mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-26 03:12:23 +01:00
263978904c
* finetune: rename feed-forward tensors (w1/w2/w3) This commit renames the feed-forward tensors w1, w2 and w3 to ffn_gate, ffn_down and ffn_up respectively. The motivation for this change is to make it easier to understand the purpose of the tensors. This also seems to be inline with the names used in the llama_layer struct in llama.cpp. Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com> * train-text-from-scratch: rename ff tensors This commit renames the feed-forward tensors w1, w2 and w3 to ffn_gate, ffn_down and ffn_up respectively. The motivation for this change is to make it easier to understand the purpose of the tensors. This also seems to be inline with the names used in the llama_layer struct in llama.cpp Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com> --------- Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
1249 lines
57 KiB
C++
1249 lines
57 KiB
C++
#include "ggml.h"
|
|
#include "ggml-alloc.h"
|
|
#include "ggml-backend.h"
|
|
#include "common.h"
|
|
#include "train.h"
|
|
#include "llama.h"
|
|
#include <unordered_map>
|
|
#include <vector>
|
|
#include <cassert>
|
|
#include <climits>
|
|
#include <cstring>
|
|
#include <cstdarg>
|
|
#include <ctime>
|
|
#include <random>
|
|
#include <stdexcept>
|
|
#include <algorithm>
|
|
#include <string>
|
|
|
|
#if defined(_MSC_VER)
|
|
#pragma warning(disable: 4244 4267) // possible loss of data
|
|
#endif
|
|
|
|
struct my_llama_hparams {
|
|
uint32_t n_vocab = 32000;
|
|
uint32_t n_ctx = 512;
|
|
uint32_t n_embd = 4096;
|
|
uint32_t n_head = 32;
|
|
uint32_t n_layer = 32;
|
|
uint32_t n_rot = 64;
|
|
uint32_t n_ff = 11008;
|
|
|
|
// float f_norm_eps = 1e-5f; // falcon
|
|
float f_norm_rms_eps = 1e-5f; // llama
|
|
|
|
float rope_freq_base = 10000.0f;
|
|
float rope_freq_scale = 1.0f;
|
|
};
|
|
|
|
struct my_llama_layer {
|
|
// normalization
|
|
struct ggml_tensor * attention_norm;
|
|
|
|
// attention
|
|
struct ggml_tensor * wq;
|
|
struct ggml_tensor * wk;
|
|
struct ggml_tensor * wv;
|
|
struct ggml_tensor * wo;
|
|
|
|
// normalization
|
|
struct ggml_tensor * ffn_norm;
|
|
|
|
// ff
|
|
struct ggml_tensor * ffn_gate; // w1
|
|
struct ggml_tensor * ffn_down; // w2
|
|
struct ggml_tensor * ffn_up; // w3
|
|
};
|
|
|
|
struct my_llama_model {
|
|
struct ggml_context * ctx = NULL;
|
|
ggml_backend_buffer_t data = NULL;
|
|
|
|
my_llama_hparams hparams;
|
|
|
|
struct ggml_tensor * tok_embeddings;
|
|
|
|
struct ggml_tensor * norm;
|
|
struct ggml_tensor * output;
|
|
|
|
std::vector<my_llama_layer> layers;
|
|
};
|
|
|
|
// gguf constants (sync with gguf.py)
|
|
static const char * LLM_KV_TRAINING_TYPE_TRAIN_MODEL = "train_model";
|
|
static const char * LLM_KV_TRAINING_TYPE = "training.type";
