mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-23 18:09:18 +01:00
1033 lines
31 KiB
C++
1033 lines
31 KiB
C++
// Copyright 2024 Mozilla Foundation
|
||
//
|
||
// Permission is hereby granted, free of charge, to any person obtaining
|
||
// a copy of this software and associated documentation files (the
|
||
// "Software"), to deal in the Software without restriction, including
|
||
// without limitation the rights to use, copy, modify, merge, publish,
|
||
// distribute, sublicense, and/or sell copies of the Software, and to
|
||
// permit persons to whom the Software is furnished to do so, subject to
|
||
// the following conditions:
|
||
//
|
||
// The above copyright notice and this permission notice shall be
|
||
// included in all copies or substantial portions of the Software.
|
||
//
|
||
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
||
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
||
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
||
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
||
// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
||
// ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
||
// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||
// SOFTWARE.
|
||
|
||
//
|
||
// _ _ ___ _ _ ___
|
||
// | |_(_)_ _ _ _| _ ) | /_\ / __|
|
||
// | _| | ' \ || | _ \ |__ / _ \\__ \.
|
||
// \__|_|_||_\_, |___/____/_/ \_\___/
|
||
// |__/
|
||
//
|
||
// BASIC LINEAR ALGEBRA SUBPROGRAMS
|
||
//
|
||
//
|
||
// This file implements multithreaded CPU matrix multiplication for the
|
||
// common contiguous use case C = Aᵀ * B. These kernels are designed to
|
||
// have excellent performance[1] for matrices that fit in the CPU cache
|
||
// without imposing any overhead such as cache filling or malloc calls.
|
||
//
|
||
// This implementation does not guarantee any upper bound with rounding
|
||
// errors, which grow along with k. Our goal's to maximally exploit the
|
||
// hardware for performance, and then use whatever resources remain for
|
||
// improving numerical accuracy.
|
||
//
|
||
// [1] J. Tunney, ‘LLaMA Now Goes Faster on CPUs’, Mar. 2024. [Online].
|
||
// Available: https://justine.lol/matmul/. [Accessed: 29-Mar-2024].
|
||
|
||
#if defined(__GNUC__)
|
||
#pragma GCC diagnostic ignored "-Wpedantic"
|
||
#pragma GCC diagnostic ignored "-Wignored-attributes"
|
||
#endif
|
||
|
||
#include "sgemm.h"
|
||
#include "ggml-impl.h"
|
||
#include "ggml-quants.h"
|
||
|
||
#ifdef _MSC_VER
|
||
#define NOINLINE __declspec(noinline)
|
||
#else
|
||
#define NOINLINE __attribute__((__noinline__))
|
||
#endif
|
||
|
||
#if defined(__ARM_NEON) || defined(__AVX512F__)
|
||
#define VECTOR_REGISTERS 32
|
||
#else
|
||
#define VECTOR_REGISTERS 16
|
||
#endif
|
||
|
||
#define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
|
||
|
||
namespace {
|
||
|
||
inline float unhalf(ggml_fp16_t d) {
|
||
return GGML_FP16_TO_FP32(d);
|
||
}
|
||
|
||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
// VECTORIZED ARITHMETIC OPERATIONS
|
||
|
||
#if defined(__SSE__) || defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
|
||
inline __m128 add(__m128 x, __m128 y) { return _mm_add_ps(x, y); }
|
||
inline __m128 sub(__m128 x, __m128 y) { return _mm_sub_ps(x, y); }
|
||
inline __m128 mul(__m128 x, __m128 y) { return _mm_mul_ps(x, y); }
|
||
#endif // __SSE__
|
||
|
||
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
|
||
inline __m256 add(__m256 x, __m256 y) { return _mm256_add_ps(x, y); }
|
||
inline __m256 sub(__m256 x, __m256 y) { return _mm256_sub_ps(x, y); }
|
||
inline __m256 mul(__m256 x, __m256 y) { return _mm256_mul_ps(x, y); }
|
||
#endif // __AVX__
|
||
|
||
#if defined(__AVX512F__)
|
||
inline __m512 add(__m512 x, __m512 y) { return _mm512_add_ps(x, y); }
|
||
inline __m512 sub(__m512 x, __m512 y) { return _mm512_sub_ps(x, y); }
|
||
inline __m512 mul(__m512 x, __m512 y) { return _mm512_mul_ps(x, y); }
|
||
#endif // __AVX512F__
|
||
|
||
#if defined(__ARM_NEON)
|
||
inline float32x4_t add(float32x4_t x, float32x4_t y) { return vaddq_f32(x, y); }
|
||
inline float32x4_t sub(float32x4_t x, float32x4_t y) { return vsubq_f32(x, y); }
|
||
inline float32x4_t mul(float32x4_t x, float32x4_t y) { return vmulq_f32(x, y); }
|
||
#endif // __ARM_NEON
|
||
|
||
#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
|
||
inline float16x8_t add(float16x8_t x, float16x8_t y) { return vaddq_f16(x, y); }
|
||
inline float16x8_t sub(float16x8_t x, float16x8_t y) { return vsubq_f16(x, y); }
|
||
inline float16x8_t mul(float16x8_t x, float16x8_t y) { return vmulq_f16(x, y); }
|
||
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
||
|
||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
// VECTORIZED FUSED MULTIPLY ADD
|
||
|
||
/**
|
||
* Computes a * b + c.
