Xiao-Yong Jin 6e7cca4047
llama : add custom RoPE (#2054)
* Implement customizable RoPE

The original RoPE has pre-defined parameters

theta_i = 10000^(−2(i−1)/d), for i in [1, 2, ..., d/2]

Our customizable RoPE, ggml_rope_custom_inplace, uses

theta_i = scale * base^(−2(i−1)/d), for i in [1, 2, ..., d/2]

with the default matches the original

scale = 1.0
base = 10000

The new command line arguments
--rope-freq-base
--rope-freq-scale
set the two new RoPE parameter.

Recent researches show changing these two parameters extends the context limit with minimal loss.

1. Extending Context to 8K
   kaiokendev
   https://kaiokendev.github.io/til#extending-context-to-8k

2. Extending Context Window of Large Language Models via Positional Interpolation
   Shouyuan Chen, Sherman Wong, Liangjian Chen, Yuandong Tian
   https://arxiv.org/abs/2306.15595

3. NTK-Aware Scaled RoPE allows LLaMA models to have extended (8k+) context size without any fine-tuning and minimal perplexity degradation.
   https://www.reddit.com/user/bloc97
   https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/

For the bold, try adding the following command line parameters to your favorite model:
-c 16384 --rope-freq-base 80000 --rope-freq-scale 0.5

* ggml-metal: fix custom rope

* common: fix argument names in help

* llama: increase MEM_REQ_EVAL for MODEL_3B

It avoids crashing for quantized weights on CPU.
Better ways to calculate the required buffer size would be better.

* llama: make MEM_REQ_EVAL depend on n_ctx

* server: use proper Content-Type in curl examples

Without the header Content-Type: application/json, curl will POST with
Content-Type: application/x-www-form-urlencoded

Though our simple server doesn't care, the httplib.h used has a limit
with CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 8192

With Content-Type: application/json, we can send large json data.

* style : minor fixes, mostly indentations

* ggml : fix asserts

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2023-07-15 13:34:16 +03:00

80 lines
1.9 KiB
Bash

#!/bin/bash
API_URL="${API_URL:-http://127.0.0.1:8080}"
CHAT=(
"Hello, Assistant."
"Hello. How may I help you today?"
"Please tell me the largest city in Europe."
"Sure. The largest city in Europe is Moscow, the capital of Russia."
)
INSTRUCTION="A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions."
trim() {
shopt -s extglob
set -- "${1##+([[:space:]])}"
printf "%s" "${1%%+([[:space:]])}"
}
trim_trailing() {
shopt -s extglob
printf "%s" "${1%%+([[:space:]])}"
}
format_prompt() {
echo -n "${INSTRUCTION}"
printf "\n### Human: %s\n### Assistant: %s" "${CHAT[@]}" "$1"
}
tokenize() {
curl \
--silent \
--request POST \
--url "${API_URL}/tokenize" \
--header "Content-Type: application/json" \
--data-raw "$(jq -ns --arg content "$1" '{content:$content}')" \
| jq '.tokens[]'
}
N_KEEP=$(tokenize "${INSTRUCTION}" | wc -l)
chat_completion() {
PROMPT="$(trim_trailing "$(format_prompt "$1")")"
DATA="$(echo -n "$PROMPT" | jq -Rs --argjson n_keep $N_KEEP '{
prompt: .,
temperature: 0.2,
top_k: 40,
top_p: 0.9,
n_keep: $n_keep,
n_predict: 256,
stop: ["\n### Human:"],
stream: true
}')"
ANSWER=''
while IFS= read -r LINE; do
if [[ $LINE = data:* ]]; then
CONTENT="$(echo "${LINE:5}" | jq -r '.content')"
printf "%s" "${CONTENT}"
ANSWER+="${CONTENT}"
fi
done < <(curl \
--silent \
--no-buffer \
--request POST \
--url "${API_URL}/completion" \
--header "Content-Type: application/json" \
--data-raw "${DATA}")
printf "\n"
CHAT+=("$1" "$(trim "$ANSWER")")
}
while true; do
read -r -e -p "> " QUESTION
chat_completion "${QUESTION}"
done