mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-25 05:48:47 +01:00
70c29da118
* Fix mirostat state when using multiple sequences * Fix mirostat by completely refactoring sampling! * Try to fix zig build. * Export function to fetch/create default sampler states Code formatting cleanups and add some comments Silence a warning about id not being used when logging is disabled * Apply some renaming suggestions. Fix comments that were out of sync with the pull. * Use more consistant naming convention for sampling contexts
222 lines
7.3 KiB
C++
222 lines
7.3 KiB
C++
#include "build-info.h"
|
|
#include "common.h"
|
|
#include "embd-input.h"
|
|
|
|
#include <cassert>
|
|
#include <cinttypes>
|
|
#include <cmath>
|
|
#include <cstdio>
|
|
#include <cstring>
|
|
#include <ctime>
|
|
#include <fstream>
|
|
#include <iostream>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
static llama_context ** g_ctx;
|
|
|
|
extern "C" {
|
|
|
|
struct MyModel* create_mymodel(int argc, char ** argv) {
|
|
gpt_params params;
|
|
|
|
if (!gpt_params_parse(argc, argv, params)) {
|
|
return nullptr;
|
|
}
|
|
|
|
print_build_info();
|
|
|
|
if (params.seed == LLAMA_DEFAULT_SEED) {
|
|
params.seed = uint32_t(time(NULL));
|
|
}
|
|
fprintf(stderr, "%s: seed = %d\n", __func__, params.seed);
|
|
|
|
llama_backend_init(params.numa);
|
|
|
|
llama_model * model;
|
|
llama_context * ctx;
|
|
|
|
g_ctx = &ctx;
|
|
|
|
// load the model and apply lora adapter, if any
|
|
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
|
if (model == NULL) {
|
|
fprintf(stderr, "%s: error: unable to load model\n", __func__);
|
|
return nullptr;
|
|
}
|
|
|
|
// print system information
|
|
{
|
|
fprintf(stderr, "\n");
|
|
fprintf(stderr, "%s\n", get_system_info(params).c_str());
|
|
}
|
|
struct MyModel * ret = new MyModel();
|
|
ret->ctx = ctx;
|
|
ret->params = params;
|
|
ret->n_past = 0;
|
|
// printf("ctx: %d\n", ret->ctx);
|
|
return ret;
|
|
}
|
|
|
|
void free_mymodel(struct MyModel * mymodel) {
|
|
llama_context * ctx = mymodel->ctx;
|
|
llama_print_timings(ctx);
|
|
llama_free(ctx);
|
|
delete mymodel;
|
|
}
|
|
|
|
|
|
bool eval_float(void * model, float * input, int N){
|
|
MyModel * mymodel = (MyModel*)model;
|
|
llama_context * ctx = mymodel->ctx;
|
|
gpt_params params = mymodel->params;
|
|
int n_emb = llama_n_embd(llama_get_model(ctx));
|
|
int n_past = mymodel->n_past;
|
|
int n_batch = N; // params.n_batch;
|
|
|
|
for (int i = 0; i < (int) N; i += n_batch) {
|
|
int n_eval = (int) N - i;
|
|
if (n_eval > n_batch) {
|
|
n_eval = n_batch;
|
|
}
|
|
llama_batch batch = { int32_t(n_eval), nullptr, (input+i*n_emb), nullptr, nullptr, nullptr, n_past, 1, 0, };
|
|
if (llama_decode(ctx, batch)) {
|
|
fprintf(stderr, "%s : failed to eval\n", __func__);
|
|
return false;
|
|
}
|
|
n_past += n_eval;
|
|
}
|
|
mymodel->n_past = n_past;
|
|
return true;
|
|
}
|
|
|
|
bool eval_tokens(void * model, std::vector<llama_token> tokens) {
|
|
MyModel * mymodel = (MyModel* )model;
|
|
llama_context * ctx;
|
|
ctx = mymodel->ctx;
|
|
gpt_params params = mymodel->params;
|
|
int n_past = mymodel->n_past;
|
|
for (int i = 0; i < (int) tokens.size(); i += params.n_batch) {
|
|
int n_eval = (int) tokens.size() - i;
|
|
if (n_eval > params.n_batch) {
|
|
n_eval = params.n_batch;
|
|
}
|
|
if (llama_decode(ctx, llama_batch_get_one(&tokens[i], n_eval, n_past, 0))) {
|
|
fprintf(stderr, "%s : failed to eval\n", __func__);
|
|
return false;
|
|
}
|
|
n_past += n_eval;
|
|
}
|
|
mymodel->n_past = n_past;
|
|
return true;
|
|
}
|
|
|
|
bool eval_id(struct MyModel* mymodel, int id) {
|
|
std::vector<llama_token> tokens;
|
|
tokens.push_back(id);
|
|
return eval_tokens(mymodel, tokens);
