mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-27 12:33:06 +01:00
42c76d1358
* Introduce ggml_compute_threadpool - OpenMP functional: check - Vanilla ggml functional: Check - ggml w/threadpool functional: Check - OpenMP no regression: No glaring problems - Vanilla ggml no regression: No glaring problems - ggml w/threadpool no regression: No glaring problems * Minor fixes * fixed use after release bug * fixed a harmless race condition * Fix Android bulid issue * fix more race conditions * fix deadlock for cases where cgraph.n_nodes == 1 and fix --poll case * threadpool: use cpu_get_num_math to set the default number of threadpool threads This way we avoid using E-Cores and Hyperthreaded siblings. * bench: create fresh threadpool for each test For benchmarking it's better to start a fresh pool for each test with the exact number of threads needed for that test. Having larger pools is suboptimal (causes more load, etc). * atomics: always use stdatomics with clang and use relaxed memory order when polling in ggml_barrier This also removes sched_yield() calls from ggml_barrier() to match OpenMP behavior. * threadpool: make polling the default to match openmp behavior All command line args now allow for setting poll to 0 (false). * threadpool: do not wakeup threads in already paused threadpool * fix potential race condition in check_for_work * threadpool: do not create two threadpools if their params are identical * threadpool: reduce pause/resume/wakeup overhead in common cases We now start threadpool in paused state only if we have two. The resume is now implicit (ie new work) which allows for reduced locking and context-switch overhead. * threadpool: add support for hybrid polling poll params (--poll, ...) now specify "polling level", i.e. how aggresively we poll before waiting on cond.var. poll=0 means no polling, 1 means poll for 128K rounds then wait, 2 for 256K rounds, ... The default value of 50 (ie 50x128K rounds) seems like a decent default across modern platforms. We can tune this further as things evolve. * threadpool: reduce the number of barrier required New work is now indicated with an atomic counter that is incremented for each new graph that needs to be computed. This removes the need for extra barrier for clearing the "new_work" and removes the special case for trivial graphs. * threadpool: remove special-casing for disposable threadpools With the efficient hybrid polling there is no need to make disposable pools any different. This simplifies the overall logic and reduces branching. Include n_threads in debug print for disposable threadpool. Declare pause and stop flags as atomic_bool This doesn't actually generate any memory barriers and simply informs the thread sanitizer that these flags can be written & read by different threads without locking. * threadpool: do not clear barrier counters between graphs computes (fixes race with small graphs) This fixes the race condition with very small graphs where the main thread happens to start a new graph while the workers are just about to exit from barriers. * threadpool: use relaxed order for chunk sync Full memory barrier is an overkill for this since each thread works on different chunk * threadpool: remove abort_callback from threadpool state * threadpool: better naming for thread/cpumask releated functions * threadpool: consistent use of int type for n_threads params * threadpool: add support for