llama.cpp/convert-hf-to-gguf.py
2024-06-30 16:22:07 -04:00

3190 lines
140 KiB
Python
Executable File
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from __future__ import annotations
import logging
import argparse
import contextlib
import json
import os
import re
import sys
from enum import IntEnum
from pathlib import Path
from hashlib import sha256
from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Sequence, TypeVar, cast
import math
import numpy as np
import torch
if TYPE_CHECKING:
from torch import Tensor
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
import gguf
logger = logging.getLogger("hf-to-gguf")
###### MODEL DEFINITIONS ######
class SentencePieceTokenTypes(IntEnum):
NORMAL = 1
UNKNOWN = 2
CONTROL = 3
USER_DEFINED = 4
UNUSED = 5
BYTE = 6
AnyModel = TypeVar("AnyModel", bound="type[Model]")
class Model:
_model_classes: dict[str, type[Model]] = {}
dir_model: Path
ftype: gguf.LlamaFileType
is_big_endian: bool
endianess: gguf.GGUFEndian
use_temp_file: bool
lazy: bool
model_name: str | None
part_names: list[str]
is_safetensors: bool
hparams: dict[str, Any]
block_count: int
tensor_map: gguf.TensorNameMap
tensor_names: set[str] | None
fname_out: Path
gguf_writer: gguf.GGUFWriter
# subclasses should define this!
model_arch: gguf.MODEL_ARCH
def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool, use_temp_file: bool, eager: bool,
model_name: str | None, split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False):
if type(self) is Model:
raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
self.dir_model = dir_model
self.ftype = ftype
self.is_big_endian = is_big_endian
self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
self.use_temp_file = use_temp_file
self.lazy = not eager
self.model_name = model_name
self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
self.is_safetensors = len(self.part_names) > 0
if not self.is_safetensors:
self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
self.hparams = Model.load_hparams(self.dir_model)
self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
self.tensor_names = None
if self.ftype == gguf.LlamaFileType.GUESSED:
# NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
_, first_tensor = next(self.get_tensors())
if first_tensor.dtype == torch.float16:
logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
self.ftype = gguf.LlamaFileType.MOSTLY_F16
else:
logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
self.ftype = gguf.LlamaFileType.MOSTLY_BF16
ftype_up: str = self.ftype.name.partition("_")[2].upper()
ftype_lw: str = ftype_up.lower()
# allow templating the file name with the output ftype, useful with the "auto" ftype
self.fname_out = fname_out.parent / fname_out.name.format(ftype_lw, outtype=ftype_lw, ftype=ftype_lw, OUTTYPE=ftype_up, FTYPE=ftype_up)
self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
@classmethod
def __init_subclass__(cls):
# can't use an abstract property, because overriding it without type errors
# would require using decorated functions instead of simply defining the property
if "model_arch" not in cls.__dict__:
raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
key = next((k for k in keys if k in self.hparams), None)
if key is not None:
return self.hparams[key]
if optional:
return None
raise KeyError(f"could not find any of: {keys}")
def set_vocab(self):
self._set_vocab_gpt2()
def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
tensor_names_from_parts: set[str] = set()
if len(self.part_names) > 1:
self.tensor_names = set()
index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
index_name += ".index.json"
logger.info(f"gguf: loading model weight map from '{index_name}'")
with open(self.dir_model / index_name, "r", encoding="utf-8") as f:
index: dict[str, Any] = json.load(f)
weight_map = index.get("weight_map")
if weight_map is None or not isinstance(weight_map, dict):
raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
self.tensor_names.update(weight_map.keys())
else:
self.tensor_names = tensor_names_from_parts
for part_name in self.part_names:
logger.info(f"gguf: loading model part '{part_name}'")
ctx: ContextManager[Any]
if self.is_safetensors:
from safetensors import safe_open
ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
else:
ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
with ctx as model_part:
tensor_names_from_parts.update(model_part.keys())
for name in model_part.keys():
data = model_part.get_tensor(name) if self.is_safetensors else model_part[name]
if self.lazy:
data = LazyTorchTensor.from_eager(data)
yield name, data
# only verify tensor name presence; it doesn't matter if they are not in the right files
if len(sym_diff := tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
raise ValueError(f"Mismatch between weight map and model parts for tensor names: {sym_diff}")
def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
if key not in gguf.MODEL_TENSORS[self.model_arch]:
raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
name: str = gguf.TENSOR_NAMES[key]
if "{bid}" in name:
assert bid is not None
name = name.format(bid=bid)
return name + suffix
def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
if key not in gguf.MODEL_TENSORS[self.model_arch]:
return False
key_name: str = gguf.TENSOR_NAMES[key]
if "{bid}" in key_name:
if bid is None:
return False
key_name = key_name.format(bid=bid)
else:
if bid is not None:
return False
return name == (key_name + suffix)
def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
if new_name is None:
raise ValueError(f"Can not map tensor {name!r}")
return new_name
def set_gguf_parameters(self):
self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
self.gguf_writer.add_block_count(self.block_count)
if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
self.gguf_writer.add_context_length(n_ctx)
logger.info(f"gguf: context length = {n_ctx}")
n_embd = self.find_hparam(["hidden_size", "n_embd"])
self.gguf_writer.add_embedding_length(n_embd)
logger.info(f"gguf: embedding length = {n_embd}")
if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
self.gguf_writer.add_feed_forward_length(n_ff)
logger.info(f"gguf: feed forward length = {n_ff}")
n_head = self.find_hparam(["num_attention_heads", "n_head"])
self.gguf_writer.add_head_count(n_head)
logger.info(f"gguf: head count = {n_head}")
if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
self.gguf_writer.add_head_count_kv(n_head_kv)
logger.info(f"gguf: key-value head count = {n_head_kv}")
if (rope_theta := self.hparams.get("rope_theta")) is not None:
self.gguf_writer.add_rope_freq_base(rope_theta)
logger.info(f"gguf: rope theta = {rope_theta}")
if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
self.gguf_writer.add_layer_norm_eps(f_norm_eps)
logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
if (n_experts := self.hparams.get("num_local_experts")) is not None:
self.gguf_writer.add_expert_count(n_experts)
logger.info(f"gguf: expert count = {n_experts}")
if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
self.gguf_writer.add_expert_used_count(n_experts_used)
logger.info(f"gguf: experts used count = {n_experts_used}")
self.gguf_writer.add_file_type(self.ftype)
logger.info(f"gguf: file type = {self.ftype}")
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
return [(self.map_tensor_name(name), data_torch)]
def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
del name, new_name, bid, n_dims # unused
return False
def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
del name, new_name, bid, n_dims # unused
return False
def write_tensors(self):
max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
for name, data_torch in self.get_tensors():
# we don't need these
if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
continue
old_dtype = data_torch.dtype
# convert any unsupported data types to float32
if data_torch.dtype not in (torch.float16, torch.float32):
data_torch = data_torch.to(torch.float32)
# use the first number-like part of the tensor name as the block id
bid = None
for part in name.split("."):
if part.isdecimal():
bid = int(part)
break
for new_name, data in ((n, d.squeeze().numpy()) for n, d in self.modify_tensors(data_torch, name, bid)):
data: np.ndarray = data # type hint
n_dims = len(data.shape)
data_dtype = data.dtype
data_qtype: gguf.GGMLQuantizationType | None = None
# when both are True, f32 should win
extra_f32 = self.extra_f32_tensors(name, new_name, bid, n_dims)
extra_f16 = self.extra_f16_tensors(name, new_name, bid, n_dims)
# Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
# Conditions should closely match those in llama_model_quantize_internal in llama.cpp
extra_f32 = any(cond for cond in (
extra_f32,
n_dims == 1,
new_name.endswith("_norm.weight"),
))
# Some tensor types are always in float32
extra_f32 = extra_f32 or any(self.match_model_tensor_name(new_name, key, bid) for key in (
gguf.MODEL_TENSOR.FFN_GATE_INP,
gguf.MODEL_TENSOR.POS_EMBD,
gguf.MODEL_TENSOR.TOKEN_TYPES,
))
# if f16 desired, convert any float32 2-dim weight tensors to float16
extra_f16 = any(cond for cond in (
extra_f16,
(name.endswith(".weight") and n_dims >= 2),
))
if self.ftype != gguf.LlamaFileType.ALL_F32 and extra_f16 and not extra_f32:
if self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
data = gguf.quantize_bf16(data)
assert data.dtype == np.int16
data_qtype = gguf.GGMLQuantizationType.BF16
elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0 and gguf.can_quantize_to_q8_0(data):
data = gguf.quantize_q8_0(data)
assert data.dtype == np.uint8
data_qtype = gguf.GGMLQuantizationType.Q8_0
else: # default to float16 for quantized tensors
if data_dtype != np.float16:
data = data.astype(np.float16)
data_qtype = gguf.GGMLQuantizationType.F16
if data_qtype is None: # by default, convert to float32
if data_dtype != np.float32:
data = data.astype(np.float32)
data_qtype = gguf.GGMLQuantizationType.F32
shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
# reverse shape to make it similar to the internal ggml dimension order
shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
# n_dims is implicit in the shape
logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
def write(self):
self.write_tensors()
self.gguf_writer.write_header_to_file(self.fname_out)
self.gguf_writer.write_kv_data_to_file()
self.gguf_writer.write_tensors_to_file(progress=True)
self.gguf_writer.close()
def write_vocab(self):
if len(self.gguf_writer.tensors) != 1:
raise ValueError('Splitting the vocabulary is not supported')
self.gguf_writer.write_header_to_file(self.fname_out)
self.gguf_writer.write_kv_data_to_file()
self.gguf_writer.close()
@staticmethod
def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
part_names: list[str] = []
for filename in os.listdir(dir_model):
if filename.startswith(prefix) and filename.endswith(suffix):
part_names.append(filename)
part_names.sort()
return part_names
@staticmethod
def load_hparams(dir_model: Path):
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
return json.load(f)
@classmethod
def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
assert names
def func(modelcls: AnyModel) -> AnyModel:
for name in names:
cls._model_classes[name] = modelcls
return modelcls
return func
@classmethod
def from_model_architecture(cls, arch: str) -> type[Model]:
try:
return cls._model_classes[arch]
except KeyError:
raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
# used for GPT-2 BPE and WordPiece vocabs
def get_vocab_base(self) -> tuple[list[str], list[int], str]:
tokens: list[str] = []
toktypes: list[int] = []
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
assert max(tokenizer.vocab.values()) < vocab_size
tokpre = self.get_vocab_base_pre(tokenizer)
reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
added_vocab = tokenizer.get_added_vocab()
for i in range(vocab_size):
if i not in reverse_vocab:
tokens.append(f"[PAD{i}]")
toktypes.append(gguf.TokenType.USER_DEFINED)
elif reverse_vocab[i] in added_vocab:
tokens.append(reverse_vocab[i])
if tokenizer.added_tokens_decoder[i].special:
toktypes.append(gguf.TokenType.CONTROL)
else:
toktypes.append(gguf.TokenType.USER_DEFINED)
else:
tokens.append(reverse_vocab[i])
toktypes.append(gguf.TokenType.NORMAL)