|
||
*/
|
||
template <typename T, typename U>
|
||
inline U madd(T a, T b, U c) {
|
||
return add(mul(a, b), c);
|
||
}
|
||
|
||
#if defined(__FMA__)
|
||
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
|
||
template <>
|
||
inline __m256 madd(__m256 a, __m256 b, __m256 c) {
|
||
return _mm256_fmadd_ps(a, b, c);
|
||
}
|
||
#endif
|
||
#if defined(__AVX512F__)
|
||
template <>
|
||
inline __m512 madd(__m512 a, __m512 b, __m512 c) {
|
||
return _mm512_fmadd_ps(a, b, c);
|
||
}
|
||
#endif
|
||
#endif
|
||
|
||
#if defined(__ARM_FEATURE_FMA)
|
||
template <>
|
||
inline float32x4_t madd(float32x4_t a, float32x4_t b, float32x4_t c) {
|
||
return vfmaq_f32(c, b, a);
|
||
}
|
||
#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && !defined(_MSC_VER)
|
||
template <>
|
||
inline float16x8_t madd(float16x8_t a, float16x8_t b, float16x8_t c) {
|
||
return vfmaq_f16(c, b, a);
|
||
}
|
||
#endif
|
||
#endif
|
||
|
||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
// VECTORIZED HORIZONTAL SUM
|
||
|
||
#if defined(__ARM_NEON)
|
||
inline float hsum(float32x4_t x) {
|
||
return vaddvq_f32(x);
|
||
}
|
||
#endif // __ARM_NEON
|
||
|
||
#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && !defined(_MSC_VER)
|
||
inline float hsum(float16x8_t x) {
|
||
return vaddvq_f32(vaddq_f32(vcvt_f32_f16(vget_low_f16(x)),
|
||
vcvt_f32_f16(vget_high_f16(x))));
|
||
}
|
||
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
||
|
||
#if defined(__SSE__) || defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
|
||
inline float hsum(__m128 x) {
|
||
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
|
||
x = _mm_add_ps(x, _mm_movehl_ps(x, x));
|
||
x = _mm_add_ss(x, _mm_movehdup_ps(x));
|
||
#else
|
||
__m128 t;
|
||
t = _mm_shuffle_ps(x, x, _MM_SHUFFLE(2, 3, 0, 1));
|
||
x = _mm_add_ps(x, t);
|
||
t = _mm_movehl_ps(t, x);
|
||
x = _mm_add_ss(x, t);
|
||
#endif
|
||
return _mm_cvtss_f32(x);
|
||
}
|
||
#endif
|
||
|
||
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
|
||
inline float hsum(__m256 x) {
|
||
return hsum(_mm_add_ps(_mm256_extractf128_ps(x, 1),
|
||
_mm256_castps256_ps128(x)));
|
||
}
|
||
#endif // __AVX__
|
||
|
||
#if defined(__AVX512F__)
|
||
inline float hsum(__m512 x) {
|
||
return _mm512_reduce_add_ps(x);
|
||
}
|
||
#endif // __AVX512F__
|
||
|
||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
// VECTORIZED MEMORY LOADING
|
||
|
||
template <typename T, typename U> T load(const U *);
|
||
|
||
#if defined(__ARM_NEON)
|
||
template <> inline float32x4_t load(const float *p) {
|
||
return vld1q_f32(p);
|
||
}
|
||
#if !defined(_MSC_VER)
|
||
template <> inline float16x8_t load(const ggml_fp16_t *p) {
|
||
return vld1q_f16((const float16_t *)p);
|
||
}
|
||
template <> inline float32x4_t load(const ggml_fp16_t *p) {
|
||
return vcvt_f32_f16(vld1_f16((const float16_t *)p));
|
||
}
|
||
#endif // _MSC_VER
|
||
#endif // __ARM_NEON
|
||
|
||
#if defined(__SSE__) || defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
|
||
template <> inline __m128 load(const float *p) {
|
||
return _mm_loadu_ps(p);
|
||
}
|
||
#endif // __SSE__
|
||
|
||
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
|
||
template <> inline __m256 load(const float *p) {
|
||
return _mm256_loadu_ps(p);
|
||
}
|
||
#endif // __AVX__
|
||
|
||
#if defined(__F16C__)
|
||
template <> inline __m256 load(const ggml_fp16_t *p) {
|
||
return _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)p));
