_src;
|
|
view_src_hn->n_views += 1;
|
|
init_view(galloc, node, false);
|
|
return;
|
|
}
|
|
} else {
|
|
AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name);
|
|
node->view_src = parent;
|
|
p_hn->n_views += 1;
|
|
init_view(galloc, node, false);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
ggml_tallocr_alloc(alloc, node);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void free_node(ggml_gallocr_t galloc, struct ggml_tensor * node) {
|
|
ggml_tallocr_t alloc = node_tallocr(galloc, node);
|
|
|
|
ggml_tallocr_free_tensor(alloc, node);
|
|
}
|
|
|
|
static void ggml_tallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgraph * gf) {
|
|
const int * parse_seq = galloc->parse_seq;
|
|
int parse_seq_len = galloc->parse_seq_len;
|
|
|
|
// count number of children and views
|
|
for (int i = 0; i < gf->n_nodes; i++) {
|
|
struct ggml_tensor * node = gf->nodes[i];
|
|
|
|
if (ggml_is_view(node)) {
|
|
struct ggml_tensor * view_src = node->view_src;
|
|
hash_get(galloc, view_src)->n_views += 1;
|
|
if (node->buffer == NULL && node->data != NULL) {
|
|
// view of a pre-allocated tensor, didn't call init_view() yet
|
|
init_view(galloc, node, true);
|
|
}
|
|
}
|
|
|
|
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
|
struct ggml_tensor * parent = node->src[j];
|
|
if (parent == NULL) {
|
|
break;
|
|
}
|
|
hash_get(galloc, parent)->n_children += 1;
|
|
if (ggml_is_view(parent) && parent->buffer == NULL && parent->data != NULL) {
|
|
init_view(galloc, parent, true);
|
|
}
|
|
}
|
|
}
|
|
|
|
// allocate tensors
|
|
// if we have parse_seq then we allocate nodes following the list, and we only free nodes at barriers
|
|
int last_barrier_pos = 0;
|
|
int n_nodes = parse_seq_len ? parse_seq_len : gf->n_nodes;
|
|
|
|
for (int ind = 0; ind < n_nodes; ind++) {
|
|
// allocate a node if there is no parse_seq or this is not a barrier
|
|
if (parse_seq_len == 0 || parse_seq[ind] != -1) {
|
|
int i = parse_seq_len ? parse_seq[ind] : ind;
|
|
struct ggml_tensor * node = gf->nodes[i];
|
|
|
|
// allocate parents (leafs)
|
|
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
|
struct ggml_tensor * parent = node->src[j];
|
|
if (parent == NULL) {
|
|
break;
|
|
}
|
|
allocate_node(galloc, parent);
|
|
}
|
|
|
|
// allocate node
|
|
allocate_node(galloc, node);
|
|
|
|
AT_PRINTF("exec: %s (%s) <= ", ggml_op_name(node->op), node->name);
|
|
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
|
struct ggml_tensor * parent = node->src[j];
|
|
if (parent == NULL) {
|
|
break;
|
|
}
|
|
AT_PRINTF("%s", parent->name);
|
|
if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) {
|
|
AT_PRINTF(", ");
|
|
}
|
|
}
|
|
AT_PRINTF("\n");
|
|
}
|
|
|
|
// update parents
|
|
// update immediately if there is no parse_seq
|
|
// update only at barriers if there is parse_seq
|
|
if ((parse_seq_len == 0) || parse_seq[ind] == -1) {
|
|
int update_start = parse_seq_len ? last_barrier_pos : ind;
|
|
int update_end = parse_seq_len ? ind : ind + 1;
|
|
for (int i = update_start; i < update_end; i++) {
|
|
