mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-01 00:39:00 +01:00
f4d7e54974
* iq3_xxs: quantize/dequantize RMSE seems a bit high-ish at about half-way between q2_K and q3_K, so need to check more. * iq3_xxs: CUDA dequantize works * iq2_xxs: tuning quantization * iq3_xxs: starting to look better PPL on wiki.test.raw LLaMA-v1-7B: 6.4218 LLaMA-v2-7B: 6.3560 Mistral-7B : 6.0717 This is better than Q3_K_XS, with a 5% reduction in quantized model size. * iq3_xxs: CUDA dot product We have PP-512: 5891 t/s TG-128: 143.9 t/s * iq3_xxs: scalar and AVX2 dot products * iq3_xxs: ARM_NEON and Metal Metal performance is decent, ARM_NEON is pathetic * iq3_xxs: slightly better grid points * Faster iq3_xxs and iq2_xs dot products on CUDA * iq3_xxs: add some quant mix * iq3_xxs: fix failing quantization test Dot product still fails. Is this real? * iq3_xxs: hopefully fix ROCm * iq3_xxs: failing tests This time the dot product accuracy did find an actual bug in the AVX2 implementation. * Add IQ3_XXS to test-backend-ops --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
364 lines
14 KiB
C++
364 lines
14 KiB
C++
// Benchmark quantization specific functions on synthetic data
|
|
|
|
#include "ggml.h"
|
|
|
|
#undef NDEBUG
|
|
#include <algorithm>
|
|
#include <assert.h>
|
|
#include <functional>
|
|
#include <inttypes.h>
|
|
#include <math.h>
|
|
#include <memory>
|
|
#include <stdio.h>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#if defined(_MSC_VER)
|
|
#pragma warning(disable: 4244 4267) // possible loss of data
|
|
#endif
|
|
|
|
#define MAX_ALIGNMENT 64
|
|
#define QK 32
|
|
#define WARMUP 5
|
|
#define ITERATIONS 10
|
|
#define MAX_ITERATIONS 100000000
|
|
|
|
#define L1_SIZE 32*128
|
|
#define L2_SIZE 32*2048
|
|
#define L3_SIZE 32*20480
|
|
#define MEM_SIZE 32*2048000
|
|
|
|
struct quantize_perf_params {
|
|
std::vector<std::string> include_types;
|
|
std::vector<size_t> test_sizes;
|
|
size_t alignment_offset = 0;
|
|
bool op_quantize_row_q_reference = false;
|
|
bool op_quantize_row_q = false;
|
|
bool op_dequantize_row_q = false;
|
|
bool op_quantize_row_q_dot = false;
|
|
bool op_vec_dot_q = false;
|
|
int64_t iterations = ITERATIONS;
|
|
};
|
|
|
|
#if defined(__x86_64__) || defined(__i386__)
|
|
|
|
#include <x86intrin.h>
|
|
inline int64_t cpu_cycles() {
|
|
// Rough way to detect new-ish CPUs
|
|
#ifdef __POPCNT__
|
|
unsigned int dummy;
|
|
return __rdtscp(&dummy);
|
|
#else
|
|
return __rdtsc();
|
|
#endif
|
|
}
|
|
|
|
#else
|
|
|
|
#define cpu_cycles() 0
|
|
|
|
#endif
|
|
|
|
|
|
// Generate synthetic data
|
|
static void generate_data(float offset, size_t n, float * dst) {
|
|
for (size_t i = 0; i < n; i++) {
|
|
dst[i] = 0.1 + 2*cosf(i + offset);
|
|
}
|
|
}
|
|
|
|
static float gigabytes_per_second(size_t bytes, int64_t usecs) {
|
|
return bytes / (float) usecs * 1000000 / (1024*1024*1024);
|
|
}
|
|
|
|
static void * align_with_offset(void * ptr, int offset) {
|
|
size_t dummy_size = MAX_ALIGNMENT * 4;
|
|
return (char *) std::align(MAX_ALIGNMENT, MAX_ALIGNMENT, ptr, dummy_size) + offset;
|
|
}
|
|
|
|
static void benchmark_function(size_t size, size_t q_size, int64_t iterations, const std::function<float(void)> & func) {
|
|
int64_t min_time_us = INT64_MAX;
|
|
int64_t total_time_us = 0;
|
|
int64_t min_time_cycles = INT64_MAX;
|
|