|
|
|
|
static const char * LLM_KV_GENERAL_ARCHITECTURE = "general.architecture";
|
|
static const char * LLM_KV_GENERAL_FILE_TYPE = "general.file_type";
|
|
|
|
static const char * LLM_KV_CONTEXT_LENGTH = "%s.context_length";
|
|
static const char * LLM_KV_EMBEDDING_LENGTH = "%s.embedding_length";
|
|
static const char * LLM_KV_BLOCK_COUNT = "%s.block_count";
|
|
static const char * LLM_KV_FEED_FORWARD_LENGTH = "%s.feed_forward_length";
|
|
static const char * LLM_KV_ATTENTION_HEAD_COUNT = "%s.attention.head_count";
|
|
static const char * LLM_KV_ATTENTION_LAYERNORM_RMS_EPS = "%s.attention.layer_norm_rms_epsilon";
|
|
static const char * LLM_KV_ROPE_DIMENSION_COUNT = "%s.rope.dimension_count";
|
|
static const char * LLM_KV_ROPE_FREQ_BASE = "%s.rope.freq_base"; // TODO load in llama.cpp
|
|
static const char * LLM_KV_ROPE_SCALE_LINEAR = "%s.rope.scale_linear";
|
|
|
|
static const char * LLM_KV_TOKENIZER_MODEL = "tokenizer.ggml.model";
|
|
static const char * LLM_KV_TOKENIZER_LIST = "tokenizer.ggml.tokens";
|
|
static const char * LLM_KV_TOKENIZER_TOKEN_TYPE = "tokenizer.ggml.token_type";
|
|
static const char * LLM_KV_TOKENIZER_SCORES = "tokenizer.ggml.scores";
|
|
static const char * LLM_KV_TOKENIZER_MERGES = "tokenizer.ggml.merges";
|
|
static const char * LLM_KV_TOKENIZER_BOS_ID = "tokenizer.ggml.bos_token_id";
|
|
static const char * LLM_KV_TOKENIZER_EOS_ID = "tokenizer.ggml.eos_token_id";
|
|
static const char * LLM_KV_TOKENIZER_UNK_ID = "tokenizer.ggml.unknown_token_id";
|
|
static const char * LLM_KV_TOKENIZER_SEP_ID = "tokenizer.ggml.seperator_token_id";
|
|
static const char * LLM_KV_TOKENIZER_PAD_ID = "tokenizer.ggml.padding_token_id";
|
|
|
|
static const char * LLM_TENSOR_TOKEN_EMBD = "token_embd";
|
|
static const char * LLM_TENSOR_OUTPUT_NORM = "output_norm";
|
|
static const char * LLM_TENSOR_OUTPUT = "output";
|
|
static const char * LLM_TENSOR_ATTN_NORM = "blk.%d.attn_norm";
|
|
static const char * LLM_TENSOR_ATTN_Q = "blk.%d.attn_q";
|
|
static const char * LLM_TENSOR_ATTN_K = "blk.%d.attn_k";
|
|
static const char * LLM_TENSOR_ATTN_V = "blk.%d.attn_v";
|
|
static const char * LLM_TENSOR_ATTN_OUT = "blk.%d.attn_output";
|
|
static const char * LLM_TENSOR_FFN_NORM = "blk.%d.ffn_norm";
|
|
static const char * LLM_TENSOR_FFN_GATE = "blk.%d.ffn_gate";
|
|
static const char * LLM_TENSOR_FFN_DOWN = "blk.%d.ffn_down";
|
|
static const char * LLM_TENSOR_FFN_UP = "blk.%d.ffn_up";
|
|
|
|
static void print_params(struct my_llama_hparams * params) {
|
|
printf("%s: n_vocab: %d\n", __func__, params->n_vocab);
|
|
printf("%s: n_ctx: %d\n", __func__, params->n_ctx);
|
|
printf("%s: n_embd: %d\n", __func__, params->n_embd);
|
|
printf("%s: n_head: %d\n", __func__, params->n_head);
|
|
printf("%s: n_ff: %d\n", __func__, params->n_ff);
|
|
