mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-19 00:18:57 +01:00
1e6f6554aa
* server : add lora hotswap endpoint * handle lora_no_apply * fix build * updae docs * clean up struct def * fix build * add LoRA test * fix style
511 lines
25 KiB
Python
511 lines
25 KiB
Python
from __future__ import annotations
|
|
|
|
import re
|
|
import json
|
|
import yaml
|
|
import logging
|
|
from pathlib import Path
|
|
from typing import Any, Literal, Optional
|
|
from dataclasses import dataclass
|
|
|
|
from .constants import Keys
|
|
|
|
import gguf
|
|
|
|
logger = logging.getLogger("metadata")
|
|
|
|
|
|
@dataclass
|
|
class Metadata:
|
|
# Authorship Metadata to be written to GGUF KV Store
|
|
name: Optional[str] = None
|
|
author: Optional[str] = None
|
|
version: Optional[str] = None
|
|
organization: Optional[str] = None
|
|
finetune: Optional[str] = None
|
|
basename: Optional[str] = None
|
|
description: Optional[str] = None
|
|
quantized_by: Optional[str] = None
|
|
size_label: Optional[str] = None
|
|
url: Optional[str] = None
|
|
doi: Optional[str] = None
|
|
uuid: Optional[str] = None
|
|
repo_url: Optional[str] = None
|
|
source_url: Optional[str] = None
|
|
source_doi: Optional[str] = None
|
|
source_uuid: Optional[str] = None
|
|
source_repo_url: Optional[str] = None
|
|
license: Optional[str] = None
|
|
license_name: Optional[str] = None
|
|
license_link: Optional[str] = None
|
|
base_models: Optional[list[dict]] = None
|
|
tags: Optional[list[str]] = None
|
|
languages: Optional[list[str]] = None
|
|
datasets: Optional[list[str]] = None
|
|
|
|
@staticmethod
|
|
def load(metadata_override_path: Optional[Path] = None, model_path: Optional[Path] = None, model_name: Optional[str] = None, total_params: int = 0) -> Metadata:
|
|
# This grabs as many contextual authorship metadata as possible from the model repository
|
|
# making any conversion as required to match the gguf kv store metadata format
|
|
# as well as giving users the ability to override any authorship metadata that may be incorrect
|
|
|
|
# Create a new Metadata instance
|
|
metadata = Metadata()
|
|
|
|
model_card = Metadata.load_model_card(model_path)
|
|
hf_params = Metadata.load_hf_parameters(model_path)
|
|
# TODO: load adapter_config.json when possible, it usually contains the base model of the LoRA adapter
|
|
|
|
# heuristics
|
|
metadata = Metadata.apply_metadata_heuristic(metadata, model_card, hf_params, model_path, total_params)
|
|
|
|
# Metadata Override File Provided
|
|
# This is based on LLM_KV_NAMES mapping in llama.cpp
|
|
metadata_override = Metadata.load_metadata_override(metadata_override_path)
|
|
|
|
metadata.name = metadata_override.get(Keys.General.NAME, metadata.name)
|
|
metadata.author = metadata_override.get(Keys.General.AUTHOR, metadata.author)
|
|
metadata.version = metadata_override.get(Keys.General.VERSION, metadata.version)
|
|
metadata.organization = metadata_override.get(Keys.General.ORGANIZATION, metadata.organization)
|
|
|
|
metadata.finetune = metadata_override.get(Keys.General.FINETUNE, metadata.finetune)
|
|
metadata.basename = metadata_override.get(Keys.General.BASENAME, metadata.basename)
|
|
|
|
metadata.description = metadata_override.get(Keys.General.DESCRIPTION, metadata.description)
|
|
metadata.quantized_by = metadata_override.get(Keys.General.QUANTIZED_BY, metadata.quantized_by)
|
|
|
|
metadata.size_label = metadata_override.get(Keys.General.SIZE_LABEL, metadata.size_label)
|
|
metadata.license_name = metadata_override.get(Keys.General.LICENSE_NAME, metadata.license_name)
|
|
metadata.license_link = metadata_override.get(Keys.General.LICENSE_LINK, metadata.license_link)
|
|
|
|
metadata.url = metadata_override.get(Keys.General.URL, metadata.url)
|
|
metadata.doi = metadata_override.get(Keys.General.DOI, metadata.doi)