|
||
}
|
||
#endif // __F16C__
|
||
|
||
#if defined(__AVX512F__)
|
||
template <> inline __m512 load(const float *p) {
|
||
return _mm512_loadu_ps(p);
|
||
}
|
||
template <> inline __m512 load(const ggml_fp16_t *p) {
|
||
return _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)p));
|
||
}
|
||
#endif // __AVX512F__
|
||
|
||
////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
// FLOATING POINT MATRIX MULTIPLICATION
|
||
|
||
template <int KN, typename D, typename V, typename TA, typename TB, typename TC>
|
||
class tinyBLAS {
|
||
public:
|
||
tinyBLAS(int64_t k,
|
||
const TA *A, int64_t lda,
|
||
const TB *B, int64_t ldb,
|
||
TC *C, int64_t ldc,
|
||
int ith, int nth)
|
||
: A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
|
||
}
|
||
|
||
void matmul(int64_t m, int64_t n, int task) {
|
||
if (task == GGML_TASK_TYPE_COMPUTE)
|
||
mnpack(0, m, 0, n);
|
||
}
|
||
|
||
private:
|
||
NOINLINE void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) {
|
||
int64_t mc, nc, mp, np;
|
||
switch ((MIN(m - m0, 5) << 4) | MIN(n - n0, 5)) {
|
||
#if VECTOR_REGISTERS == 32
|
||
case 0x55:
|
||
mc = 5;
|
||
nc = 5;
|
||
gemm<5, 5>(m0, m, n0, n);
|
||
break;
|
||
case 0x45:
|
||
mc = 4;
|
||
nc = 5;
|
||
gemm<4, 5>(m0, m, n0, n);
|
||
break;
|
||
case 0x54:
|
||
mc = 5;
|
||
nc = 4;
|
||
gemm<5, 4>(m0, m, n0, n);
|
||
break;
|
||
case 0x44:
|
||
mc = 4;
|
||
nc = 4;
|
||
gemm<4, 4>(m0, m, n0, n);
|
||
break;
|
||
case 0x53:
|
||
mc = 5;
|
||
nc = 3;
|
||
gemm<5, 3>(m0, m, n0, n);
|
||
break;
|
||
case 0x35:
|
||
mc = 3;
|
||
nc = 5;
|
||
gemm<3, 5>(m0, m, n0, n);
|
||
break;
|
||
case 0x43:
|
||
mc = 4;
|
||
nc = 3;
|
||
gemm<4, 3>(m0, m, n0, n);
|
||
break;
|
||
#else
|
||
case 0x55:
|
||
case 0x54:
|
||
case 0x53:
|
||
case 0x45:
|
||
case 0x44:
|
||
case 0x43:
|
||
mc = 4;
|
||
nc = 3;
|
||
gemm<4, 3>(m0, m, n0, n);
|
||
break;
|
||
case 0x35:
|
||
#endif
|
||
case 0x34:
|
||
mc = 3;
|
||
nc = 4;
|
||
gemm<3, 4>(m0, m, n0, n);
|
||
break;
|
||
case 0x52:
|
||
mc = 5;
|
||
nc = 2;
|
||
gemm<5, 2>(m0, m, n0, n);
|
||
break;
|
||
case 0x33:
|
||
mc = 3;
|
||
nc = 3;
|
||
gemm<3, 3>(m0, m, n0, n);
|
||
break;
|
||
case 0x25:
|
||
mc = 2;
|
||
nc = 5;
|
||
gemm<2, 5>(m0, m, n0, n);
|
||
break;
|
||
case 0x42:
|
||
mc = 4;
|
||
nc = 2;
|
||
gemm<4, 2>(m0, m, n0, n);
|
||
break;
|
||
case 0x24:
|
||
mc = 2;
|
||
nc = 4;
|
||
gemm<2, 4>(m0, m, n0, n);
|
||
break;
|
||
case 0x32:
|
||
mc = 3;
|
||
nc = 2;
|
||
gemm<3, 2>(m0, m, n0, n);
|
||
break;
|
||
case 0x23:
|
||
mc = 2;
|
||
nc = 3;
|
||
gemm<2, 3>(m0, m, n0, n);
|
||
break;
|
||
case 0x51:
|
||
mc = 5;
|
||
nc = 1;
|
||
gemm<5, 1>(m0, m, n0, n);
|
||
break;
|
||
case 0x41:
|
||
mc = 4;
|
||
nc = 1;
|
||
gemm<4, 1>(m0, m, n0, n);
|
||
break;
|
||
case 0x22:
|
||
mc = 2;
|
||
nc = 2;
|
||
gemm<2, 2>(m0, m, n0, n);
|
||
break;
|
||
case 0x15:
|
||
mc = 1;
|
||
nc = 5;
|
||
gemm<1, 5>(m0, m, n0, n);
|
||
break;
|
||
case 0x14:
|
||
mc = 1;
|
||
nc = 4;
|
||
gemm<1, 4>(m0, m, n0, n);
|
||
break;
|
||
case 0x31:
|
||
mc = 3;
|
||
nc = 1;
|
||
gemm<3, 1>(m0, m, n0, n);
|
||
break;
|
||
case 0x13:
|
||
mc = 1;
|
||
nc = 3;
|
||
gemm<1, 3>(m0, m, n0, n);
|
||
break;
|
||
case 0x21:
|
||
mc = 2;
|
||
nc = 1;
|
||
gemm<2, 1>(m0, m, n0, n);
|
||
break;
|
||
case 0x12:
|
||
mc = 1;
|
||
nc = 2;
|
||
gemm<1, 2>(m0, m, n0, n);
|
||
break;
|
||
case 0x11:
|
||
mc = 1;
|
||
nc = 1;
|
||
gemm<1, 1>(m0, m, n0, n);
