mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-27 06:39:25 +01:00
91f6499393
* gguf-py: gguf-dump: Respect --no-tensor flag in JSON mode. * Respect add_bos_token GGUF metadata value * gguf-py: Try to fix SpecialVocab giving up too easily for the Nth time
749 lines
28 KiB
C++
749 lines
28 KiB
C++
#include "common.h"
|
|
#include "llama.h"
|
|
|
|
#include <cmath>
|
|
#include <cstdio>
|
|
#include <cstring>
|
|
#include <ctime>
|
|
#include <sstream>
|
|
#include <thread>
|
|
#include <mutex>
|
|
#include <vector>
|
|
|
|
#if defined(_MSC_VER)
|
|
#pragma warning(disable: 4244 4267) // possible loss of data
|
|
#endif
|
|
|
|
struct results_perplexity {
|
|
std::vector<llama_token> tokens;
|
|
double ppl_value;
|
|
std::vector<float> logits;
|
|
std::vector<float> probs;
|
|
};
|
|
|
|
struct results_log_softmax {
|
|
double log_softmax;
|
|
float logit;
|
|
float prob;
|
|
};
|
|
|
|
static void write_logfile(
|
|
const llama_context * ctx, const gpt_params & params, const llama_model * model,
|
|
const struct results_perplexity & results
|
|
) {
|
|
if (params.logdir.empty()) {
|
|
return;
|
|
}
|
|
|
|
if (params.hellaswag) {
|
|
fprintf(stderr, "%s: warning: logging results is not implemented for HellaSwag. No files will be written.\n", __func__);
|
|
return;
|
|
}
|
|
|
|
const std::string timestamp = get_sortable_timestamp();
|
|
|
|
const bool success = create_directory_with_parents(params.logdir);
|
|
if (!success) {
|
|
fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n",
|
|
__func__, params.logdir.c_str());
|
|
return;
|
|
}
|
|
|
|
const std::string logfile_path = params.logdir + timestamp + ".yml";
|
|
FILE * logfile = fopen(logfile_path.c_str(), "w");
|
|
|
|
if (logfile == NULL) {
|
|
fprintf(stderr, "%s: failed to open logfile %s\n", __func__, logfile_path.c_str());
|
|
return;
|
|
}
|
|
|
|
fprintf(logfile, "binary: main\n");
|
|
char model_desc[128];
|
|
llama_model_desc(model, model_desc, sizeof(model_desc));
|
|
dump_non_result_info_yaml(logfile, params, ctx, timestamp, results.tokens, model_desc);
|
|
|
|
fprintf(logfile, "\n");
|
|
fprintf(logfile, "######################\n");
|
|
fprintf(logfile, "# Perplexity Results #\n");
|
|
fprintf(logfile, "######################\n");
|
|
fprintf(logfile, "\n");
|
|
|
|
dump_vector_float_yaml(logfile, "logits", results.logits);
|
|
fprintf(logfile, "ppl_value: %f\n", results.ppl_value);
|
|
dump_vector_float_yaml(logfile, "probs", results.probs);
|
|
|
|
llama_dump_timing_info_yaml(logfile, ctx);
|
|
fclose(logfile);
|
|
}
|
|
|
|
static std::vector<float> softmax(const std::vector<float>& logits) {
|
|
std::vector<float> probs(logits.size());
|
|
float max_logit = logits[0];
|
|
for (float v : logits) {
|
|
max_logit = std::max(max_logit, v);
|
|
}
|
|
double sum_exp = 0.0;
|
|
for (size_t i = 0; i < logits.size(); i++) {
|
|
// Subtract the maximum logit value from the current logit value for numerical stability
|
|
const float logit = logits[i] - max_logit;
|
|
const float exp_logit = expf(logit);
|
|
sum_exp += exp_logit;
|
|
probs[i] = exp_logit;
|
|
}
|
|
for (size_t i = 0; i < probs.size(); i++) {
|
|
probs[i] /= sum_exp;
|
|
}
|
|
return probs;
|
|
}
|
|
|
|
static results_log_softmax log_softmax(int n_vocab, const float * logits, int tok) {
|
|
float max_logit = logits[0];
|
|
for (int i = 1; i < n_vocab; ++i) {
|
|
max_logit = std::max(max_logit, logits[i]);
|
|
}
|
|
double sum_exp = 0.0;
|
|