|
|
metadata.uuid = metadata_override.get(Keys.General.UUID, metadata.uuid)
|
|
metadata.repo_url = metadata_override.get(Keys.General.REPO_URL, metadata.repo_url)
|
|
|
|
metadata.source_url = metadata_override.get(Keys.General.SOURCE_URL, metadata.source_url)
|
|
metadata.source_doi = metadata_override.get(Keys.General.SOURCE_DOI, metadata.source_doi)
|
|
metadata.source_uuid = metadata_override.get(Keys.General.SOURCE_UUID, metadata.source_uuid)
|
|
metadata.source_repo_url = metadata_override.get(Keys.General.SOURCE_REPO_URL, metadata.source_repo_url)
|
|
|
|
# Base Models is received here as an array of models
|
|
metadata.base_models = metadata_override.get("general.base_models", metadata.base_models)
|
|
|
|
metadata.tags = metadata_override.get(Keys.General.TAGS, metadata.tags)
|
|
metadata.languages = metadata_override.get(Keys.General.LANGUAGES, metadata.languages)
|
|
metadata.datasets = metadata_override.get(Keys.General.DATASETS, metadata.datasets)
|
|
|
|
# Direct Metadata Override (via direct cli argument)
|
|
if model_name is not None:
|
|
metadata.name = model_name
|
|
|
|
return metadata
|
|
|
|
@staticmethod
|
|
def load_metadata_override(metadata_override_path: Optional[Path] = None) -> dict[str, Any]:
|
|
if metadata_override_path is None or not metadata_override_path.is_file():
|
|
return {}
|
|
|
|
with open(metadata_override_path, "r", encoding="utf-8") as f:
|
|
return json.load(f)
|
|
|
|
@staticmethod
|
|
def load_model_card(model_path: Optional[Path] = None) -> dict[str, Any]:
|
|
if model_path is None or not model_path.is_dir():
|
|
return {}
|
|
|
|
model_card_path = model_path / "README.md"
|
|
|
|
if not model_card_path.is_file():
|
|
return {}
|
|
|
|
# The model card metadata is assumed to always be in YAML
|
|
# ref: https://github.com/huggingface/transformers/blob/a5c642fe7a1f25d3bdcd76991443ba6ff7ee34b2/src/transformers/modelcard.py#L468-L473
|
|
with open(model_card_path, "r", encoding="utf-8") as f:
|
|
if f.readline() == "---\n":
|
|
raw = f.read().partition("---\n")[0]
|
|
data = yaml.safe_load(raw)
|
|
if isinstance(data, dict):
|
|
return data
|
|
else:
|
|
logger.error(f"while reading YAML model card frontmatter, data is {type(data)} instead of dict")
|
|
return {}
|
|
else:
|
|
return {}
|
|
|
|
@staticmethod
|
|
def load_hf_parameters(model_path: Optional[Path] = None) -> dict[str, Any]:
|
|
if model_path is None or not model_path.is_dir():
|
|
return {}
|
|
|
|
config_path = model_path / "config.json"
|
|
|
|
if not config_path.is_file():
|
|
return {}
|
|
|
|
with open(config_path, "r", encoding="utf-8") as f:
|
|
return json.load(f)
|
|
|
|
@staticmethod
|
|
def id_to_title(string):
|
|
# Convert capitalization into title form unless acronym or version number
|
|
return ' '.join([w.title() if w.islower() and not re.match(r'^(v\d+(?:\.\d+)*|\d.*)$', w) else w for w in string.strip().replace('-', ' ').split()])
|
|
|
|
@staticmethod
|
|
def get_model_id_components(model_id: Optional[str] = None, total_params: int = 0) -> tuple[str | None, str | None, str | None, str | None, str | None, str | None]:
|
|
# Huggingface often store model id as '<org>/<model name>'
|
|
# so let's parse it and apply some heuristics if possible for model name components
|
|
|
|
if model_id is None:
|
|
# model ID missing
|
|
return None, None, None, None, None, None
|
|
|
|
if ' ' in model_id:
|
|
# model ID is actually a normal human sentence
|
|
# which means its most likely a normal model name only
|
|
# not part of the hugging face naming standard, but whatever
|
|
return model_id, None, None, None, None, None
|
|
|
|
if '/' in model_id:
|
|
# model ID (huggingface style)
|
|
org_component, model_full_name_component = model_id.split('/', 1)
|
|
else:
|
|
# model ID but missing org components
|
|
org_component, model_full_name_component = None, model_id
|
|
|
|
# Check if we erroneously matched against './' or '../' etc...
|
|
if org_component is not None and len(org_component) > 0 and org_component[0] == '.':
|
|
org_component = None
|
|
|
|
name_parts: list[str] = model_full_name_component.split('-')
|
|
|
|
# Remove empty parts
|
|
for i in reversed(range(len(name_parts))):
|
|
if len(name_parts[i]) == 0:
|
|
del name_parts[i]
|
|
|
|
name_types: list[
|
|
set[Literal["basename", "size_label", "finetune", "version", "type"]]
|
|
] = [set() for _ in name_parts]
|
|
|
|
# Annotate the name
|
|
for i, part in enumerate(name_parts):
|
|
# Version
|
|
if re.fullmatch(r'(v|iter)?\d+([.]\d+)*', part, re.IGNORECASE):
|
|
name_types[i].add("version")
|
|
# Quant type (should not be there for base models, but still annotated)
|
|
elif re.fullmatch(r'i?q\d(_\w)*|b?fp?(16|32)', part, re.IGNORECASE):
|
|
name_types[i].add("type")
|
|
name_parts[i] = part.upper()
|
|
# Model size
|
|
elif i > 0 and re.fullmatch(r'(([A]|\d+[x])?\d+([._]\d+)?[KMBT][\d]?|small|mini|medium|large|x?xl)', part, re.IGNORECASE):
|
|
part = part.replace("_", ".")
|
|
# Handle weird bloom-7b1 notation
|
|
if part[-1].isdecimal():
|
|
part = part[:-2] + "." + part[-1] + part[-2]
|
|
# Normalize the size suffixes
|
|
if len(part) > 1 and part[-2].isdecimal():
|
|
if part[-1] in "kmbt":
|
|
part = part[:-1] + part[-1].upper()
|
|
if total_params != 0:
|
|
try:
|
|
label_params = float(part[:-1]) * pow(1000, " KMBT".find(part[-1]))
|
|
# Only use it as a size label if it's close or bigger than the model size
|
|
# Note that LoRA adapters don't necessarily include all layers,
|
|
# so this is why bigger label sizes are accepted.
|
|
# Do not use the size label when it's smaller than 1/8 of the model size
|
|
if (total_params < 0 and label_params < abs(total_params) // 8) or (
|
|
# Check both directions when the current model isn't a LoRA adapter
|
|
total_params > 0 and abs(label_params - total_params) > 7 * total_params // 8
|
|
):
|
|
# Likely a context length
|
|
name_types[i].add("finetune")
|
|
# Lowercase the size when it's a context length
|
|
part = part[:-1] + part[-1].lower()
|
|
except ValueError:
|
|
# Failed to convert the size label to float, use it anyway
|
|
pass
|
|
if len(name_types[i]) == 0:
|
|
name_types[i].add("size_label")
|
|
name_parts[i] = part
|
|
# Some easy to recognize finetune names
|
|
elif i > 0 and re.fullmatch(r'chat|instruct|vision|lora', part, re.IGNORECASE):
|
|
if total_params < 0 and part.lower() == "lora":
|
|
# ignore redundant "lora" in the finetune part when the output is a lora adapter
|
|
name_types[i].add("type")
|
|
else:
|
|
name_types[i].add("finetune")