|
|
}
|
|
|
|
bool eval_string(struct MyModel * mymodel,const char* str){
|
|
llama_context * ctx = mymodel->ctx;
|
|
std::string str2 = str;
|
|
std::vector<llama_token> embd_inp = ::llama_tokenize(ctx, str2, true);
|
|
eval_tokens(mymodel, embd_inp);
|
|
return true;
|
|
}
|
|
|
|
llama_token sampling_id(struct MyModel* mymodel) {
|
|
llama_context* ctx = mymodel->ctx;
|
|
gpt_params params = mymodel->params;
|
|
llama_sampling_params & sparams = params.sampling_params;
|
|
// int n_ctx = llama_n_ctx(ctx);
|
|
|
|
// out of user input, sample next token
|
|
const float temp = sparams.temp;
|
|
const int32_t top_k = sparams.top_k <= 0 ? llama_n_vocab(llama_get_model(ctx)) : sparams.top_k;
|
|
const float top_p = sparams.top_p;
|
|
const float tfs_z = sparams.tfs_z;
|
|
const float typical_p = sparams.typical_p;
|
|
// const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
|
|
// const float repeat_penalty = params.repeat_penalty;
|
|
// const float alpha_presence = params.presence_penalty;
|
|
// const float alpha_frequency = params.frequency_penalty;
|
|
const int mirostat = sparams.mirostat;
|
|
const float mirostat_tau = sparams.mirostat_tau;
|
|
const float mirostat_eta = sparams.mirostat_eta;
|
|
// const bool penalize_nl = params.penalize_nl;
|
|
|
|
llama_token id = 0;
|
|
{
|
|
auto logits = llama_get_logits(ctx);
|
|
auto n_vocab = llama_n_vocab(llama_get_model(ctx));
|
|
|
|
// Apply params.logit_bias map
|
|
for (auto it = sparams.logit_bias.begin(); it != sparams.logit_bias.end(); it++) {
|
|
logits[it->first] += it->second;
|
|
}
|
|
|
|
std::vector<llama_token_data> candidates;
|
|
candidates.reserve(n_vocab);
|
|
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
|
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
|
|
}
|
|
|
|
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
|
|
|
// TODO: Apply penalties
|
|
// float nl_logit = logits[llama_token_nl(ctx)];
|
|
// auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
|
|
// llama_sample_repetition_penalty(ctx, &candidates_p,
|
|
// last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
|
|
// last_n_repeat, repeat_penalty);
|
|
// llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
|
|
// last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
|
|
// last_n_repeat, alpha_frequency, alpha_presence);
|
|
// if (!penalize_nl) {
|
|
// logits[llama_token_nl(ctx)] = nl_logit;
|
|
// }
|
|
|
|
if (temp <= 0) {
|
|
// Greedy sampling
|
|
id = llama_sample_token_greedy(ctx, &candidates_p);
|
|
} else {
|
|
if (mirostat == 1) {
|
|
static float mirostat_mu = 2.0f * mirostat_tau;
|
|
const int mirostat_m = 100;
|
|
llama_sample_temp(ctx, &candidates_p, temp);
|
|
id = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
|
|
} else if (mirostat == 2) {
|
|
static float mirostat_mu = 2.0f * mirostat_tau;
|
|
llama_sample_temp(ctx, &candidates_p, temp);
|
|
id = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
|
|
} else {
|
|
// Temperature sampling
|
|
llama_sample_top_k(ctx, &candidates_p, top_k, 1);
|
|
llama_sample_tail_free(ctx, &candidates_p, tfs_z, 1);
|
|
llama_sample_typical(ctx, &candidates_p, typical_p, 1);
|
|
llama_sample_top_p(ctx, &candidates_p, top_p, 1);
|
|
llama_sample_temp(ctx, &candidates_p, temp);
|
|
id = llama_sample_token(ctx, &candidates_p);
|
|
}
|
|
}
|
|
}
|
|
|
|
return id;
|
|
}
|
|
|
|
const char * sampling(struct MyModel * mymodel) {
|
|
llama_context * ctx = mymodel->ctx;
|
|
int id = sampling_id(mymodel);
|
|
static std::string ret;
|
|
if (id == llama_token_eos(ctx)) {
|
|
ret = "</s>";
|
|
} else {
|
|
ret = llama_token_to_piece(ctx, id);
|
|
}
|
|
eval_id(mymodel, id);
|
|
return ret.c_str();
|
|
}
|
|
|
|
}
|