mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-25 22:08:46 +01:00
1011 lines
32 KiB
Metal
1011 lines
32 KiB
Metal
#include <metal_stdlib>
|
|
|
|
using namespace metal;
|
|
|
|
#define MAX(x, y) ((x) > (y) ? (x) : (y))
|
|
|
|
#define QK4_0 32
|
|
#define QR4_0 2
|
|
typedef struct {
|
|
half d; // delta
|
|
uint8_t qs[QK4_0 / 2]; // nibbles / quants
|
|
} block_q4_0;
|
|
|
|
static void dequantize_row_q4_0(device const block_q4_0 * x, device float * y, int k) {
|
|
const int qk = QK4_0;
|
|
|
|
assert(k % qk == 0);
|
|
|
|
const int nb = k / qk;
|
|
|
|
for (int i = 0; i < nb; i++) {
|
|
const half d = x[i].d;
|
|
|
|
for (int j = 0; j < qk/2; ++j) {
|
|
const int x0 = (x[i].qs[j] & 0x0F) - 8;
|
|
const int x1 = (x[i].qs[j] >> 4) - 8;
|
|
|
|
y[i*qk + j + 0 ] = x0*d;
|
|
y[i*qk + j + qk/2] = x1*d;
|
|
}
|
|
}
|
|
}
|
|
|
|
kernel void kernel_add(
|
|
device const float * src0,
|
|
device const float * src1,
|
|
device float * dst,
|
|
uint tpig[[thread_position_in_grid]]) {
|
|
dst[tpig] = src0[tpig] + src1[tpig];
|
|
}
|
|
|
|
kernel void kernel_mul(
|
|
device const float * src0,
|
|
device const float * src1,
|
|
device float * dst,
|
|
uint tpig[[thread_position_in_grid]]) {
|
|
dst[tpig] = src0[tpig] * src1[tpig];
|
|
}
|
|
|
|
// assumption: src1 is a row
|
|
// broadcast src1 into src0
|
|
kernel void kernel_mul_row(
|
|
device const float * src0,
|
|
device const float * src1,
|
|
device float * dst,
|
|
constant int64_t & ne00,
|
|
uint tpig[[thread_position_in_grid]]) {
|
|
dst[tpig] = src0[tpig] * src1[tpig % ne00];
|
|
}
|
|
|
|
kernel void kernel_scale(
|
|
device const float * src0,
|
|
device float * dst,
|
|
constant float & scale,
|
|
uint tpig[[thread_position_in_grid]]) {
|
|
dst[tpig] = src0[tpig] * scale;
|
|
}
|
|
|
|
kernel void kernel_silu(
|
|
device const float * src0,
|
|
device float * dst,
|
|
uint tpig[[thread_position_in_grid]]) {
|
|
float x = src0[tpig];
|
|
dst[tpig] = x / (1.0f + exp(-x));
|
|
}
|
|
|
|
kernel void kernel_relu(
|
|
device const float * src0,
|
|
device float * dst,
|
|
uint tpig[[thread_position_in_grid]]) {
|
|
dst[tpig] = max(0.0f, src0[tpig]);
|
|
}
|
|
|
|
constant float GELU_COEF_A = 0.044715f;
|
|
constant float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
|
|
|
|
kernel void kernel_gelu(
|
|
device const float * src0,
|
|
device float * dst,
|
|
uint tpig[[thread_position_in_grid]]) {
|
|
float x = src0[tpig];
|
|
dst[tpig] = 0.5f*x*(1.0f + tanh(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
|
|
}
|
|
|
|
kernel void kernel_soft_max(
|
|
device const float * src0,
|
|
device float * dst,
|
|
constant int64_t & ne00,
|
|
constant int64_t & ne01,
|
|
constant int64_t & ne02,
|
|
threadgroup float * buf [[threadgroup(0)]],
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
uint3 tpitg[[thread_position_in_threadgroup]],
|
|
uint3 ntg[[threads_per_threadgroup]]) {
|
|
const int64_t i03 = tgpig[2];
|
|
const int64_t i02 = tgpig[1];
|
|
const int64_t i01 = tgpig[0];
|
|
|
|
device const float * psrc0 = src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
|
|
device float * pdst = dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
|
|
|
|
// parallel max
|
|
buf[tpitg[0]] = -INFINITY;
|
|
for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) {
|
|
buf[tpitg[0]] = MAX(buf[tpitg[0]], psrc0[i00]);
|
|
}
|
|
|
|
// reduce
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
for (uint i = ntg[0]/2; i > 0; i /= 2) {
|
|
if (tpitg[0] < i) {
|
|
buf[tpitg[0]] = MAX(buf[tpitg[0]], buf[tpitg[0] + i]);
|
|
}
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
}
|
|
|
|
// broadcast
|
|
if (tpitg[0] == 0) {
|
|
buf[0] = buf[0];
|
|
}
|
|
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
const float max = buf[0];
|
|
|
|
// parallel sum
|
|
buf[tpitg[0]] = 0.0f;
|
|
for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) {
|
|
buf[tpitg[0]] += exp(psrc0[i00] - max);
|
|
}
|
|
|
|
// reduce