printf("%s: n_layer: %d\n", __func__, params->n_layer);
|
|
printf("%s: n_rot: %d\n", __func__, params->n_rot);
|
|
}
|
|
|
|
static void set_param_model(struct my_llama_model * model) {
|
|
const auto& hparams = model->hparams;
|
|
|
|
const uint32_t n_layer = hparams.n_layer;
|
|
|
|
struct ggml_context* ctx = model->ctx;
|
|
|
|
ggml_set_param(ctx, model->tok_embeddings);
|
|
ggml_set_param(ctx, model->norm);
|
|
ggml_set_param(ctx, model->output);
|
|
|
|
for (uint32_t i = 0; i < n_layer; ++i) {
|
|
auto & layer = model->layers[i];
|
|
|
|
ggml_set_param(ctx, layer.attention_norm);
|
|
ggml_set_param(ctx, layer.wq);
|
|
ggml_set_param(ctx, layer.wk);
|
|
ggml_set_param(ctx, layer.wv);
|
|
ggml_set_param(ctx, layer.wo);
|
|
ggml_set_param(ctx, layer.ffn_norm);
|
|
ggml_set_param(ctx, layer.ffn_gate);
|
|
ggml_set_param(ctx, layer.ffn_down);
|
|
ggml_set_param(ctx, layer.ffn_up);
|
|
}
|
|
}
|
|
|
|
static void init_model(struct my_llama_model * model) {
|
|
const auto & hparams = model->hparams;
|
|
|
|
const uint32_t n_embd = hparams.n_embd;
|
|
const uint32_t n_layer = hparams.n_layer;
|
|
const uint32_t n_vocab = hparams.n_vocab;
|
|
const uint32_t n_ff = hparams.n_ff;
|
|
|
|
|
|
std::vector<char> tn_buf;
|
|
tn_buf.resize(GGML_MAX_NAME);
|
|
auto tn = [&tn_buf](const char * key) -> const char * {
|
|
snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", key);
|
|
return tn_buf.data();
|
|
};
|
|
auto tni = [&tn_buf](const char * key, int bid) -> const char * {
|
|
snprintf(tn_buf.data(), tn_buf.size(), key, bid);
|
|
std::string s = tn_buf.data();
|
|
snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", s.c_str());
|
|
return tn_buf.data();
|
|
};
|
|
|
|
// context for model tensors without their data
|
|
struct ggml_init_params ctx_model_params;
|
|
ctx_model_params.mem_size = ggml_tensor_overhead()*2*(6 + n_layer*18);
|
|
ctx_model_params.mem_buffer = NULL;
|
|
ctx_model_params.no_alloc = true;
|
|
|
|
struct ggml_context * ctx = ggml_init(ctx_model_params);
|
|
model->ctx = ctx;
|
|
|
|
model->tok_embeddings = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
|
|
model->norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
|
model->output = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_vocab);
|
|
|
|
ggml_set_name(model->tok_embeddings, tn(LLM_TENSOR_TOKEN_EMBD));
|
|
ggml_set_name(model->norm, tn(LLM_TENSOR_OUTPUT_NORM));
|
|
ggml_set_name(model->output, tn(LLM_TENSOR_OUTPUT));
|
|
|
|
model->layers.resize(n_layer);
|
|
for (uint32_t i = 0; i < n_layer; ++i) {
|
|
auto & layer = model->layers[i];
|
|
|
|
layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
|
|
|
layer.wq = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
|
|
layer.wk = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
|
|
layer.wv = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
