Kawrakow a14679cc30
IQ4_NL: 4-bit non-linear quants with blocks of 32 (#5590)
* iq4_nl: squash commits for easier rebase

* Basics (quantize, dequantize)
* CUDA dequantize and dot product
* Slightly faster CUDA dot product (120 t/s)
* Switch to 6-bit scales
* Scalar dot product
* AVX2 dot product
* ARM_NEON dot product
* Works on metal, but still slow
* Slightly better Metal dot product
* Another small Metal improvement
* Metal dot product is getting there
* Faster CUDA dot product
* Add 1/8 ffn_down layers as Q5_K when no imatrix has been provided
* Report the actual bpw
* Add _xs mix that is 4.05 bpw for non-MoE models
* Remove IQ4_XS for now, slightly adjust kvalues_iq4nl
* AVX2 dot product uses Q8_0 instead of Q8_K
* Add to test-backend-ops
* Minor fix
* Also use use Q5_K for attn_output in MoE models
* Fixes after merging latest master
* Switching to blocks of 32
* AVX2 for blocks of 32
* Scaler dot product for blocks of 32
* ARM_NEON dot product for blocks of 32
* Metal kernels for blocks of 32
* Slightly faster Metal kernels

* iq4_nl: Fix after merging with master

* iq4_nl: another fix after merging with master

* Use IQ4_NL instead of Q4_K when using k-quants is not possible

* Fix typo that makes several tests fail

* It was the ggml_vdotq thing missed inside the brackets

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2024-02-21 11:39:52 +02:00
..

quantize

TODO

Llama 2 7B

Quantization Bits per Weight (BPW)
Q2_K 3.35
Q3_K_S 3.50
Q3_K_M 3.91
Q3_K_L 4.27
Q4_K_S 4.58
Q4_K_M 4.84
Q5_K_S 5.52
Q5_K_M 5.68
Q6_K 6.56

Llama 2 13B

Quantization Bits per Weight (BPW)
Q2_K 3.34
Q3_K_S 3.48
Q3_K_M 3.89
Q3_K_L 4.26
Q4_K_S 4.56
Q4_K_M 4.83
Q5_K_S 5.51
Q5_K_M 5.67
Q6_K 6.56

Llama 2 70B

Quantization Bits per Weight (BPW)
Q2_K 3.40
Q3_K_S 3.47
Q3_K_M 3.85
Q3_K_L 4.19
Q4_K_S 4.53
Q4_K_M 4.80
Q5_K_S 5.50
Q5_K_M 5.65
Q6_K 6.56