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
for (uint i = ntg[0]/2; i > 0; i /= 2) {
|
|
if (tpitg[0] < i) {
|
|
buf[tpitg[0]] += buf[tpitg[0] + i];
|
|
}
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
}
|
|
|
|
// broadcast
|
|
if (tpitg[0] == 0) {
|
|
buf[0] = buf[0];
|
|
}
|
|
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
const float sum = buf[0];
|
|
|
|
for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) {
|
|
pdst[i00] = exp(psrc0[i00] - max) / sum;
|
|
}
|
|
}
|
|
|
|
kernel void kernel_diag_mask_inf(
|
|
device const float * src0,
|
|
device float * dst,
|
|
constant int64_t & ne00,
|
|
constant int64_t & ne01,
|
|
constant int & n_past,
|
|
uint3 tpig[[thread_position_in_grid]]) {
|
|
const int64_t i02 = tpig[2];
|
|
const int64_t i01 = tpig[1];
|
|
const int64_t i00 = tpig[0];
|
|
|
|
if (i00 > n_past + i01) {
|
|
dst[i02*ne01*ne00 + i01*ne00 + i00] = -INFINITY;
|
|
} else {
|
|
dst[i02*ne01*ne00 + i01*ne00 + i00] = src0[i02*ne01*ne00 + i01*ne00 + i00];
|
|
}
|
|
}
|
|
|
|
kernel void kernel_get_rows_f16(
|
|
device const void * src0,
|
|
device const int * src1,
|
|
device float * dst,
|
|
constant int64_t & ne00,
|
|
constant uint64_t & nb01,
|
|
constant uint64_t & nb1,
|
|
uint tpig[[thread_position_in_grid]]) {
|
|
const int i = tpig;
|
|
const int r = ((device int32_t *) src1)[i];
|
|
|
|
for (int j = 0; j < ne00; j++) {
|
|
dst[i*nb1 + j] = ((device half *) ((device char *) src0 + r*nb01))[j];
|
|
}
|
|
}
|
|
|
|
kernel void kernel_get_rows_q4_0(
|
|
device const void * src0,
|
|
device const int * src1,
|
|
device float * dst,
|
|
constant int64_t & ne00,
|
|
constant uint64_t & nb01,
|
|
constant uint64_t & nb1,
|
|
uint tpig[[thread_position_in_grid]]) {
|
|
const int i = tpig;
|
|
const int r = ((device int32_t *) src1)[i];
|
|
|
|
dequantize_row_q4_0(
|
|
(device const block_q4_0 *) ((device char *) src0 + r*nb01),
|
|
(device float *) ((device char *) dst + i*nb1), ne00);
|
|
}
|
|
|
|
kernel void kernel_rms_norm(
|
|
device const void * src0,
|
|
device float * dst,
|
|
constant int64_t & ne00,
|
|
constant uint64_t & nb01,
|
|
constant float & eps,
|
|
threadgroup float * sum [[threadgroup(0)]],
|
|
uint tgpig[[threadgroup_position_in_grid]],
|
|
uint tpitg[[thread_position_in_threadgroup]],
|
|
uint ntg[[threads_per_threadgroup]]) {
|
|
device const float * x = (device const float *) ((device const char *) src0 + tgpig*nb01);
|
|
|
|
// parallel sum
|
|
sum[tpitg] = 0.0f;
|
|
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
|
|
sum[tpitg] += x[i00] * x[i00];
|
|
}
|
|
|
|
// reduce
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
for (uint i = ntg/2; i > 0; i /= 2) {
|
|
if (tpitg < i) {
|
|
sum[tpitg] += sum[tpitg + i];
|
|
}
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
}
|
|
|
|
// broadcast
|
|
if (tpitg == 0) {
|
|
sum[0] /= ne00;
|
|
}
|
|
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
|
|
const float mean = sum[0];
|
|
const float scale = 1.0f/sqrt(mean + eps);
|
|
|
|
device float * y = dst + tgpig*ne00;
|
|
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
|
|
y[i00] = x[i00] * scale;
|
|
}
|
|
}
|
|
|
|
kernel void kernel_mul_mat_q4_0_f32(
|
|
device const void * src0,
|
|
device const float * src1,
|
|
device float * dst,
|
|
constant int64_t & ne00,
|
|
constant int64_t & ne01,
|
|
constant uint64_t & nb00,
|
|
constant uint64_t & nb01,
|
|
constant uint64_t & nb02,
|
|
constant int64_t & ne10,
|
|
constant int64_t & ne11,
|
|
constant uint64_t & nb10,
|
|
constant uint64_t & nb11,
|
|
constant uint64_t & nb12,
|
|
constant int64_t & ne0,
|
|
constant int64_t & ne1,
|
|
threadgroup float * sum [[threadgroup(0)]],
|
|
uint2 tgpig[[threadgroup_position_in_grid]],
|
|
uint2 tpig[[thread_position_in_grid]],
|
|
uint2 tpitg[[thread_position_in_threadgroup]],
|
|
uint2 tptg[[threads_per_threadgroup]]) {
|
|
const int nb = ne00/QK4_0;
|
|
|
|
const int8_t m8 = 8;
|
|
|
|
const int64_t r0 = tgpig.x;