|
|
layer.wo = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_embd);
|
|
|
|
layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
|
|
|
layer.ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
|
|
layer.ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_ff, n_embd);
|
|
layer.ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ff);
|
|
|
|
ggml_set_name(layer.attention_norm, tni(LLM_TENSOR_ATTN_NORM, i));
|
|
|
|
ggml_set_name(layer.wq, tni(LLM_TENSOR_ATTN_Q, i));
|
|
ggml_set_name(layer.wk, tni(LLM_TENSOR_ATTN_K, i));
|
|
ggml_set_name(layer.wv, tni(LLM_TENSOR_ATTN_V, i));
|
|
ggml_set_name(layer.wo, tni(LLM_TENSOR_ATTN_OUT, i));
|
|
|
|
ggml_set_name(layer.ffn_norm, tni(LLM_TENSOR_FFN_NORM, i));
|
|
|
|
ggml_set_name(layer.ffn_gate, tni(LLM_TENSOR_FFN_GATE, i));
|
|
ggml_set_name(layer.ffn_down, tni(LLM_TENSOR_FFN_DOWN, i));
|
|
ggml_set_name(layer.ffn_up, tni(LLM_TENSOR_FFN_UP, i));
|
|
}
|
|
|
|
set_param_model(model);
|
|
|
|
// allocate data
|
|
model->data = ggml_backend_alloc_ctx_tensors_from_buft(ctx, ggml_backend_cpu_buffer_type());
|
|
}
|
|
|
|
static void randomize_model(struct my_llama_model * model, int seed, float mean, float std, float min, float max) {
|
|
const auto & hparams = model->hparams;
|
|
|
|
const uint32_t n_layer = hparams.n_layer;
|
|
|
|
struct random_normal_distribution * rnd = init_random_normal_distribution(seed, mean, std, min, max);
|
|
|
|
randomize_tensor_normal(model->tok_embeddings, rnd);
|
|
randomize_tensor_normal(model->norm, rnd);
|
|
randomize_tensor_normal(model->output, rnd);
|
|
|
|
for (uint32_t i = 0; i < n_layer; ++i) {
|
|
auto & layer = model->layers[i];
|
|
randomize_tensor_normal(layer.attention_norm, rnd);
|
|
|
|
randomize_tensor_normal(layer.wq, rnd);
|
|
randomize_tensor_normal(layer.wk, rnd);
|
|
randomize_tensor_normal(layer.wv, rnd);
|
|
randomize_tensor_normal(layer.wo, rnd);
|
|
|
|
randomize_tensor_normal(layer.ffn_norm, rnd);
|
|
|
|
randomize_tensor_normal(layer.ffn_gate, rnd);
|
|
randomize_tensor_normal(layer.ffn_down, rnd);
|
|
randomize_tensor_normal(layer.ffn_up, rnd);
|
|
}
|
|
|
|
free_random_normal_distribution(rnd);
|
|
}
|
|
|
|
static struct ggml_tensor * llama_build_train_graphs(
|
|
struct my_llama_model * model,
|
|
ggml_gallocr_t alloc,
|
|
struct ggml_context * ctx,
|
|
struct ggml_cgraph * gf,
|
|
struct ggml_cgraph * gb,
|
|
struct ggml_cgraph * gb_tmp,
|
|
struct ggml_tensor * * logits,
|
|
struct ggml_tensor * tokens_input,
|
|
struct ggml_tensor * targets,
|
|
const int n_tokens,
|
|
const int n_batch,
|
|
const bool enable_flash_attn,
|
|
const bool enable_checkpointing,
|
|
const bool measure_only) {
|
|
|
|
ggml_set_scratch(ctx, { 0, 0, nullptr, });
|
|
const int n_past = 0;
|
|
const int N = n_tokens;
|
|
const auto & hparams = model->hparams;