return tokens, toktypes, tokpre
# NOTE: this function is generated by convert-hf-to-gguf-update.py
# do not modify it manually!
# ref: https://github.com/ggerganov/llama.cpp/pull/6920
# Marker: Start get_vocab_base_pre
def get_vocab_base_pre(self, tokenizer) -> str:
# encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
# is specific for the BPE pre-tokenizer used by the model
# we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
# use in llama.cpp to implement the same pre-tokenizer
chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天 ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
chktok = tokenizer.encode(chktxt)
chkhsh = sha256(str(chktok).encode()).hexdigest()
logger.debug(f"chktok: {chktok}")
logger.debug(f"chkhsh: {chkhsh}")
res = None
# NOTE: if you get an error here, you need to update the convert-hf-to-gguf-update.py script
# or pull the latest version of the model from Huggingface
# don't edit the hashes manually!
if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
# ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
res = "llama-bpe"
if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
# ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
res = "deepseek-llm"
if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
# ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
res = "deepseek-coder"
if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
# ref: https://huggingface.co/tiiuae/falcon-7b
res = "falcon"
if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
# ref: https://huggingface.co/BAAI/bge-small-en-v1.5
res = "bert-bge"
if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
# ref: https://huggingface.co/mosaicml/mpt-7b
res = "mpt"
if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
# ref: https://huggingface.co/bigcode/starcoder2-3b
res = "starcoder"
if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
# ref: https://huggingface.co/openai-community/gpt2
res = "gpt-2"
if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
# ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
res = "stablelm2"
if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
# ref: https://huggingface.co/smallcloudai/Refact-1_6-base
res = "refact"
if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
# ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
res = "command-r"
if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
# ref: https://huggingface.co/Qwen/Qwen1.5-7B
res = "qwen2"
if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
# ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
res = "olmo"
if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
# ref: https://huggingface.co/databricks/dbrx-base
res = "dbrx"
if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
# ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
res = "jina-v2-en"
if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
# ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
res = "jina-v2-es"
if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
# ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
res = "jina-v2-de"
if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
# ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
res = "smaug-bpe"
if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
# ref: https://huggingface.co/LumiOpen/Poro-34B-chat
res = "poro-chat"
if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
# ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
res = "jina-v2-code"
if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
# ref: https://huggingface.co/LumiOpen/Viking-7B
res = "viking"
if res is None:
logger.warning("\n")
logger.warning("**************************************************************************************")
logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
logger.warning("** There are 2 possible reasons for this:")
logger.warning("** - the model has not been added to convert-hf-to-gguf-update.py yet")
logger.warning("** - the pre-tokenization config has changed upstream")
logger.warning("** Check your model files and convert-hf-to-gguf-update.py and update them accordingly.")
logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
logger.warning("**")
logger.warning(f"** chkhsh: {chkhsh}")
logger.warning("**************************************************************************************")
logger.warning("\n")
raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
logger.debug(f"chkhsh: {chkhsh}")
return res
# Marker: End get_vocab_base_pre
def _set_vocab_gpt2(self) -> None:
tokens, toktypes, tokpre = self.get_vocab_base()
self.gguf_writer.add_tokenizer_model("gpt2")
self.gguf_writer.add_tokenizer_pre(tokpre)
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
special_vocab.add_to_gguf(self.gguf_writer)
def _set_vocab_qwen(self):
dir_model = self.dir_model
hparams = self.hparams
tokens: list[str] = []
toktypes: list[int] = []
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
vocab_size = hparams["vocab_size"]
assert max(tokenizer.get_vocab().values()) < vocab_size
tokpre = self.get_vocab_base_pre(tokenizer)
merges = []
vocab = {}
mergeable_ranks = tokenizer.mergeable_ranks
for token, rank in mergeable_ranks.items():
vocab[QwenModel.token_bytes_to_string(token)] = rank
if len(token) == 1:
continue
merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
assert len(merged) == 2
merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
# for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
added_vocab = tokenizer.special_tokens
reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
for i in range(vocab_size):
if i not in reverse_vocab:
tokens.append(f"[PAD{i}]")
toktypes.append(gguf.TokenType.USER_DEFINED)
elif reverse_vocab[i] in added_vocab:
tokens.append(reverse_vocab[i])
toktypes.append(gguf.TokenType.CONTROL)
else:
tokens.append(reverse_vocab[i])
toktypes.append(gguf.TokenType.NORMAL)
self.gguf_writer.add_tokenizer_model("gpt2")
self.gguf_writer.add_tokenizer_pre(tokpre)
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
special_vocab.merges = merges
# only add special tokens when they were not already loaded from config.json
if len(special_vocab.special_token_ids) == 0:
special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
# this one is usually not in config.json anyway
special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
special_vocab.add_to_gguf(self.gguf_writer)
def _set_vocab_sentencepiece(self):
from sentencepiece import SentencePieceProcessor
tokenizer_path = self.dir_model / 'tokenizer.model'
tokens: list[bytes] = []
scores: list[float] = []
toktypes: list[int] = []
if not tokenizer_path.is_file():
raise FileNotFoundError(f"File not found: {tokenizer_path}")
tokenizer = SentencePieceProcessor()
tokenizer.LoadFromFile(str(tokenizer_path))
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
scores: list[float] = [-10000.0] * vocab_size
toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
for token_id in range(tokenizer.vocab_size()):
piece = tokenizer.IdToPiece(token_id)
text = piece.encode("utf-8")
score = tokenizer.GetScore(token_id)
toktype = SentencePieceTokenTypes.NORMAL
if tokenizer.IsUnknown(token_id):
toktype = SentencePieceTokenTypes.UNKNOWN
elif tokenizer.IsControl(token_id):
toktype = SentencePieceTokenTypes.CONTROL
elif tokenizer.IsUnused(token_id):
toktype = SentencePieceTokenTypes.UNUSED
elif tokenizer.IsByte(token_id):
toktype = SentencePieceTokenTypes.BYTE
tokens[token_id] = text
scores[token_id] = score
toktypes[token_id] = toktype
added_tokens_file = self.dir_model / 'added_tokens.json'
if added_tokens_file.is_file():
with open(added_tokens_file, "r", encoding="utf-8") as f:
added_tokens_json = json.load(f)
for key in added_tokens_json:
token_id = added_tokens_json[key]
if (token_id >= vocab_size):
logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
continue
tokens[token_id] = key.encode("utf-8")
scores[token_id] = -1000.0
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
if vocab_size > len(tokens):
pad_count = vocab_size - len(tokens)
logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
for i in range(1, pad_count + 1):
tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
scores.append(-1000.0)
toktypes.append(SentencePieceTokenTypes.UNUSED)
self.gguf_writer.add_tokenizer_model("llama")
self.gguf_writer.add_tokenizer_pre("default")
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_scores(scores)
self.gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
special_vocab.add_to_gguf(self.gguf_writer)
def _set_vocab_llama_hf(self):
vocab = gguf.LlamaHfVocab(self.dir_model)
tokens = []
scores = []
toktypes = []
for text, score, toktype in vocab.all_tokens():
tokens.append(text)
scores.append(score)
toktypes.append(toktype)
assert len(tokens) == vocab.vocab_size
self.gguf_writer.add_tokenizer_model("llama")
self.gguf_writer.add_tokenizer_pre("default")
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_scores(scores)
self.gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
special_vocab.add_to_gguf(self.gguf_writer)
@Model.register("GPTNeoXForCausalLM")
class GPTNeoXModel(Model):
model_arch = gguf.MODEL_ARCH.GPTNEOX
def set_gguf_parameters(self):
block_count = self.hparams["num_hidden_layers"]
self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
self.gguf_writer.add_block_count(block_count)
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
self.gguf_writer.add_rope_dimension_count(
int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
)
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
tensors: list[tuple[str, Tensor]] = []
if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
# Map bloom-style qkv_linear to gpt-style qkv_linear
# bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
# gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
data_torch = torch.cat(
(
qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
),
dim=0,
)
logger.info("re-format attention.linear_qkv.weight")
elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
data_torch = torch.cat(
(
qkv_bias[:, 0, :].reshape((n_embed,)),
qkv_bias[:, 1, :].reshape((n_embed,)),
qkv_bias[:, 2, :].reshape((n_embed,)),
),
dim=0,
)
logger.info("re-format attention.linear_qkv.bias")
tensors.append((self.map_tensor_name(name), data_torch))
return tensors
@Model.register("BloomForCausalLM")
class BloomModel(Model):
model_arch = gguf.MODEL_ARCH.BLOOM
def set_gguf_parameters(self):
self.gguf_writer.add_name("Bloom")
n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
self.gguf_writer.add_embedding_length(n_embed)
self.gguf_writer.add_feed_forward_length(4 * n_embed)
self.gguf_writer.add_block_count(self.hparams["n_layer"])
self.gguf_writer.add_head_count(n_head)
self.gguf_writer.add_head_count_kv(n_head)
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
self.gguf_writer.add_file_type(self.ftype)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
name = re.sub(r'transformer\.', '', name)
tensors: list[tuple[str, Tensor]] = []
if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
# Map bloom-style qkv_linear to gpt-style qkv_linear
# bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
# gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
data_torch = torch.cat(
(
qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
),
dim=0,
)
logger.info("re-format attention.linear_qkv.weight")
elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
data_torch = torch.cat(
(
qkv_bias[:, 0, :].reshape((n_embed,)),
qkv_bias[:, 1, :].reshape((n_embed,)),
qkv_bias[:, 2, :].reshape((n_embed,)),
),
dim=0,
)
logger.info("re-format attention.linear_qkv.bias")
tensors.append((self.map_tensor_name(name), data_torch))
if name == "word_embeddings.weight":
assert self.tensor_names is not None
# TODO: tie them at runtime, don't duplicate in the model file
if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
return tensors
@Model.register("MPTForCausalLM")
class MPTModel(Model):
model_arch = gguf.MODEL_ARCH.MPT
def set_vocab(self):
try:
self._set_vocab_gpt2()
except Exception:
# Fallback for SEA-LION model
self._set_vocab_sentencepiece()
self.gguf_writer.add_add_bos_token(False)
self.gguf_writer.add_pad_token_id(3)
self.gguf_writer.add_eos_token_id(1)
self.gguf_writer.add_unk_token_id(0)
def set_gguf_parameters(self):
block_count = self.hparams["n_layers"]
self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
self.gguf_writer.add_embedding_length(self.hparams["d_model"])
self.gguf_writer.add_block_count(block_count)
self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
self.gguf_writer.add_head_count(self.hparams["n_heads"])
if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
self.gguf_writer.add_head_count_kv(kv_n_heads)
self.gguf_writer.add_layer_norm_eps(1e-5)
if self.hparams["attn_config"]["clip_qkv"] is not None:
self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
if self.hparams["attn_config"]["alibi"]:
self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
else:
self.gguf_writer.add_max_alibi_bias(0.0)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
if "scales" in name:
new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
new_name = new_name.replace("scales", "act.scales")
else:
new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
return [(new_name, data_torch)]
@Model.register("OrionForCausalLM")
class OrionModel(Model):
model_arch = gguf.MODEL_ARCH.ORION
def set_vocab(self):
self._set_vocab_sentencepiece()
def set_gguf_parameters(self):
block_count = self.hparams["num_hidden_layers"]
head_count = self.hparams["num_attention_heads"]
head_count_kv = self.hparams.get("num_key_value_heads", head_count)
hf_repo = self.hparams.get("_name_or_path", "")
ctx_length = 0
if "max_sequence_length" in self.hparams:
ctx_length = self.hparams["max_sequence_length"]
elif "max_position_embeddings" in self.hparams:
ctx_length = self.hparams["max_position_embeddings"]
elif "model_max_length" in self.hparams:
ctx_length = self.hparams["model_max_length"]
else:
raise ValueError("gguf: can not find ctx length parameter.")