|
|
const int64_t r1 = tgpig.y;
|
|
|
|
device const block_q4_0 * x = (device const block_q4_0 *) src0 + r0*nb;
|
|
device const float * y = (device const float *) src1 + r1*ne10;
|
|
|
|
const uint nth = tptg.x*tptg.y;
|
|
const uint ith = tptg.y*tpitg.x + tpitg.y;
|
|
|
|
const int ix = tpitg.y/4; // 0 or 1
|
|
const int iy = tpitg.y - 4*ix; // 0...3
|
|
|
|
const int first = 4 * iy;
|
|
|
|
float sumf = 0;
|
|
|
|
for (int i = 2*tpitg.x + ix; i < nb; i += 2*tptg.x) {
|
|
|
|
const float d = (float)x[i].d;
|
|
|
|
device const uint8_t * xl = x[i].qs + first;
|
|
device const float * yl = y + i * QK4_0 + first;
|
|
|
|
float2 acc = {0.0f, 0.0f};
|
|
|
|
for (int j = 0; j < 4; ++j) {
|
|
|
|
acc[0] += yl[j+ 0] * ((int8_t)(xl[j] & 0xF) - m8);
|
|
acc[1] += yl[j+16] * ((int8_t)(xl[j] >> 4) - m8);
|
|
|
|
}
|
|
|
|
sumf += d * (acc[0] + acc[1]);
|
|
}
|
|
|
|
sum[ith] = sumf;
|
|
|
|
//
|
|
// Accumulate the sum from all threads in the threadgroup
|
|
// This version is slightly faster than the commented out one below,
|
|
// which I copy-pasted from ggerganov's q4_0 dot product for metal.
|
|
//
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
if (ith%4 == 0) {
|
|
for (int i = 1; i < 4; ++i) sum[ith] += sum[ith + i];
|
|
}
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
if (ith%16 == 0) {
|
|
for (int i = 4; i < 16; i += 4) sum[ith] += sum[ith + i];
|
|
}
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
if (ith == 0) {
|
|
for (int i = 16; i < nth; i += 16) sum[0] += sum[i];
|
|
dst[r1*ne0 + r0] = sum[0];
|
|
}
|
|
|
|
//// accumulate the sum from all threads in the threadgroup
|
|
//threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
//for (uint i = nth/2; i > 0; i /= 2) {
|
|
// if (ith < i) {
|
|
// sum[ith] += sum[ith + i];
|
|
// }
|
|
// threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
//}
|
|
|
|
//if (ith == 0) {
|
|
// dst[r1*ne0 + r0] = sum[0];
|
|
//}
|
|
}
|
|
|
|
kernel void kernel_mul_mat_f16_f32(
|
|
device const char * src0,
|
|
device const char * src1,
|
|
device float * dst,
|
|
constant int64_t & ne00,
|
|
constant int64_t & ne01,
|
|
constant uint64_t & nb00,
|
|
constant uint64_t & nb01,
|
|
constant uint64_t & nb02,
|
|
constant int64_t & ne10,
|
|
constant int64_t & ne11,
|
|
constant uint64_t & nb10,
|
|
constant uint64_t & nb11,
|
|
constant uint64_t & nb12,
|
|
constant int64_t & ne0,
|
|
constant int64_t & ne1,
|
|
threadgroup float * sum [[threadgroup(0)]],
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
uint3 tpig[[thread_position_in_grid]],
|
|
uint3 tpitg[[thread_position_in_threadgroup]],
|
|
uint3 tptg[[threads_per_threadgroup]]) {
|
|
|
|
const int64_t r0 = tgpig.x;
|
|
const int64_t r1 = tgpig.y;
|
|
const int64_t im = tgpig.z;
|
|
|
|
device const half * x = (device const half *) (src0 + r0*nb01 + im*nb02);
|
|
device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
|
|
|
|
sum[tpitg.x] = 0.0f;
|
|
|
|
for (int i = tpitg.x; i < ne00; i += tptg.x) {
|
|
sum[tpitg.x] += (float) x[i] * (float) y[i];
|
|
}
|
|
|
|
// accumulate the sum from all threads in the threadgroup
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
for (uint i = tptg.x/2; i > 0; i /= 2) {
|
|
if (tpitg.x < i) {
|
|
sum[tpitg.x] += sum[tpitg.x + i];
|
|
}
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
}
|
|
|
|
if (tpitg.x == 0) {
|
|
dst[im*ne1*ne0 + r1*ne0 + r0] = sum[0];
|
|
}
|
|
}
|
|
|
|
kernel void kernel_rope(
|
|
device const void * src0,
|
|
device float * dst,
|
|
constant int64_t & ne00,
|
|
constant int64_t & ne01,
|
|
constant int64_t & ne02,
|
|
constant int64_t & ne03,
|
|
constant uint64_t & nb00,
|
|
constant uint64_t & nb01,
|
|
constant uint64_t & nb02,
|
|
constant uint64_t & nb03,
|
|
constant int64_t & ne0,
|
|
constant int64_t & ne1,
|
|
constant int64_t & ne2,
|
|
constant int64_t & ne3,
|
|
constant uint64_t & nb0,
|
|
constant uint64_t & nb1,
|
|
constant uint64_t & nb2,
|
|
constant uint64_t & nb3,