for (int i = 0; i < n_vocab; ++i) {
|
|
sum_exp += expf(logits[i] - max_logit);
|
|
}
|
|
return {logits[tok] - max_logit - log(sum_exp), logits[tok], expf(logits[tok] - max_logit) / (float) sum_exp};
|
|
}
|
|
|
|
static void process_logits(
|
|
int n_vocab, const float * logits, const int * tokens, int n_token, std::vector<std::thread> & workers,
|
|
double & nll, double & nll2, float * logit_history, float * prob_history
|
|
) {
|
|
std::mutex mutex;
|
|
int counter = 0;
|
|
auto compute = [&mutex, &counter, &nll, &nll2, logit_history, prob_history, n_vocab, logits, tokens, n_token] () {
|
|
double local_nll = 0;
|
|
double local_nll2 = 0;
|
|
while (true) {
|
|
std::unique_lock<std::mutex> lock(mutex);
|
|
int i = counter++;
|
|
if (i >= n_token) {
|
|
nll += local_nll; nll2 += local_nll2;
|
|
break;
|
|
}
|
|
lock.unlock();
|
|
const results_log_softmax results = log_softmax(n_vocab, logits + i*n_vocab, tokens[i+1]);
|
|
const double v = -results.log_softmax;
|
|
local_nll += v;
|
|
local_nll2 += v*v;
|
|
|
|
logit_history[i] = results.logit;
|
|
prob_history[i] = results.prob;
|
|
}
|
|
};
|
|
for (auto & w : workers) {
|
|
w = std::thread(compute);
|
|
}
|
|
compute();
|
|
for (auto & w : workers) {
|
|
w.join();
|
|
}
|
|
}
|
|
|
|
static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params & params) {
|
|
// Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
|
|
// Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
|
|
// Output: `perplexity: 13.5106 [114/114]`
|
|
// BOS tokens will be added for each chunk before eval
|
|
|
|
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
|
|
|
|
fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
|
|
|
|
std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
|
|
|
|
const int n_ctx = llama_n_ctx(ctx);
|
|
|
|
if (int(tokens.size()) < 2*n_ctx) {
|
|
fprintf(stderr, "%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*n_ctx,
|
|
n_ctx);
|
|
fprintf(stderr, "%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size());
|
|
return {std::move(tokens), 0., {}, {}};
|
|
}
|
|
|
|
std::vector<float> logit_history;
|
|
std::vector<float> prob_history;
|
|
|
|
logit_history.resize(tokens.size());
|
|
prob_history.resize(tokens.size());
|
|
|
|
if (params.ppl_stride <= 0) {
|
|
fprintf(stderr, "%s: stride is %d but must be greater than zero!\n",__func__,params.ppl_stride);
|
|
return {tokens, -1, logit_history, prob_history};
|
|
}
|
|
|
|
const int calc_chunk = n_ctx;
|
|
|
|
fprintf(stderr, "%s: have %zu tokens. Calculation chunk = %d\n", __func__, tokens.size(), calc_chunk);
|
|
|
|
if (int(tokens.size()) <= calc_chunk) {
|
|
fprintf(stderr, "%s: there are only %zu tokens, this is not enough for a context size of %d and stride %d\n",__func__,
|
|
tokens.size(), n_ctx, params.ppl_stride);
|
|
return {tokens, -1, logit_history, prob_history};
|
|
}
|
|
|
|
const int n_chunk_max = (tokens.size() - calc_chunk + params.ppl_stride - 1) / params.ppl_stride;
|
|
|
|
const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
|
|
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
|
const int n_batch = params.n_batch;
|
|
|
|
int count = 0;
|
|
double nll = 0.0;
|
|
|
|
fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch);
|
|
|
|
for (int i = 0; i < n_chunk; ++i) {
|
|
const int start = i * params.ppl_stride;
|
|
const int end = start + calc_chunk;
|
|
|
|
const int num_batches = (calc_chunk + n_batch - 1) / n_batch;
|
|