|
|
|
|
# Ignore word-based size labels when there is at least a number-based one present
|
|
# TODO: should word-based size labels always be removed instead?
|
|
if any(c.isdecimal() for n, t in zip(name_parts, name_types) if "size_label" in t for c in n):
|
|
for n, t in zip(name_parts, name_types):
|
|
if "size_label" in t:
|
|
if all(c.isalpha() for c in n):
|
|
t.remove("size_label")
|
|
|
|
at_start = True
|
|
# Find the basename through the annotated name
|
|
for part, t in zip(name_parts, name_types):
|
|
if at_start and ((len(t) == 0 and part[0].isalpha()) or "version" in t):
|
|
t.add("basename")
|
|
else:
|
|
if at_start:
|
|
at_start = False
|
|
if len(t) == 0:
|
|
t.add("finetune")
|
|
|
|
# Remove the basename annotation from trailing version
|
|
for part, t in zip(reversed(name_parts), reversed(name_types)):
|
|
if "basename" in t and len(t) > 1:
|
|
t.remove("basename")
|
|
else:
|
|
break
|
|
|
|
basename = "-".join(n for n, t in zip(name_parts, name_types) if "basename" in t) or None
|
|
# Deduplicate size labels using order-preserving 'dict' ('set' seems to sort the keys)
|
|
size_label = "-".join(dict.fromkeys(s for s, t in zip(name_parts, name_types) if "size_label" in t).keys()) or None
|
|
finetune = "-".join(f for f, t in zip(name_parts, name_types) if "finetune" in t) or None
|
|
# TODO: should the basename version always be excluded?
|
|
# NOTE: multiple finetune versions are joined together
|
|
version = "-".join(v for v, t, in zip(name_parts, name_types) if "version" in t and "basename" not in t) or None
|
|
|
|
if size_label is None and finetune is None and version is None:
|
|
# Too ambiguous, output nothing
|
|
basename = None
|
|
|
|
return model_full_name_component, org_component, basename, finetune, version, size_label
|
|
|
|
@staticmethod
|
|
def apply_metadata_heuristic(metadata: Metadata, model_card: Optional[dict] = None, hf_params: Optional[dict] = None, model_path: Optional[Path] = None, total_params: int = 0) -> Metadata:
|
|
# Reference Model Card Metadata: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
|
|
|
|
# Model Card Heuristics
|
|
########################
|
|
if model_card is not None:
|
|
|
|
def use_model_card_metadata(metadata_key: str, model_card_key: str):
|
|
if model_card_key in model_card and getattr(metadata, metadata_key, None) is None:
|
|
setattr(metadata, metadata_key, model_card.get(model_card_key))
|
|
|
|
def use_array_model_card_metadata(metadata_key: str, model_card_key: str):
|
|
# Note: Will append rather than replace if already exist
|
|
tags_value = model_card.get(model_card_key, None)
|
|
if tags_value is None:
|
|
return
|
|
|
|
current_value = getattr(metadata, metadata_key, None)
|
|
if current_value is None:
|
|
current_value = []
|
|
|
|
if isinstance(tags_value, str):
|
|
current_value.append(tags_value)
|
|
elif isinstance(tags_value, list):
|
|
current_value.extend(tags_value)
|
|
|
|
setattr(metadata, metadata_key, current_value)
|
|
|
|
# LLAMA.cpp's direct internal convention
|
|
# (Definitely not part of hugging face formal/informal standard)
|
|
#########################################
|
|
use_model_card_metadata("name", "name")
|
|
use_model_card_metadata("author", "author")
|
|
use_model_card_metadata("version", "version")
|
|
use_model_card_metadata("organization", "organization")
|
|
use_model_card_metadata("description", "description")
|
|
use_model_card_metadata("finetune", "finetune")
|
|
use_model_card_metadata("basename", "basename")
|
|
use_model_card_metadata("size_label", "size_label")
|
|
use_model_card_metadata("source_url", "url")
|
|
use_model_card_metadata("source_doi", "doi")
|
|
use_model_card_metadata("source_uuid", "uuid")
|
|
use_model_card_metadata("source_repo_url", "repo_url")
|
|
|
|
# LLAMA.cpp's huggingface style convention
|
|
# (Definitely not part of hugging face formal/informal standard... but with model_ appended to match their style)
|
|
###########################################
|
|
use_model_card_metadata("name", "model_name")
|
|
use_model_card_metadata("author", "model_author")