int node_i = parse_seq_len ? parse_seq[i] : i;
|
|
struct ggml_tensor * node = gf->nodes[node_i];
|
|
|
|
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
|
struct ggml_tensor * parent = node->src[j];
|
|
if (parent == NULL) {
|
|
break;
|
|
}
|
|
struct hash_node * p_hn = hash_get(galloc, parent);
|
|
p_hn->n_children -= 1;
|
|
|
|
//AT_PRINTF("parent %s: %d children, %d views\n", parent->name, parent->n_children, parent->n_views);
|
|
|
|
if (p_hn->n_children == 0 && p_hn->n_views == 0) {
|
|
if (ggml_is_view(parent)) {
|
|
struct ggml_tensor * view_src = parent->view_src;
|
|
struct hash_node * view_src_hn = hash_get(galloc, view_src);
|
|
view_src_hn->n_views -= 1;
|
|
AT_PRINTF("view_src %s: %d children, %d views\n", view_src->name, view_src_hn->n_children, view_src_hn->n_views);
|
|
if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0) {
|
|
free_node(galloc, view_src);
|
|
}
|
|
}
|
|
else {
|
|
free_node(galloc, parent);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
AT_PRINTF("\n");
|
|
if (parse_seq_len) {
|
|
last_barrier_pos = ind + 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
size_t ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, ggml_tallocr_t talloc, struct ggml_cgraph * graph) {
|
|
size_t hash_size = graph->visited_hash_table.size;
|
|
|
|
// check if the hash table is initialized and large enough
|
|
if (galloc->hash_set.size < hash_size) {
|
|
if (galloc->hash_set.keys != NULL) {
|
|
free(galloc->hash_set.keys);
|
|
}
|
|
if (galloc->hash_values != NULL) {
|
|
free(galloc->hash_values);
|
|
}
|
|
galloc->hash_set.keys = malloc(sizeof(struct ggml_tensor *) * hash_size);
|
|
galloc->hash_set.size = hash_size;
|
|
galloc->hash_values = malloc(sizeof(struct hash_node) * hash_size);
|
|
}
|
|
|
|
// reset hash table
|
|
memset(galloc->hash_set.keys, 0, sizeof(struct ggml_tensor *) * hash_size);
|
|
memset(galloc->hash_values, 0, sizeof(struct hash_node) * hash_size);
|
|
|
|
galloc->talloc = talloc;
|
|
ggml_tallocr_alloc_graph_impl(galloc, graph);
|
|
galloc->talloc = NULL;
|
|
|
|
size_t max_size = ggml_tallocr_max_size(talloc);
|
|
|
|
return max_size;
|
|
}
|
|
|
|
void ggml_gallocr_alloc_graph_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, struct ggml_hash_set hash_set, ggml_tallocr_t * hash_node_talloc) {
|
|
const size_t hash_size = hash_set.size;
|
|
|
|
GGML_ASSERT(hash_size >= (size_t)(graph->n_nodes + graph->n_leafs));
|
|
|
|
galloc->talloc = NULL;
|
|
|
|
// alloc hash_values if needed
|
|
if (galloc->hash_values == NULL || galloc->hash_values_size < hash_size) {
|
|
free(galloc->hash_values);
|
|
galloc->hash_values = malloc(sizeof(struct hash_node) * hash_size);
|
|
galloc->hash_values_size = hash_size;
|
|
}
|
|
|
|
// free hash_set.keys if needed
|
|
if (galloc->hash_set.keys != NULL) {
|
|
free(galloc->hash_set.keys);
|
|
}
|
|
galloc->hash_set = hash_set;
|
|
|
|
// reset hash values
|
|
memset(galloc->hash_values, 0, sizeof(struct hash_node) * hash_size);
|
|
|
|
galloc->hash_allocs = hash_node_talloc;
|
|
|
|