self.gguf_writer.add_file_type(self.ftype)
self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
self.gguf_writer.add_source_hf_repo(hf_repo)
self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
self.gguf_writer.add_context_length(ctx_length)
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
self.gguf_writer.add_block_count(block_count)
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
self.gguf_writer.add_head_count(head_count)
self.gguf_writer.add_head_count_kv(head_count_kv)
# note: config provides rms norm but it is actually layer norm
# ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
@Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
class BaichuanModel(Model):
model_arch = gguf.MODEL_ARCH.BAICHUAN
def set_vocab(self):
self._set_vocab_sentencepiece()
def set_gguf_parameters(self):
block_count = self.hparams["num_hidden_layers"]
head_count = self.hparams["num_attention_heads"]
head_count_kv = self.hparams.get("num_key_value_heads", head_count)
hf_repo = self.hparams.get("_name_or_path", "")
ctx_length = 0
if "max_sequence_length" in self.hparams:
ctx_length = self.hparams["max_sequence_length"]
elif "max_position_embeddings" in self.hparams:
ctx_length = self.hparams["max_position_embeddings"]
elif "model_max_length" in self.hparams:
ctx_length = self.hparams["model_max_length"]
else:
raise ValueError("gguf: can not find ctx length parameter.")
self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
self.gguf_writer.add_source_hf_repo(hf_repo)
self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
self.gguf_writer.add_context_length(ctx_length)
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
self.gguf_writer.add_block_count(block_count)
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
self.gguf_writer.add_head_count(head_count)
self.gguf_writer.add_head_count_kv(head_count_kv)
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
self.gguf_writer.add_file_type(self.ftype)
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
if self.hparams["rope_scaling"].get("type") == "linear":
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
head_count = self.hparams["num_attention_heads"]
head_count_kv = self.hparams.get("num_key_value_heads", head_count)
tensors: list[tuple[str, Tensor]] = []
if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
logger.info(f"Unpacking and permuting layer {bid}")
tensors = [
(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
self._reverse_hf_part(data_torch, 2)),
]
else:
tensors = [(self.map_tensor_name(name), data_torch)]
return tensors
def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
if n_kv_head is not None and n_head != n_kv_head:
n_head //= n_kv_head
return (
weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
.swapaxes(1, 2)
.reshape(weights.shape)
)
def _reverse_hf_permute_part(
self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
) -> Tensor:
r = weights.shape[0] // 3
return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
r = weights.shape[0] // 3
return weights[r * n_part:r * n_part + r, ...]
@Model.register("XverseForCausalLM")
class XverseModel(Model):
model_arch = gguf.MODEL_ARCH.XVERSE
def set_vocab(self):
assert (self.dir_model / "tokenizer.json").is_file()
dir_model = self.dir_model
hparams = self.hparams
tokens: list[bytes] = []
toktypes: list[int] = []
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(dir_model)
vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
# Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
# because vocab_size is the count of items, and indexes start at 0.
max_vocab_index = max(tokenizer.get_vocab().values())
if max_vocab_index >= vocab_size:
raise ValueError("Vocabulary size exceeds expected maximum size.")
reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
added_vocab = tokenizer.get_added_vocab()
for token_id in range(vocab_size):
token_text = reverse_vocab[token_id].encode('utf-8')
# replace "\x00" to string with length > 0
if token_text == b"\x00":
toktype = gguf.TokenType.BYTE # special
token_text = f"<{token_text}>".encode('utf-8')
elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
toktype = gguf.TokenType.BYTE # special
elif reverse_vocab[token_id] in added_vocab:
if tokenizer.added_tokens_decoder[token_id].special:
toktype = gguf.TokenType.CONTROL
else:
toktype = gguf.TokenType.USER_DEFINED
else:
toktype = gguf.TokenType.NORMAL
tokens.append(token_text)
toktypes.append(toktype)
self.gguf_writer.add_tokenizer_model("llama")
self.gguf_writer.add_tokenizer_pre("default")
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
special_vocab.add_to_gguf(self.gguf_writer)
def set_gguf_parameters(self):
block_count = self.hparams["num_hidden_layers"]
head_count = self.hparams["num_attention_heads"]
head_count_kv = self.hparams.get("num_key_value_heads", head_count)
hf_repo = self.hparams.get("_name_or_path", "")
ctx_length = 0
if "max_sequence_length" in self.hparams:
ctx_length = self.hparams["max_sequence_length"]
elif "max_position_embeddings" in self.hparams:
ctx_length = self.hparams["max_position_embeddings"]
elif "model_max_length" in self.hparams:
ctx_length = self.hparams["model_max_length"]
else:
raise ValueError("gguf: can not find ctx length parameter.")
self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
self.gguf_writer.add_source_hf_repo(hf_repo)
self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
self.gguf_writer.add_context_length(ctx_length)
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
self.gguf_writer.add_block_count(block_count)
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
self.gguf_writer.add_head_count(head_count)
self.gguf_writer.add_head_count_kv(head_count_kv)
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
self.gguf_writer.add_file_type(self.ftype)
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
if self.hparams["rope_scaling"].get("type") == "linear":
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
head_count = self.hparams["num_attention_heads"]
head_count_kv = self.hparams.get("num_key_value_heads", head_count)
# HF models permute some of the tensors, so we need to undo that
if name.endswith("q_proj.weight"):
data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
if name.endswith("k_proj.weight"):
data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
return [(self.map_tensor_name(name), data_torch)]
def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
if n_kv_head is not None and n_head != n_kv_head:
n_head //= n_kv_head
return (
weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
.swapaxes(1, 2)
.reshape(weights.shape)
)
@Model.register("FalconForCausalLM", "RWForCausalLM")
class FalconModel(Model):
model_arch = gguf.MODEL_ARCH.FALCON
def set_gguf_parameters(self):
block_count = self.hparams.get("num_hidden_layers")
if block_count is None:
block_count = self.hparams["n_layer"] # old name
n_head = self.hparams.get("num_attention_heads")
if n_head is None:
n_head = self.hparams["n_head"] # old name
n_head_kv = self.hparams.get("num_kv_heads")
if n_head_kv is None:
n_head_kv = self.hparams.get("n_head_kv", 1) # old name
self.gguf_writer.add_name("Falcon")
self.gguf_writer.add_context_length(2048) # not in config.json
self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
self.gguf_writer.add_block_count(block_count)
self.gguf_writer.add_head_count(n_head)
self.gguf_writer.add_head_count_kv(n_head_kv)
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
self.gguf_writer.add_file_type(self.ftype)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
# QKV tensor transform
# The original query_key_value tensor contains n_head_kv "kv groups",
# each consisting of n_head/n_head_kv query weights followed by one key
# and one value weight (shared by all query heads in the kv group).
# This layout makes it a big pain to work with in GGML.
# So we rearrange them here,, so that we have n_head query weights
# followed by n_head_kv key weights followed by n_head_kv value weights,
# in contiguous fashion.
# ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
if "query_key_value" in name:
n_head = self.find_hparam(["num_attention_heads", "n_head"])
n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
head_dim = self.hparams["hidden_size"] // n_head
qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
return [(self.map_tensor_name(name), data_torch)]
@Model.register("GPTBigCodeForCausalLM")
class StarCoderModel(Model):
model_arch = gguf.MODEL_ARCH.STARCODER
def set_gguf_parameters(self):
block_count = self.hparams["n_layer"]
self.gguf_writer.add_name("StarCoder")
self.gguf_writer.add_context_length(self.hparams["n_positions"])
self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
self.gguf_writer.add_block_count(block_count)
self.gguf_writer.add_head_count(self.hparams["n_head"])
self.gguf_writer.add_head_count_kv(1)
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
self.gguf_writer.add_file_type(self.ftype)
@Model.register("GPTRefactForCausalLM")
class RefactModel(Model):
model_arch = gguf.MODEL_ARCH.REFACT
def set_vocab(self):
super().set_vocab()
# TODO: how to determine special FIM tokens automatically?
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
special_vocab._set_special_token("prefix", 1)
special_vocab._set_special_token("suffix", 3)
special_vocab._set_special_token("middle", 2)
special_vocab._set_special_token("fsep", 4) # is this correct?