|
|
use_model_card_metadata("version", "model_version")
|
|
use_model_card_metadata("organization", "model_organization")
|
|
use_model_card_metadata("description", "model_description")
|
|
use_model_card_metadata("finetune", "model_finetune")
|
|
use_model_card_metadata("basename", "model_basename")
|
|
use_model_card_metadata("size_label", "model_size_label")
|
|
use_model_card_metadata("source_url", "model_url")
|
|
use_model_card_metadata("source_doi", "model_doi")
|
|
use_model_card_metadata("source_uuid", "model_uuid")
|
|
use_model_card_metadata("source_repo_url", "model_repo_url")
|
|
|
|
# Hugging Face Direct Convention
|
|
#################################
|
|
|
|
# Not part of huggingface model card standard but notice some model creator using it
|
|
# such as TheBloke in 'TheBloke/Mistral-7B-Instruct-v0.2-GGUF'
|
|
use_model_card_metadata("name", "model_name")
|
|
use_model_card_metadata("author", "model_creator")
|
|
use_model_card_metadata("basename", "model_type")
|
|
|
|
if "base_model" in model_card:
|
|
# This represents the parent models that this is based on
|
|
# Example: stabilityai/stable-diffusion-xl-base-1.0. Can also be a list (for merges)
|
|
# Example of merges: https://huggingface.co/EmbeddedLLM/Mistral-7B-Merge-14-v0.1/blob/main/README.md
|
|
metadata_base_models = []
|
|
base_model_value = model_card.get("base_model", None)
|
|
|
|
if base_model_value is not None:
|
|
if isinstance(base_model_value, str):
|
|
metadata_base_models.append(base_model_value)
|
|
elif isinstance(base_model_value, list):
|
|
metadata_base_models.extend(base_model_value)
|
|
|
|
if metadata.base_models is None:
|
|
metadata.base_models = []
|
|
|
|
for model_id in metadata_base_models:
|
|
# NOTE: model size of base model is assumed to be similar to the size of the current model
|
|
model_full_name_component, org_component, basename, finetune, version, size_label = Metadata.get_model_id_components(model_id, total_params)
|
|
base_model = {}
|
|
if model_full_name_component is not None:
|
|
base_model["name"] = Metadata.id_to_title(model_full_name_component)
|
|
if org_component is not None:
|
|
base_model["organization"] = Metadata.id_to_title(org_component)
|
|
if version is not None:
|
|
base_model["version"] = version
|
|
if org_component is not None and model_full_name_component is not None:
|
|
base_model["repo_url"] = f"https://huggingface.co/{org_component}/{model_full_name_component}"
|
|
metadata.base_models.append(base_model)
|
|
|
|
use_model_card_metadata("license", "license")
|
|
use_model_card_metadata("license_name", "license_name")
|
|
use_model_card_metadata("license_link", "license_link")
|
|
|
|
use_array_model_card_metadata("tags", "tags")
|
|
use_array_model_card_metadata("tags", "pipeline_tag")
|
|
|
|
use_array_model_card_metadata("languages", "languages")
|
|
use_array_model_card_metadata("languages", "language")
|
|
|
|
use_array_model_card_metadata("datasets", "datasets")
|
|
use_array_model_card_metadata("datasets", "dataset")
|
|
|
|
# Hugging Face Parameter Heuristics
|
|
####################################
|
|
|
|
if hf_params is not None:
|
|
|
|
hf_name_or_path = hf_params.get("_name_or_path")
|
|
if hf_name_or_path is not None and hf_name_or_path.count('/') <= 1:
|
|
# Use _name_or_path only if its actually a model name and not some computer path
|
|
# e.g. 'meta-llama/Llama-2-7b-hf'
|
|
model_id = hf_name_or_path
|
|
model_full_name_component, org_component, basename, finetune, version, size_label = Metadata.get_model_id_components(model_id, total_params)
|
|
if metadata.name is None and model_full_name_component is not None:
|
|
metadata.name = Metadata.id_to_title(model_full_name_component)
|
|
if metadata.organization is None and org_component is not None:
|
|
metadata.organization = Metadata.id_to_title(org_component)
|
|
if metadata.basename is None and basename is not None:
|
|
metadata.basename = basename
|
|
if metadata.finetune is None and finetune is not None:
|
|
metadata.finetune = finetune
|
|
if metadata.version is None and version is not None:
