mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-10 20:40:24 +01:00
f486f6e1e5
* Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverted Makefile * Fixed include * Removed sched.h from ggml.h, moved ggml_get_numa_affinity into ggml.c, removed trailing whitespace and fixed up a few inconsistent variables * removed trailing whitespace * Added numa options to allow finer grained control as well as plumbing for a new mirror mode that will require numa.h * Reverting Makefile * Fixed a number of issues with the move from BOOL to ggml_numa_strategies. Added a note about mirror mode note being implemented yet * Removing MIRROR_MODE code for this PR * Removing last bit of MIRROR_MODE code for this PR * Removing unneeded branch in server.cpp example and moving get_numa_affinity and making it static * Fixed lingering init_llama_backend() bool calls in tests and examples * Remote enum llama_numa_strategies * Revert bad merge with dynatemp flags * add missing enum ggml_numa_strategies declaration and revert sync problem with master * add missing enum ggml_numa_strategies declaration * fixed ggml_init_numa variable * Update ggml.h Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * Update READMEs with info about numa flags, change INTERLEAVE strategy name to DISTRIBUTE everywhere, implement the improved distribution strategy from @rankaiyx, fix a spelling mistake and un-merge some bad merges * split numa init out from llama_backend_init and created llama_numa_init. Updated all code paths and samples * Fix up some boolean vs enum comparisons * Added #ifdefs for non-Linux OS that don't have cpu_set_t datatype * Update ggml.h Align enum values Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c Remove whitespace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update ggml.c align paremeters Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update examples/server/server.cpp remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * Update common/common.cpp Remove whitespace and align brace Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * unified ggml_numa_strategy enum and fixed text alignment in server.cpp example * Update ggml.c simplified return for platforms without NUMA support Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * removed redundant else from cli argument processing of --numa * whitespace --------- Co-authored-by: root <root@nenya.lothlorien.ca> Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Jared Van Bortel <jared@nomic.ai>
298 lines
8.8 KiB
C++
298 lines
8.8 KiB
C++
#include "common.h"
|
|
#include "llama.h"
|
|
|
|
#include <cmath>
|
|
#include <cstdio>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
int main(int argc, char ** argv) {
|
|
gpt_params params;
|
|
|
|
if (argc == 1 || argv[1][0] == '-') {
|
|
printf("usage: %s MODEL_PATH N_JUNK N_GRP I_POS SEED\n" , argv[0]);
|
|
return 1 ;
|
|
}
|
|
|
|
int seed = -1;
|
|
|
|
int n_junk = 250; // number of times to repeat the junk text
|
|
int n_keep = 32; // number of tokens in the prompt prefix
|
|
int n_grp = 1; // if more than 1 - perform LongLM SelfExtend
|
|
int i_pos = -1; // position of the passkey in the junk text
|
|
|
|
if (argc >= 2) {
|
|
params.model = argv[1];
|
|
}
|
|
|
|
if (argc >= 3) {
|
|
n_junk = std::stoi(argv[2]);
|
|
}
|
|
|
|
if (argc >= 4) {
|
|
n_grp = std::stoi(argv[3]);
|
|
}
|
|
|
|
if (argc >= 5) {
|
|
i_pos = std::stoi(argv[4]);
|
|
}
|
|
|
|
if (argc >= 6) {
|
|
seed = std::stoi(argv[5]);
|
|
}
|
|
|
|
if (seed == -1) {
|
|
seed = time(NULL);
|
|
}
|
|
|
|
srand(seed);
|
|
|
|
if (i_pos == -1) {
|
|
i_pos = rand() % n_junk;
|
|
}