special_vocab.add_to_gguf(self.gguf_writer)
def set_gguf_parameters(self):
hidden_dim = self.hparams["n_embd"]
inner_dim = 4 * hidden_dim
hidden_dim = int(2 * inner_dim / 3)
multiple_of = 256
ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
block_count = self.hparams["n_layer"]
self.gguf_writer.add_name("Refact")
# refact uses Alibi. So this is from config.json which might be used by training.
self.gguf_writer.add_context_length(self.hparams["n_positions"])
self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
self.gguf_writer.add_feed_forward_length(ff_dim)
self.gguf_writer.add_block_count(block_count)
self.gguf_writer.add_head_count(self.hparams["n_head"])
self.gguf_writer.add_head_count_kv(1)
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
self.gguf_writer.add_file_type(self.ftype)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
hidden_dim = self.hparams["n_embd"]
inner_dim = 4 * hidden_dim
hidden_dim = int(2 * inner_dim / 3)
multiple_of = 256
ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
n_head = self.hparams["n_head"]
n_head_kv = 1
head_dim = self.hparams["n_embd"] // n_head
tensors: list[tuple[str, Tensor]] = []
if bid is not None:
if name == f"transformer.h.{bid}.attn.kv.weight":
tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
elif name == f"transformer.h.{bid}.attn.q.weight":
tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
if len(tensors) == 0:
tensors.append((self.map_tensor_name(name), data_torch))
return tensors
@Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
class StableLMModel(Model):
model_arch = gguf.MODEL_ARCH.STABLELM
def set_vocab(self):
if (self.dir_model / "tokenizer.json").is_file():
self._set_vocab_gpt2()
else:
# StableLM 2 1.6B uses a vocab in a similar format to Qwen's vocab
self._set_vocab_qwen()
def set_gguf_parameters(self):
hparams = self.hparams
block_count = hparams["num_hidden_layers"]
self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
self.gguf_writer.add_block_count(block_count)
self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
self.gguf_writer.add_head_count(hparams["num_attention_heads"])
self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
self.gguf_writer.add_file_type(self.ftype)
_q_norms: list[dict[str, Tensor]] | None = None
_k_norms: list[dict[str, Tensor]] | None = None
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
n_head = self.hparams["num_attention_heads"]
n_kv_head = self.hparams["num_key_value_heads"]
if name.find("q_layernorm.norms") != -1:
assert bid is not None
if self._q_norms is None:
self._q_norms = [{} for _ in range(self.block_count)]
self._q_norms[bid][name] = data_torch
if len(self._q_norms[bid]) >= n_head:
return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
else:
return []
if name.find("k_layernorm.norms") != -1:
assert bid is not None
if self._k_norms is None:
self._k_norms = [{} for _ in range(self.block_count)]
self._k_norms[bid][name] = data_torch
if len(self._k_norms[bid]) >= n_kv_head:
return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
else:
return []
return [(self.map_tensor_name(name), data_torch)]
def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
datas: list[Tensor] = []
# extract the norms in order
for xid in range(n_head):
ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
datas.append(norms[ename])
del norms[ename]
data_torch = torch.stack(datas, dim=0)
merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
new_name = self.map_tensor_name(merged_name)
return [(new_name, data_torch)]
def write_tensors(self):
super().write_tensors()
if self._q_norms is not None or self._k_norms is not None:
# flatten two `list[dict[str, Tensor]]` into a single `list[str]`
norms = (
[k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
) + (
[k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
)
if len(norms) > 0:
raise ValueError(f"Unprocessed norms: {norms}")
@Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
class LlamaModel(Model):
model_arch = gguf.MODEL_ARCH.LLAMA
def set_vocab(self):
try:
self. _set_vocab_sentencepiece()
except FileNotFoundError:
try:
self._set_vocab_llama_hf()
except (FileNotFoundError, TypeError):
# Llama 3
self._set_vocab_gpt2()
# Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
if self.hparams.get("vocab_size", 32000) == 32016:
special_vocab = gguf.SpecialVocab(
self.dir_model, load_merges=False,
special_token_types = ['prefix', 'suffix', 'middle', 'eot']
)
special_vocab._set_special_token("prefix", 32007)
special_vocab._set_special_token("suffix", 32008)
special_vocab._set_special_token("middle", 32009)
special_vocab._set_special_token("eot", 32010)
special_vocab.add_to_gguf(self.gguf_writer)
def set_gguf_parameters(self):
super().set_gguf_parameters()
hparams = self.hparams
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
if self.hparams["rope_scaling"].get("type") == "linear":
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
if tokenizer_config_file.is_file():
with open(tokenizer_config_file, "r", encoding="utf-8") as f:
tokenizer_config_json = json.load(f)
if "add_prefix_space" in tokenizer_config_json:
self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
# Apply to granite small models only
if self.hparams.get("vocab_size", 32000) == 49152:
self.gguf_writer.add_add_bos_token(False)
@staticmethod
def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
if n_head_kv is not None and n_head != n_head_kv:
n_head = n_head_kv
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
.swapaxes(1, 2)
.reshape(weights.shape))
_experts: list[dict[str, Tensor]] | None = None
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
n_head = self.hparams["num_attention_heads"]
n_kv_head = self.hparams.get("num_key_value_heads")
if name.endswith(("q_proj.weight", "q_proj.bias")):
data_torch = LlamaModel.permute(data_torch, n_head, n_head)
if name.endswith(("k_proj.weight", "k_proj.bias")):
data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
# process the experts separately
if name.find("block_sparse_moe.experts") != -1:
n_experts = self.hparams["num_local_experts"]
assert bid is not None
if self._experts is None:
self._experts = [{} for _ in range(self.block_count)]
self._experts[bid][name] = data_torch
if len(self._experts[bid]) >= n_experts * 3:
tensors: list[tuple[str, Tensor]] = []
# merge the experts into a single 3d tensor
for wid in ["w1", "w2", "w3"]:
datas: list[Tensor] = []
for xid in range(n_experts):
ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
datas.append(self._experts[bid][ename])
del self._experts[bid][ename]
data_torch = torch.stack(datas, dim=0)
merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
new_name = self.map_tensor_name(merged_name)
tensors.append((new_name, data_torch))
return tensors
else:
return []
return [(self.map_tensor_name(name), data_torch)]
def write_tensors(self):
super().write_tensors()
if self._experts is not None:
# flatten `list[dict[str, Tensor]]` into `list[str]`
experts = [k for d in self._experts for k in d.keys()]
if len(experts) > 0:
raise ValueError(f"Unprocessed experts: {experts}")
@Model.register("BitnetForCausalLM")
class BitnetModel(Model):
model_arch = gguf.MODEL_ARCH.BITNET
def set_vocab(self):
self._set_vocab_sentencepiece()
def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
self.gguf_writer.add_rope_scaling_factor(1.0)
def weight_quant(self, weight):
dtype = weight.dtype
weight = weight.float()
s = 1 / weight.abs().mean().clamp(min=1e-5)
weight = (weight * s).round().clamp(-1, 1) / s
scale = weight.abs().max().unsqueeze(0)
weight = torch.where(weight.abs().less(1e-6), 0, weight).type(dtype)
weight = torch.sign(weight).type(dtype)
return weight.type(dtype), scale.type(torch.float32)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
new_name = self.map_tensor_name(name)
if any(self.match_model_tensor_name(new_name, key, bid) for key in [
gguf.MODEL_TENSOR.ATTN_Q,
gguf.MODEL_TENSOR.ATTN_K,
gguf.MODEL_TENSOR.ATTN_V,
gguf.MODEL_TENSOR.ATTN_OUT,
gguf.MODEL_TENSOR.FFN_UP,
gguf.MODEL_TENSOR.FFN_DOWN,
gguf.MODEL_TENSOR.FFN_GATE,
]):
# transform weight into 1/0/-1 (in fp32)
weight_torch, scale_torch = self.weight_quant(data_torch)
yield (new_name, weight_torch)
yield (new_name.removesuffix(".weight") + ".scale", scale_torch)
else:
yield (new_name, data_torch)
@Model.register("GrokForCausalLM")
class GrokModel(Model):
model_arch = gguf.MODEL_ARCH.GROK
def set_vocab(self):
self._set_vocab_sentencepiece()
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_name("Grok")
_experts: list[dict[str, Tensor]] | None = None
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
# process the experts separately
if name.find(".moe.") != -1:
n_experts = self.hparams["num_local_experts"]
assert bid is not None
if self._experts is None:
self._experts = [{} for _ in range(self.block_count)]
self._experts[bid][name] = data_torch
if len(self._experts[bid]) >= n_experts * 3:
tensors: list[tuple[str, Tensor]] = []
# merge the experts into a single 3d tensor
for wid in ["linear", "linear_1", "linear_v"]:
datas: list[Tensor] = []
for xid in range(n_experts):
ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
datas.append(self._experts[bid][ename])
del self._experts[bid][ename]
data_torch = torch.stack(datas, dim=0)
merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
new_name = self.map_tensor_name(merged_name)
tensors.append((new_name, data_torch))
return tensors
else:
return []
return [(self.map_tensor_name(name), data_torch)]
@Model.register("DbrxForCausalLM")
class DbrxModel(Model):
model_arch = gguf.MODEL_ARCH.DBRX
def set_gguf_parameters(self):
ffn_config = self.hparams["ffn_config"]
attn_config = self.hparams["attn_config"]
self.gguf_writer.add_name(self.hparams["model_type"])
self.gguf_writer.add_block_count(self.hparams["n_layers"])
self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
self.gguf_writer.add_embedding_length(self.hparams["d_model"])
self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
self.gguf_writer.add_head_count(self.hparams["n_heads"])
self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
self.gguf_writer.add_file_type(self.ftype)
self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
self.gguf_writer.add_layer_norm_eps(1e-5)
self.gguf_writer.add_file_type(self.ftype)
logger.info(f"gguf: file type = {self.ftype}")
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
n_expert = self.hparams["ffn_config"]["moe_num_experts"]
n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
n_embd = self.hparams["d_model"]
# Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
# original implementation expects (n_expert, n_ff, n_embd) for all experts weights
# But llama.cpp moe graph works differently
# AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
# so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
"ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
"ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
experts = False
for exp_tensor_name in exp_tensor_names.keys():
if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
experts = True
data_torch = data_torch.view(n_expert, n_ff, n_embd)
if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
data_torch = data_torch.permute(*permute_tensor)
break
# map tensor names
# In MoE models the ffn tensors are typically most of the model weights,
# and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
# Every other model has the weight names ending in .weight,
# let's assume that is the convention which is not the case for dbrx:
# https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
return [(new_name, data_torch)]
def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
del name, new_name, bid # unused
return n_dims > 1
@Model.register("MiniCPMForCausalLM")
class MiniCPMModel(Model):
model_arch = gguf.MODEL_ARCH.MINICPM
def set_gguf_parameters(self):
block_count = self.hparams["num_hidden_layers"]
self.gguf_writer.add_name("MiniCPM")
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
self.gguf_writer.add_block_count(block_count)
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
self.gguf_writer.add_file_type(self.ftype)
def set_vocab(self):
self._set_vocab_llama_hf()
def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
if n_kv_head is not None and n_head != n_kv_head:
n_head //= n_kv_head
return (
weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
.swapaxes(1, 2)
.reshape(weights.shape)
)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
n_head = self.hparams["num_attention_heads"]
n_kv_head = self.hparams.get("num_key_value_heads")
