compilade f98eb31c51
convert-hf : save memory with lazy evaluation (#7075)
* convert-hf : begin refactoring write_tensor

* convert : upgrade to sentencepiece v0.2.0

* convert-hf : remove unused n_dims in extra_*_tensors

* convert-hf : simplify MoE weights stacking

* convert-hf : flake8 linter doesn't like semicolons

* convert-hf : allow unusual model part names

For example, loading `model-00001-of-00001.safetensors` now works.

* convert-hf : fix stacking MoE expert tensors

`torch.stack` and `torch.cat` don't do the same thing.

* convert-hf : fix Mamba conversion

Tested to work even with a SentencePiece-based tokenizer.

* convert : use a string for the SentencePiece tokenizer path

* convert-hf : display tensor shape

* convert-hf : convert norms to f32 by default

* convert-hf : sort model part names

`os.listdir` is said to list files in arbitrary order.
Sorting the file names should let "model-00009-of-00042.safetensors"
be loaded before "model-00010-of-00042.safetensors".

* convert-hf : use an ABC for Model again

It seems Protocol can't be used as a statically type-checked ABC,
because its subclasses also can't be instantiated. (why did it seem to work?)

At least there's still a way to throw an error when forgetting to define
the `model_arch` property of any registered Model subclasses.

* convert-hf : use a plain class for Model, and forbid direct instantiation

There are no abstract methods used anyway,
so using ABC isn't really necessary.

* convert-hf : more consistent formatting of cmdline args

* convert-hf : align the message logged for converted tensors

* convert-hf : fix Refact conversion

* convert-hf : save memory with lazy evaluation

* convert-hf : flake8 doesn't like lowercase L as a variable name

* convert-hf : remove einops requirement for InternLM2

* convert-hf : faster model parts loading

Instead of pre-loading them all into a dict, iterate on the tensors
in the model parts progressively as needed in Model.write_tensors

Conversion for some architectures relies on checking for the presence
of specific tensor names, so for multi-part models, the weight map is read
from the relevant json file to quickly get these names up-front.

* convert-hf : minor changes for consistency

* gguf-py : add tqdm as a dependency

It's small, and used for a progress bar
in GGUFWriter.write_tensors_to_file
2024-05-08 18:16:38 -04:00