ggml_threadpool_params_default/init Also removes the need for explicit mask_specified param. all-zero cpumask means use default (usually inherited) cpu affinity mask. * threadpool: move typedef into ggml.h * threadpool: fix apply_priority() function name * threadpool: fix swift wrapper errors due to n_threads int type cleanup * threadpool: enable --cpu-mask and other threadpool related options only if threadpool is enabled * threadpool: replace checks for compute_thread ret code with proper status check * threadpool: simplify threadpool init logic and fix main thread affinity application Most of the init code is now exactly the same between threadpool and openmp. * threadpool: update threadpool resume/pause function names * threadpool: enable openmp by default for now * threadpool: don't forget to free workers state when omp is enabled * threadpool: avoid updating process priority on the platforms that do not require it On Windows we need to change overall process priority class in order to set thread priorities, but on Linux, Mac, etc we do not need to touch the overall process settings. * threadpool: update calling thread prio and affinity only at start/resume This avoids extra syscalls for each graph_compute() * llama-bench: turn threadpool params into vectors, add output headers, etc * llama-bench: add support for cool off between tests --delay This helps for long running tests on platforms that are thermally limited (phones, laptops, etc). --delay (disabled by default) introduces the sleep for N seconds before starting each test. * threadpool: move process priority setting into the apps (bench and cli) This avoids changing the overall process priority on Windows for the apps that use ggml/llama.cpp directy. * threadpool: move all pause/resume logic into ggml * threadpool: futher api cleanup and prep for future refactoring All threadpool related functions and structs use ggml_threadpool prefix. * threadpool: minor indent fixes * threadpool: improve setprioty error message * Update examples/llama-bench/llama-bench.cpp Co-authored-by: slaren <slarengh@gmail.com> * threadpool: fix indent in set_threadpool call * use int32_t for n_thread type in public llama.cpp API * threadpool: use _new and _free instead of _create and _release * fix two more public APIs to use int32_t for n_threads * build: set _GNU_SOURCE for Adroid --------- Co-authored-by: Max Krasnyansky <quic_maxk@quicinc.com> Co-authored-by: fmz <quic_fzaghlou@quic.com> Co-authored-by: Max Krasnyansky <max.krasnyansky@gmail.com> Co-authored-by: slaren <slarengh@gmail.com>
424 lines
16 KiB
C++
424 lines
16 KiB
C++
#include "common.h"
|
|
#include "ggml.h"
|
|
#include "ggml-alloc.h"
|
|
|
|
#include <map>
|
|
#include <vector>
|
|
#include <string>
|
|
#include <thread>
|
|
#include <fstream>
|
|
|
|
static bool g_verbose = false;
|
|
|
|
struct tensor_transformation {
|
|
struct ggml_tensor * in;
|
|
struct ggml_tensor * out;
|
|
bool is_copy;
|
|
};
|
|
|
|
static std::string get_kv_str(struct gguf_context * ctx_gguf, const std::string & key){
|
|
int id = gguf_find_key(ctx_gguf, key.c_str());
|
|
return id < 0 ? "" : std::string(gguf_get_val_str(ctx_gguf, id));
|
|
}
|
|
|
|
static float get_kv_f32(struct gguf_context * ctx_gguf, const std::string & key) {
|
|
int id = gguf_find_key(ctx_gguf, key.c_str());
|
|
return id < 0 ? 0.0f : gguf_get_val_f32(ctx_gguf, id);
|
|
}
|
|
|
|
static void zeros(std::ofstream & file, size_t n) {
|
|