//fprintf(stderr, "%s: evaluating %d...%d using %d batches\n", __func__, start, end, num_batches);
|
|
|
|
std::vector<float> logits;
|
|
|
|
const auto t_start = std::chrono::high_resolution_clock::now();
|
|
|
|
// clear the KV cache
|
|
llama_kv_cache_clear(ctx);
|
|
|
|
for (int j = 0; j < num_batches; ++j) {
|
|
const int batch_start = start + j * n_batch;
|
|
const int batch_size = std::min(end - batch_start, n_batch);
|
|
|
|
//fprintf(stderr, " Batch %d: starts at %d, size is %d, n_past is %d\n",j,batch_start,batch_size,j * n_batch);
|
|
if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) {
|
|
//fprintf(stderr, "%s : failed to eval\n", __func__);
|
|
return {tokens, -1, logit_history, prob_history};
|
|
}
|
|
|
|
// save original token and restore it after eval
|
|
const auto token_org = tokens[batch_start];
|
|
|
|
// add BOS token for the first batch of each chunk
|
|
if (add_bos && j == 0) {
|
|
tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
|
|
}
|
|
|
|
const auto batch_logits = llama_get_logits(ctx);
|
|
logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
|
|
|
|
if (j == 0) {
|
|
tokens[batch_start] = token_org;
|
|
}
|
|
}
|
|
|
|
const auto t_end = std::chrono::high_resolution_clock::now();
|
|
|
|
if (i == 0) {
|
|
const float t_total = std::chrono::duration<float>(t_end - t_start).count();
|
|
fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total);
|
|
int total_seconds = (int)(t_total * n_chunk);
|
|
if (total_seconds >= 60*60) {
|
|
fprintf(stderr, "%d hours ", total_seconds / (60*60));
|
|
total_seconds = total_seconds % (60*60);
|
|
}
|
|
fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0);
|
|
}
|
|
|
|
//fprintf(stderr, "%s: using tokens %d...%d\n",__func__,params.n_ctx - params.ppl_stride + start, params.n_ctx + start);
|
|
for (int j = n_ctx - params.ppl_stride - 1; j < n_ctx - 1; ++j) {
|
|
|
|
// Calculate probability of next token, given the previous ones.
|
|
const std::vector<float> tok_logits(
|
|
logits.begin() + (j + 0) * n_vocab,
|
|
logits.begin() + (j + 1) * n_vocab);
|
|
|
|
const float prob = softmax(tok_logits)[tokens[start + j + 1]];
|
|
logit_history[start + j + 1] = tok_logits[tokens[start + j + 1]];
|
|
prob_history[start + j + 1] = prob;
|
|
|
|
nll += -std::log(prob);
|
|
++count;
|
|
}
|
|
// perplexity is e^(average negative log-likelihood)
|
|
if (params.ppl_output_type == 0) {
|
|
printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
|
|
} else {
|
|
printf("%8d %.4lf\n", i*params.ppl_stride, std::exp(nll / count));
|
|
}
|
|
fflush(stdout);
|
|
}
|
|
printf("\n");
|
|
|
|
return {tokens, std::exp(nll / count), logit_history, prob_history};
|
|
}
|
|
|
|
static results_perplexity perplexity(llama_context * ctx, const gpt_params & params) {
|
|
if (params.ppl_stride > 0) {
|
|
return perplexity_v2(ctx, params);
|
|
}
|
|
|
|
// Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research
|
|
// Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw`
|
|
// Output: `perplexity: 13.5106 [114/114]`
|
|
// BOS tokens will be added for each chunk before eval
|
|
|
|
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
|
|
const int n_ctx = llama_n_ctx(ctx);
|
|
|
|
auto tim1 = std::chrono::high_resolution_clock::now();
|
|
fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
|
|
|
|
std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
|
|
|
|
auto tim2 = std::chrono::high_resolution_clock::now();
|
|