|
|
const int n_ctx = hparams.n_ctx;
|
|
const int n_vocab = hparams.n_vocab;
|
|
const int n_embd = hparams.n_embd;
|
|
const int n_layer = hparams.n_layer;
|
|
const int n_head = hparams.n_head;
|
|
const int n_rot = hparams.n_rot;
|
|
const int n_ff = hparams.n_ff;
|
|
const float f_norm_rms_eps = hparams.f_norm_rms_eps;
|
|
const float rope_freq_base = hparams.rope_freq_base;
|
|
const float rope_freq_scale = hparams.rope_freq_scale;
|
|
|
|
auto set_name = [](struct ggml_tensor * t, const char * n) {
|
|
ggml_set_name(t, n);
|
|
if (t->grad) {
|
|
ggml_format_name(t->grad, "%s->grad", n);
|
|
}
|
|
};
|
|
|
|
// KQ_pos - contains the positions
|
|
struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, N);
|
|
ggml_set_input(KQ_pos);
|
|
|
|
// rope has so much parameters that we make a custom function for it
|
|
auto rope = [ctx, KQ_pos, n_rot, n_ctx, rope_freq_base, rope_freq_scale]
|
|
(struct ggml_tensor * t) -> struct ggml_tensor * {
|
|
// not capturing these, to silcence warnings
|
|
const int rope_mode = 0;
|
|
|
|
return ggml_rope_custom(
|
|
ctx, t, KQ_pos, n_rot, rope_mode, n_ctx, 0, rope_freq_base, rope_freq_scale, 0.0f, 1.0f, 0.0f, 0.0f
|
|
);
|
|
};
|
|
|
|
set_name(tokens_input, "tokens_input");
|
|
set_name(targets, "targets");
|
|
|
|
GGML_ASSERT(tokens_input->type == GGML_TYPE_I32);
|
|
struct ggml_tensor * t00 = ggml_reshape_1d(ctx, tokens_input, N*n_batch); set_name(t00, "t00"); assert_shape_1d(t00, N*n_batch);
|
|
struct ggml_tensor * t01 = ggml_get_rows(ctx, model->tok_embeddings, t00); set_name(t01, "t01"); assert_shape_2d(t01, n_embd, N*n_batch);
|
|
|
|
struct ggml_tensor * cur = t01;
|
|
|
|
std::vector<struct ggml_tensor *> checkpoints;
|
|
checkpoints.push_back(tokens_input);
|
|
checkpoints.push_back(targets);
|
|
checkpoints.push_back(t00);
|
|
checkpoints.push_back(t01);
|
|
|
|
const float kv_scale = 1.0f/sqrtf(float(n_embd)/n_head);
|
|
|
|
for (int il = 0; il < n_layer; ++il) {
|
|
struct my_llama_layer & layer = model->layers[il];
|
|
struct ggml_tensor * t02 = ggml_rms_norm (ctx, cur, f_norm_rms_eps); set_name(t02, "t02"); assert_shape_2d(t02, n_embd, N*n_batch);
|
|
struct ggml_tensor * t03 = ggml_repeat (ctx, layer.attention_norm, t02); set_name(t03, "t03"); assert_shape_2d(t03, n_embd, N*n_batch);
|
|
struct ggml_tensor * t04 = ggml_mul (ctx, t03, t02); set_name(t04, "t04"); assert_shape_2d(t04, n_embd, N*n_batch);
|
|
struct ggml_tensor * t05 = ggml_mul_mat (ctx, layer.wq, t04); set_name(t05, "t05"); assert_shape_2d(t05, n_embd, N*n_batch);
|
|
struct ggml_tensor * t06 = ggml_reshape_4d (ctx, t05, n_embd/n_head, n_head, N, n_batch); set_name(t06, "t06"); assert_shape_4d(t06, n_embd/n_head, n_head, N, n_batch);
|
|
struct ggml_tensor * t07 = rope (t06); set_name(t07, "t07"); assert_shape_4d(t07, n_embd/n_head, n_head, N, n_batch);