|
||
break;
|
||
default:
|
||
return;
|
||
}
|
||
mp = m0 + (m - m0) / mc * mc;
|
||
np = n0 + (n - n0) / nc * nc;
|
||
mnpack(mp, m, n0, np);
|
||
mnpack(m0, m, np, n);
|
||
}
|
||
|
||
template <int RM, int RN>
|
||
NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) {
|
||
int64_t ytiles = (m - m0) / RM;
|
||
int64_t xtiles = (n - n0) / RN;
|
||
int64_t tiles = xtiles * ytiles;
|
||
int64_t duty = (tiles + nth - 1) / nth;
|
||
int64_t start = duty * ith;
|
||
int64_t end = start + duty;
|
||
if (end > tiles)
|
||
end = tiles;
|
||
for (int64_t job = start; job < end; ++job) {
|
||
int64_t ii = m0 + job / xtiles * RM;
|
||
int64_t jj = n0 + job % xtiles * RN;
|
||
D Cv[RN][RM] = {};
|
||
for (int64_t l = 0; l < k; l += KN)
|
||
for (int64_t j = 0; j < RN; ++j)
|
||
for (int64_t i = 0; i < RM; ++i)
|
||
Cv[j][i] = madd(load<V>(A + lda * (ii + i) + l),
|
||
load<V>(B + ldb * (jj + j) + l),
|
||
Cv[j][i]);
|
||
for (int64_t j = 0; j < RN; ++j)
|
||
for (int64_t i = 0; i < RM; ++i)
|
||
C[ldc * (jj + j) + (ii + i)] = hsum(Cv[j][i]);
|
||
}
|
||
}
|
||
|
||
const TA *const A;
|
||
const TB *const B;
|
||
TC *const C;
|
||
const int64_t k;
|
||
const int64_t lda;
|
||
const int64_t ldb;
|
||
const int64_t ldc;
|
||
const int ith;
|
||
const int nth;
|
||
};
|
||
|
||
//////////////////////////////////////////////////////////////////////////////////////////
|
||
// QUANT ZERO MATRIX MULTIPLICATION
|
||
|
||
#if defined(__ARM_FEATURE_DOTPROD)
|
||
template <typename TA>
|
||
class tinyBLAS_Q0_ARM {
|
||
public:
|
||
tinyBLAS_Q0_ARM(int64_t k,
|
||
const TA *A, int64_t lda,
|
||
const block_q8_0 *B, int64_t ldb,
|
||
float *C, int64_t ldc,
|
||
int ith, int nth)
|
||
: A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
|
||
}
|
||
|
||
void matmul(int64_t m, int64_t n, int task) {
|
||
if (task == GGML_TASK_TYPE_COMPUTE)
|
||
mnpack(0, m, 0, n);
|
||
}
|
||
|
||
private:
|
||
NOINLINE void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) {
|
||
int64_t mc, nc, mp, np;
|
||
switch ((MIN(m - m0, 3) << 4) | MIN(n - n0, 3ll)) {
|
||
case 0x33:
|
||
mc = 3;
|
||
nc = 3;
|
||
gemm<3, 3>(m0, m, n0, n);
|
||
break;
|
||
case 0x32:
|
||
mc = 3;
|
||
nc = 2;
|
||
gemm<3, 2>(m0, m, n0, n);
|
||
break;
|
||
case 0x23:
|
||
mc = 2;
|
||
nc = 3;
|
||
gemm<2, 3>(m0, m, n0, n);
|
||
break;
|
||
case 0x22:
|
||
mc = 2;
|
||
nc = 2;
|
||
gemm<2, 2>(m0, m, n0, n);
|
||
break;
|
||
case 0x31:
|
||
mc = 3;
|
||
nc = 1;
|
||
gemm<3, 1>(m0, m, n0, n);
|
||
break;
|
||
case 0x13:
|
||
mc = 1;
|
||
nc = 3;
|
||
gemm<1, 3>(m0, m, n0, n);
|
||
break;
|
||
case 0x21:
|
||
mc = 2;
|
||
nc = 1;
|
||
gemm<2, 1>(m0, m, n0, n);
|
||
break;
|
||
case 0x12:
|
||
mc = 1;
|
||
nc = 2;
|
||
gemm<1, 2>(m0, m, n0, n);
|
||
break;
|
||
case 0x11:
|
||
mc = 1;
|
||
nc = 1;
|
||
gemm<1, 1>(m0, m, n0, n);
|
||
break;
|
||
default:
|
||
return;
|
||
}
|
||
mp = m0 + (m - m0) / mc * mc;
|
||
np = n0 + (n - n0) / nc * nc;
|
||
mnpack(mp, m, n0, np);
|
||
mnpack(m0, m, np, n);
|
||
}
|
||
|
||
template <int RM, int RN>
|
||
NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) {
|
||
int64_t ytiles = (m - m0) / RM;
|
||
int64_t xtiles = (n - n0) / RN;
|
||
int64_t tiles = xtiles * ytiles;
|
||
int64_t duty = (tiles + nth - 1) / nth;
|
||
int64_t start = duty * ith;
|
||
int64_t end = start + duty;
|
||
if (end > tiles)
|
||
end = tiles;
|
||
for (int64_t job = start; job < end; ++job) {
|
||
int64_t ii = m0 + job / xtiles * RM;