fprintf(stderr, "%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count());
|
|
|
|
if (int(tokens.size()) < 2*n_ctx) {
|
|
fprintf(stderr, "%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*n_ctx,
|
|
n_ctx);
|
|
fprintf(stderr, "%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size());
|
|
return {std::move(tokens), 0., {}, {}};
|
|
}
|
|
|
|
std::vector<float> logit_history;
|
|
logit_history.resize(tokens.size());
|
|
|
|
std::vector<float> prob_history;
|
|
prob_history.resize(tokens.size());
|
|
|
|
const int n_chunk_max = tokens.size() / n_ctx;
|
|
|
|
const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
|
|
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
|
const int n_batch = params.n_batch;
|
|
|
|
int count = 0;
|
|
double nll = 0.0;
|
|
double nll2 = 0.0;
|
|
|
|
fprintf(stderr, "%s: calculating perplexity over %d chunks, batch_size=%d\n", __func__, n_chunk, n_batch);
|
|
|
|
std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);
|
|
|
|
for (int i = 0; i < n_chunk; ++i) {
|
|
const int start = i * n_ctx;
|
|
const int end = start + n_ctx;
|
|
|
|
const int num_batches = (n_ctx + n_batch - 1) / n_batch;
|
|
|
|
std::vector<float> logits;
|
|
|
|
const auto t_start = std::chrono::high_resolution_clock::now();
|
|
|
|
// clear the KV cache
|
|
llama_kv_cache_clear(ctx);
|
|
|
|
for (int j = 0; j < num_batches; ++j) {
|
|
const int batch_start = start + j * n_batch;
|
|
const int batch_size = std::min(end - batch_start, n_batch);
|
|
|
|
// save original token and restore it after eval
|
|
const auto token_org = tokens[batch_start];
|
|
|
|
// add BOS token for the first batch of each chunk
|
|
if (add_bos && j == 0) {
|
|
tokens[batch_start] = llama_token_bos(llama_get_model(ctx));
|
|
}
|
|
|
|
if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) {
|
|
fprintf(stderr, "%s : failed to eval\n", __func__);
|
|
return {tokens, -1, logit_history, prob_history};
|
|
}
|
|
|
|
// restore the original token in case it was set to BOS
|
|
tokens[batch_start] = token_org;
|
|
|
|
const auto * batch_logits = llama_get_logits(ctx);
|
|
logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
|
|
}
|
|
|
|
const auto t_end = std::chrono::high_resolution_clock::now();
|
|
|
|
if (i == 0) {
|
|
const float t_total = std::chrono::duration<float>(t_end - t_start).count();
|
|
fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total);
|
|
int total_seconds = (int)(t_total * n_chunk);
|
|
if (total_seconds >= 60*60) {
|
|
fprintf(stderr, "%d hours ", total_seconds / (60*60));
|
|
total_seconds = total_seconds % (60*60);
|
|
}
|
|
fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0);
|
|
}
|
|
|
|
// We get the logits for all the tokens in the context window (params.n_ctx)
|
|
// from llama_eval above. Now, based on https://huggingface.co/docs/transformers/perplexity,
|
|
// calculate the perplexity over the last half of the window (so the model always has
|
|
// some context to predict the token).
|
|
//
|
|
// We rely on the fact that attention in the forward pass only looks at previous
|
|
// tokens here, so the logits returned for each token are an accurate representation
|
|
// of what the model would have predicted at that point.
|
|
//
|
|
// Example, we have a context window of 512, we will compute perplexity for each of the
|
|
// last 256 tokens. Then, we split the input up into context window size chunks to
|
|
// process the entire prompt.