char zero = 0;
|
|
for (size_t i = 0; i < n; ++i) {
|
|
file.write(&zero, 1);
|
|
}
|
|
}
|
|
|
|
static std::string ggml_ne_string(const ggml_tensor * t) {
|
|
std::string str;
|
|
for (int i = 0; i < GGML_MAX_DIMS; ++i) {
|
|
str += std::to_string(t->ne[i]);
|
|
if (i + 1 < GGML_MAX_DIMS) {
|
|
str += ", ";
|
|
}
|
|
}
|
|
return str;
|
|
}
|
|
|
|
static struct gguf_context * load_gguf(std::string & fname, struct ggml_context ** ctx_ggml) {
|
|
struct gguf_init_params params = {
|
|
/*.no_alloc = */ true,
|
|
/*.ctx = */ ctx_ggml,
|
|
};
|
|
struct gguf_context * ctx_gguf = gguf_init_from_file(fname.c_str(), params);
|
|
if (!ctx_gguf) {
|
|
throw std::runtime_error("failed to load input GGUF from " + fname);
|
|
}
|
|
return ctx_gguf;
|
|
}
|
|
|
|
struct file_input {
|
|
struct ggml_context * ctx_meta = nullptr;
|
|
struct gguf_context * ctx_gguf = nullptr;
|
|
std::ifstream f_in;
|
|
std::map<std::string, ggml_tensor *> tensors;
|
|
float alpha;
|
|
float scale;
|
|
|
|
file_input(std::string & fname, float scale): f_in(fname, std::ios::binary), scale(scale) {
|
|
if (!f_in.is_open()) {
|
|
throw std::runtime_error("failed to open input gguf from " + fname);
|
|
}
|
|
|
|
ctx_gguf = load_gguf(fname, &ctx_meta);
|
|
alpha = get_kv_f32(ctx_gguf, "adapter.lora.alpha");
|
|
printf("%s: loaded gguf from %s\n", __func__, fname.c_str());
|
|
|
|
for (ggml_tensor * cur = ggml_get_first_tensor(ctx_meta); cur; cur = ggml_get_next_tensor(ctx_meta, cur)) {
|
|
std::string name(cur->name);
|
|
tensors[name] = cur;
|
|
if (g_verbose) {
|
|
printf("%s: %s\n", __func__, cur->name);
|
|
}
|
|
}
|
|
}
|
|
|
|
ggml_tensor * get_tensor(std::string name) {
|
|
if (tensors.find(name) == tensors.end()) {
|
|
return nullptr;
|
|
}
|
|
return tensors[name];
|
|
}
|
|
|
|
void read_tensor_data(std::string name, std::vector<uint8_t> & buf) {
|
|
if (tensors.find(name) == tensors.end()) {
|
|
throw std::runtime_error("cannot find tensor with name: " + name);
|
|
}
|
|
auto len = ggml_nbytes(tensors[name]);
|
|
if (buf.size() < len) {
|
|
buf.resize(len);
|
|
}
|
|
auto i_tensor_in = gguf_find_tensor(ctx_gguf, name.c_str()); // idx of tensor in the input file
|
|
auto offset = gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, i_tensor_in);
|
|
f_in.seekg(offset);
|
|
f_in.read((char* )buf.data(), len);
|
|
}
|
|
|
|
~file_input() {
|
|
gguf_free(ctx_gguf);
|
|
ggml_free(ctx_meta);
|
|
}
|
|
};
|
|
|
|
struct lora_merge_ctx {
|
|
// input base model + adapters
|
|
file_input base_model;
|
|
std::vector<std::unique_ptr<file_input>> adapters;
|
|
|
|
// for computing merged tensor
|
|
int n_threads;
|
|
ggml_backend_t backend = nullptr;
|
|
ggml_gallocr_t allocr = nullptr;
|
|
std::vector<uint8_t> read_buf;
|
|
|
|
// output file
|
|
struct gguf_context * ctx_out;
|
|
struct ggml_context * ctx_out_ggml;
|
|
std::ofstream fout;
|
|
|
|
lora_merge_ctx(
|
|
std::string & base_fname,
|
|
std::vector<llama_lora_adapter_info> & lora_files,
|
|
std::string & outfile,
|
|
int n_threads) : base_model(base_fname, 0), n_threads(n_threads), fout(outfile, std::ios::binary) {
|
|
fout.exceptions(std::ofstream::failbit); // fail fast on write errors
|
|
|
|
if (gguf_find_key(base_model.ctx_gguf, LLM_KV_SPLIT_COUNT) >= 0) {
|
|
throw std::runtime_error("split model is not yet supported");
|
|
}
|
|
|
|
for (auto & lora_inp : lora_files) {
|
|
auto fname = lora_inp.path;
|
|
auto scale = lora_inp.scale;
|
|