|
||
int64_t jj = n0 + job % xtiles * RN;
|
||
float32x4_t Cv[RN][RM] = {};
|
||
for (int64_t l = 0; l < k; ++l)
|
||
for (int64_t j = 0; j < RN; ++j)
|
||
for (int64_t i = 0; i < RM; ++i)
|
||
Cv[j][i] = vmlaq_n_f32(Cv[j][i],
|
||
vcvtq_f32_s32(vdotq_s32(
|
||
vdotq_s32(vdupq_n_s32(0),
|
||
load_lo(A + lda * (ii + i) + l),
|
||
load_lo(B + ldb * (jj + j) + l)),
|
||
load_hi(A + lda * (ii + i) + l),
|
||
load_hi(B + ldb * (jj + j) + l))),
|
||
unhalf(A[lda * (ii + i) + l].d) *
|
||
unhalf(B[ldb * (jj + j) + l].d));
|
||
for (int64_t j = 0; j < RN; ++j)
|
||
for (int64_t i = 0; i < RM; ++i)
|
||
C[ldc * (jj + j) + (ii + i)] = hsum(Cv[j][i]);
|
||
}
|
||
}
|
||
|
||
inline int8x16_t load_lo(const block_q8_0 *b) {
|
||
return vld1q_s8(b->qs);
|
||
}
|
||
|
||
inline int8x16_t load_hi(const block_q8_0 *b) {
|
||
return vld1q_s8(b->qs + 16);
|
||
}
|
||
|
||
inline int8x16_t load_lo(const block_q4_0 *b) {
|
||
return vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vld1q_u8(b->qs),
|
||
vdupq_n_u8(0x0f))),
|
||
vdupq_n_s8(0x8));
|
||
}
|
||
|
||
inline int8x16_t load_hi(const block_q4_0 *b) {
|
||
return vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(vld1q_u8(b->qs), 4)),
|
||
vdupq_n_s8(0x8));
|
||
}
|
||
|
||
const TA *const A;
|
||
const block_q8_0 *const B;
|
||
float *const C;
|
||
const int64_t k;
|
||
const int64_t lda;
|
||
const int64_t ldb;
|
||
const int64_t ldc;
|
||
const int ith;
|
||
const int nth;
|
||
};
|
||
#endif // __ARM_FEATURE_DOTPROD
|
||
|
||
#if defined(__AVX2__) || defined(__AVX512F__) || defined(__AVX__)
|
||
template <typename TA, typename TB, typename TC>
|
||
class tinyBLAS_Q0_AVX {
|
||
public:
|
||
tinyBLAS_Q0_AVX(int64_t k,
|
||
const TA *A, int64_t lda,
|
||
const TB *B, int64_t ldb,
|
||
TC *C, int64_t ldc,
|
||
int ith, int nth)
|
||
: A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
|
||
}
|
||
|
||
void matmul(int64_t m, int64_t n, int task) {
|
||
if (task == GGML_TASK_TYPE_COMPUTE)
|
||
mnpack(0, m, 0, n);
|
||
}
|
||
|
||
private:
|
||
void mnpack(int64_t m0, int64_t m, int64_t n0, int64_t n) {
|
||
int64_t mc, nc, mp, np;
|
||
switch ((MIN(m - m0, 4) << 4) | MIN(n - n0, 4)) {
|
||
#if VECTOR_REGISTERS == 32
|
||
case 0x44:
|
||
mc = 4;
|
||
nc = 4;
|
||
gemm<4, 4>(m0, m, n0, n);
|
||
break;
|
||
case 0x43:
|
||
mc = 4;
|
||
nc = 3;
|
||
gemm<4, 3>(m0, m, n0, n);
|
||
break;
|
||
case 0x34:
|
||
mc = 3;
|
||
nc = 4;
|
||
gemm<3, 4>(m0, m, n0, n);
|
||
break;
|
||
case 0x33:
|
||
mc = 3;
|
||
nc = 3;
|
||
gemm<3, 3>(m0, m, n0, n);
|
||
break;
|
||
case 0x42:
|
||
mc = 4;
|
||
nc = 2;
|
||
gemm<4, 2>(m0, m, n0, n);
|
||
break;
|
||
case 0x24:
|
||
mc = 2;
|
||
nc = 4;
|
||
gemm<2, 4>(m0, m, n0, n);
|
||
break;
|
||
#else
|
||
case 0x44:
|
||
case 0x43:
|
||
case 0x42:
|
||
mc = 4;
|
||
nc = 2;
|
||
gemm<4, 2>(m0, m, n0, n);
|
||
break;
|
||
case 0x34:
|
||
case 0x24:
|
||
mc = 2;
|
||
nc = 4;
|
||
gemm<2, 4>(m0, m, n0, n);
|
||
break;
|
||
case 0x33:
|
||
#endif
|
||
case 0x32:
|
||
mc = 3;
|
||
nc = 2;
|
||
gemm<3, 2>(m0, m, n0, n);
|
||
break;
|
||
case 0x23:
|
||
mc = 2;
|
||
nc = 3;
|
||
gemm<2, 3>(m0, m, n0, n);
|
||
break;
|
||
case 0x41:
|
||
mc = 4;
|
||
nc = 1;
|
||
gemm<4, 1>(m0, m, n0, n);
|
||
break;
|
||
case 0x22:
|
||
mc = 2;
|
||
nc = 2;
|
||
gemm<2, 2>(m0, m, n0, n);
|
||
break;
|
||
case 0x14:
|
||
mc = 1;
|
||
nc = 4;
|
||
gemm<1, 4>(m0, m, n0, n);
|
||
break;
|
||
case 0x31:
|
||
mc = 3;
|
