mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-14 22:38:58 +01:00
1b9ae5189c
* (wip) argparser v3 * migrated * add test * handle env * fix linux build * add export-docs example * fix build (2) * skip build test-arg-parser on windows * update server docs * bring back missing --alias * bring back --n-predict * clarify test-arg-parser * small correction * add comments * fix args with 2 values * refine example-specific args * no more lamba capture Co-authored-by: slaren@users.noreply.github.com * params.sparams * optimize more * export-docs --> gen-docs |
||
---|---|---|
.. | ||
CMakeLists.txt | ||
embedding.cpp | ||
README.md |
llama.cpp/example/embedding
This example demonstrates generate high-dimensional embedding vector of a given text with llama.cpp.
Quick Start
To get started right away, run the following command, making sure to use the correct path for the model you have:
Unix-based systems (Linux, macOS, etc.):
./llama-embedding -m ./path/to/model --pooling mean --log-disable -p "Hello World!" 2>/dev/null
Windows:
llama-embedding.exe -m ./path/to/model --pooling mean --log-disable -p "Hello World!" 2>$null
The above command will output space-separated float values.
extra parameters
--embd-normalize integer
integer |
description | formula |
---|---|---|
-1 |
none | |
0 |
max absolute int16 | \Large{{32760 * x_i} \over\max \lvert x_i\rvert} |
1 |
taxicab | \Large{x_i \over\sum \lvert x_i\rvert} |
2 |
euclidean (default) | \Large{x_i \over\sqrt{\sum x_i^2}} |
>2 |
p-norm | \Large{x_i \over\sqrt[p]{\sum \lvert x_i\rvert^p}} |
--embd-output-format 'string'
'string' |
description | |
---|---|---|
'' | same as before | (default) |
'array' | single embeddings | [[x_1,...,x_n]] |
multiple embeddings | [[x_1,...,x_n],[x_1,...,x_n],...,[x_1,...,x_n]] |
|
'json' | openai style | |
'json+' | add cosine similarity matrix |
--embd-separator "string"
"string" |
|
---|---|
"\n" | (default) |
"<#embSep#>" | for exemple |
"<#sep#>" | other exemple |
examples
Unix-based systems (Linux, macOS, etc.):
./llama-embedding -p 'Castle<#sep#>Stronghold<#sep#>Dog<#sep#>Cat' --pooling mean --embd-separator '<#sep#>' --embd-normalize 2 --embd-output-format '' -m './path/to/model.gguf' --n-gpu-layers 99 --log-disable 2>/dev/null
Windows:
llama-embedding.exe -p 'Castle<#sep#>Stronghold<#sep#>Dog<#sep#>Cat' --pooling mean --embd-separator '<#sep#>' --embd-normalize 2 --embd-output-format '' -m './path/to/model.gguf' --n-gpu-layers 99 --log-disable 2>/dev/null