int64_t total_time_cycles = 0;
|
|
|
|
for (int i = 0; i < WARMUP; i++) {
|
|
func();
|
|
}
|
|
|
|
for (int i = 0; i < iterations; i++) {
|
|
const int64_t start_time = ggml_time_us();
|
|
const int64_t start_cycles = cpu_cycles();
|
|
|
|
func();
|
|
|
|
const int64_t end_cycles = cpu_cycles();
|
|
const int64_t end_time = ggml_time_us();
|
|
|
|
total_time_cycles += end_cycles - start_cycles;
|
|
min_time_cycles = std::min(min_time_cycles, end_cycles - start_cycles);
|
|
total_time_us += end_time - start_time;
|
|
min_time_us = std::min(min_time_us, end_time - start_time);
|
|
}
|
|
|
|
printf(" min cycles/%d vals : %9.2f\n", QK, QK * min_time_cycles / (float) size);
|
|
printf(" avg cycles/%d vals : %9.2f\n", QK, QK * total_time_cycles / (float) (size * iterations));
|
|
printf(" float32 throughput : %9.2f GB/s\n", gigabytes_per_second(4 * size * iterations, total_time_us));
|
|
printf(" quantized throughput : %9.2f GB/s\n", gigabytes_per_second(q_size * iterations, total_time_us));
|
|
}
|
|
|
|
static void usage(char * argv[]) {
|
|
printf("Benchmark quantization specific functions on synthetic data\n");
|
|
printf("\n");
|
|
printf("usage: %s [options]\n", argv[0]);
|
|
printf("\n");
|
|
printf("options: (default)\n");
|
|
printf(" -h, --help show this help message and exit\n");
|
|
printf(" --size SIZE set test size, divisible by 32 (L1_SIZE:%d)\n", L1_SIZE);
|
|
printf(" -3 use size as L1, L2, L3 sizes (L1:%d L2:%d L3:%d)\n", L1_SIZE, L2_SIZE, L3_SIZE);
|
|
printf(" -4 use size as L1, L2, L3, MEM sizes (L1:%d L2:%d L3:%d MEM:%d)\n", L1_SIZE, L2_SIZE, L3_SIZE, MEM_SIZE);
|
|
printf(" --op OP set test operation as quantize_row_q_reference, quantize_row_q, dequantize_row_q,\n");
|
|
printf(" quantize_row_q_dot, vec_dot_q (all)\n");
|
|
printf(" --type TYPE set test type as");
|
|
for (int i = 0; i < GGML_TYPE_COUNT; i++) {
|
|
ggml_type type = (ggml_type) i;
|
|
ggml_type_traits_t qfns = ggml_internal_get_type_traits(type);
|
|
if (ggml_type_name(type) != NULL) {
|
|
if (qfns.from_float && qfns.to_float) {
|
|
printf(" %s", ggml_type_name(type));
|
|
}
|
|
}
|
|
}
|
|
printf(" (all)\n");
|
|
printf(" --alignment-offset OFFSET\n");
|
|
printf(" set alignment offset as OFFSET (0)\n");
|
|
printf(" -i NUM, --iterations NUM\n");
|
|
printf(" set test iteration number (%d)\n", ITERATIONS);
|
|
}
|
|
|
|
int main(int argc, char * argv[]) {
|
|
quantize_perf_params params {};
|
|
|
|
// read command line
|
|
|
|
bool invalid_param = false;
|
|
std::string arg;
|
|
for (int i = 1; i < argc; i++) {
|
|
arg = argv[i];
|
|
|
|
if (arg == "--size") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
size_t size = std::stoi(argv[i]);
|
|
if (size % 32 != 0) {
|
|
fprintf(stderr, "error: size %zu not divisible by 32\n", size);
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.test_sizes.push_back(size);
|
|
} else if (arg == "-3") {
|
|
// quick select sizes that probably fit in CPU caches
|
|
params.test_sizes.push_back(L1_SIZE);
|
|
params.test_sizes.push_back(L2_SIZE);
|
|
params.test_sizes.push_back(L3_SIZE);
|
|
} else if (arg == "-4") {
|
|
// quick select cache sizes + memory
|
|
params.test_sizes.push_back(L1_SIZE);
|
|
params.test_sizes.push_back(L2_SIZE);
|
|
params.test_sizes.push_back(L3_SIZE);
|
|
params.test_sizes.push_back(MEM_SIZE);
|
|