||
nc = 1;
|
||
gemm<3, 1>(m0, m, n0, n);
|
||
break;
|
||
case 0x13:
|
||
mc = 1;
|
||
nc = 3;
|
||
gemm<1, 3>(m0, m, n0, n);
|
||
break;
|
||
case 0x21:
|
||
mc = 2;
|
||
nc = 1;
|
||
gemm<2, 1>(m0, m, n0, n);
|
||
break;
|
||
case 0x12:
|
||
mc = 1;
|
||
nc = 2;
|
||
gemm<1, 2>(m0, m, n0, n);
|
||
break;
|
||
case 0x11:
|
||
mc = 1;
|
||
nc = 1;
|
||
gemm<1, 1>(m0, m, n0, n);
|
||
break;
|
||
default:
|
||
return;
|
||
}
|
||
mp = m0 + (m - m0) / mc * mc;
|
||
np = n0 + (n - n0) / nc * nc;
|
||
mnpack(mp, m, n0, np);
|
||
mnpack(m0, m, np, n);
|
||
}
|
||
|
||
template <int RM, int RN>
|
||
NOINLINE void gemm(int64_t m0, int64_t m, int64_t n0, int64_t n) {
|
||
int64_t ytiles = (m - m0) / RM;
|
||
int64_t xtiles = (n - n0) / RN;
|
||
int64_t tiles = xtiles * ytiles;
|
||
int64_t duty = (tiles + nth - 1) / nth;
|
||
int64_t start = duty * ith;
|
||
int64_t end = start + duty;
|
||
if (end > tiles)
|
||
end = tiles;
|
||
for (int64_t job = start; job < end; ++job) {
|
||
int64_t ii = m0 + job / xtiles * RM;
|
||
int64_t jj = n0 + job % xtiles * RN;
|
||
__m256 Cv[RN][RM] = {};
|
||
for (int64_t l = 0; l < k; ++l)
|
||
for (int64_t j = 0; j < RN; ++j)
|
||
for (int64_t i = 0; i < RM; ++i) {
|
||
#if defined(__AVX2__)
|
||
__m256 udTmp = updot(_mm256_sign_epi8(load(A + lda * (ii + i) + l),
|
||
load(A + lda * (ii + i) + l)),
|
||
_mm256_sign_epi8(load(B + ldb * (jj + j) + l),
|
||
load(A + lda * (ii + i) + l)));
|
||
#else
|
||
__m128i ali0 = load0(A + lda * (ii + i) + l);
|
||
__m128i ali1 = load1(A + lda * (ii + i) + l);
|
||
__m128i blj0 = load0(B + ldb * (jj + j) + l);
|
||
__m128i blj1 = load1(B + ldb * (jj + j) + l);
|
||
|
||
__m128i sepAA0 = _mm_sign_epi8(ali0, ali0);
|
||
__m128i sepAA1 = _mm_sign_epi8(ali1, ali1);
|
||
__m128i sepBA0 = _mm_sign_epi8(blj0, ali0);
|
||
__m128i sepBA1 = _mm_sign_epi8(blj1, ali1);
|
||
|
||
// updot
|
||
const __m128i oneFill = _mm_set1_epi16(1);
|
||
__m128i mad0 = _mm_maddubs_epi16(sepAA0, sepBA0);
|
||
__m128i mad1 = _mm_maddubs_epi16(sepAA1, sepBA1);
|
||
__m256 udTmp = _mm256_cvtepi32_ps(MM256_SET_M128I(_mm_madd_epi16(oneFill, mad1), _mm_madd_epi16(oneFill, mad0)));
|
||
#endif
|
||
Cv[j][i] = madd(_mm256_set1_ps(unhalf(A[lda * (ii + i) + l].d) *
|
||
unhalf(B[ldb * (jj + j) + l].d)),
|
||
udTmp,
|
||
Cv[j][i]);
|
||
}
|
||
for (int64_t j = 0; j < RN; ++j)
|
||
for (int64_t i = 0; i < RM; ++i)
|
||
C[ldc * (jj + j) + (ii + i)] = hsum(Cv[j][i]);
|
||
}
|
||
}
|
||
|
||
inline __m256i load(const block_q8_0 *b) {
|
||
return _mm256_loadu_si256((const __m256i *)b->qs);
|
||
}
|
||
|
||
inline __m128i load0(const block_q8_0 *b) {
|
||
return _mm_loadu_si128((const __m128i *)b->qs);
|
||
}
|
||
|
||
inline __m128i load1(const block_q8_0 *b) {
|
||
return _mm_loadu_si128(((const __m128i *)b->qs) + 1);
|
||
}
|
||
|
||
inline __m256i load(const block_q4_0 *b) {
|
||
return _mm256_sub_epi8(denibble(b->qs), _mm256_set1_epi8(8));
|
||
}
|
||
|
||
inline __m128i load0(const block_q4_0 *b) {
|
||
const __m128i x = _mm_loadu_si128((const __m128i *)(b->qs));
|
||
return _mm_sub_epi8(_mm_and_si128(_mm_set1_epi8(15), x), _mm_set1_epi8(8));
|
||
}
|
||
|
||
inline __m128i load1(const block_q4_0 *b) {
|
||
const __m128i x = _mm_loadu_si128((const __m128i *)(b->qs));
|
||
return _mm_sub_epi8(_mm_and_si128(_mm_set1_epi8(15), _mm_srli_epi16(x, 4)), _mm_set1_epi8(8));
|
||
}
|
||
|
||
inline __m256 updot(__m256i u, __m256i s) {
|
||
__m256i res;
|
||