|
|
const int first = n_ctx/2;
|
|
process_logits(n_vocab, logits.data() + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first,
|
|
workers, nll, nll2, logit_history.data() + start + first, prob_history.data() + start + first);
|
|
count += n_ctx - first - 1;
|
|
|
|
// perplexity is e^(average negative log-likelihood)
|
|
if (params.ppl_output_type == 0) {
|
|
printf("[%d]%.4lf,", i + 1, std::exp(nll / count));
|
|
} else {
|
|
double av = nll/count;
|
|
double av2 = nll2/count - av*av;
|
|
if (av2 > 0) av2 = sqrt(av2/(count-1));
|
|
printf("%8d %.4lf %4lf %4lf\n", i*n_ctx, std::exp(nll / count), av, av2);
|
|
}
|
|
fflush(stdout);
|
|
}
|
|
printf("\n");
|
|
|
|
nll2 /= count;
|
|
nll /= count;
|
|
const double ppl = exp(nll);
|
|
nll2 -= nll * nll;
|
|
if (nll2 > 0) {
|
|
nll2 = sqrt(nll2/(count-1));
|
|
printf("Final estimate: PPL = %.4lf +/- %.5lf\n", ppl, nll2*ppl);
|
|
} else {
|
|
printf("Unexpected negative standard deviation of log(prob)\n");
|
|
}
|
|
|
|
return {tokens, ppl, logit_history, prob_history};
|
|
}
|
|
|
|
static std::vector<float> hellaswag_evaluate_tokens(
|
|
llama_context * ctx, std::vector<int> & tokens, int n_past, int n_batch, int n_vocab
|
|
) {
|
|
std::vector<float> result;
|
|
result.reserve(tokens.size() * n_vocab);
|
|
size_t n_chunk = (tokens.size() + n_batch - 1)/n_batch;
|
|
for (size_t i_chunk = 0; i_chunk < n_chunk; ++i_chunk) {
|
|
size_t n_tokens = tokens.size() - i_chunk * n_batch;
|
|
n_tokens = std::min(n_tokens, size_t(n_batch));
|
|
if (llama_decode(ctx, llama_batch_get_one(tokens.data() + i_chunk * n_batch, n_tokens, n_past, 0))) {
|
|
fprintf(stderr, "%s : failed to eval\n", __func__);
|
|
return {};
|
|
}
|
|
|
|
const auto logits = llama_get_logits(ctx);
|
|
result.insert(result.end(), logits, logits + n_tokens * n_vocab);
|
|
|
|
n_past += n_tokens;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
|
// Calculates hellaswag score (acc_norm) from prompt
|
|
//
|
|
// Data extracted from the HellaSwag validation dataset (MIT license) https://github.com/rowanz/hellaswag/blob/master/data/hellaswag_val.jsonl
|
|
// All used data fields are preprocessed as in https://github.com/EleutherAI/lm-evaluation-harness/blob/df3da98c5405deafd519c2ddca52bb7c3fe36bef/lm_eval/tasks/hellaswag.py#L62-L68
|
|
//
|
|
// All 10042 tasks should be extracted to keep the results standardized like other implementations.
|
|
//
|
|
// Datafile layout:
|
|
// ['??'] denotes json fields
|
|
// 6 lines per task:
|
|
// ['activity_label'] + ": " +['ctx'] - The first part of the query, the context
|
|
// ['label'] - The index the best common sense ending aka gold ending
|
|
// ['endings'][0] - Endings added to the first part of the query
|
|
// ['endings'][1]
|
|
// ['endings'][2]
|
|
// ['endings'][3]
|
|
|
|
std::vector<std::string> prompt_lines;
|
|
std::istringstream strstream(params.prompt);
|
|
std::string line;
|
|
|
|
while (std::getline(strstream,line,'\n')) {
|
|
prompt_lines.push_back(line);
|
|
}
|
|
|
|
if( prompt_lines.size() % 6 != 0) {
|
|
fprintf(stderr, "%s : number of lines in prompt not a multiple of 6.\n", __func__);
|
|
return;
|
|
}
|
|
|
|
size_t hs_task_count = prompt_lines.size()/6;
|
|
fprintf(stderr, "%s : loaded %zu tasks from prompt.\n", __func__, hs_task_count);
|
|
|
|
const bool is_spm = llama_vocab_type(llama_get_model(ctx)) == LLAMA_VOCAB_TYPE_SPM;
|
|
fprintf(stderr, "================================= is_spm = %d\n", is_spm);
|
|
|
|
// This is needed as usual for LLaMA models
|
|
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
|
|
|
|
// Number of tasks to use when computing the score
|
|
if ( params.hellaswag_tasks < hs_task_count ) {
|
|
hs_task_count = params.hellaswag_tasks;
|
|
}
|
|
|
|
// The tasks should be randomized so the score stabilizes quickly.