} else if (arg == "--op") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
std::string op {argv[i]};
|
|
if (op == "quantize_row_q_reference") {
|
|
params.op_quantize_row_q_reference = true;
|
|
} else if (op == "quantize_row_q") {
|
|
params.op_quantize_row_q = true;
|
|
} else if (op == "dequantize_row_q") {
|
|
params.op_dequantize_row_q = true;
|
|
} else if (op == "quantize_row_q_dot") {
|
|
params.op_quantize_row_q_dot = true;
|
|
} else if (op == "vec_dot_q") {
|
|
params.op_vec_dot_q = true;
|
|
} else {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
} else if (arg == "--type") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.include_types.push_back(argv[i]);
|
|
} else if (arg == "--alignment-offset") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
int alignment = std::stoi(argv[i]);
|
|
if (alignment < 0 || alignment > MAX_ALIGNMENT) {
|
|
fprintf(stderr, "error: alignment-offset must be less than %d\n", MAX_ALIGNMENT);
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.alignment_offset = alignment;
|
|
} else if ((arg == "-i") || (arg == "--iterations")) {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
int number = std::stoi(argv[i]);
|
|
if (number < 0 || number > MAX_ITERATIONS) {
|
|
fprintf(stderr, "error: iterations must be less than %d\n", MAX_ITERATIONS);
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params.iterations = number;
|
|
} else if ((arg == "-h") || (arg == "--help")) {
|
|
usage(argv);
|
|
return 1;
|
|
} else {
|
|
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
|
return 1;
|
|
}
|
|
}
|
|
if (invalid_param) {
|
|
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
|
|
return 1;
|
|
}
|
|
|
|
if (params.test_sizes.empty()) {
|
|
params.test_sizes.push_back(L1_SIZE);
|
|
}
|
|
if (!(params.op_quantize_row_q_reference || params.op_quantize_row_q || params.op_dequantize_row_q || params.op_quantize_row_q_dot || params.op_vec_dot_q)) {
|
|
params.op_quantize_row_q_reference = params.op_quantize_row_q = params.op_dequantize_row_q = params.op_quantize_row_q_dot = params.op_vec_dot_q = true;
|
|
}
|
|
|
|
std::sort(params.test_sizes.begin(), params.test_sizes.end());
|
|
size_t largest = params.test_sizes.back();
|
|
|
|
std::vector<uint8_t> test_data1_v(largest*4 + MAX_ALIGNMENT*2);
|
|
std::vector<uint8_t> test_data2_v(largest*4 + MAX_ALIGNMENT*2);
|
|
std::vector<uint8_t> test_q1_v (largest*4 + MAX_ALIGNMENT*2);
|
|
std::vector<uint8_t> test_q2_v (largest*4 + MAX_ALIGNMENT*2);
|
|
std::vector<uint8_t> test_out_v (largest*4 + MAX_ALIGNMENT*2);
|
|
|
|
float * test_data1 = (float *) align_with_offset(test_data1_v.data(), params.alignment_offset);
|
|
float * test_data2 = (float *) align_with_offset(test_data2_v.data(), params.alignment_offset);
|
|
float * test_q1 = (float *) align_with_offset(test_q1_v.data(), params.alignment_offset);
|
|
float * test_q2 = (float *) align_with_offset(test_q2_v.data(), params.alignment_offset);
|
|
float * test_out = (float *) align_with_offset(test_out_v.data(), params.alignment_offset);
|
|
|
|
generate_data(0, largest, test_data1);
|
|
generate_data(1, largest, test_data2);
|
|
|
|
int64_t iterations = params.iterations;
|
|
|
|
|
|
// Initialize GGML, ensures float conversion tables are initialized
|
|
struct ggml_init_params ggml_params = {
|
|
/* .mem_size = */ 1*1024,
|
|