166 lines
6.7 KiB
Python

from __future__ import annotations
import logging
import json
import os
from pathlib import Path
from typing import Any, Callable, Sequence, Mapping, Iterable
from .gguf_writer import GGUFWriter
logger = logging.getLogger(__name__)
class SpecialVocab:
merges: list[str]
add_special_token: dict[str, bool]
special_token_ids: dict[str, int]
chat_template: str | Sequence[Mapping[str, str]] | None
def __init__(
self, path: str | os.PathLike[str], load_merges: bool = False,
special_token_types: Iterable[str] | None = None,
n_vocab: int | None = None,
):
self.special_token_ids = {}
self.add_special_token = {}
self.n_vocab = n_vocab
self.load_merges = load_merges
self.merges = []
self.chat_template = None
if special_token_types is not None:
self.special_token_types = special_token_types
else:
self.special_token_types = ('bos', 'eos', 'unk', 'sep', 'pad', 'cls', 'mask')
self._load(Path(path))
def __repr__(self) -> str:
return '<SpecialVocab with {} merges, special tokens {}, add special tokens {}>'.format(
len(self.merges), self.special_token_ids or "unset", self.add_special_token or "unset",
)
def add_to_gguf(self, gw: GGUFWriter, quiet: bool = False) -> None:
if self.merges:
if not quiet:
logger.info(f'Adding {len(self.merges)} merge(s).')
gw.add_token_merges(self.merges)
elif self.load_merges:
logger.warning('Adding merges requested but no merges found, output may be non-functional.')
for typ, tokid in self.special_token_ids.items():
id_handler: Callable[[int], None] | None = getattr(gw, f'add_{typ}_token_id', None)
if id_handler is None:
logger.warning(f'No handler for special token type {typ} with id {tokid} - skipping')
continue
if not quiet:
logger.info(f'Setting special token type {typ} to {tokid}')
id_handler(tokid)
for typ, value in self.add_special_token.items():
add_handler: Callable[[bool], None] | None = getattr(gw, f'add_add_{typ}_token', None)
if add_handler is None:
logger.warning(f'No handler for add_{typ}_token with value {value} - skipping')
continue
if not quiet:
logger.info(f'Setting add_{typ}_token to {value}')
add_handler(value)
if self.chat_template is not None:
if not quiet:
logger.info(f'Setting chat_template to {self.chat_template}')
gw.add_chat_template(self.chat_template)
def _load(self, path: Path) -> None:
self._try_load_from_tokenizer_json(path)
self._try_load_from_config_json(path)
if self.load_merges and not self.merges:
self._try_load_merges_txt(path)
def _try_load_merges_txt(self, path: Path) -> bool:
merges_file = path / 'merges.txt'
if not merges_file.is_file():
return False
with open(merges_file, 'r', encoding = 'utf-8') as fp:
first_line = next(fp, '').strip()
if not first_line.startswith('#'):
fp.seek(0)
line_num = 0
else:
line_num = 1
merges = []
for line in fp:
line_num += 1
line = line.strip()
if not line:
continue
parts = line.split(None, 3)
if len(parts) != 2:
logger.warning(f'{merges_file.name}: Line {line_num}: Entry malformed, ignoring')
continue
merges.append(f'{parts[0]} {parts[1]}')
self.merges = merges
return True
def _set_special_token(self, typ: str, tid: Any) -> None:
if not isinstance(tid, int):
return
if tid < 0:
raise ValueError(f'invalid value for special token type {typ}: {tid}')
if self.n_vocab is None or tid < self.n_vocab:
if typ in self.special_token_ids:
return
self.special_token_ids[typ] = tid
return
logger.warning(f'Special token type {typ}, id {tid} out of range, must be under {self.n_vocab} - skipping')
def _try_load_from_tokenizer_json(self, path: Path) -> bool:
tokenizer_file = path / 'tokenizer.json'
if tokenizer_file.is_file():
with open(tokenizer_file, encoding = 'utf-8') as f:
tokenizer = json.load(f)
if self.load_merges:
merges = tokenizer.get('model', {}).get('merges')
if isinstance(merges, list) and merges and isinstance(merges[0], str):
self.merges = merges
added_tokens = tokenizer.get('added_tokens', {})
else:
added_tokens = {}
tokenizer_config_file = path / 'tokenizer_config.json'
if not tokenizer_config_file.is_file():
return True
with open(tokenizer_config_file, encoding = 'utf-8') as f:
tokenizer_config = json.load(f)
chat_template = tokenizer_config.get('chat_template')
if chat_template is None or isinstance(chat_template, (str, list)):
self.chat_template = chat_template
else:
logger.warning(f'Bad type for chat_template field in {tokenizer_config_file!r} - ignoring')
for typ in self.special_token_types:
add_entry = tokenizer_config.get(f'add_{typ}_token')
if isinstance(add_entry, bool):
self.add_special_token[typ] = add_entry
entry = tokenizer_config.get(f'{typ}_token')
if isinstance(entry, str):
tc_content = entry
elif isinstance(entry, dict):
entry_content = entry.get('content')
if not isinstance(entry_content, str):
continue
tc_content = entry_content
else:
continue
# We only need the first match here.
maybe_token_id = next(
(atok.get('id') for atok in added_tokens if atok.get('content') == tc_content),
None,
)
self._set_special_token(typ, maybe_token_id)
return True
def _try_load_from_config_json(self, path: Path) -> bool:
config_file = path / 'config.json'
if not config_file.is_file():
return False
with open(config_file, encoding = 'utf-8') as f:
config = json.load(f)
for typ in self.special_token_types:
self._set_special_token(typ, config.get(f'{typ}_token_id'))
return True