|
|
metadata.version = version
|
|
if metadata.size_label is None and size_label is not None:
|
|
metadata.size_label = size_label
|
|
|
|
# Directory Folder Name Fallback Heuristics
|
|
############################################
|
|
if model_path is not None:
|
|
model_id = model_path.name
|
|
model_full_name_component, org_component, basename, finetune, version, size_label = Metadata.get_model_id_components(model_id, total_params)
|
|
if metadata.name is None and model_full_name_component is not None:
|
|
metadata.name = Metadata.id_to_title(model_full_name_component)
|
|
if metadata.organization is None and org_component is not None:
|
|
metadata.organization = Metadata.id_to_title(org_component)
|
|
if metadata.basename is None and basename is not None:
|
|
metadata.basename = basename
|
|
if metadata.finetune is None and finetune is not None:
|
|
metadata.finetune = finetune
|
|
if metadata.version is None and version is not None:
|
|
metadata.version = version
|
|
if metadata.size_label is None and size_label is not None:
|
|
metadata.size_label = size_label
|
|
|
|
return metadata
|
|
|
|
def set_gguf_meta_model(self, gguf_writer: gguf.GGUFWriter):
|
|
assert self.name is not None
|
|
gguf_writer.add_name(self.name)
|
|
|
|
if self.author is not None:
|
|
gguf_writer.add_author(self.author)
|
|
if self.version is not None:
|
|
gguf_writer.add_version(self.version)
|
|
if self.organization is not None:
|
|
gguf_writer.add_organization(self.organization)
|
|
|
|
if self.finetune is not None:
|
|
gguf_writer.add_finetune(self.finetune)
|
|
if self.basename is not None:
|
|
gguf_writer.add_basename(self.basename)
|
|
|
|
if self.description is not None:
|
|
gguf_writer.add_description(self.description)
|
|
if self.quantized_by is not None:
|
|
gguf_writer.add_quantized_by(self.quantized_by)
|
|
|
|
if self.size_label is not None:
|
|
gguf_writer.add_size_label(self.size_label)
|
|
|
|
if self.license is not None:
|
|
gguf_writer.add_license(self.license)
|
|
if self.license_name is not None:
|
|
gguf_writer.add_license_name(self.license_name)
|
|
if self.license_link is not None:
|
|
gguf_writer.add_license_link(self.license_link)
|
|
|
|
if self.url is not None:
|
|
gguf_writer.add_url(self.url)
|
|
if self.doi is not None:
|
|
gguf_writer.add_doi(self.doi)
|
|
if self.uuid is not None:
|
|
gguf_writer.add_uuid(self.uuid)
|
|
if self.repo_url is not None:
|
|
gguf_writer.add_repo_url(self.repo_url)
|
|
|
|
if self.source_url is not None:
|
|
gguf_writer.add_source_url(self.source_url)
|
|
if self.source_doi is not None:
|
|
gguf_writer.add_source_doi(self.source_doi)
|
|
if self.source_uuid is not None:
|
|
gguf_writer.add_source_uuid(self.source_uuid)
|
|
if self.source_repo_url is not None:
|
|
gguf_writer.add_source_repo_url(self.source_repo_url)
|
|
|
|
if self.base_models is not None:
|
|
gguf_writer.add_base_model_count(len(self.base_models))
|
|
for key, base_model_entry in enumerate(self.base_models):
|
|
if "name" in base_model_entry:
|
|
gguf_writer.add_base_model_name(key, base_model_entry["name"])
|
|
if "author" in base_model_entry:
|
|
gguf_writer.add_base_model_author(key, base_model_entry["author"])
|
|
if "version" in base_model_entry:
|
|
gguf_writer.add_base_model_version(key, base_model_entry["version"])
|
|
if "organization" in base_model_entry:
|
|
gguf_writer.add_base_model_organization(key, base_model_entry["organization"])
|
|
if "url" in base_model_entry:
|
|
gguf_writer.add_base_model_url(key, base_model_entry["url"])
|
|
if "doi" in base_model_entry:
|
|
gguf_writer.add_base_model_doi(key, base_model_entry["doi"])
|
|
if "uuid" in base_model_entry:
|
|
gguf_writer.add_base_model_uuid(key, base_model_entry["uuid"])
|
|
if "repo_url" in base_model_entry:
|
|
gguf_writer.add_base_model_repo_url(key, base_model_entry["repo_url"])
|
|
|
|
if self.tags is not None:
|
|
gguf_writer.add_tags(self.tags)
|
|
if self.languages is not None:
|
|
gguf_writer.add_languages(self.languages)
|
|
if self.datasets is not None:
|
|
gguf_writer.add_datasets(self.datasets)
|