mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-27 06:39:25 +01:00
4f0154b0ba
* Add support for quantizing already quantized models * Threaded dequantizing and f16 to f32 conversion * Clean up thread blocks with spares calculation a bit * Use std::runtime_error exceptions.
170 lines
5.4 KiB
C++
170 lines
5.4 KiB
C++
#include "build-info.h"
|
|
|
|
#include "llama.h"
|
|
|
|
#include <cstdio>
|
|
#include <cstring>
|
|
#include <map>
|
|
#include <string>
|
|
|
|
static const std::map<std::string, llama_ftype> LLAMA_FTYPE_MAP = {
|
|
{"q4_0", LLAMA_FTYPE_MOSTLY_Q4_0},
|
|
{"q4_1", LLAMA_FTYPE_MOSTLY_Q4_1},
|
|
{"q5_0", LLAMA_FTYPE_MOSTLY_Q5_0},
|
|
{"q5_1", LLAMA_FTYPE_MOSTLY_Q5_1},
|
|
{"q8_0", LLAMA_FTYPE_MOSTLY_Q8_0},
|
|
{"q2_K", LLAMA_FTYPE_MOSTLY_Q2_K},
|
|
{"q3_K", LLAMA_FTYPE_MOSTLY_Q3_K_M},
|
|
{"q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S},
|
|
{"q3_K_M", LLAMA_FTYPE_MOSTLY_Q3_K_M},
|
|
{"q3_K_L", LLAMA_FTYPE_MOSTLY_Q3_K_L},
|
|
{"q4_K", LLAMA_FTYPE_MOSTLY_Q4_K_M},
|
|
{"q4_K_S", LLAMA_FTYPE_MOSTLY_Q4_K_S},
|
|
{"q4_K_M", LLAMA_FTYPE_MOSTLY_Q4_K_M},
|
|
{"q5_K", LLAMA_FTYPE_MOSTLY_Q5_K_M},
|
|
{"q5_K_S", LLAMA_FTYPE_MOSTLY_Q5_K_S},
|
|
{"q5_K_M", LLAMA_FTYPE_MOSTLY_Q5_K_M},
|
|
{"q6_K", LLAMA_FTYPE_MOSTLY_Q6_K},
|
|
};
|
|
|
|
bool try_parse_ftype(const std::string & ftype_str, llama_ftype & ftype, std::string & ftype_str_out) {
|
|
auto it = LLAMA_FTYPE_MAP.find(ftype_str);
|
|
if (it != LLAMA_FTYPE_MAP.end()) {
|
|
ftype = it->second;
|
|
ftype_str_out = it->first;
|
|
return true;
|
|
}
|
|
// try to parse as an integer
|
|
try {
|
|
int ftype_int = std::stoi(ftype_str);
|
|
for (auto it = LLAMA_FTYPE_MAP.begin(); it != LLAMA_FTYPE_MAP.end(); it++) {
|
|
if (it->second == ftype_int) {
|
|
ftype = it->second;
|
|
ftype_str_out = it->first;
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
catch (...) {
|
|
// stoi failed
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// usage:
|
|
// ./quantize models/llama/ggml-model.bin [models/llama/ggml-model-quant.bin] type [nthreads]
|
|
//
|
|
void usage(const char * executable) {
|
|
fprintf(stderr, "usage: %s [--help] [--allow-requantize] [--leave-output-tensor] model-f32.bin [model-quant.bin] type [nthreads]\n", executable);
|
|
fprintf(stderr, " --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
|
|
fprintf(stderr, " --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n");
|
|
fprintf(stderr, "Allowed quantization types:\n");
|
|
for (auto it = LLAMA_FTYPE_MAP.begin(); it != LLAMA_FTYPE_MAP.end(); it++) {
|
|
fprintf(stderr, " type = \"%s\" or %d\n", it->first.c_str(), it->second);
|
|
}
|
|
exit(1);
|
|
}
|
|
|
|
int main(int argc, char ** argv) {
|
|
if (argc < 3) {
|
|
usage(argv[0]);
|
|
}
|
|
|
|
llama_model_quantize_params params = llama_model_quantize_default_params();
|
|
|
|
int arg_idx = 1;
|
|
|
|
for (; arg_idx < argc && strncmp(argv[arg_idx], "--", 2) == 0; arg_idx++) {
|
|
if (strcmp(argv[arg_idx], "--leave-output-tensor") == 0) {
|
|
params.quantize_output_tensor = false;
|
|
} else if (strcmp(argv[arg_idx], "--allow-requantize") == 0) {
|
|
params.allow_requantize = true;
|
|
} else {
|
|
usage(argv[0]);
|
|
}
|
|
}
|
|
|
|
if (argc - arg_idx < 3) {
|
|
usage(argv[0]);
|
|
}
|
|
|
|
llama_init_backend();
|
|
|
|
// parse command line arguments
|
|
const std::string fname_inp = argv[arg_idx];
|
|
arg_idx++;
|
|
std::string fname_out;
|
|
|
|
std::string ftype_str;
|
|
if (try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) {
|
|
std::string fpath;
|
|
const size_t pos = fname_inp.find_last_of('/');
|
|
if (pos != std::string::npos) {
|
|
fpath = fname_inp.substr(0, pos + 1);
|
|
}
|
|
// export as [inp path]/ggml-model-[ftype].bin
|
|
fname_out = fpath + "ggml-model-" + ftype_str + ".bin";
|
|
arg_idx++;
|
|
}
|
|
else {
|
|
fname_out = argv[arg_idx];
|
|
arg_idx++;
|
|
|
|
if (argc <= arg_idx) {
|
|
fprintf(stderr, "%s: missing ftype\n", __func__);
|
|
return 1;
|
|
}
|
|
if (!try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) {
|
|
fprintf(stderr, "%s: invalid ftype '%s'\n", __func__, argv[3]);
|
|
return 1;
|
|
}
|
|
arg_idx++;
|
|
}
|
|
|
|
// parse nthreads
|
|
if (argc > arg_idx) {
|
|
try {
|
|
params.nthread = std::stoi(argv[arg_idx]);
|
|
}
|
|
catch (const std::exception & e) {
|
|
fprintf(stderr, "%s: invalid nthread '%s' (%s)\n", __func__, argv[arg_idx], e.what());
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
|
|
|
|
fprintf(stderr, "%s: quantizing '%s' to '%s' as %s", __func__, fname_inp.c_str(), fname_out.c_str(), ftype_str.c_str());
|
|
if (params.nthread > 0) {
|
|
fprintf(stderr, " using %d threads", params.nthread);
|
|
}
|
|
fprintf(stderr, "\n");
|
|
|
|
const int64_t t_main_start_us = llama_time_us();
|
|
|
|
int64_t t_quantize_us = 0;
|
|
|
|
// load the model
|
|
{
|
|
const int64_t t_start_us = llama_time_us();
|
|
|
|
if (llama_model_quantize(fname_inp.c_str(), fname_out.c_str(), ¶ms)) {
|
|
fprintf(stderr, "%s: failed to quantize model from '%s'\n", __func__, fname_inp.c_str());
|
|
return 1;
|
|
}
|
|
|
|
t_quantize_us = llama_time_us() - t_start_us;
|
|
}
|
|
|
|
// report timing
|
|
{
|
|
const int64_t t_main_end_us = llama_time_us();
|
|
|
|
printf("\n");
|
|
printf("%s: quantize time = %8.2f ms\n", __func__, t_quantize_us/1000.0);
|
|
printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0);
|
|
}
|
|
|
|
return 0;
|
|
}
|