|
|
bool randomize_tasks = true;
|
|
|
|
// The random seed should not impact the final result if the computation is done over enough tasks, so kept hardcoded for now
|
|
std::mt19937 rng(1);
|
|
|
|
// Dataholder for hellaswag tasks
|
|
struct hs_data_t {
|
|
std::string context;
|
|
size_t gold_ending_idx;
|
|
std::string ending[4];
|
|
size_t ending_logprob_count[4];
|
|
double ending_logprob[4];
|
|
};
|
|
|
|
fprintf(stderr, "%s : selecting %zu %s tasks.\n", __func__, hs_task_count, (randomize_tasks?"randomized":"the first") );
|
|
|
|
// Select and read data from prompt lines
|
|
hs_data_t *hs_data = new hs_data_t[hs_task_count];
|
|
for (size_t i=0; i < hs_task_count; i++) {
|
|
size_t idx = i;
|
|
|
|
// Select a random example of those left in the prompt
|
|
if (randomize_tasks) {
|
|
std::uniform_int_distribution<size_t> dist(0, prompt_lines.size()/6-1 ) ;
|
|
idx = dist(rng);
|
|
}
|
|
|
|
hs_data[i].context = prompt_lines[idx*6];
|
|
hs_data[i].gold_ending_idx = std::stoi( prompt_lines[idx*6+1] );
|
|
for (size_t j=0; j < 4; j++) {
|
|
hs_data[i].ending[j] = prompt_lines[idx*6+2+j];
|
|
}
|
|
|
|
// Delete the selected random example from the prompt
|
|
if (randomize_tasks) {
|
|
prompt_lines.erase( std::next(prompt_lines.begin(),idx*6) , std::next(prompt_lines.begin(),idx*6+6) );
|
|
}
|
|
}
|
|
|
|
fprintf(stderr, "%s : calculating hellaswag score over selected tasks.\n", __func__);
|
|
printf("\ntask\tacc_norm\n");
|
|
|
|
double acc = 0.0f;
|
|
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
|
const int n_ctx = llama_n_ctx(ctx);
|
|
|
|
std::vector<std::vector<int>> ending_tokens(4);
|
|
|
|
std::vector<float> tok_logits(n_vocab);
|
|
|
|
for (size_t task_idx = 0; task_idx < hs_task_count; task_idx++) {
|
|
// Tokenize the context to count tokens
|
|
std::vector<int> context_embd = ::llama_tokenize(ctx, hs_data[task_idx].context, add_bos);
|
|
size_t context_size = context_embd.size();
|
|
|
|
for (int i = 0; i < 4; ++i) {
|
|
ending_tokens[i] = ::llama_tokenize(ctx, hs_data[task_idx].context + " " + hs_data[task_idx].ending[i], add_bos);
|
|
for (int k = 0; k < int(context_size); ++k) {
|
|
if (ending_tokens[i][k] != context_embd[k]) {
|
|
fprintf(stderr, "Oops: ending %d of task %d differs from context at position %d\n",i,int(task_idx),k);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Do the 1st ending
|
|
// In this case we include the context when evaluating
|
|
//auto query_embd = ::llama_tokenize(ctx, hs_data[task_idx].context + hs_data[task_idx].ending[0], add_bos);
|
|
auto query_embd = ending_tokens[0];
|
|
auto query_size = query_embd.size();
|
|
|
|
// Stop if query wont fit the ctx window
|
|
if (query_size > (size_t)n_ctx) {
|
|
fprintf(stderr, "%s : number of tokens in query %zu > n_ctxl\n", __func__, query_size);
|
|
return;
|
|
}
|
|
|
|
// Speedup small evaluations by evaluating atleast 32 tokens
|
|
if (query_size < 32) {
|
|
query_embd.resize(32);