std::unique_ptr<file_input> adapter(new file_input(fname, scale));
|
|
check_metadata_lora(adapter.get());
|
|
adapters.push_back(std::move(adapter));
|
|
}
|
|
|
|
ctx_out = gguf_init_empty();
|
|
struct ggml_init_params params = {
|
|
/*.mem_size =*/ gguf_get_n_tensors(base_model.ctx_gguf)*ggml_tensor_overhead(),
|
|
/*.mem_buffer =*/ NULL,
|
|
/*.no_alloc =*/ true,
|
|
};
|
|
ctx_out_ggml = ggml_init(params);
|
|
backend = ggml_backend_cpu_init();
|
|
allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(backend));
|
|
}
|
|
|
|
void check_metadata_lora(file_input * adapter) {
|
|
auto general_type = get_kv_str(adapter->ctx_gguf, "general.type");
|
|
if (general_type != "adapter") {
|
|
throw std::runtime_error("expect general.type to be 'adapter', but got: " + general_type);
|
|
}
|
|
|
|
auto adapter_type = get_kv_str(adapter->ctx_gguf, "adapter.type");
|
|
if (adapter_type != "lora") {
|
|
throw std::runtime_error("expect adapter.type to be 'lora', but got: " + adapter_type);
|
|
}
|
|
|
|
auto general_arch_base = get_kv_str(base_model.ctx_gguf, "general.architecture");
|
|
auto general_arch_lora = get_kv_str(adapter->ctx_gguf, "general.architecture");
|
|
if (general_arch_base != general_arch_lora) {
|
|
throw std::runtime_error("model arch and LoRA arch mismatch");
|
|
}
|
|
}
|
|
|
|
ggml_type get_out_tensor_type(struct ggml_tensor * t) {
|
|
if (t->type == GGML_TYPE_F32) {
|
|
return GGML_TYPE_F32;
|
|
} else {
|
|
return GGML_TYPE_F16;
|
|
}
|
|
}
|
|
|
|
void run_merge() {
|
|
// prepare metadata
|
|
gguf_set_kv(ctx_out, base_model.ctx_gguf);
|
|
// output is forced to f16 for now
|
|
gguf_set_val_u32(ctx_out, "general.file_type", LLAMA_FTYPE_MOSTLY_F16);
|
|
|
|
// check if all lora adapters have the same tensors
|
|
// TODO: remove this when we can support merging subset of adapters. Ref: https://github.com/ggerganov/llama.cpp/pull/8607#discussion_r1686027777
|
|
static const char * err_no_subset_adapter = "Input adapters do not have the same list of tensors. This is not yet supported. Please merge the adapter one-by-one instead of merging all at once.";
|
|
if (adapters.size() > 1) {
|
|
for (size_t i = 1; i < adapters.size(); ++i) {
|
|
if (adapters[0]->tensors.size() != adapters[i]->tensors.size()) {
|
|
throw std::runtime_error(err_no_subset_adapter);
|
|
}
|
|
for (auto & it : adapters[i]->tensors) {
|
|
if (adapters[0]->get_tensor(it.first) == nullptr) {
|
|
throw std::runtime_error(err_no_subset_adapter);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// mapping base tensor to out tensor (same shape with base, but different type)
|
|
std::vector<tensor_transformation> trans;
|
|
for (auto & it : base_model.tensors) {
|
|
bool t_a = true;
|
|
bool t_b = true;
|
|
for (auto & adapter : adapters) {
|
|
t_a &= nullptr != adapter->get_tensor(it.first + ".lora_a");
|
|
t_b &= nullptr != adapter->get_tensor(it.first + ".lora_b");
|
|
}
|
|
auto base_tensor = it.second;
|
|
if (!t_a && !t_b) {
|
|
// only copy
|
|
struct ggml_tensor * cpy_tensor = ggml_dup_tensor(ctx_out_ggml, base_tensor);
|
|
ggml_set_name(cpy_tensor, base_tensor->name);
|
|
trans.push_back({
|
|
cpy_tensor,
|
|
cpy_tensor,
|
|
true,
|
|
});
|
|
gguf_add_tensor(ctx_out, cpy_tensor);
|
|
} else if (t_a && t_b) {
|
|
// need merging
|
|
struct ggml_tensor * out_tensor = ggml_new_tensor(
|
|
ctx_out_ggml, get_out_tensor_type(base_tensor), GGML_MAX_DIMS, base_tensor->ne);
|
|
ggml_set_name(out_tensor, base_tensor->name);