ggml_tallocr_alloc_graph_impl(galloc, graph);
|
|
|
|
// remove unowned resources
|
|
galloc->hash_set.keys = NULL;
|
|
galloc->hash_allocs = NULL;
|
|
}
|
|
|
|
// legacy API wrapper
|
|
|
|
struct ggml_allocr {
|
|
ggml_tallocr_t talloc;
|
|
ggml_gallocr_t galloc;
|
|
};
|
|
|
|
static ggml_allocr_t ggml_allocr_new_impl(ggml_tallocr_t talloc) {
|
|
ggml_allocr_t alloc = (ggml_allocr_t)malloc(sizeof(struct ggml_allocr));
|
|
*alloc = (struct ggml_allocr) {
|
|
/*.talloc = */ talloc,
|
|
/*.galloc = */ ggml_gallocr_new(),
|
|
};
|
|
return alloc;
|
|
}
|
|
|
|
ggml_allocr_t ggml_allocr_new(void * data, size_t size, size_t alignment) {
|
|
return ggml_allocr_new_impl(ggml_tallocr_new(data, size, alignment));
|
|
}
|
|
|
|
ggml_allocr_t ggml_allocr_new_measure(size_t alignment) {
|
|
return ggml_allocr_new_impl(ggml_tallocr_new_measure(alignment));
|
|
}
|
|
|
|
ggml_allocr_t ggml_allocr_new_from_buffer(struct ggml_backend_buffer * buffer) {
|
|
return ggml_allocr_new_impl(ggml_tallocr_new_from_buffer(buffer));
|
|
}
|
|
|
|
ggml_allocr_t ggml_allocr_new_from_backend(struct ggml_backend * backend, size_t size) {
|
|
return ggml_allocr_new_impl(ggml_tallocr_new_from_backend(backend, size));
|
|
}
|
|
|
|
ggml_allocr_t ggml_allocr_new_measure_from_backend(struct ggml_backend * backend) {
|
|
return ggml_allocr_new_impl(ggml_tallocr_new_measure_from_backend(backend));
|
|
}
|
|
|
|
struct ggml_backend_buffer * ggml_allocr_get_buffer(ggml_allocr_t alloc) {
|
|
return ggml_tallocr_get_buffer(alloc->talloc);
|
|
}
|
|
|
|
void ggml_allocr_set_parse_seq(ggml_allocr_t alloc, const int * list, int n) {
|
|
ggml_gallocr_set_parse_seq(alloc->galloc, list, n);
|
|
}
|
|
|
|
void ggml_allocr_free(ggml_allocr_t alloc) {
|
|
if (alloc == NULL) {
|
|
return;
|
|
}
|
|
|
|
ggml_gallocr_free(alloc->galloc);
|
|
ggml_tallocr_free(alloc->talloc);
|
|
free(alloc);
|
|
}
|
|
|
|
bool ggml_allocr_is_measure(ggml_allocr_t alloc) {
|
|
return ggml_tallocr_is_measure(alloc->talloc);
|
|
}
|
|
|
|
void ggml_allocr_reset(ggml_allocr_t alloc) {
|
|
ggml_tallocr_reset(alloc->talloc);
|
|
}
|
|
|
|
void ggml_allocr_alloc(ggml_allocr_t alloc, struct ggml_tensor * tensor) {
|
|
ggml_tallocr_alloc(alloc->talloc, tensor);
|
|
}
|
|
|
|
size_t ggml_allocr_max_size(ggml_allocr_t alloc) {
|
|
return ggml_tallocr_max_size(alloc->talloc);
|
|
}
|
|
|
|
size_t ggml_allocr_alloc_graph(ggml_allocr_t alloc, struct ggml_cgraph * graph) {
|
|
return ggml_gallocr_alloc_graph(alloc->galloc, alloc->talloc, graph);
|
|
}
|
|
|
|
// utils
|
|
|
|
static bool alloc_tensor_range(struct ggml_context * ctx,
|
|
struct ggml_tensor * first, struct ggml_tensor * last,
|
|
ggml_backend_buffer_type_t buft, size_t size,
|
|
ggml_backend_buffer_t ** buffers, size_t * n_buffers) {
|
|
ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, size);
|
|
if (buffer == NULL) {
|
|
#ifndef NDEBUG
|
|
fprintf(stderr, "%s: failed to allocate %s buffer of size %zu\n", __func__, ggml_backend_buft_name(buft), size);
|
|
#endif
|
|
for (size_t i = 0; i < *n_buffers; i++) {
|
|