|
|
|
|
const std::string prompt_prefix = "There is an important info hidden inside a lot of irrelevant text. Find it and memorize them. I will quiz you about the important information there.";
|
|
const std::string prompt_suffix = " What is the pass key? The pass key is";
|
|
|
|
// generate junk text
|
|
params.prompt = prompt_prefix;
|
|
|
|
const int passkey = rand() % 50000 + 1;
|
|
|
|
for (int i = 0; i < n_junk; i++) {
|
|
if (i % n_junk == i_pos) {
|
|
params.prompt += " The pass key is " + std::to_string(passkey) + ". Remember it. " + std::to_string(passkey) + " is the pass key.";
|
|
}
|
|
|
|
params.prompt += " The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again.";
|
|
}
|
|
|
|
params.prompt += prompt_suffix;
|
|
|
|
// init LLM
|
|
|
|
llama_backend_init();
|
|
llama_numa_init(params.numa);
|
|
|
|
// initialize the model
|
|
|
|
llama_model_params model_params = llama_model_default_params();
|
|
|
|
model_params.n_gpu_layers = 99; // offload all layers to the GPU
|
|
|
|
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
|
|
|
|
if (model == NULL) {
|
|
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
|
|
return 1;
|
|
}
|
|
|
|
// initialize the context
|
|
|
|
llama_context_params ctx_params = llama_context_default_params();
|
|
|
|
ctx_params.seed = seed;
|
|
ctx_params.n_ctx = llama_n_ctx_train(model)*n_grp + n_keep;
|
|
ctx_params.n_batch = 512;
|
|
ctx_params.n_threads = params.n_threads;
|
|
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
|
|
|
|
GGML_ASSERT(ctx_params.n_batch % n_grp == 0 && "n_batch must be divisible by n_grp");
|
|
|
|
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
|
|
|
|
if (ctx == NULL) {
|
|
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
|
|
return 1;
|
|
}
|
|
|
|
// tokenize the prompt
|
|
std::vector<llama_token> tokens_list;
|
|
tokens_list = ::llama_tokenize(ctx, params.prompt, true);
|
|
|
|
// tokenize the prefix and use it as a sink
|
|
const int n_tokens_prefix = ::llama_tokenize(ctx, prompt_prefix, true).size();
|
|
|
|
const int n_tokens_all = tokens_list.size();
|
|
|
|
// we leave a margin of 16 tokens for the generated text - it should contain just the passkey
|
|
const int n_predict = 16;
|
|
|
|
// total length of the sequences including the prompt
|
|
const int n_len = n_tokens_all + n_predict;
|
|
|
|
const int n_ctx = llama_n_ctx(ctx) - n_keep;
|
|
const int n_kv_req = llama_n_ctx(ctx);
|
|
const int n_batch = ctx_params.n_batch;
|
|
const int n_batch_grp = ctx_params.n_batch/n_grp;
|
|
|
|
LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_kv_req = %d, n_grp = %d, n_batch = %d\n", __func__, n_len, n_ctx, n_kv_req, n_grp, n_batch);
|
|
|
|
// print the prompt token-by-token
|
|
|
|
LOG_TEE("\n");
|
|
LOG_TEE("prefix tokens: %d\n", n_tokens_prefix);
|
|
LOG_TEE("prompt tokens: %d\n", n_tokens_all);
|
|
//LOG_TEE("prompt: %s\n", params.prompt.c_str());
|
|
|
|
llama_batch batch = llama_batch_init(512, 0, 1);
|
|
|
|
int n_past = 0;
|
|
|
|
// fill the KV cache
|
|
for (int i = 0; i < n_ctx; i += n_batch) {
|
|
if (i > 0 && n_grp > 1) {
|
|
// if SelfExtend is enabled, we compress the position from the last batch by a factor of n_grp
|
|
const int ib = i/n_batch - 1;
|
|
const int bd = n_batch_grp*(n_grp - 1);
|
|
|
|
llama_kv_cache_seq_shift(ctx, 0, n_past - n_batch, n_past, ib*bd);
|
|
llama_kv_cache_seq_div (ctx, 0, n_past - n_batch + ib*bd, n_past + ib*bd, n_grp);
|
|
|
|
n_past -= bd;
|
|
}
|
|
|
|
llama_batch_clear(batch);
|
|
|
|
for (int j = 0; j < n_batch && i + j < n_tokens_all; j++) {
|
|
llama_batch_add(batch, tokens_list[i + j], n_past++, { 0 }, false);