#if defined(__AVXVNNI__) || (defined(__AVX512VNNI__) && defined(__AVX512VL__))
|
||
res = _mm256_dpbusd_epi32(_mm256_setzero_si256(), u, s);
|
||
#else
|
||
res = _mm256_madd_epi16(_mm256_set1_epi16(1), _mm256_maddubs_epi16(u, s));
|
||
#endif
|
||
return _mm256_cvtepi32_ps(res);
|
||
}
|
||
|
||
static inline __m256i denibble(const uint8_t *p) {
|
||
__m128i x = _mm_loadu_si128((const __m128i *)p);
|
||
return _mm256_and_si256(_mm256_set1_epi8(15),
|
||
_mm256_insertf128_si256(_mm256_castsi128_si256(x),
|
||
_mm_srli_epi16(x, 4), 1));
|
||
}
|
||
|
||
const TA *const A;
|
||
const TB *const B;
|
||
TC *const C;
|
||
const int64_t k;
|
||
const int64_t lda;
|
||
const int64_t ldb;
|
||
const int64_t ldc;
|
||
const int ith;
|
||
const int nth;
|
||
};
|
||
#endif // __AVX__
|
||
|
||
} // namespace
|
||
|
||
/**
|
||
* Performs optimized matrix multiplication on CPU.
|
||
*
|
||
* This subroutine may compute C = Aᵀ * B with column major ordering.
|
||
* Despite its name, this isn't a generalized implementation. Work is
|
||
* only performed when a handwritten kernel is written and available.
|
||
* Otherwise the caller should fall back to a general matmul routine.
|
||
*
|
||
* For example, for single-threaded single-precision GEMM you can say
|
||
*
|
||
* llamafile_sgemm(m, n, k, A, lda, B, ldb, C, ldc,
|
||
* 0, 1, GGML_TASK_TYPE_COMPUTE,
|
||
* GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32);
|
||
*
|
||
* @param m is rows in `A` and `C`
|
||
* @param n is cols in `B` and `C`
|
||
* @param k is cols in `A` and rows in `B`
|
||
* @param A is first input matrix (always transposed)
|
||
* @param lda is row stride of `A`
|
||
* @param B is second input matrix (never transposed)
|
||
* @param ldb is row stride of `B`
|
||
* @param C is input/output array of output matrices
|
||
* @param ldc is row stride of `C`
|
||
* @param ith is thread id (must be less than `nth`)
|
||
* @param nth is number of threads (must be greater than zero)
|
||
* @param task is GGML task type
|
||
* @param Atype is GGML data type of `A`
|
||
* @param Btype is GGML data type of `B`
|
||
* @param Ctype is GGML data type of `C`
|
||
* @return true if this function was able to service the matmul request
|
||
*/
|
||
bool llamafile_sgemm(int64_t m, int64_t n, int64_t k, const void *A, int64_t lda, const void *B, int64_t ldb, void *C,
|
||
int64_t ldc, int ith, int nth, int task, int Atype, int Btype, int Ctype) {
|
||
|
||
assert(m >= 0);
|
||
assert(n >= 0);
|
||
assert(k >= 0);
|
||
assert(lda >= k);
|
||
assert(ldb >= k);
|
||
assert(ldc >= m);
|
||
assert(nth > 0);
|
||
assert(ith < nth);
|
||
|
||
if (Ctype != GGML_TYPE_F32)
|
||
return false;
|
||
|
||
switch (Atype) {
|
||
|
||
case GGML_TYPE_F32: {
|
||
if (Btype != GGML_TYPE_F32)
|
||
return false;
|
||
#if defined(__AVX512F__)
|
||
if (k % 16)
|
||
return false;
|
||
tinyBLAS<16, __m512, __m512, float, float, float> tb{
|
||
k, (const float *)A, lda,
|
||
(const float *)B, ldb,
|
||
(float *)C, ldc,
|
||
ith, nth};
|
||
tb.matmul(m, n, task);
|
||
return true;
|
||
#elif defined(__AVX__) || defined(__AVX2__)
|
||
if (k % 8)
|
||
return false;
|
||
tinyBLAS<8, __m256, __m256, float, float, float> tb{
|
||
k, (const float *)A, lda,
|
||
(const float *)B, ldb,
|
||
(float *)C, ldc,
|
||
ith, nth};
|
||
tb.matmul(m, n, task);
|
||
return true;
|
||
#elif defined(__ARM_NEON)
|
||
if (n < 4)
|
||
return false;
|
||
if (k % 4)
|
||
return false;
|