|
|
struct ggml_tensor * t08 = ggml_mul_mat (ctx, layer.wk, t04); set_name(t08, "t08"); assert_shape_2d(t08, n_embd, N*n_batch);
|
|
struct ggml_tensor * t09 = ggml_reshape_4d (ctx, t08, n_embd/n_head, n_head, N, n_batch); set_name(t09, "t09"); assert_shape_4d(t09, n_embd/n_head, n_head, N, n_batch);
|
|
struct ggml_tensor * t10 = rope (t09); set_name(t10, "t10"); assert_shape_4d(t10, n_embd/n_head, n_head, N, n_batch);
|
|
struct ggml_tensor * t11 = ggml_mul_mat (ctx, t04, layer.wv); set_name(t11, "t11"); assert_shape_2d(t11, N*n_batch, n_embd);
|
|
struct ggml_tensor * t12 = ggml_reshape_4d (ctx, t11, N, n_batch, n_embd/n_head, n_head); set_name(t12, "t12"); assert_shape_4d(t12, N, n_batch, n_embd/n_head, n_head);
|
|
struct ggml_tensor * t13 = ggml_permute (ctx, t07, 0, 2, 1, 3); set_name(t13, "t13"); assert_shape_4d(t13, n_embd/n_head, N, n_head, n_batch);
|
|
struct ggml_tensor * t14 = ggml_permute (ctx, t10, 0, 2, 1, 3); set_name(t14, "t14"); assert_shape_4d(t14, n_embd/n_head, N, n_head, n_batch);
|
|
struct ggml_tensor * t15 = ggml_permute (ctx, t12, 0, 3, 1, 2); set_name(t15, "t15"); assert_shape_4d(t15, N, n_embd/n_head, n_head, n_batch);
|
|
struct ggml_tensor * t16;
|
|
if (enable_flash_attn) {
|
|
t16 = ggml_flash_attn(ctx, t13, t14, t15, true); set_name(t16, "t16"); assert_shape_4d(t16, n_embd/n_head, N, n_head, n_batch);
|
|
} else {
|
|
struct ggml_tensor * t16_0 = ggml_mul_mat (ctx, t14, t13); set_name(t16_0, "t16_0"); assert_shape_4d(t16_0, N, N, n_head, n_batch);
|
|
struct ggml_tensor * t16_1 = ggml_scale_inplace (ctx, t16_0, kv_scale); set_name(t16_1, "t16_1"); assert_shape_4d(t16_1, N, N, n_head, n_batch);
|
|
struct ggml_tensor * t16_2 = ggml_diag_mask_inf_inplace(ctx, t16_1, n_past); set_name(t16_2, "t16_2"); assert_shape_4d(t16_2, N, N, n_head, n_batch);
|
|
struct ggml_tensor * t16_3 = ggml_soft_max_inplace (ctx, t16_2); set_name(t16_3, "t16_3"); assert_shape_4d(t16_3, N, N, n_head, n_batch);
|
|
t16 = ggml_mul_mat(ctx, t15, t16_3); set_name(t16, "t16"); assert_shape_4d(t16, n_embd/n_head, N, n_head, n_batch);
|
|
}
|
|
struct ggml_tensor * t17 = ggml_permute (ctx, t16, 0, 2, 1, 3); set_name(t17, "t17"); assert_shape_4d(t17, n_embd/n_head, n_head, N, n_batch);
|
|
struct ggml_tensor * t18 = ggml_cont (ctx, t17); set_name(t18, "t18"); assert_shape_4d(t18, n_embd/n_head, n_head, N, n_batch);
|
|
struct ggml_tensor * t19 = ggml_reshape_2d (ctx, t18, n_embd, N*n_batch); set_name(t19, "t19"); assert_shape_2d(t19, n_embd, N*n_batch);
|
|
struct ggml_tensor * t20 = ggml_mul_mat (ctx, layer.wo, t19); set_name(t20, "t20"); assert_shape_2d(t20, n_embd, N*n_batch);
|
|
struct ggml_tensor * t21 = ggml_add (ctx, t20, cur); set_name(t21, "t21"); assert_shape_2d(t21, n_embd, N*n_batch);
|
|