|
|
}
|
|
|
|
// clear the KV cache
|
|
llama_kv_cache_clear(ctx);
|
|
|
|
auto logits = hellaswag_evaluate_tokens(ctx, query_embd, 0, params.n_batch, n_vocab);
|
|
if (logits.empty()) {
|
|
fprintf(stderr, "%s : failed to eval\n", __func__);
|
|
return;
|
|
}
|
|
|
|
std::memcpy(tok_logits.data(), logits.data() + (context_size-1)*n_vocab, n_vocab*sizeof(float));
|
|
const auto first_probs = softmax(tok_logits);
|
|
|
|
hs_data[task_idx].ending_logprob_count[0] = 1;
|
|
hs_data[task_idx].ending_logprob[0] = std::log(first_probs[query_embd[context_size]]);
|
|
|
|
// Calculate the logprobs over the ending
|
|
for (size_t j = context_size; j < query_size - 1; j++) {
|
|
|
|
std::memcpy(tok_logits.data(), logits.data() + j*n_vocab, n_vocab*sizeof(float));
|
|
|
|
const float prob = softmax(tok_logits)[query_embd[j + 1]];
|
|
|
|
hs_data[task_idx].ending_logprob[0] += std::log(prob);
|
|
hs_data[task_idx].ending_logprob_count[0]++;
|
|
}
|
|
|
|
// Calculate the mean token logprob for acc_norm
|
|
hs_data[task_idx].ending_logprob[0] /= hs_data[task_idx].ending_logprob_count[0];
|
|
|
|
// Do the remaining endings
|
|
// For these, we use the bare ending with n_past = context_size
|
|
//
|
|
for (size_t ending_idx = 1; ending_idx < 4; ending_idx++) {
|
|
|
|
// Tokenize the query
|
|
query_embd.resize(ending_tokens[ending_idx].size() - context_size);
|
|
std::memcpy(query_embd.data(), ending_tokens[ending_idx].data() + context_size, query_embd.size()*sizeof(int));
|
|
query_size = query_embd.size();
|
|
|
|
// Stop if query wont fit the ctx window
|
|
if (context_size + query_size > (size_t)n_ctx) {
|
|
fprintf(stderr, "%s : number of tokens in query %zu > n_ctxl\n", __func__, query_size);
|
|
return;
|
|
}
|
|
|
|
// Speedup small evaluations by evaluating atleast 32 tokens
|
|
// No, resizing to 32 is actually slightly slower (at least on CUDA)
|
|
//if (query_size < 32) {
|
|
// query_embd.resize(32);
|
|
//}
|
|
|
|
// Evaluate the query
|
|
logits = hellaswag_evaluate_tokens(ctx, query_embd, context_size, params.n_batch, n_vocab);
|
|
if (logits.empty()) {
|
|
fprintf(stderr, "%s : failed to eval\n", __func__);
|
|
return;
|
|
}
|
|
|
|
hs_data[task_idx].ending_logprob_count[ending_idx] = 1;
|
|
hs_data[task_idx].ending_logprob[ending_idx] = std::log(first_probs[query_embd[0]]);
|
|
|
|
// Calculate the logprobs over the ending
|
|
for (size_t j = 0; j < query_size - 1; j++) {
|
|
std::memcpy(tok_logits.data(), logits.data() + j*n_vocab, n_vocab*sizeof(float));
|
|
|
|
const float prob = softmax(tok_logits)[query_embd[j + 1]];
|
|
|
|
hs_data[task_idx].ending_logprob[ending_idx] += std::log(prob);
|
|
hs_data[task_idx].ending_logprob_count[ending_idx]++;
|
|
}
|
|
|
|
// Calculate the mean token logprob for acc_norm
|
|
hs_data[task_idx].ending_logprob[ending_idx] /= hs_data[task_idx].ending_logprob_count[ending_idx];
|
|
|
|
|
|