/* .mem_buffer = */ NULL,
|
|
/* .no_alloc = */ true,
|
|
};
|
|
struct ggml_context * ctx = ggml_init(ggml_params);
|
|
|
|
for (int i = 0; i < GGML_TYPE_COUNT; i++) {
|
|
ggml_type type = (ggml_type) i;
|
|
ggml_type_traits_t qfns = ggml_internal_get_type_traits(type);
|
|
if (!params.include_types.empty() && ggml_type_name(type) && std::find(params.include_types.begin(), params.include_types.end(), ggml_type_name(type)) == params.include_types.end()) {
|
|
continue;
|
|
}
|
|
|
|
if (qfns.from_float && qfns.to_float) {
|
|
printf("%s\n", ggml_type_name(type));
|
|
|
|
ggml_quantize_init(type);
|
|
|
|
if (params.op_quantize_row_q_reference) {
|
|
printf(" quantize_row_q_reference\n");
|
|
for (size_t size : params.test_sizes) {
|
|
printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024));
|
|
auto quantize_fn = [&](void) -> float {
|
|
qfns.from_float_reference(test_data1, test_q1, size);
|
|
return test_q1[0];
|
|
};
|
|
size_t quantized_size = ggml_row_size(type, size);
|
|
benchmark_function(size, quantized_size, iterations, quantize_fn);
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
if (params.op_quantize_row_q) {
|
|
printf(" quantize_row_q\n");
|
|
for (size_t size : params.test_sizes) {
|
|
printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024));
|
|
auto quantize_fn = [&](void) -> float {
|
|
qfns.from_float(test_data1, test_q1, size);
|
|
return test_q1[0];
|
|
};
|
|
size_t quantized_size = ggml_row_size(type, size);
|
|
benchmark_function(size, quantized_size, iterations, quantize_fn);
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
if (params.op_dequantize_row_q) {
|
|
printf(" dequantize_row_q\n");
|
|
qfns.from_float(test_data1, test_q1, largest);
|
|
for (size_t size : params.test_sizes) {
|
|
printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024));
|
|
auto quantize_fn = [&](void) -> float {
|
|
qfns.to_float(test_q1, test_out, size);
|
|
return test_out[0];
|
|
};
|
|
size_t quantized_size = ggml_row_size(type, size);
|
|
benchmark_function(size, quantized_size, iterations, quantize_fn);
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
if (params.op_quantize_row_q_dot) {
|
|
printf(" quantize_row_q_dot\n");
|
|
for (size_t size : params.test_sizes) {
|
|
printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024));
|
|
auto quantize_fn = [&](void) -> float {
|
|
auto vdot = ggml_internal_get_type_traits(qfns.vec_dot_type);
|
|
vdot.from_float(test_data1, test_q1, size);
|
|
return test_q1[0];
|
|
};
|
|
size_t quantized_size = ggml_row_size(type, size);
|
|
benchmark_function(size, quantized_size, iterations, quantize_fn);
|
|
}
|
|
printf("\n");
|
|
}
|
|
|
|
if (params.op_vec_dot_q) {
|
|
printf(" vec_dot_q\n");
|
|
qfns.from_float(test_data1, test_q1, largest);
|
|
qfns.from_float(test_data2, test_q2, largest);
|
|
for (size_t size : params.test_sizes) {
|
|
printf(" %zu values (%.2f MB)\n", size, 4*size/(float)(1024*1024));
|
|
auto quantize_fn = [&](void) -> float {
|
|
float result;
|
|
qfns.vec_dot(size, &result, test_q1, test_q2);
|
|
return result;
|
|
};
|
|
size_t quantized_size = ggml_row_size(type, size);
|
|
benchmark_function(size, quantized_size, iterations, quantize_fn);
|
|
}
|
|
printf("\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
ggml_free(ctx);
|
|
|
|
return 0;
|
|
}
|