|
|
trans.push_back({
|
|
base_tensor,
|
|
out_tensor,
|
|
false,
|
|
});
|
|
gguf_add_tensor(ctx_out, out_tensor);
|
|
} else {
|
|
throw std::runtime_error("tensor " + it.first + " missing either lora_a or lora_b");
|
|
}
|
|
}
|
|
|
|
// placeholder for the meta data
|
|
{
|
|
size_t meta_size = gguf_get_meta_size(ctx_out);
|
|
zeros(fout, meta_size);
|
|
}
|
|
|
|
// process base model tensors
|
|
size_t n_merged = 0;
|
|
for (auto & it : trans) {
|
|
if (!it.is_copy) {
|
|
merge_tensor(it.in, it.out);
|
|
n_merged++;
|
|
} else {
|
|
copy_tensor(it.in);
|
|
}
|
|
}
|
|
|
|
// write output metadata
|
|
{
|
|
std::vector<uint8_t> data(gguf_get_meta_size(ctx_out));
|
|
gguf_get_meta_data(ctx_out, data.data());
|
|
fout.seekp(0);
|
|
fout.write((const char *)data.data(), data.size());
|
|
}
|
|
|
|
printf("%s : merged %ld tensors with lora adapters\n", __func__, n_merged);
|
|
printf("%s : wrote %ld tensors to output file\n", __func__, trans.size());
|
|
}
|
|
|
|
void copy_tensor(struct ggml_tensor * base) {
|
|
printf("%s : %s [%s]\n", __func__, base->name, ggml_ne_string(base).c_str());
|
|
size_t len = ggml_nbytes(base);
|
|
base_model.read_tensor_data(base->name, read_buf);
|
|
fout.write((char* )read_buf.data(), len);
|
|
zeros(fout, GGML_PAD(len, GGUF_DEFAULT_ALIGNMENT) - len);
|
|
}
|
|
|
|
void merge_tensor(struct ggml_tensor * base, struct ggml_tensor * out) {
|
|
std::string name_base(base->name);
|
|
std::string name_lora_a = name_base + ".lora_a";
|
|
std::string name_lora_b = name_base + ".lora_b";
|
|
|
|
printf("%s : %s [%s]\n", __func__, base->name, ggml_ne_string(base).c_str());
|
|
|
|
// context for input tensor
|
|
std::vector<struct ggml_tensor *> inp_a(adapters.size());
|
|
std::vector<struct ggml_tensor *> inp_b(adapters.size());
|
|
struct ggml_init_params params {
|
|
/*.mem_size =*/ ggml_tensor_overhead()*(2+adapters.size()*2),
|
|
/*.mem_buffer =*/ NULL,
|
|
/*.no_alloc =*/ true,
|
|
};
|
|
struct ggml_context * ctx = ggml_init(params);
|
|
|
|
// alloc tensors
|
|
struct ggml_tensor * inp_base = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, base->ne);
|
|
for (size_t i = 0; i < adapters.size(); ++i) {
|
|
auto t_a = adapters[i]->get_tensor(name_lora_a);
|
|
auto t_b = adapters[i]->get_tensor(name_lora_b);
|
|
// TODO: add support for quantized lora
|
|
if (ggml_is_quantized(t_a->type) || ggml_is_quantized(t_b->type)) {
|
|
throw std::runtime_error("quantized LoRA adapters is not supported, please retry with f16 or f32");
|
|
}
|
|
inp_a[i] = ggml_dup_tensor(ctx, t_a);
|
|
inp_b[i] = ggml_dup_tensor(ctx, t_b);
|
|
}
|
|
ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx, backend);
|
|
|
|
// load base tensor to backend buffer
|
|
base_model.read_tensor_data(name_base, read_buf);
|
|
if (base->type != GGML_TYPE_F32) {
|
|
// optionally dequantize it
|
|
printf("%s : + dequantize base tensor from %s to F32\n", __func__, ggml_type_name(base->type));
|
|
auto nels = ggml_nelements(inp_base);
|
|
ggml_type_traits_t qtype = ggml_internal_get_type_traits(base->type);
|
|
std::vector<uint8_t> dequant_buf(nels * sizeof(float));
|
|
qtype.to_float(read_buf.data(), (float *)dequant_buf.data(), nels);
|
|
ggml_backend_tensor_set(inp_base, dequant_buf.data(), 0, dequant_buf.size());
|
|
} else {
|
|
ggml_backend_tensor_set(inp_base, read_buf.data(), 0, ggml_nbytes(inp_base));
|
|
}
|
|
|
|
// load lora tensors to backend buffer
|
|