// printf("task %lu, ending %lu, whole_len %lu, context_len %lu, ending_logprob_count %lu, ending_logprob %.4f\n",
|
|
// task_idx,ending_idx,whole_size,context_size, hs_data[task_idx].ending_logprob_count[ending_idx], hs_data[task_idx].ending_logprob[ending_idx] );
|
|
}
|
|
|
|
// Find the ending with maximum logprob
|
|
size_t ending_logprob_max_idx = 0;
|
|
double ending_logprob_max_val = hs_data[task_idx].ending_logprob[0];
|
|
for (size_t j = 1; j < 4; j++) {
|
|
if (hs_data[task_idx].ending_logprob[j] > ending_logprob_max_val) {
|
|
ending_logprob_max_idx = j;
|
|
ending_logprob_max_val = hs_data[task_idx].ending_logprob[j];
|
|
}
|
|
}
|
|
|
|
// printf("max logprob ending idx %lu, gold ending idx %lu\n", ending_logprob_max_idx, hs_data[task_idx].gold_ending_idx);
|
|
|
|
// If the gold ending got the maximum logprobe add one accuracy point
|
|
if (ending_logprob_max_idx == hs_data[task_idx].gold_ending_idx) {
|
|
acc += 1.0;
|
|
}
|
|
|
|
// Print the accumulated accuracy mean x 100
|
|
printf("%zu\t%.8lf\n",task_idx+1, acc/double(task_idx+1)*100.0);
|
|
fflush(stdout);
|
|
}
|
|
|
|
delete [] hs_data;
|
|
|
|
printf("\n");
|
|
}
|
|
|
|
int main(int argc, char ** argv) {
|
|
gpt_params params;
|
|
|
|
params.n_batch = 512;
|
|
if (!gpt_params_parse(argc, argv, params)) {
|
|
return 1;
|
|
}
|
|
|
|
params.logits_all = true;
|
|
params.n_batch = std::min(params.n_batch, params.n_ctx);
|
|
|
|
if (params.ppl_stride > 0) {
|
|
fprintf(stderr, "Will perform strided perplexity calculation -> adjusting context size from %d to %d\n",
|
|
params.n_ctx, params.n_ctx + params.ppl_stride/2);
|
|
params.n_ctx += params.ppl_stride/2;
|
|
}
|
|
|
|
print_build_info();
|
|
|
|
if (params.seed == LLAMA_DEFAULT_SEED) {
|
|
params.seed = time(NULL);
|
|
}
|
|
|
|
fprintf(stderr, "%s: seed = %u\n", __func__, params.seed);
|
|
|
|
std::mt19937 rng(params.seed);
|
|
if (params.random_prompt) {
|
|
params.prompt = gpt_random_prompt(rng);
|
|
}
|
|
|
|
llama_backend_init(params.numa);
|
|
|
|
llama_model * model;
|
|
llama_context * ctx;
|
|
|
|
// load the model and apply lora adapter, if any
|
|
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
|
if (model == NULL) {
|
|
fprintf(stderr, "%s: error: unable to load model\n", __func__);
|
|
return 1;
|
|
}
|
|
|
|
const int n_ctx_train = llama_n_ctx_train(model);
|
|
if (params.n_ctx > n_ctx_train) {
|
|
fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
|
|
__func__, n_ctx_train, params.n_ctx);
|
|
}
|
|
|
|
// print system information
|
|
{
|
|
fprintf(stderr, "\n");
|
|
fprintf(stderr, "%s\n", get_system_info(params).c_str());
|
|
}
|
|
|
|
struct results_perplexity results;
|
|
if (params.hellaswag) {
|
|
hellaswag_score(ctx, params);
|
|
} else {
|
|
results = perplexity(ctx, params);
|
|
}
|
|
|
|
llama_print_timings(ctx);
|
|
write_logfile(ctx, params, model, results);
|
|
|
|
llama_free(ctx);
|
|
llama_free_model(model);
|
|
|
|
llama_backend_free();
|
|
|
|
return 0;
|
|
}
|