# HF models permute some of the tensors, so we need to undo that
if name.endswith(("q_proj.weight")):
data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
if name.endswith(("k_proj.weight")):
data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
return [(self.map_tensor_name(name), data_torch)]
@Model.register("QWenLMHeadModel")
class QwenModel(Model):
model_arch = gguf.MODEL_ARCH.QWEN
@staticmethod
def token_bytes_to_string(b):
from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
byte_encoder = bytes_to_unicode()
return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
@staticmethod
def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
parts = [bytes([b]) for b in token]
while True:
min_idx = None
min_rank = None
for i, pair in enumerate(zip(parts[:-1], parts[1:])):
rank = mergeable_ranks.get(pair[0] + pair[1])
if rank is not None and (min_rank is None or rank < min_rank):
min_idx = i
min_rank = rank
if min_rank is None or (max_rank is not None and min_rank >= max_rank):
break
assert min_idx is not None
parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
return parts
def set_vocab(self):
self._set_vocab_qwen()
def set_gguf_parameters(self):
self.gguf_writer.add_name("Qwen")
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
self.gguf_writer.add_file_type(self.ftype)
@Model.register("Qwen2ForCausalLM")
class Qwen2Model(Model):
model_arch = gguf.MODEL_ARCH.QWEN2
def set_vocab(self):
try:
self._set_vocab_sentencepiece()
except FileNotFoundError:
self._set_vocab_gpt2()
@Model.register("Qwen2MoeForCausalLM")
class Qwen2MoeModel(Model):
model_arch = gguf.MODEL_ARCH.QWEN2MOE
def set_gguf_parameters(self):
super().set_gguf_parameters()
if (n_experts := self.hparams.get("num_experts")) is not None:
self.gguf_writer.add_expert_count(n_experts)
if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
_experts: list[dict[str, Tensor]] | None = None
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
# process the experts separately
if name.find("experts") != -1:
n_experts = self.hparams["num_experts"]
assert bid is not None
if self._experts is None:
self._experts = [{} for _ in range(self.block_count)]
self._experts[bid][name] = data_torch
if len(self._experts[bid]) >= n_experts * 3:
tensors: list[tuple[str, Tensor]] = []
# merge the experts into a single 3d tensor
for w_name in ["down_proj", "gate_proj", "up_proj"]:
datas: list[Tensor] = []
for xid in range(n_experts):
ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
datas.append(self._experts[bid][ename])
del self._experts[bid][ename]
data_torch = torch.stack(datas, dim=0)
merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
new_name = self.map_tensor_name(merged_name)
tensors.append((new_name, data_torch))
return tensors
else:
return []
return [(self.map_tensor_name(name), data_torch)]
def write_tensors(self):
super().write_tensors()
if self._experts is not None:
# flatten `list[dict[str, Tensor]]` into `list[str]`
experts = [k for d in self._experts for k in d.keys()]
if len(experts) > 0:
raise ValueError(f"Unprocessed experts: {experts}")
@Model.register("GPT2LMHeadModel")
class GPT2Model(Model):
model_arch = gguf.MODEL_ARCH.GPT2
def set_gguf_parameters(self):
self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
self.gguf_writer.add_block_count(self.hparams["n_layer"])
self.gguf_writer.add_context_length(self.hparams["n_ctx"])
self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
self.gguf_writer.add_head_count(self.hparams["n_head"])
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
self.gguf_writer.add_file_type(self.ftype)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
tensors: list[tuple[str, Tensor]] = []
# we don't need these
if name.endswith((".attn.bias", ".attn.masked_bias")):
return tensors
if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
data_torch = data_torch.transpose(1, 0)
new_name = self.map_tensor_name(name)
tensors.append((new_name, data_torch))
# note: GPT2 output is tied to (same as) wte in original model
if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
return tensors
@Model.register("PhiForCausalLM")
class Phi2Model(Model):
model_arch = gguf.MODEL_ARCH.PHI2
def set_gguf_parameters(self):
block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
rot_pct = self.find_hparam(["partial_rotary_factor"])
n_embd = self.find_hparam(["hidden_size", "n_embd"])
n_head = self.find_hparam(["num_attention_heads", "n_head"])
self.gguf_writer.add_name("Phi2")
self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
self.gguf_writer.add_embedding_length(n_embd)
self.gguf_writer.add_feed_forward_length(4 * n_embd)
self.gguf_writer.add_block_count(block_count)
self.gguf_writer.add_head_count(n_head)
self.gguf_writer.add_head_count_kv(n_head)
self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
self.gguf_writer.add_file_type(self.ftype)
self.gguf_writer.add_add_bos_token(False)
@Model.register("Phi3ForCausalLM")
class Phi3MiniModel(Model):
model_arch = gguf.MODEL_ARCH.PHI3
def set_vocab(self):
from sentencepiece import SentencePieceProcessor
tokenizer_path = self.dir_model / 'tokenizer.model'
if not tokenizer_path.is_file():
raise ValueError(f'Error: Missing {tokenizer_path}')
tokenizer = SentencePieceProcessor()
tokenizer.LoadFromFile(str(tokenizer_path))
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
scores: list[float] = [-10000.0] * vocab_size
toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
for token_id in range(tokenizer.vocab_size()):
piece = tokenizer.IdToPiece(token_id)
text = piece.encode("utf-8")
score = tokenizer.GetScore(token_id)
toktype = SentencePieceTokenTypes.NORMAL
if tokenizer.IsUnknown(token_id):
toktype = SentencePieceTokenTypes.UNKNOWN
elif tokenizer.IsControl(token_id):
toktype = SentencePieceTokenTypes.CONTROL
elif tokenizer.IsUnused(token_id):
toktype = SentencePieceTokenTypes.UNUSED
elif tokenizer.IsByte(token_id):
toktype = SentencePieceTokenTypes.BYTE
tokens[token_id] = text
scores[token_id] = score
toktypes[token_id] = toktype
added_tokens_file = self.dir_model / 'added_tokens.json'
if added_tokens_file.is_file():
with open(added_tokens_file, "r", encoding="utf-8") as f:
added_tokens_json = json.load(f)
for key in added_tokens_json:
token_id = added_tokens_json[key]
if (token_id >= vocab_size):
logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
continue
tokens[token_id] = key.encode("utf-8")
scores[token_id] = -1000.0
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
if tokenizer_config_file.is_file():
with open(tokenizer_config_file, "r", encoding="utf-8") as f:
tokenizer_config_json = json.load(f)
added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
for token_id, foken_data in added_tokens_decoder.items():
token_id = int(token_id)
token = foken_data["content"].encode("utf-8")
if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN:
assert tokens[token_id] == token
tokens[token_id] = token
scores[token_id] = -1000.0
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
if foken_data.get("special"):
toktypes[token_id] = SentencePieceTokenTypes.CONTROL
tokenizer_file = self.dir_model / 'tokenizer.json'
if tokenizer_file.is_file():
with open(tokenizer_file, "r", encoding="utf-8") as f:
tokenizer_json = json.load(f)
added_tokens = tokenizer_json.get("added_tokens", [])
for foken_data in added_tokens:
token_id = int(foken_data["id"])
token = foken_data["content"].encode("utf-8")
if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN:
assert tokens[token_id] == token
tokens[token_id] = token
scores[token_id] = -1000.0
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
if foken_data.get("special"):
toktypes[token_id] = SentencePieceTokenTypes.CONTROL
self.gguf_writer.add_tokenizer_model("llama")
self.gguf_writer.add_tokenizer_pre("default")
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_scores(scores)
self.gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
special_vocab.add_to_gguf(self.gguf_writer)
def set_gguf_parameters(self):
block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
n_embd = self.find_hparam(["hidden_size", "n_embd"])
n_head = self.find_hparam(["num_attention_heads", "n_head"])
n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
rms_eps = self.find_hparam(["rms_norm_eps"])
max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
rope_dims = n_embd // n_head
self.gguf_writer.add_name("Phi3")
self.gguf_writer.add_context_length(max_pos_embds)
self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
self.gguf_writer.add_embedding_length(n_embd)
self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
self.gguf_writer.add_block_count(block_count)
self.gguf_writer.add_head_count(n_head)
self.gguf_writer.add_head_count_kv(n_head_kv)
self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
self.gguf_writer.add_rope_dimension_count(rope_dims)
self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
self.gguf_writer.add_file_type(self.ftype)
# write rope scaling for long context (128k) model
rope_scaling = self.find_hparam(['rope_scaling'], True)
if (rope_scaling is None):
return
scale = max_pos_embds / orig_max_pos_embds
rope_scaling_type = rope_scaling.get('type', '').lower()
if len(rope_scaling_type) == 0:
raise KeyError('Missing the required key rope_scaling.type')
if rope_scaling_type == 'su':
attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
elif rope_scaling_type == 'yarn':
attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
else:
raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
long_factors = rope_scaling.get('long_factor', None)
short_factors = rope_scaling.get('short_factor', None)
if long_factors is None or short_factors is None:
raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_LONG] + ".weight", np.array(long_factors, dtype=np.float32))
self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT] + ".weight", np.array(short_factors, dtype=np.float32))
@Model.register("PlamoForCausalLM")
class PlamoModel(Model):
model_arch = gguf.MODEL_ARCH.PLAMO
def set_vocab(self):
self._set_vocab_sentencepiece()
def set_gguf_parameters(self):
hparams = self.hparams
block_count = hparams["num_hidden_layers"]
self.gguf_writer.add_name("PLaMo")
self.gguf_writer.add_context_length(4096) # not in config.json
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
self.gguf_writer.add_block_count(block_count)
self.gguf_writer.add_head_count(hparams["num_attention_heads"])
self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
self.gguf_writer.add_file_type(self.ftype)
def shuffle_attn_q_weight(self, data_torch):
assert data_torch.size() == (5120, 5120)
data_torch = data_torch.reshape(8, 5, 128, 5120)
data_torch = torch.permute(data_torch, (1, 0, 2, 3))
data_torch = torch.reshape(data_torch, (5120, 5120))
return data_torch
def shuffle_attn_output_weight(self, data_torch):
assert data_torch.size() == (5120, 5120)
data_torch = data_torch.reshape(5120, 8, 5, 128)
data_torch = torch.permute(data_torch, (0, 2, 1, 3))
data_torch = torch.reshape(data_torch, (5120, 5120))
return data_torch
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
new_name = self.map_tensor_name(name)
# shuffle for broadcasting of gqa in ggml_mul_mat
if new_name.endswith("attn_q.weight"):
data_torch = self.shuffle_attn_q_weight(data_torch)
elif new_name.endswith("attn_output.weight"):
data_torch = self.shuffle_attn_output_weight(data_torch)
return [(new_name, data_torch)]
@Model.register("CodeShellForCausalLM")
class CodeShellModel(Model):
model_arch = gguf.MODEL_ARCH.CODESHELL
def set_gguf_parameters(self):
block_count = self.hparams["n_layer"]
self.gguf_writer.add_name("CodeShell")
self.gguf_writer.add_context_length(self.hparams["n_positions"])
self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
self.gguf_writer.add_block_count(block_count)
self.gguf_writer.add_head_count(self.hparams["n_head"])
self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
self.gguf_writer.add_file_type(self.ftype)
self.gguf_writer.add_rope_freq_base(10000.0)
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
self.gguf_writer.add_rope_scaling_factor(1.0)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
new_name = self.map_tensor_name(name)
tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
assert self.tensor_names is not None
if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
# copy tok_embd.weight to output.weight
tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
return tensors
@Model.register("InternLM2ForCausalLM")
class InternLM2Model(Model):
model_arch = gguf.MODEL_ARCH.INTERNLM2
def set_vocab(self):