|
|
constant int & n_past,
|
|
constant int & n_dims,
|
|
constant int & mode,
|
|
uint3 tpig[[thread_position_in_grid]]) {
|
|
const int64_t i3 = tpig[2];
|
|
const int64_t i2 = tpig[1];
|
|
const int64_t i1 = tpig[0];
|
|
|
|
const bool is_neox = mode & 2;
|
|
const float theta_scale = pow(10000.0, -2.0f/n_dims);
|
|
|
|
const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
|
|
|
|
float theta = (float)p;
|
|
|
|
if (!is_neox) {
|
|
for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
|
|
const float cos_theta = cos(theta);
|
|
const float sin_theta = sin(theta);
|
|
|
|
theta *= theta_scale;
|
|
|
|
device const float * const src = (device float *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
|
|
device float * dst_data = (device float *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
|
|
|
const float x0 = src[0];
|
|
const float x1 = src[1];
|
|
|
|
dst_data[0] = x0*cos_theta - x1*sin_theta;
|
|
dst_data[1] = x0*sin_theta + x1*cos_theta;
|
|
}
|
|
} else {
|
|
// TODO: implement
|
|
}
|
|
}
|
|
|
|
kernel void kernel_cpy_f32_f16(
|
|
device const float * src0,
|
|
device half * dst,
|
|
constant int64_t & ne00,
|
|
constant int64_t & ne01,
|
|
constant int64_t & ne02,
|
|
constant int64_t & ne03,
|
|
constant uint64_t & nb00,
|
|
constant uint64_t & nb01,
|
|
constant uint64_t & nb02,
|
|
constant uint64_t & nb03,
|
|
constant int64_t & ne0,
|
|
constant int64_t & ne1,
|
|
constant int64_t & ne2,
|
|
constant int64_t & ne3,
|
|
constant uint64_t & nb0,
|
|
constant uint64_t & nb1,
|
|
constant uint64_t & nb2,
|
|
constant uint64_t & nb3,
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
uint3 tpitg[[thread_position_in_threadgroup]],
|
|
uint3 ntg[[threads_per_threadgroup]]) {
|
|
const int64_t i03 = tgpig[2];
|
|
const int64_t i02 = tgpig[1];
|
|
const int64_t i01 = tgpig[0];
|
|
|
|
const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
|
|
|
|
const int64_t i3 = n / (ne2*ne1*ne0);
|
|
const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
|
|
const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
|
|
const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
|
|
|
|
device half * dst_data = (device half *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
|
|
|
for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
|
|
device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
|
|
|
|
dst_data[i00] = src[0];
|
|
}
|
|
}
|
|
|
|
kernel void kernel_cpy_f32_f32(
|
|
device const float * src0,
|
|
device float * dst,
|
|
constant int64_t & ne00,
|
|
constant int64_t & ne01,
|
|
constant int64_t & ne02,
|
|
constant int64_t & ne03,
|
|
constant uint64_t & nb00,
|
|
constant uint64_t & nb01,
|
|
constant uint64_t & nb02,
|
|
constant uint64_t & nb03,
|
|
constant int64_t & ne0,
|
|
constant int64_t & ne1,
|
|
constant int64_t & ne2,
|
|
constant int64_t & ne3,
|
|
constant uint64_t & nb0,
|
|
constant uint64_t & nb1,
|
|
constant uint64_t & nb2,
|
|
constant uint64_t & nb3,
|
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
|
uint3 tpitg[[thread_position_in_threadgroup]],
|
|
uint3 ntg[[threads_per_threadgroup]]) {
|
|
const int64_t i03 = tgpig[2];
|
|
const int64_t i02 = tgpig[1];
|
|
const int64_t i01 = tgpig[0];
|
|
|
|
const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
|
|
|
|
const int64_t i3 = n / (ne2*ne1*ne0);
|
|
const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
|
|
const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
|
|
const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
|
|
|
|
device float * dst_data = (device float *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
|
|
|
for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
|
|
device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
|
|
|
|
dst_data[i00] = src[0];
|
|
}
|
|
}
|
|
|
|
//============================================ k-quants ======================================================
|
|
|
|
#define QK_K 256
|
|
|
|