|
|
}
|
|
|
|
if (i + n_batch >= n_tokens_all) {
|
|
batch.logits[batch.n_tokens - 1] = true;
|
|
}
|
|
|
|
if (llama_decode(ctx, batch) != 0) {
|
|
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
|
return 1;
|
|
}
|
|
|
|
LOG_TEE("%s: processed: [%6d, %6d)\n", __func__, i, std::min(i + n_batch, n_tokens_all));
|
|
|
|
if (i + n_batch >= n_tokens_all) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
for (int i = n_ctx; i < n_tokens_all; i += n_batch) {
|
|
const int n_discard = n_batch;
|
|
|
|
LOG_TEE("%s: shifting KV cache with %d\n", __func__, n_discard);
|
|
|
|
llama_kv_cache_seq_rm (ctx, 0, n_keep , n_keep + n_discard);
|
|
llama_kv_cache_seq_shift(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
|
|
|
|
n_past -= n_discard;
|
|
|
|
llama_batch_clear(batch);
|
|
|
|
for (int j = 0; j < n_batch && i + j < n_tokens_all; j++) {
|
|
llama_batch_add(batch, tokens_list[i + j], n_past++, { 0 }, false);
|
|
}
|
|
|
|
if (i + n_batch >= n_tokens_all) {
|
|
batch.logits[batch.n_tokens - 1] = true;
|
|
}
|
|
|
|
if (llama_decode(ctx, batch) != 0) {
|
|
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
|
return 1;
|
|
}
|
|
|
|
LOG_TEE("%s: processed: [%6d, %6d)\n", __func__, i, std::min(i + n_batch, n_tokens_all));
|
|
}
|
|
|
|
{
|
|
const int n_discard = n_past - n_ctx + n_predict;
|
|
|
|
if (n_discard > 0) {
|
|
LOG_TEE("%s: shifting KV cache with %d to free space for the answer\n", __func__, n_discard);
|
|
|
|
llama_kv_cache_seq_rm (ctx, 0, n_keep , n_keep + n_discard);
|
|
llama_kv_cache_seq_shift(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
|
|
|
|
n_past -= n_discard;
|
|
}
|
|
}
|
|
|
|
LOG_TEE("\n");
|
|
LOG_TEE("%s: passkey = %d, inserted at position %d / %d (token pos: ~%d)\n", __func__, passkey, i_pos, n_junk, (i_pos * n_tokens_all) / n_junk);
|
|
LOG_TEE("\n");
|
|
|
|
// main loop
|
|
|
|
int n_cur = n_tokens_all;
|
|
int n_decode = 0;
|
|
|
|
LOG_TEE("%s", prompt_suffix.c_str());
|
|
fflush(stdout);
|
|
|
|
const auto t_main_start = ggml_time_us();
|
|
|
|
while (n_cur <= n_len) {
|
|
// sample the next token
|
|
{
|
|
auto n_vocab = llama_n_vocab(model);
|
|
auto * logits = llama_get_logits_ith(ctx, batch.n_tokens - 1);
|
|
|
|
std::vector<llama_token_data> candidates;
|
|
candidates.reserve(n_vocab);
|
|
|
|
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
|
candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
|
|
}
|
|
|
|
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
|
|
|
// sample the most likely token
|
|
const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
|
|
|
|
// is it an end of stream?
|
|
if (new_token_id == llama_token_eos(model) || n_cur == n_len) {
|
|
LOG_TEE("\n");
|
|
|
|
break;
|
|
}
|
|
|
|
LOG_TEE("%s", llama_token_to_piece(ctx, new_token_id).c_str());
|
|
fflush(stdout);
|
|
|
|
n_decode += 1;
|
|
|
|
// prepare the next batch
|
|
llama_batch_clear(batch);
|
|
|
|
// push this new token for next evaluation
|
|
llama_batch_add(batch, new_token_id, n_past++, { 0 }, true);
|
|
}
|
|
|
|
n_cur += 1;
|
|
|
|
// evaluate the current batch with the transformer model
|
|
if (llama_decode(ctx, batch)) {
|
|
fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
LOG_TEE("\n");
|
|
|
|
const auto t_main_end = ggml_time_us();
|
|
|
|
LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
|
|
__func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
|
|
|
|
llama_print_timings(ctx);
|
|
|
|
fprintf(stderr, "\n");
|
|
|
|
llama_batch_free(batch);
|
|
|
|
llama_free(ctx);
|
|
llama_free_model(model);
|
|
|
|
llama_backend_free();
|
|
|
|
return 0;
|
|
}
|