mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-01 00:39:00 +01:00
621e86b331
* server: bench: Init a bench scenario with K6 See #5827 * server: bench: EOL EOF * server: bench: PR feedback and improved k6 script configuration * server: bench: remove llamacpp_completions_tokens_seconds as it include prompt processing time and it's misleading server: bench: add max_tokens from SERVER_BENCH_MAX_TOKENS server: bench: increase truncated rate to 80% before failing * server: bench: fix doc * server: bench: change gauge custom metrics to trend * server: bench: change gauge custom metrics to trend server: bench: add trend custom metrics for total tokens per second average * server: bench: doc add an option to debug http request * server: bench: filter dataset too short and too long sequences * server: bench: allow to filter out conversation in the dataset based on env variable * server: bench: fix assistant message sent instead of user message * server: bench: fix assistant message sent instead of user message * server : add defrag thold parameter * server: bench: select prompts based on the current iteration id not randomly to make the bench more reproducible --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
121 lines
4.7 KiB
JavaScript
121 lines
4.7 KiB
JavaScript
import http from 'k6/http'
|
|
import {check, sleep} from 'k6'
|
|
import {SharedArray} from 'k6/data'
|
|
import {Counter, Rate, Trend} from 'k6/metrics'
|
|
import exec from 'k6/execution';
|
|
|
|
// Server chat completions prefix
|
|
const server_url = __ENV.SERVER_BENCH_URL ? __ENV.SERVER_BENCH_URL : 'http://localhost:8080/v1'
|
|
|
|
// Number of total prompts in the dataset - default 10m / 10 seconds/request * number of users
|
|
const n_prompt = __ENV.SERVER_BENCH_N_PROMPTS ? parseInt(__ENV.SERVER_BENCH_N_PROMPTS) : 600 / 10 * 8
|
|
|
|
// Model name to request
|
|
const model = __ENV.SERVER_BENCH_MODEL_ALIAS ? __ENV.SERVER_BENCH_MODEL_ALIAS : 'my-model'
|
|
|
|
// Dataset path
|
|
const dataset_path = __ENV.SERVER_BENCH_DATASET ? __ENV.SERVER_BENCH_DATASET : './ShareGPT_V3_unfiltered_cleaned_split.json'
|
|
|
|
// Max tokens to predict
|
|
const max_tokens = __ENV.SERVER_BENCH_MAX_TOKENS ? parseInt(__ENV.SERVER_BENCH_MAX_TOKENS) : 512
|
|
|
|
// Max prompt tokens
|
|
const n_prompt_tokens = __ENV.SERVER_BENCH_MAX_PROMPT_TOKENS ? parseInt(__ENV.SERVER_BENCH_MAX_PROMPT_TOKENS) : 1024
|
|
|
|
// Max slot context
|
|
const n_ctx_slot = __ENV.SERVER_BENCH_MAX_CONTEXT ? parseInt(__ENV.SERVER_BENCH_MAX_CONTEXT) : 2048
|
|
|
|
export function setup() {
|
|
console.info(`Benchmark config: server_url=${server_url} n_prompt=${n_prompt} model=${model} dataset_path=${dataset_path} max_tokens=${max_tokens}`)
|
|
}
|
|
|
|
const data = new SharedArray('conversations', function () {
|
|
const tokenizer = (message) => message.split(/[\s,'".?]/)
|
|
|
|
return JSON.parse(open(dataset_path))
|
|
// Filter out the conversations with less than 2 turns.
|
|
.filter(data => data["conversations"].length >= 2)
|
|
.filter(data => data["conversations"][0]["from"] === "human")
|
|
.map(data => {
|
|
return {
|
|
prompt: data["conversations"][0]["value"],
|
|
n_prompt_tokens: tokenizer(data["conversations"][0]["value"]).length,
|
|
n_completion_tokens: tokenizer(data["conversations"][1]["value"]).length,
|
|
}
|
|
})
|
|
// Filter out too short sequences
|
|
.filter(conv => conv.n_prompt_tokens >= 4 && conv.n_completion_tokens >= 4)
|
|
// Filter out too long sequences.
|
|
.filter(conv => conv.n_prompt_tokens <= n_prompt_tokens && conv.n_prompt_tokens + conv.n_completion_tokens <= n_ctx_slot)
|
|
// Keep only first n prompts
|
|
.slice(0, n_prompt)
|
|
})
|
|
|
|
const llamacpp_prompt_tokens = new Trend('llamacpp_prompt_tokens')
|
|
const llamacpp_completion_tokens = new Trend('llamacpp_completion_tokens')
|
|
const llamacpp_tokens_second = new Trend('llamacpp_tokens_second')
|
|
|
|
const llamacpp_prompt_tokens_total_counter = new Counter('llamacpp_prompt_tokens_total_counter')
|
|
const llamacpp_completion_tokens_total_counter = new Counter('llamacpp_completion_tokens_total_counter')
|
|
|
|
const llamacpp_completions_truncated_rate = new Rate('llamacpp_completions_truncated_rate')
|
|
const llamacpp_completions_stop_rate = new Rate('llamacpp_completions_stop_rate')
|
|
|
|
export const options = {
|
|
thresholds: {
|
|
llamacpp_completions_truncated_rate: [
|
|
// more than 80% of truncated input will abort the test
|
|
{threshold: 'rate < 0.8', abortOnFail: true, delayAbortEval: '1m'},
|
|
],
|
|
},
|
|
duration: '10m',
|
|
vus: 8,
|
|
}
|
|
|
|
export default function () {
|
|
const conversation = data[exec.scenario.iterationInInstance % data.length]
|
|
const payload = {
|
|
"messages": [
|
|
{
|
|
"role": "system",
|
|
"content": "You are ChatGPT, an AI assistant.",
|
|
},
|
|
{
|
|
"role": "user",
|
|
"content": conversation.prompt,
|
|
}
|
|
],
|
|
"model": model,
|
|
"stream": false,
|
|
"max_tokens": max_tokens
|
|
}
|
|
|
|
const body = JSON.stringify(payload)
|
|
|
|
let res = http.post(`${server_url}/chat/completions`, body, {
|
|
headers: {'Content-Type': 'application/json'},
|
|
timeout: '300s'
|
|
})
|
|
|
|
check(res, {'success completion': (r) => r.status === 200})
|
|
|
|
if (res.status === 200) {
|
|
const completions = res.json()
|
|
|
|
llamacpp_prompt_tokens.add(completions.usage.prompt_tokens)
|
|
llamacpp_prompt_tokens_total_counter.add(completions.usage.prompt_tokens)
|
|
|
|
llamacpp_completion_tokens.add(completions.usage.completion_tokens)
|
|
llamacpp_completion_tokens_total_counter.add(completions.usage.completion_tokens)
|
|
|
|
llamacpp_completions_truncated_rate.add(completions.choices[0].finish_reason === 'length')
|
|
llamacpp_completions_stop_rate.add(completions.choices[0].finish_reason === 'stop')
|
|
|
|
llamacpp_tokens_second.add(completions.usage.total_tokens / res.timings.duration * 1.e3)
|
|
} else {
|
|
console.error(`response: ${res.body} request=${payload}`)
|
|
}
|
|
|
|
sleep(0.3)
|
|
}
|