typedef struct {
|
|
uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
|
|
uint8_t qs[QK_K/4]; // quants
|
|
half d; // super-block scale for quantized scales
|
|
half dmin; // super-block scale for quantized mins
|
|
} block_q2_k;
|
|
|
|
typedef struct {
|
|
half d; // super-block scale for quantized scales
|
|
half dmin; // super-block scale for quantized mins
|
|
uint8_t scales[3*QK_K/64]; // scales and mins, quantized with 6 bits
|
|
uint8_t qs[QK_K/2]; // 4--bit quants
|
|
} block_q4_k;
|
|
|
|
typedef struct {
|
|
uint8_t ql[QK_K/2]; // quants, lower 4 bits
|
|
uint8_t qh[QK_K/4]; // quants, upper 2 bits
|
|
int8_t scales[QK_K/16]; // scales, quantized with 8 bits
|
|
half d; // super-block scale
|
|
} block_q6_k;
|
|
|
|
static inline uchar4 get_scale_min_k4(int j, device const uint8_t * q) {
|
|
uchar4 r;
|
|
if (j < 4) {
|
|
r[0] = q[j+0] & 63; r[1] = q[j+4] & 63;
|
|
r[2] = q[j+1] & 63; r[3] = q[j+5] & 63;
|
|
} else {
|
|
r[0] = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
|
|
r[1] = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
|
|
r[2] = (q[j+5] & 0xF) | ((q[j-3] >> 6) << 4);
|
|
r[3] = (q[j+5] >> 4) | ((q[j+1] >> 6) << 4);
|
|
}
|
|
return r;
|
|
}
|
|
|
|
//========================================== dequantization =============================
|
|
|
|
static void dequantize_row_q2_k(device const block_q2_k * x, device float * y, int k) {
|
|
assert(k % QK_K == 0);
|
|
const int nb = k / QK_K;
|
|
|
|
for (int i = 0; i < nb; i++) {
|
|
|
|
const float d = x[i].d;
|
|
const float min = x[i].dmin;
|
|
|
|
device const uint8_t * q = x[i].qs;
|
|
|
|
int is = 0;
|
|
float dl, ml;
|
|
for (int n = 0; n < QK_K; n += 128) {
|
|
int shift = 0;
|
|
for (int j = 0; j < 4; ++j) {
|
|
|
|
uint8_t sc = x[i].scales[is++];
|
|
dl = d * (sc & 0xF); ml = min * (sc >> 4);
|
|
for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l] >> shift) & 3)) - ml;
|
|
|
|
sc = x[i].scales[is++];
|
|
dl = d * (sc & 0xF); ml = min * (sc >> 4);
|
|
for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3)) - ml;
|
|
|
|
shift += 2;
|
|
}
|
|
q += 32;
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
static void dequantize_row_q4_k(device const block_q4_k * x, device float * y, int k) {
|
|
assert(k % QK_K == 0);
|
|
const int nb = k / QK_K;
|
|
|
|
for (int i = 0; i < nb; i++) {
|
|
|
|
const float d = x[i].d;
|
|
const float min = x[i].dmin;
|
|
|
|
device const uint8_t * q = x[i].qs;
|
|
device const uint8_t * scales = x[i].scales;
|
|
|
|
int is = 0;
|
|
for (int j = 0; j < QK_K; j += 64) {
|
|
const uchar4 sc = get_scale_min_k4(is, scales);
|
|
const float d1 = d * sc[0]; const float m1 = min * sc[1];
|
|
const float d2 = d * sc[2]; const float m2 = min * sc[3];
|
|
for (int l = 0; l < 32; ++l) *y++ = d1 * (q[l] & 0xF) - m1;
|
|
for (int l = 0; l < 32; ++l) *y++ = d2 * (q[l] >> 4) - m2;
|
|
q += 32; is += 2;
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
static void dequantize_row_q6_k(device const block_q6_k * x, device float * y, int k) {
|
|
assert(k % QK_K == 0);
|
|
const int nb = k / QK_K;
|
|
|
|
for (int i = 0; i < nb; i++) {
|
|
|
|
device const uint8_t * ql = x[i].ql;
|
|
device const uint8_t * qh = x[i].qh;
|
|
device const int8_t * sc = x[i].scales;
|
|
|
|
const float d = x[i].d;
|
|
|
|
for (int n = 0; n < QK_K; n += 128) {
|
|
for (int l = 0; l < 32; ++l) {
|
|
int is = l/16;
|
|
const int8_t q1 = (int8_t)((ql[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
|
|
const int8_t q2 = (int8_t)((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
|
|
const int8_t q3 = (int8_t)((ql[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
|
|
const int8_t q4 = (int8_t)((ql[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
|
|
y[l + 0] = d * sc[is + 0] * q1;
|
|
y[l + 32] = d * sc[is + 2] * q2;
|
|
y[l + 64] = d * sc[is + 4] * q3;
|
|
y[l + 96] = d * sc[is + 6] * q4;
|
|
}
|
|
y += 128;
|
|
ql += 64;
|
|
qh += 32;
|
|
sc += 8;
|
|
}
|
|
}
|
|
}
|
|
|