# (TODO): Is there a better way?
# Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
# \x00 specially and convert it into an emoji character to prevent it from being mistakenly
# recognized as an empty string in C++.
from sentencepiece import SentencePieceProcessor
from sentencepiece import sentencepiece_model_pb2 as model
tokenizer_path = self.dir_model / 'tokenizer.model'
tokens: list[bytes] = []
scores: list[float] = []
toktypes: list[int] = []
if not tokenizer_path.is_file():
logger.error(f'Error: Missing {tokenizer_path}')
sys.exit(1)
sentencepiece_model = model.ModelProto()
sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
tokenizer = SentencePieceProcessor()
tokenizer.LoadFromFile(str(tokenizer_path))
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
for token_id in range(vocab_size):
piece = tokenizer.IdToPiece(token_id)
text = piece.encode("utf-8")
score = tokenizer.GetScore(token_id)
if text == b"\x00":
# (TODO): fixme
# Hack here and replace the \x00 characters.
logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
text = "🐉".encode("utf-8")
toktype = SentencePieceTokenTypes.NORMAL
if tokenizer.IsUnknown(token_id):
toktype = SentencePieceTokenTypes.UNKNOWN
elif tokenizer.IsControl(token_id):
toktype = SentencePieceTokenTypes.CONTROL
elif tokenizer.IsUnused(token_id):
toktype = SentencePieceTokenTypes.UNUSED
elif tokenizer.IsByte(token_id):
toktype = SentencePieceTokenTypes.BYTE
tokens.append(text)
scores.append(score)
toktypes.append(toktype)
added_tokens_file = self.dir_model / 'added_tokens.json'
if added_tokens_file.is_file():
with open(added_tokens_file, "r", encoding="utf-8") as f:
added_tokens_json = json.load(f)
for key in added_tokens_json:
tokens.append(key.encode("utf-8"))
scores.append(-1000.0)
toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
self.gguf_writer.add_tokenizer_model("llama")
self.gguf_writer.add_tokenizer_pre("default")
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_scores(scores)
self.gguf_writer.add_token_types(toktypes)
self.gguf_writer.add_add_space_prefix(add_prefix)
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
old_eos = special_vocab.special_token_ids["eos"]
if "chat" in os.path.basename(self.dir_model.absolute()):
# For the chat model, we replace the eos with '<|im_end|>'.
# TODO: this is a hack, should be fixed
# https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
special_vocab.special_token_ids["eos"] = self._try_get_sft_eos(tokenizer)
logger.warning(f"Replace eos:{old_eos} with a special token:{special_vocab.special_token_ids['eos']} \
in chat mode so that the conversation can end normally.")
special_vocab.add_to_gguf(self.gguf_writer)
def _try_get_sft_eos(self, tokenizer):
unused_145_list = tokenizer.Encode('[UNUSED_TOKEN_145]')
im_end_list = tokenizer.Encode('<|im_end|>')
eos_token = None
assert (len(unused_145_list) == 1) ^ (len(im_end_list) == 1)
if len(unused_145_list) == 1:
eos_token = unused_145_list[0]
if len(im_end_list) == 1:
eos_token = im_end_list[0]
assert eos_token
return eos_token
def _hf_permute_qk(self, weights, n_head: int, n_head_kv: int):
if n_head_kv is not None and n_head != n_head_kv:
n_head = n_head_kv
return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
.swapaxes(1, 2)
.reshape(weights.shape))
def set_gguf_parameters(self):
self.gguf_writer.add_name("InternLM2")
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
self.gguf_writer.add_file_type(self.ftype)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
num_heads = self.hparams["num_attention_heads"]
num_kv_heads = self.hparams["num_key_value_heads"]
hidden_size = self.hparams["hidden_size"]
q_per_kv = num_heads // num_kv_heads
head_dim = hidden_size // num_heads
num_groups = num_heads // q_per_kv
qkv_pattern = r"model\.layers\.(\d+)\.attention\.wqkv"
if re.match(qkv_pattern, name):
bid = re.findall(qkv_pattern, name)[0]
qkv = data_torch
# qkv = rearrange(qkv.T, " o (g n i) ->o g n i", g=num_groups, n=q_per_kv + 2, i=head_dim)
qkv = qkv.T.reshape((-1, num_groups, q_per_kv + 2, head_dim))
q, k, v = qkv[..., : q_per_kv, :], qkv[..., q_per_kv: q_per_kv + 1, :], qkv[..., q_per_kv + 1: q_per_kv + 2, :]
# The model weights of q and k equire additional reshape.
# q = self._hf_permute_qk(rearrange(q, " o g n i -> o (g n i)").T, num_heads, num_heads)
q = self._hf_permute_qk(q.reshape((q.shape[0], -1)).T, num_heads, num_heads)
# k = self._hf_permute_qk(rearrange(k, " o g n i -> o (g n i)").T, num_heads, num_kv_heads)
k = self._hf_permute_qk(k.reshape((k.shape[0], -1)).T, num_heads, num_kv_heads)
# v = rearrange(v, " o g n i -> o (g n i)").T
v = v.reshape((v.shape[0], -1)).T
return [
(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
]
else:
return [(self.map_tensor_name(name), data_torch)]
@Model.register("BertModel", "CamembertModel")
class BertModel(Model):
model_arch = gguf.MODEL_ARCH.BERT
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.vocab_size = None
def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_causal_attention(False)
# get pooling path
pooling_path = None
module_path = self.dir_model / "modules.json"
if module_path.is_file():
with open(module_path, encoding="utf-8") as f:
modules = json.load(f)
for mod in modules:
if mod["type"] == "sentence_transformers.models.Pooling":
pooling_path = mod["path"]
break
# get pooling type
if pooling_path is not None:
with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
pooling = json.load(f)
if pooling["pooling_mode_mean_tokens"]:
pooling_type = gguf.PoolingType.MEAN
elif pooling["pooling_mode_cls_token"]:
pooling_type = gguf.PoolingType.CLS
else:
raise NotImplementedError("Only MEAN and CLS pooling types supported")
self.gguf_writer.add_pooling_type(pooling_type)
def set_vocab(self):
tokens, toktypes, tokpre = self.get_vocab_base()
self.vocab_size = len(tokens)
# we need this to validate the size of the token_type embeddings
# though currently we are passing all zeros to the token_type embeddings
self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B"
# convert to phantom space vocab
def phantom(tok):
if tok.startswith("[") and tok.endswith("]"):
return tok
if tok.startswith("##"):
return tok[2:]
return "\u2581" + tok
tokens = list(map(phantom, tokens))
# add vocab to gguf
self.gguf_writer.add_tokenizer_model("bert")
self.gguf_writer.add_tokenizer_pre(tokpre)
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_types(toktypes)
# handle special tokens
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
special_vocab.add_to_gguf(self.gguf_writer)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
# we are only using BERT for embeddings so we don't need the pooling layer
if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
return [] # we don't need these
return [(self.map_tensor_name(name), data_torch)]
@Model.register("NomicBertModel")
class NomicBertModel(BertModel):
model_arch = gguf.MODEL_ARCH.NOMIC_BERT
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# the HF config claims n_ctx=8192, but it uses RoPE scaling
self.hparams["n_ctx"] = 2048
# SwigLU activation
assert self.hparams["activation_function"] == "swiglu"
# this doesn't do anything in the HF version
assert self.hparams["causal"] is False
# no bias tensors
assert self.hparams["qkv_proj_bias"] is False
assert self.hparams["mlp_fc1_bias"] is False
assert self.hparams["mlp_fc2_bias"] is False
# norm at end of layer
assert self.hparams["prenorm"] is False
# standard RoPE
assert self.hparams["rotary_emb_fraction"] == 1.0
assert self.hparams["rotary_emb_interleaved"] is False
assert self.hparams["rotary_emb_scale_base"] is None
def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
@Model.register("GemmaForCausalLM")
class GemmaModel(Model):
model_arch = gguf.MODEL_ARCH.GEMMA
def set_vocab(self):
self._set_vocab_sentencepiece()
# TODO: these special tokens should be exported only for the CodeGemma family
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
special_vocab._set_special_token("prefix", 67)
special_vocab._set_special_token("suffix", 69)
special_vocab._set_special_token("middle", 68)
special_vocab._set_special_token("fsep", 70)
special_vocab._set_special_token("eot", 107)
special_vocab.add_to_gguf(self.gguf_writer)
def set_gguf_parameters(self):
hparams = self.hparams
block_count = hparams["num_hidden_layers"]
self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
self.gguf_writer.add_block_count(block_count)
self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
self.gguf_writer.add_head_count(hparams["num_attention_heads"])
self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
self.gguf_writer.add_key_length(hparams["head_dim"])
self.gguf_writer.add_value_length(hparams["head_dim"])
self.gguf_writer.add_file_type(self.ftype)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
# lm_head is not used in llama.cpp, while autoawq will include this tensor in model
# To prevent errors, skip loading lm_head.weight.
if name == "lm_head.weight":
logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
return []
# ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
if name.endswith("norm.weight"):
data_torch = data_torch + 1
return [(self.map_tensor_name(name), data_torch)]
@Model.register("Gemma2ForCausalLM")
class Gemma2Model(Model):
model_arch = gguf.MODEL_ARCH.GEMMA2
def set_vocab(self):
self._set_vocab_llama_hf()
self.gguf_writer.add_add_space_prefix(False)
def set_gguf_parameters(self):
hparams = self.hparams
block_count = hparams["num_hidden_layers"]
self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
self.gguf_writer.add_embedding_length(hparams["hidden_size"])
self.gguf_writer.add_block_count(block_count)
self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
self.gguf_writer.add_head_count(hparams["num_attention_heads"])
self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
self.gguf_writer.add_key_length(hparams["head_dim"])
self.gguf_writer.add_value_length(hparams["head_dim"])
self.gguf_writer.add_file_type(self.ftype)
self.gguf_writer.add_attn_logit_softcapping(
self.hparams["attn_logit_softcapping"]
)
self.gguf_writer.add_final_logit_softcapping(
self.hparams["final_logit_softcapping"]