||
tinyBLAS<4, float32x4_t, float32x4_t, float, float, float> tb{
|
||
k, (const float *)A, lda,
|
||
(const float *)B, ldb,
|
||
(float *)C, ldc,
|
||
ith, nth};
|
||
tb.matmul(m, n, task);
|
||
return true;
|
||
#else
|
||
return false;
|
||
#endif
|
||
}
|
||
|
||
case GGML_TYPE_F16: {
|
||
#if defined(__AVX512F__)
|
||
if (k % 16)
|
||
return false;
|
||
if (Btype != GGML_TYPE_F32)
|
||
return false;
|
||
tinyBLAS<16, __m512, __m512, ggml_fp16_t, float, float> tb{
|
||
k, (const ggml_fp16_t *)A, lda,
|
||
(const float *)B, ldb,
|
||
(float *)C, ldc,
|
||
ith, nth};
|
||
tb.matmul(m, n, task);
|
||
return true;
|
||
#elif (defined(__AVX__) || defined(__AVX2__)) && defined(__F16C__)
|
||
if (k % 8)
|
||
return false;
|
||
if (Btype != GGML_TYPE_F32)
|
||
return false;
|
||
tinyBLAS<8, __m256, __m256, ggml_fp16_t, float, float> tb{
|
||
k, (const ggml_fp16_t *)A, lda,
|
||
(const float *)B, ldb,
|
||
(float *)C, ldc,
|
||
ith, nth};
|
||
tb.matmul(m, n, task);
|
||
return true;
|
||
#elif defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && !defined(_MSC_VER)
|
||
if (n < 8)
|
||
return false;
|
||
if (k % 8)
|
||
return false;
|
||
if (Btype != GGML_TYPE_F16)
|
||
return false;
|
||
tinyBLAS<8, float16x8_t, float16x8_t, ggml_fp16_t, ggml_fp16_t, float> tb{
|
||
k, (const ggml_fp16_t *)A, lda,
|
||
(const ggml_fp16_t *)B, ldb,
|
||
(float *)C, ldc,
|
||
ith, nth};
|
||
tb.matmul(m, n, task);
|
||
return true;
|
||
#elif defined(__ARM_NEON) && !defined(_MSC_VER)
|
||
if (k % 4)
|
||
return false;
|
||
if (Btype != GGML_TYPE_F32)
|
||
return false;
|
||
tinyBLAS<4, float32x4_t, float32x4_t, ggml_fp16_t, float, float> tb{
|
||
k, (const ggml_fp16_t *)A, lda,
|
||
(const float *)B, ldb,
|
||
(float *)C, ldc,
|
||
ith, nth};
|
||
tb.matmul(m, n, task);
|
||
return true;
|
||
#else
|
||
return false;
|
||
#endif
|
||
}
|
||
|
||
case GGML_TYPE_Q8_0: {
|
||
if (Btype != GGML_TYPE_Q8_0)
|
||
return false;
|
||
#if defined(__AVX2__) || defined(__AVX512F__) || defined(__AVX__)
|
||
tinyBLAS_Q0_AVX<block_q8_0, block_q8_0, float> tb{
|
||
k, (const block_q8_0 *)A, lda,
|
||
(const block_q8_0 *)B, ldb,
|
||
(float *)C, ldc,
|
||
ith, nth};
|
||
tb.matmul(m, n, task);
|
||
return true;
|
||
#elif defined(__ARM_FEATURE_DOTPROD)
|
||
tinyBLAS_Q0_ARM<block_q8_0> tb{
|
||
k, (const block_q8_0 *)A, lda,
|
||
(const block_q8_0 *)B, ldb,
|
||
(float *)C, ldc,
|
||
ith, nth};
|
||
tb.matmul(m, n, task);
|
||
return true;
|
||
#else
|
||
return false;
|
||
#endif
|
||
}
|
||
|
||
case GGML_TYPE_Q4_0: {
|
||
if (Btype != GGML_TYPE_Q8_0)
|
||
return false;
|
||
#if defined(__AVX2__) || defined(__AVX512F__) || defined(__AVX__)
|
||
tinyBLAS_Q0_AVX<block_q4_0, block_q8_0, float> tb{
|
||
k, (const block_q4_0 *)A, lda,
|
||
(const block_q8_0 *)B, ldb,
|
||
(float *)C, ldc,
|
||
ith, nth};
|
||
tb.matmul(m, n, task);
|
||
return true;
|
||
#elif defined(__ARM_FEATURE_DOTPROD)
|
||
tinyBLAS_Q0_ARM<block_q4_0> tb{
|
||
k, (const block_q4_0 *)A, lda,
|
||
(const block_q8_0 *)B, ldb,
|
||
(float *)C, ldc,
|
||
ith, nth};
|
||
tb.matmul(m, n, task);
|
||
return true;
|
||
#else
|
||
return false;
|
||
#endif
|
||
}
|
||
|
||
default:
|
||
return false;
|
||
}
|
||
|
||
(void)m;
|
||
(void)n;
|
||
(void)k;
|
||
(void)A;
|
||
(void)lda;
|
||
(void)B;
|
||
(void)ldb;
|
||
(void)C;
|
||
(void)ldc;
|
||
(void)ith;
|
||
(void)nth;
|
||
(void)task;
|
||
(void)Atype;
|
||
(void)Btype;
|
||
(void)Ctype;
|
||
}
|