|
kernel void kernel_get_rows_q2_k(
|
|
device const void * src0,
|
|
device const int * src1,
|
|
device float * dst,
|
|
constant int64_t & ne00,
|
|
constant uint64_t & nb01,
|
|
constant uint64_t & nb1,
|
|
uint tpig[[thread_position_in_grid]]) {
|
|
const int i = tpig;
|
|
const int r = ((device int32_t *) src1)[i];
|
|
|
|
dequantize_row_q2_k(
|
|
(device const block_q2_k *) ((device char *) src0 + r*nb01),
|
|
(device float *) ((device char *) dst + i*nb1), ne00);
|
|
}
|
|
|
|
kernel void kernel_get_rows_q4_k(
|
|
device const void * src0,
|
|
device const int * src1,
|
|
device float * dst,
|
|
constant int64_t & ne00,
|
|
constant uint64_t & nb01,
|
|
constant uint64_t & nb1,
|
|
uint tpig[[thread_position_in_grid]]) {
|
|
const int i = tpig;
|
|
const int r = ((device int32_t *) src1)[i];
|
|
|
|
dequantize_row_q4_k(
|
|
(device const block_q4_k *) ((device char *) src0 + r*nb01),
|
|
(device float *) ((device char *) dst + i*nb1), ne00);
|
|
}
|
|
|
|
kernel void kernel_get_rows_q6_k(
|
|
device const void * src0,
|
|
device const int * src1,
|
|
device float * dst,
|
|
constant int64_t & ne00,
|
|
constant uint64_t & nb01,
|
|
constant uint64_t & nb1,
|
|
uint tpig[[thread_position_in_grid]]) {
|
|
const int i = tpig;
|
|
const int r = ((device int32_t *) src1)[i];
|
|
|
|
dequantize_row_q6_k(
|
|
(device const block_q6_k *) ((device char *) src0 + r*nb01),
|
|
(device float *) ((device char *) dst + i*nb1), ne00);
|
|
}
|
|
|
|
//====================================== dot products =========================
|
|
|
|
kernel void kernel_mul_mat_q2_k_f32(
|
|
device const void * src0,
|
|
device const float * src1,
|
|
device float * dst,
|
|
constant int64_t & ne00,
|
|
constant int64_t & ne01,
|
|
constant uint64_t & nb00,
|
|
constant uint64_t & nb01,
|
|
constant uint64_t & nb02,
|
|
constant int64_t & ne10,
|
|
constant int64_t & ne11,
|
|
constant uint64_t & nb10,
|
|
constant uint64_t & nb11,
|
|
constant uint64_t & nb12,
|
|
constant int64_t & ne0,
|
|
constant int64_t & ne1,
|
|
threadgroup float * sum [[threadgroup(0)]],
|
|
uint2 tgpig[[threadgroup_position_in_grid]],
|
|
uint2 tpig[[thread_position_in_grid]], // we don't use this for now
|
|
uint2 tpitg[[thread_position_in_threadgroup]],
|
|
uint2 tptg[[threads_per_threadgroup]]) {
|
|
|
|
const int nb = ne00/QK_K;
|
|
|
|
const int64_t r0 = tgpig.x;
|
|
const int64_t r1 = tgpig.y;
|
|
|
|
device const block_q2_k * x = (device const block_q2_k *) src0 + r0*nb;
|
|
device const float * yy = (device const float *) src1 + r1*ne10;
|
|
|
|
const int nth = tptg.x*tptg.y;
|
|
const int ith = tptg.y*tpitg.x + tpitg.y;
|
|
|
|
|
|
const int tid = tpitg.y; // 0...16
|
|
const int il = tid/4; // 0...3
|
|
const int ir = tid%4; // 0...3
|
|
const int ip = il/2; // 0 or 1
|
|
const int shift1 = 4*(il%2);// 0 or 4
|
|
const int shift2 = shift1+2;// 2 or 6
|
|
const int n = 8;
|
|
const int is = 4*il + (n*ir)/16;
|
|
|
|
sum[ith] = 0.0f;
|
|
|
|
float sumf = 0;
|
|
for (int i = tpitg.x; i < nb; i += tptg.x) {
|
|
|
|
device const uint8_t * q = x[i].qs + 32*ip + n*ir;
|
|
device const uint8_t * scales = x[i].scales + is;
|
|
|
|
uint8_t d1 = scales[0] & 0xF;
|
|
uint8_t m1 = scales[0] >> 4;
|
|
uint8_t d2 = scales[2] & 0xF;
|
|
uint8_t m2 = scales[2] >> 4;
|
|
|
|
device const float * y = yy + i*QK_K + 64*il + n*ir;
|
|
|
|
const float dall = (float)x[i].d;
|
|
const float dmin = (float)x[i].dmin;
|
|
|
|
float4 s = {0.f, 0.f, 0.f, 0.f};
|
|
for (int l = 0; l < n; ++l) {
|
|
s[0] += y[l+ 0] * ((q[l] >> shift1) & 3); s[1] += y[l+ 0];
|
|
s[2] += y[l+32] * ((q[l] >> shift2) & 3); s[3] += y[l+32];
|
|
}
|
|
sumf += dall * (s[0] * d1 + s[2] * d2) - dmin * (s[1] * m1 + s[3] * m2);
|
|
|
|
|
|
}
|
|
sum[ith] = sumf;
|
|
|
|
//
|
|
// Accumulate the sum from all threads in the threadgroup
|
|
// This version is slightly faster than the commented out one below,
|
|
// which I copy-pasted from ggerganov's q4_0 dot product for metal.