)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unusem
# lm_head is not used in llama.cpp, while autoawq will include this tensor in model
# To prevent errors, skip loading lm_head.weight.
if name == "lm_head.weight":
logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
return []
# ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
if name.endswith("norm.weight"):
data_torch = data_torch + 1
return [(self.map_tensor_name(name), data_torch)]
@Model.register("Starcoder2ForCausalLM")
class StarCoder2Model(Model):
model_arch = gguf.MODEL_ARCH.STARCODER2
@Model.register("MambaForCausalLM", "MambaLMHeadModel")
class MambaModel(Model):
model_arch = gguf.MODEL_ARCH.MAMBA
def set_vocab(self):
vocab_size = self.hparams["vocab_size"]
# Round vocab size to next multiple of 8
pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
# pad using ceiling division
# ref: https://stackoverflow.com/a/17511341/22827863
vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
self.hparams["vocab_size"] = vocab_size
if (self.dir_model / "tokenizer.json").is_file():
self._set_vocab_gpt2()
elif (self.dir_model / "tokenizer.model").is_file():
self._set_vocab_sentencepiece()
else:
# Use the GPT-NeoX tokenizer when no tokenizer files are present
tokenizer_path = Path(sys.path[0]) / "models" / "ggml-vocab-gpt-neox.gguf"
logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
neox_reader = gguf.GGUFReader(tokenizer_path, "r")
field = neox_reader.get_field(gguf.Keys.Tokenizer.MODEL)
self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8") if field else "gpt2")
field = neox_reader.get_field(gguf.Keys.Tokenizer.PRE)
self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else "mpt")
field = neox_reader.get_field(gguf.Keys.Tokenizer.LIST)
assert field
self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
field = neox_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
assert field
self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
field = neox_reader.get_field(gguf.Keys.Tokenizer.MERGES)
assert field
self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
field = neox_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)
self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0] if field else 1)
field = neox_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)
self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0] if field else 0)
field = neox_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)
self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0] if field else 0)
field = neox_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)
self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0] if field else 0)
def set_gguf_parameters(self):
d_model = self.find_hparam(["hidden_size", "d_model"])
d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
# ceiling division
# ref: https://stackoverflow.com/a/17511341/22827863
# ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
# Fail early for models which don't have a block expansion factor of 2
assert d_inner == 2 * d_model
self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
self.gguf_writer.add_embedding_length(d_model)
self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
self.gguf_writer.add_block_count(self.hparams["n_layer"])
self.gguf_writer.add_ssm_conv_kernel(d_conv)
self.gguf_writer.add_ssm_inner_size(d_inner)
self.gguf_writer.add_ssm_state_size(d_state)
self.gguf_writer.add_ssm_time_step_rank(dt_rank)
self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
self.gguf_writer.add_file_type(self.ftype)
_tok_embd = None
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
new_name = self.map_tensor_name(name)
if name.endswith(".A_log"):
logger.debug("A_log --> A ==> " + new_name)
data_torch = -torch.exp(data_torch)
# assuming token_embd.weight is seen before output.weight
if self._tok_embd is not None and new_name == output_name:
if torch.equal(self._tok_embd, data_torch):
logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
return []
elif new_name == tok_embd_name:
self._tok_embd = data_torch
return [(new_name, data_torch)]
def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
del n_dims # unused
return bid is not None and new_name in (
self.format_tensor_name(n, bid, ".weight" if name.endswith(".weight") else "") for n in [
gguf.MODEL_TENSOR.SSM_CONV1D,
gguf.MODEL_TENSOR.SSM_X,
gguf.MODEL_TENSOR.SSM_DT,
gguf.MODEL_TENSOR.SSM_A,
gguf.MODEL_TENSOR.SSM_D,
]
)
@Model.register("CohereForCausalLM")
class CommandR2Model(Model):
model_arch = gguf.MODEL_ARCH.COMMAND_R
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# max_position_embeddings = 8192 in config.json but model was actually
# trained on 128k context length
# aya-23 models don't have model_max_length specified
self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
@Model.register("OlmoForCausalLM")
@Model.register("OLMoForCausalLM")
class OlmoModel(Model):
model_arch = gguf.MODEL_ARCH.OLMO
def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_layer_norm_eps(1e-5)
clip_qkv = self.hparams.get("clip_qkv")
if clip_qkv is not None:
self.gguf_writer.add_clamp_kqv(clip_qkv)
# Same as super class, but permuting q_proj, k_proj
# Copied from: LlamaModel
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
n_head = self.hparams["num_attention_heads"]
n_kv_head = self.hparams.get("num_key_value_heads")
if name.endswith("q_proj.weight"):
data_torch = LlamaModel.permute(data_torch, n_head, n_head)
if name.endswith("k_proj.weight"):
data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
return [(self.map_tensor_name(name), data_torch)]
@Model.register("JinaBertModel", "JinaBertForMaskedLM")
class JinaBertV2Model(BertModel):
model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.intermediate_size = self.hparams["intermediate_size"]
def get_tensors(self):
for name, data in super().get_tensors():
if 'gated_layer' in name:
d1 = data[:self.intermediate_size, :]
name1 = name.replace('gated_layers', 'gated_layers_w')
name1 = name1.replace('up_gated_layer', 'gated_layers_v')
d2 = data[self.intermediate_size:, :]
name2 = name.replace('gated_layers', 'gated_layers_v')
name2 = name2.replace('up_gated_layer', 'gated_layers_w')
yield name1, d1
yield name2, d2
continue
yield name, data
def set_vocab(self, *args, **kwargs):
tokenizer_class = 'BertTokenizer'
with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
tokenizer_class = json.load(f)['tokenizer_class']
if tokenizer_class == 'BertTokenizer':
super().set_vocab()
elif tokenizer_class == 'RobertaTokenizer':
self._set_vocab_gpt2()
self.gguf_writer.add_token_type_count(2)
else:
raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
self.gguf_writer.add_add_bos_token(True)
self.gguf_writer.add_add_eos_token(True)
@Model.register("OpenELMForCausalLM")
class OpenELMModel(Model):
model_arch = gguf.MODEL_ARCH.OPENELM
# Copied from LlamaModel
def set_vocab(self):
try:
self. _set_vocab_sentencepiece()
except FileNotFoundError:
self._set_vocab_llama_hf()
def set_gguf_parameters(self):
# TODO: Look closer at these
self.gguf_writer.add_name("OpenELM")
self.block_count = self.find_hparam(["num_transformer_layers"])
self.gguf_writer.add_layer_norm_eps(1e-5)
# https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
self.gguf_writer.add_layer_norm_rms_eps(1e-6)
n_embd = self.find_hparam(["model_dim"])
self.gguf_writer.add_embedding_length(n_embd)
head_dim = self.find_hparam(["head_dim"])
n_head = n_embd // head_dim
rot_pct = 1.0
self.gguf_writer.add_context_length(self.find_hparam(["max_context_length"]))
self.gguf_writer.add_block_count(self.block_count)
self.gguf_writer.add_head_count_kv(n_head*10)
self.gguf_writer.add_head_count(n_head*10)
self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
self.gguf_writer.add_file_type(self.ftype)
self.gguf_writer.add_feed_forward_length(0) # dynamically calculated
def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
# TODO: Read configuration!
if "n_layers" in keys:
return 16 # num_transformer_layers
if "hidden_size" in keys:
return 1280 # model_dim
if "num_attention_heads" in keys:
return 64 # head_dim
return super().find_hparam(keys, optional)
@Model.register("ArcticForCausalLM")
class ArcticModel(Model):
model_arch = gguf.MODEL_ARCH.ARCTIC
def set_vocab(self):
# The reason for using a custom implementation here is that the
# snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
# tokenizer.model and used them as BOS and EOS instead of adding new tokens.
from sentencepiece import SentencePieceProcessor
tokenizer_path = self.dir_model / 'tokenizer.model'
if not tokenizer_path.is_file():
logger.error(f'Error: Missing {tokenizer_path}')
sys.exit(1)
# Read the whole vocabulary from the tokenizer.model file
tokenizer = SentencePieceProcessor()
tokenizer.LoadFromFile(str(tokenizer_path))
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
scores: list[float] = [-10000.0] * vocab_size
toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
for token_id in range(tokenizer.vocab_size()):
piece = tokenizer.IdToPiece(token_id)
text = piece.encode("utf-8")
score = tokenizer.GetScore(token_id)
toktype = SentencePieceTokenTypes.NORMAL
if tokenizer.IsUnknown(token_id):
toktype = SentencePieceTokenTypes.UNKNOWN
elif tokenizer.IsControl(token_id):
toktype = SentencePieceTokenTypes.CONTROL
elif tokenizer.IsUnused(token_id):
toktype = SentencePieceTokenTypes.UNUSED
elif tokenizer.IsByte(token_id):