for (size_t i = 0; i < adapters.size(); ++i) {
|
|
adapters[i]->read_tensor_data(name_lora_a, read_buf);
|
|
ggml_backend_tensor_set(inp_a[i], read_buf.data(), 0, ggml_nbytes(inp_a[i]));
|
|
adapters[i]->read_tensor_data(name_lora_b, read_buf);
|
|
ggml_backend_tensor_set(inp_b[i], read_buf.data(), 0, ggml_nbytes(inp_b[i]));
|
|
}
|
|
|
|
// build graph
|
|
struct ggml_cgraph * gf;
|
|
{
|
|
static size_t buf_size = ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead();
|
|
static std::vector<uint8_t> buf(buf_size);
|
|
struct ggml_init_params params0 = {
|
|
/*.mem_size =*/ buf_size,
|
|
/*.mem_buffer =*/ buf.data(),
|
|
/*.no_alloc =*/ true,
|
|
};
|
|
struct ggml_context * ctx0 = ggml_init(params0);
|
|
gf = ggml_new_graph(ctx0);
|
|
struct ggml_tensor * cur = inp_base;
|
|
for (size_t i = 0; i < adapters.size(); ++i) {
|
|
struct ggml_tensor * a_T = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_cast(ctx0, inp_a[i], GGML_TYPE_F32)));
|
|
struct ggml_tensor * delta = ggml_mul_mat(ctx0, a_T, ggml_cast(ctx0, inp_b[i], GGML_TYPE_F32));
|
|
// scale
|
|
const float alpha = adapters[i]->alpha;
|
|
const float rank = (float) inp_b[i]->ne[0];
|
|
const float scale = alpha ? adapters[i]->scale * alpha / rank : adapters[i]->scale;
|
|
delta = ggml_scale(ctx0, delta, scale);
|
|
cur = ggml_add(ctx0, delta, cur);
|
|
printf("%s : + merging from adapter[%ld] type=%s\n", __func__, i, ggml_type_name(inp_a[i]->type));
|
|
printf("%s : input_scale=%f calculated_scale=%f rank=%d\n", __func__, adapters[i]->scale, scale, (int) inp_b[i]->ne[0]);
|
|
}
|
|
cur = ggml_cast(ctx0, cur, out->type);
|
|
printf("%s : + output type is %s\n", __func__, ggml_type_name(out->type));
|
|
ggml_build_forward_expand(gf, cur);
|
|
ggml_free(ctx0);
|
|
}
|
|
|
|
// compute
|
|
{
|
|
ggml_gallocr_alloc_graph(allocr, gf);
|
|
ggml_backend_cpu_set_n_threads(backend, n_threads);
|
|
ggml_backend_graph_compute(backend, gf);
|
|
}
|
|
|
|
// write data to output file
|
|
{
|
|
auto result = gf->nodes[gf->n_nodes - 1];
|
|
size_t len = ggml_nbytes(result);
|
|
if (read_buf.size() < len) {
|
|
read_buf.resize(len);
|
|
}
|
|
ggml_backend_tensor_get(result, read_buf.data(), 0, len);
|
|
fout.write((char* )read_buf.data(), len);
|
|
zeros(fout, GGML_PAD(len, GGUF_DEFAULT_ALIGNMENT) - len);
|
|
}
|
|
|
|
ggml_free(ctx);
|
|
ggml_backend_buffer_free(buffer);
|
|
}
|
|
|
|
~lora_merge_ctx() {
|
|
ggml_gallocr_free(allocr);
|
|
ggml_backend_free(backend);
|
|
gguf_free(ctx_out);
|
|
ggml_free(ctx_out_ggml);
|
|
}
|
|
};
|
|
|
|
static void print_usage(int argc, char ** argv, const gpt_params & params) {
|
|
gpt_params_print_usage(argc, argv, params);
|
|
|
|
printf("\nexample usage:\n");
|
|
printf("\n %s -m base-model.gguf --lora lora-file.gguf -o merged-model-f16.gguf\n", argv[0]);
|
|
printf("\nNOTE: output model is F16\n");
|
|
printf("\n");
|
|
}
|
|
|
|
int main(int argc, char ** argv) {
|
|
gpt_params params;
|
|
|
|
if (!gpt_params_parse(argc, argv, params)) {
|
|
print_usage(argc, argv, params);
|
|
return 1;
|
|
}
|
|
|
|
g_verbose = (params.verbosity == 1);
|
|
try {
|
|
lora_merge_ctx ctx(params.model, params.lora_adapters, params.lora_outfile, params.cpuparams.n_threads);
|
|
ctx.run_merge();
|
|
} catch (const std::exception & err) {
|
|
fprintf(stderr, "%s\n", err.what());
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
printf("done, output file is %s\n", params.lora_outfile.c_str());
|
|
|
|
return 0;
|
|
}
|