|
|
//
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
if (ith%4 == 0) {
|
|
for (int i = 1; i < 4; ++i) sum[ith] += sum[ith + i];
|
|
}
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
if (ith%16 == 0) {
|
|
for (int i = 4; i < 16; i += 4) sum[ith] += sum[ith + i];
|
|
}
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
if (ith == 0) {
|
|
for (int i = 16; i < nth; i += 16) sum[0] += sum[i];
|
|
dst[r1*ne0 + r0] = sum[0];
|
|
}
|
|
|
|
//// accumulate the sum from all threads in the threadgroup
|
|
//threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
//for (uint i = nth/2; i > 0; i /= 2) {
|
|
// if (ith < i) {
|
|
// sum[ith] += sum[ith + i];
|
|
// }
|
|
// threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
//}
|
|
|
|
//if (ith == 0) {
|
|
// dst[r1*ne0 + r0] = sum[0];
|
|
//}
|
|
}
|
|
|
|
kernel void kernel_mul_mat_q4_k_f32(
|
|
device const void * src0,
|
|
device const float * src1,
|
|
device float * dst,
|
|
constant int64_t & ne00,
|
|
constant int64_t & ne01,
|
|
constant uint64_t & nb00,
|
|
constant uint64_t & nb01,
|
|
constant uint64_t & nb02,
|
|
constant int64_t & ne10,
|
|
constant int64_t & ne11,
|
|
constant uint64_t & nb10,
|
|
constant uint64_t & nb11,
|
|
constant uint64_t & nb12,
|
|
constant int64_t & ne0,
|
|
constant int64_t & ne1,
|
|
threadgroup float * sum [[threadgroup(0)]],
|
|
uint2 tgpig[[threadgroup_position_in_grid]],
|
|
uint2 tpig[[thread_position_in_grid]], // we don't use this for now
|
|
uint2 tpitg[[thread_position_in_threadgroup]],
|
|
uint2 tptg[[threads_per_threadgroup]]) {
|
|
|
|
const int nb = ne00/QK_K;
|
|
|
|
const int64_t r0 = tgpig.x;
|
|
const int64_t r1 = tgpig.y;
|
|
|
|
device const block_q4_k * x = (device const block_q4_k *) src0 + r0*nb;
|
|
device const float * yy = (device const float *) src1 + r1*ne10;
|
|
|
|
const uint nth = tptg.x*tptg.y;
|
|
const uint ith = tptg.y*tpitg.x + tpitg.y;
|
|
|
|
const int tid = tpitg.y; // 0...16
|
|
const int il = tid/4; // 0...3
|
|
const int ir = tid%4; // 0...3
|
|
const int n = 8;
|
|
const int is = 2*il;
|
|
|
|
sum[ith] = 0.0f;
|
|
|
|
float sumf = 0;
|
|
for (int i = tpitg.x; i < nb; i += tptg.x) {
|
|
|
|
device const uint8_t * q = (x + i)->qs + 32*il + n*ir;
|
|
device const float * y = yy + i*QK_K + 64*il + n*ir;
|
|
device const uint8_t * scales = (x + i)->scales;
|
|
|
|
const float dall = (float)((x + i)->d);
|
|
const float dmin = (float)((x + i)->dmin);
|
|
|
|
const uchar4 sc = get_scale_min_k4(is, scales);
|
|
|
|
float4 s = {0.f, 0.f, 0.f, 0.f};
|
|
for (int l = 0; l < n; ++l) {
|
|
s[0] += y[l+ 0] * (q[l] & 0xF); s[1] += y[l+ 0];
|
|
s[2] += y[l+32] * (q[l] >> 4); s[3] += y[l+32];
|
|
}
|
|
sumf += dall * (s[0] * sc[0] + s[2] * sc[2]) - dmin * (s[1] * sc[1] + s[3] * sc[3]);
|
|
|
|
}
|
|
sum[ith] = sumf;
|
|
|
|
//
|
|
// Accumulate the sum from all threads in the threadgroup
|
|
// This version is slightly faster than the commented out one below,
|
|
// which I copy-pasted from ggerganov's q4_0 dot product for metal.
