mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-15 06:40:45 +01:00
f66f582927
* llama : scatter llama.cpp into multiple modules (wip) * llama : control-vector -> adapter * llama : arch * llama : mmap ggml-ci * ci : remove BUILD_SHARED_LIBS=OFF ggml-ci * llama : arch (cont) ggml-ci * llama : chat ggml-ci * llama : model ggml-ci * llama : hparams ggml-ci * llama : adapter ggml-ci * examples : fix ggml-ci * rebase ggml-ci * minor * llama : kv cache ggml-ci * llama : impl ggml-ci * llama : batch ggml-ci * cont ggml-ci * llama : context ggml-ci * minor * llama : context (cont) ggml-ci * llama : model loader ggml-ci * common : update lora ggml-ci * llama : quant ggml-ci * llama : quant (cont) ggml-ci * minor [no ci] |
||
---|---|---|
.. | ||
CMakeLists.txt | ||
embedding.cpp | ||
README.md |
llama.cpp/example/embedding
This example demonstrates generate high-dimensional embedding vector of a given text with llama.cpp.
Quick Start
To get started right away, run the following command, making sure to use the correct path for the model you have:
Unix-based systems (Linux, macOS, etc.):
./llama-embedding -m ./path/to/model --pooling mean --log-disable -p "Hello World!" 2>/dev/null
Windows:
llama-embedding.exe -m ./path/to/model --pooling mean --log-disable -p "Hello World!" 2>$null
The above command will output space-separated float values.
extra parameters
--embd-normalize integer
integer |
description | formula |
---|---|---|
-1 |
none | |
0 |
max absolute int16 | \Large{{32760 * x_i} \over\max \lvert x_i\rvert} |
1 |
taxicab | \Large{x_i \over\sum \lvert x_i\rvert} |
2 |
euclidean (default) | \Large{x_i \over\sqrt{\sum x_i^2}} |
>2 |
p-norm | \Large{x_i \over\sqrt[p]{\sum \lvert x_i\rvert^p}} |
--embd-output-format 'string'
'string' |
description | |
---|---|---|
'' | same as before | (default) |
'array' | single embeddings | [[x_1,...,x_n]] |
multiple embeddings | [[x_1,...,x_n],[x_1,...,x_n],...,[x_1,...,x_n]] |
|
'json' | openai style | |
'json+' | add cosine similarity matrix |
--embd-separator "string"
"string" |
|
---|---|
"\n" | (default) |
"<#embSep#>" | for exemple |
"<#sep#>" | other exemple |
examples
Unix-based systems (Linux, macOS, etc.):
./llama-embedding -p 'Castle<#sep#>Stronghold<#sep#>Dog<#sep#>Cat' --pooling mean --embd-separator '<#sep#>' --embd-normalize 2 --embd-output-format '' -m './path/to/model.gguf' --n-gpu-layers 99 --log-disable 2>/dev/null
Windows:
llama-embedding.exe -p 'Castle<#sep#>Stronghold<#sep#>Dog<#sep#>Cat' --pooling mean --embd-separator '<#sep#>' --embd-normalize 2 --embd-output-format '' -m './path/to/model.gguf' --n-gpu-layers 99 --log-disable 2>/dev/null