ggml_backend_buffer_free(*buffers[i]);
|
|
}
|
|
free(buffers);
|
|
return false;
|
|
}
|
|
|
|
ggml_tallocr_t tallocr = ggml_tallocr_new_from_buffer(buffer);
|
|
|
|
for (struct ggml_tensor * t = first; t != last; t = ggml_get_next_tensor(ctx, t)) {
|
|
if (t->data == NULL) {
|
|
if (t->view_src == NULL) {
|
|
ggml_tallocr_alloc(tallocr, t);
|
|
} else {
|
|
ggml_backend_view_init(buffer, t);
|
|
}
|
|
} else {
|
|
if (t->view_src != NULL) {
|
|
// view of a pre-allocated tensor
|
|
ggml_backend_view_init(buffer, t);
|
|
}
|
|
}
|
|
}
|
|
|
|
ggml_tallocr_free(tallocr);
|
|
|
|
*buffers = realloc(*buffers, sizeof(ggml_backend_buffer_t) * (*n_buffers + 1));
|
|
(*buffers)[(*n_buffers)++] = buffer;
|
|
|
|
return true;
|
|
}
|
|
|
|
ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_context * ctx, ggml_backend_buffer_type_t buft) {
|
|
GGML_ASSERT(ggml_get_no_alloc(ctx) == true);
|
|
|
|
size_t alignment = ggml_backend_buft_get_alignment(buft);
|
|
size_t max_size = ggml_backend_buft_get_max_size(buft);
|
|
|
|
ggml_backend_buffer_t * buffers = NULL;
|
|
size_t n_buffers = 0;
|
|
|
|
size_t cur_buf_size = 0;
|
|
struct ggml_tensor * first = ggml_get_first_tensor(ctx);
|
|
for (struct ggml_tensor * t = first; t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
|
size_t this_size = 0;
|
|
if (t->data == NULL && t->view_src == NULL) {
|
|
this_size = GGML_PAD(ggml_backend_buft_get_alloc_size(buft, t), alignment);
|
|
}
|
|
|
|
if (this_size > max_size) {
|
|
// tensor is too large to fit in a single buffer
|
|
fprintf(stderr, "%s: tensor %s is too large to fit in a %s buffer (tensor size: %zu, max buffer size: %zu)\n",
|
|
__func__, t->name,
|
|
ggml_backend_buft_name(buft),
|
|
this_size, max_size);
|
|
for (size_t i = 0; i < n_buffers; i++) {
|
|
ggml_backend_buffer_free(buffers[i]);
|
|
}
|
|
free(buffers);
|
|
return NULL;
|
|
}
|
|
|
|
if ((cur_buf_size + this_size) > max_size) {
|
|
// allocate tensors in the current buffer
|
|
if (!alloc_tensor_range(ctx, first, t, buft, cur_buf_size, &buffers, &n_buffers)) {
|
|
return NULL;
|
|
}
|
|
first = t;
|
|
cur_buf_size = this_size;
|
|
} else {
|
|
cur_buf_size += this_size;
|
|
}
|
|
}
|
|
|
|
// allocate remaining tensors
|
|
if (cur_buf_size > 0) {
|
|
if (!alloc_tensor_range(ctx, first, NULL, buft, cur_buf_size, &buffers, &n_buffers)) {
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
if (n_buffers == 0) {
|
|
// all the tensors in the context are already allocated
|
|
#ifndef NDEBUG
|
|
fprintf(stderr, "%s: all tensors in the context are already allocated\n", __func__);
|
|
#endif
|
|
return NULL;
|
|
}
|
|
|
|
ggml_backend_buffer_t buffer;
|
|
if (n_buffers == 1) {
|
|
buffer = buffers[0];
|
|
} else {
|
|
buffer = ggml_backend_multi_buffer_alloc_buffer(buffers, n_buffers);
|
|
}
|
|
free(buffers);
|
|
return buffer;
|
|
}
|
|
|
|
ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors(struct ggml_context * ctx, ggml_backend_t backend) {
|
|
return ggml_backend_alloc_ctx_tensors_from_buft(ctx, ggml_backend_get_default_buffer_type(backend));
|
|
}
|