|
|
//
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
if (ith%4 == 0) {
|
|
for (int i = 1; i < 4; ++i) sum[ith] += sum[ith + i];
|
|
}
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
if (ith%16 == 0) {
|
|
for (int i = 4; i < 16; i += 4) sum[ith] += sum[ith + i];
|
|
}
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
if (ith == 0) {
|
|
for (int i = 16; i < nth; i += 16) sum[0] += sum[i];
|
|
dst[r1*ne0 + r0] = sum[0];
|
|
}
|
|
|
|
//// accumulate the sum from all threads in the threadgroup
|
|
//threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
//for (uint i = nth/2; i > 0; i /= 2) {
|
|
// if (ith < i) {
|
|
// sum[ith] += sum[ith + i];
|
|
// }
|
|
// threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
//}
|
|
|
|
//if (ith == 0) {
|
|
// dst[r1*ne0 + r0] = sum[0];
|
|
//}
|
|
}
|
|
|
|
kernel void kernel_mul_mat_q6_k_f32(
|
|
device const void * src0,
|
|
device const float * src1,
|
|
device float * dst,
|
|
constant int64_t & ne00,
|
|
constant int64_t & ne01,
|
|
constant uint64_t & nb00,
|
|
constant uint64_t & nb01,
|
|
constant uint64_t & nb02,
|
|
constant int64_t & ne10,
|
|
constant int64_t & ne11,
|
|
constant uint64_t & nb10,
|
|
constant uint64_t & nb11,
|
|
constant uint64_t & nb12,
|
|
constant int64_t & ne0,
|
|
constant int64_t & ne1,
|
|
threadgroup float * sum [[threadgroup(0)]],
|
|
uint2 tgpig[[threadgroup_position_in_grid]],
|
|
uint2 tpig[[thread_position_in_grid]], // we don't use this for now
|
|
uint2 tpitg[[thread_position_in_threadgroup]],
|
|
uint2 tptg[[threads_per_threadgroup]]) {
|
|
|
|
const uint8_t kmask1 = 0x03;
|
|
const uint8_t kmask2 = 0x0C;
|
|
const uint8_t kmask3 = 0x30;
|
|
const uint8_t kmask4 = 0xC0;
|
|
|
|
const int nb = ne00/QK_K;
|
|
|
|
const int64_t r0 = tgpig.x;
|
|
const int64_t r1 = tgpig.y;
|
|
|
|
device const block_q6_k * x = (device const block_q6_k *) src0 + r0*nb;
|
|
device const float * yy = (device const float *) src1 + r1*ne10;
|
|
|
|
const uint nth = tptg.x*tptg.y;
|
|
const uint ith = tptg.y*tpitg.x + tpitg.y;
|
|
|
|
const int step = QK_K / tptg.y; // we expect this to be 16
|
|
const int iqs = step * tpitg.y; // 0...240 in steps of 16
|
|
const int ip = iqs / 128; // 0 or 1
|
|
const int il = (iqs - 128*ip)/16; // 0...7
|
|
const int n = 4;
|
|
const int is = 8*ip + (n*il)/16;
|
|
|
|
float sumf = 0;
|
|
for (int i = tpitg.x; i < nb; i += tptg.x) {
|
|
|
|
device const uint8_t * ql = x[i].ql + 64*ip + n*il;
|
|
device const uint8_t * qh = x[i].qh + 32*ip + n*il;
|
|
device const int8_t * sc = x[i].scales + is;
|
|
|
|
device const float * y = yy + i * QK_K + 128*ip + n*il;
|
|
|
|
const float dall = x[i].d;
|
|
|
|
float4 sums = {0.f, 0.f, 0.f, 0.f};
|
|
for (int l = 0; l < n; ++l) {
|
|
sums[0] += y[l+ 0] * ((int8_t)((ql[l+ 0] & 0xF) | ((qh[l] & kmask1) << 4)) - 32);
|
|
sums[1] += y[l+32] * ((int8_t)((ql[l+32] & 0xF) | ((qh[l] & kmask2) << 2)) - 32);
|
|
sums[2] += y[l+64] * ((int8_t)((ql[l+ 0] >> 4) | ((qh[l] & kmask3) << 0)) - 32);
|
|
sums[3] += y[l+96] * ((int8_t)((ql[l+32] >> 4) | ((qh[l] & kmask4) >> 2)) - 32);
|
|
}
|
|
|
|
sumf += dall * (sums[0] * sc[0] + sums[1] * sc[2] + sums[2] * sc[4] + sums[3] * sc[6]);
|
|
|
|
}
|
|
|
|
sum[ith] = sumf;
|
|
|
|
//
|
|
// Accumulate the sum from all threads in the threadgroup
|
|
//
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
if (ith%4 == 0) {
|
|
for (int i = 1; i < 4; ++i) sum[ith] += sum[ith + i];
|
|
}
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
if (ith%16 == 0) {
|
|
for (int i = 4; i < 16; i += 4) sum[ith] += sum[ith + i];
|
|
}
|
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
if (ith == 0) {
|
|
for (int i = 16; i < nth; i += 16) sum[0] += sum[i];
|
|
dst[r1*ne0 + r0] = sum[0];
|
|
}
|
|
|
|
}
|