toktype = SentencePieceTokenTypes.BYTE
tokens[token_id] = text
scores[token_id] = score
toktypes[token_id] = toktype
# Use the added_tokens_decoder field from tokeniser_config.json as the source
# of information about added/redefined tokens and modify them accordingly.
tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
if tokenizer_config_file.is_file():
with open(tokenizer_config_file, "r", encoding="utf-8") as f:
tokenizer_config_json = json.load(f)
if "added_tokens_decoder" in tokenizer_config_json:
added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
for token_id, token_json in added_tokens_decoder.items():
token_id = int(token_id)
if (token_id >= vocab_size):
logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
continue
token_content = token_json["content"]
token_type = SentencePieceTokenTypes.USER_DEFINED
token_score = -10000.0
# Map unk_token to UNKNOWN, other special tokens to CONTROL
# Set the score to 0.0 as in the original tokenizer.model
if ("special" in token_json) and token_json["special"]:
if token_content == tokenizer_config_json["unk_token"]:
token_type = SentencePieceTokenTypes.UNKNOWN
else:
token_type = SentencePieceTokenTypes.CONTROL
token_score = 0.0
logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
tokens[token_id] = token_content.encode("utf-8")
toktypes[token_id] = token_type
scores[token_id] = token_score
self.gguf_writer.add_tokenizer_model("llama")
self.gguf_writer.add_tokenizer_pre("default")
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_scores(scores)
self.gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
special_vocab.add_to_gguf(self.gguf_writer)
def set_gguf_parameters(self):
super().set_gguf_parameters()
hparams = self.hparams
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
_experts: list[dict[str, Tensor]] | None = None
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
n_head = self.hparams["num_attention_heads"]
n_kv_head = self.hparams.get("num_key_value_heads")
if name.endswith("q_proj.weight"):
data_torch = LlamaModel.permute(data_torch, n_head, n_head)
if name.endswith("k_proj.weight"):
data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
# process the experts separately
if name.find("block_sparse_moe.experts") != -1:
n_experts = self.hparams["num_local_experts"]
assert bid is not None
if self._experts is None:
self._experts = [{} for _ in range(self.block_count)]
self._experts[bid][name] = data_torch
if len(self._experts[bid]) >= n_experts * 3:
tensors: list[tuple[str, Tensor]] = []
# merge the experts into a single 3d tensor
for wid in ["w1", "w2", "w3"]:
datas: list[Tensor] = []
for xid in range(n_experts):
ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
datas.append(self._experts[bid][ename])
del self._experts[bid][ename]
data_torch = torch.stack(datas, dim=0)
merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
new_name = self.map_tensor_name(merged_name)
tensors.append((new_name, data_torch))
return tensors
else:
return []
return [(self.map_tensor_name(name), data_torch)]
def write_tensors(self):
super().write_tensors()
if self._experts is not None:
# flatten `list[dict[str, Tensor]]` into `list[str]`
experts = [k for d in self._experts for k in d.keys()]
if len(experts) > 0:
raise ValueError(f"Unprocessed experts: {experts}")
@Model.register("DeepseekV2ForCausalLM")
class DeepseekV2Model(Model):
model_arch = gguf.MODEL_ARCH.DEEPSEEK2
def set_vocab(self):
self._set_vocab_gpt2()
def set_gguf_parameters(self):
super().set_gguf_parameters()
hparams = self.hparams
self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
self.gguf_writer.add_value_length(hparams["v_head_dim"])
self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
if self.hparams["rope_scaling"].get("type") == "yarn":
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
_experts: list[dict[str, Tensor]] | None = None
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
# process the experts separately
if name.find("mlp.experts") != -1:
n_experts = self.hparams["n_routed_experts"]
assert bid is not None
if self._experts is None:
self._experts = [{} for _ in range(self.block_count)]
self._experts[bid][name] = data_torch
if len(self._experts[bid]) >= n_experts * 3:
tensors: list[tuple[str, Tensor]] = []
# merge the experts into a single 3d tensor
for w_name in ["down_proj", "gate_proj", "up_proj"]:
datas: list[Tensor] = []
for xid in range(n_experts):
ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
datas.append(self._experts[bid][ename])
del self._experts[bid][ename]
data_torch = torch.stack(datas, dim=0)
merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
new_name = self.map_tensor_name(merged_name)
tensors.append((new_name, data_torch))
return tensors
else:
return []
return [(self.map_tensor_name(name), data_torch)]
def write_tensors(self):
super().write_tensors()
if self._experts is not None:
# flatten `list[dict[str, Tensor]]` into `list[str]`
experts = [k for d in self._experts for k in d.keys()]
if len(experts) > 0:
raise ValueError(f"Unprocessed experts: {experts}")
@Model.register("T5ForConditionalGeneration")
@Model.register("T5WithLMHeadModel")
class T5Model(Model):
model_arch = gguf.MODEL_ARCH.T5
def set_vocab(self):
# to avoid TypeError: Descriptors cannot be created directly
# exception when importing sentencepiece_model_pb2
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
from sentencepiece import SentencePieceProcessor
from sentencepiece import sentencepiece_model_pb2 as model
tokenizer_path = self.dir_model / 'spiece.model'
if not tokenizer_path.is_file():
raise FileNotFoundError(f"File not found: {tokenizer_path}")
sentencepiece_model = model.ModelProto()
sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
tokenizer = SentencePieceProcessor()
tokenizer.LoadFromFile(str(tokenizer_path))
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
scores: list[float] = [-10000.0] * vocab_size
toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
for token_id in range(tokenizer.vocab_size()):
piece = tokenizer.IdToPiece(token_id)
text = piece.encode("utf-8")
score = tokenizer.GetScore(token_id)
toktype = SentencePieceTokenTypes.NORMAL
if tokenizer.IsUnknown(token_id):
toktype = SentencePieceTokenTypes.UNKNOWN
elif tokenizer.IsControl(token_id):
toktype = SentencePieceTokenTypes.CONTROL
elif tokenizer.IsUnused(token_id):
toktype = SentencePieceTokenTypes.UNUSED
elif tokenizer.IsByte(token_id):
toktype = SentencePieceTokenTypes.BYTE
tokens[token_id] = text
scores[token_id] = score
toktypes[token_id] = toktype
added_tokens_file = self.dir_model / 'added_tokens.json'
if added_tokens_file.is_file():
with open(added_tokens_file, "r", encoding="utf-8") as f:
added_tokens_json = json.load(f)
for key in added_tokens_json:
token_id = added_tokens_json[key]
if (token_id >= vocab_size):
logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
continue
tokens[token_id] = key.encode("utf-8")
scores[token_id] = -1000.0
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
if vocab_size > len(tokens):
pad_count = vocab_size - len(tokens)
logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
for i in range(1, pad_count + 1):
tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
scores.append(-1000.0)
toktypes.append(SentencePieceTokenTypes.UNUSED)
self.gguf_writer.add_tokenizer_model("t5")
self.gguf_writer.add_tokenizer_pre("default")
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_scores(scores)
self.gguf_writer.add_token_types(toktypes)
self.gguf_writer.add_add_space_prefix(add_prefix)
self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
if precompiled_charsmap:
self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
special_vocab.add_to_gguf(self.gguf_writer)
self.gguf_writer.add_add_bos_token(False)
self.gguf_writer.add_add_eos_token(True)
def set_gguf_parameters(self):
self.gguf_writer.add_name("T5")
self.gguf_writer.add_context_length(self.hparams["n_positions"])
self.gguf_writer.add_embedding_length(self.hparams["d_model"])
self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
self.gguf_writer.add_block_count(self.hparams["num_layers"])
self.gguf_writer.add_head_count(self.hparams["num_heads"])
self.gguf_writer.add_key_length(self.hparams["d_kv"])
self.gguf_writer.add_value_length(self.hparams["d_kv"])
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
self.gguf_writer.add_file_type(self.ftype)
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
# Sometimes T5 and Flan-T5 based models contain "encoder.embed_tokens.weight" tensor or
# "decoder.embed_tokens.weight" tensors that are duplicates of "shared.weight" tensor
# To prevent errors caused by an unnecessary unmapped tensor, skip both of them and use only "shared.weight".
if name == "decoder.embed_tokens.weight" or name == "encoder.embed_tokens.weight":
logger.debug(f"Skipping tensor {name!r} in safetensors so that convert can end normally.")
return []
return [(self.map_tensor_name(name), data_torch)]
###### CONVERSION LOGIC ######
# tree of lazy tensors
class LazyTorchTensor(gguf.LazyBase):
_tensor_type = torch.Tensor
# to keep the type-checker happy
dtype: torch.dtype
shape: torch.Size
# only used when converting a torch.Tensor to a np.ndarray
_dtype_map: dict[torch.dtype, type] = {
torch.float16: np.float16,
torch.float32: np.float32,
}
def numpy(self) -> gguf.LazyNumpyTensor:
dtype = self._dtype_map[self.dtype]
return gguf.LazyNumpyTensor(
meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
lazy=self._lazy,
args=(self,),
func=(lambda s: s[0].numpy())
)
@classmethod
def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: torch.Size) -> Tensor:
return torch.empty(size=shape, dtype=dtype, device="meta")
@classmethod
def __torch_function__(cls, func, types, args=(), kwargs=None):
del types # unused
if kwargs is None:
kwargs = {}
if func is torch.Tensor.numpy:
return args[0].numpy()
return LazyTorchTensor._wrap_fn(func)(*args, **kwargs)
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(
description="Convert a huggingface model to a GGML compatible file")
parser.add_argument(
"--vocab-only", action="store_true",
help="extract only the vocab",
)
parser.add_argument(
"--awq-path", type=Path, default=None,
help="Path to scale awq cache file",
)
parser.add_argument(
"--outfile", type=Path,
help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
)
parser.add_argument(
"--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "auto"], default="f16",
help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
)
parser.add_argument(
"--bigendian", action="store_true",
help="model is executed on big endian machine",
)
parser.add_argument(
"model", type=Path,
help="directory containing model file",
)
parser.add_argument(
"--use-temp-file", action="store_true",
help="use the tempfile library while processing (helpful when running out of memory, process killed)",
)
parser.add_argument(
"--no-lazy", action="store_true",
help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
)
parser.add_argument(
"--model-name", type=str, default=None,
help="name of the model",
)
parser.add_argument(
"--verbose", action="store_true",
help="increase output verbosity",
)
parser.add_argument(
"--split-max-tensors", type=int, default=0,
help="max tensors in each split",
)
parser.add_argument(
"--split-max-size", type=str, default="0",
help="max size per split N(M|G)",
)
parser.add_argument(
"--dry-run", action="store_true",
help="only print out a split plan and exit, without writing any new files",
)
parser.add_argument(
"--no-tensor-first-split", action="store_true",
help="do not add tensors to the first split (disabled by default)"
)
return parser.parse_args()
def split_str_to_n_bytes(split_str: str) -> int:
if split_str.endswith("K"):
n = int(split_str[:-1]) * 1000
elif split_str.endswith("M"):
n = int(split_str[:-1]) * 1000 * 1000
elif split_str.endswith("G"):
n = int(split_str[:-1]) * 1000 * 1000 * 1000
elif split_str.isnumeric():
n = int(split_str)
else:
raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
if n < 0:
raise ValueError(f"Invalid split size: {split_str}, must be positive")
return n
def main() -> None:
args = parse_args()
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
dir_model = args.model
if args.awq_path:
sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
from awq.apply_awq import add_scale_weights # type: ignore[import-not-found]
tmp_model_path = args.model / "weighted_model"
dir_model = tmp_model_path
if tmp_model_path.is_dir():
logger.info(f"{tmp_model_path} exists as a weighted model.")
else:
tmp_model_path.mkdir(parents=True, exist_ok=True)
logger.info("Saving new weighted model ...")
add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
logger.info(f"Saved weighted model at {tmp_model_path}.")
if not dir_model.is_dir():
logger.error(f'Error: {args.model} is not a directory')
sys.exit(1)
ftype_map: dict[str, gguf.LlamaFileType] = {
"f32": gguf.LlamaFileType.ALL_F32,
"f16": gguf.LlamaFileType.MOSTLY_F16,
"bf16": gguf.LlamaFileType.MOSTLY_BF16,
"q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
"auto": gguf.LlamaFileType.GUESSED,
}
if args.use_temp_file and (args.split_max_tensors > 0 or args.split_max_size != "0"):
logger.error("Error: Cannot use temp file when splitting")
sys.exit(1)
if args.outfile is not None:
fname_out = args.outfile
else:
# output in the same directory as the model by default
fname_out = dir_model / 'ggml-model-{ftype}.gguf'
logger.info(f"Loading model: {dir_model.name}")
hparams = Model.load_hparams(dir_model)
with torch.inference_mode():
try:
model_class = Model.from_model_architecture(hparams["architectures"][0])
except NotImplementedError:
logger.error(f"Model {hparams['architectures'][0]} is not supported")
sys.exit(1)
model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian, args.use_temp_file,
args.no_lazy, args.model_name, split_max_tensors=args.split_max_tensors,
split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
small_first_shard=args.no_tensor_first_split)
logger.info("Set model parameters")
model_instance.set_gguf_parameters()
logger.info("Set model tokenizer")
model_instance.set_vocab()
model_instance.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
if args.vocab_only:
logger.info("Exporting model vocab...")
model_instance.write_vocab()
logger.info("Model vocab successfully exported.")
else:
logger.info("Exporting model...")
model_instance.write()
logger.info("Model successfully exported.")
if __name__ == '__main__':
main()