struct ggml_tensor * t22 = ggml_rms_norm (ctx, t21, f_norm_rms_eps); set_name(t22, "t22"); assert_shape_2d(t22, n_embd, N*n_batch);
|
|
struct ggml_tensor * t23 = ggml_repeat (ctx, layer.ffn_norm, t22); set_name(t23, "t23"); assert_shape_2d(t23, n_embd, N*n_batch);
|
|
struct ggml_tensor * t24 = ggml_mul (ctx, t23, t22); set_name(t24, "t24"); assert_shape_2d(t24, n_embd, N*n_batch);
|
|
struct ggml_tensor * t25 = ggml_mul_mat (ctx, layer.ffn_up, t24); set_name(t25, "t25"); assert_shape_2d(t25, n_ff, N*n_batch);
|
|
struct ggml_tensor * t26 = ggml_mul_mat (ctx, layer.ffn_gate, t24); set_name(t26, "t26"); assert_shape_2d(t26, n_ff, N*n_batch);
|
|
struct ggml_tensor * t27 = ggml_silu (ctx, t26); set_name(t27, "t27"); assert_shape_2d(t27, n_ff, N*n_batch);
|
|
struct ggml_tensor * t28 = ggml_mul (ctx, t27, t25); set_name(t28, "t28"); assert_shape_2d(t28, n_ff, N*n_batch);
|
|
struct ggml_tensor * t29 = ggml_mul_mat (ctx, layer.ffn_down, t28); set_name(t29, "t29"); assert_shape_2d(t29, n_embd, N*n_batch);
|
|
struct ggml_tensor * t30 = ggml_add (ctx, t29, t21); set_name(t30, "t30"); assert_shape_2d(t30, n_embd, N*n_batch);
|
|
cur = t30;
|
|
checkpoints.push_back(cur);
|
|
}
|
|
struct ggml_tensor * t31 = ggml_rms_norm (ctx, cur, f_norm_rms_eps); set_name(t31, "t31"); assert_shape_2d(t31, n_embd, N*n_batch);
|
|
struct ggml_tensor * t32 = ggml_repeat (ctx, model->norm, t31); set_name(t32, "t32"); assert_shape_2d(t32, n_embd, N*n_batch);
|
|
struct ggml_tensor * t33 = ggml_mul (ctx, t32, t31); set_name(t33, "t33"); assert_shape_2d(t33, n_embd, N*n_batch);
|
|
struct ggml_tensor * t34 = ggml_mul_mat (ctx, model->output, t33); set_name(t34, "t34"); assert_shape_2d(t34, n_vocab, N*n_batch);
|
|
struct ggml_tensor * t35 = ggml_reshape_3d (ctx, t34, n_vocab, N, n_batch); set_name(t35, "t35"); assert_shape_3d(t35, n_vocab, N, n_batch);
|
|
struct ggml_tensor * t36 = ggml_cross_entropy_loss(ctx, t35, targets); set_name(t36, "t36"); assert_shape_1d(t36, 1);
|
|
|
|
checkpoints.push_back(t31);
|
|
checkpoints.push_back(t32);
|
|
checkpoints.push_back(t33);
|
|
checkpoints.push_back(t34);
|
|
checkpoints.push_back(t35);
|
|
checkpoints.push_back(t36);
|
|
|
|
ggml_build_forward_expand(gf, t36);
|
|
|
|
if (enable_checkpointing) {
|
|
ggml_build_backward_gradient_checkpointing(ctx, gf, gb, gb_tmp, checkpoints.data(), (int) checkpoints.size());
|
|
} else {
|
|
ggml_graph_cpy(gf, gb);
|
|
ggml_build_backward_expand(ctx, gf, gb, true);
|
|
}
|
|
|
|
if (alloc) {
|
|
// make sure some tensors are not reallocated by inserting new temporary nodes depending on them
|
|
int n_leafs_before = gb->n_leafs;
|
|
int n_nodes_before = gb->n_nodes;
|
|
// output tensors
|
|
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t35, 1.0f));
|
|
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36, 1.0f));
|
|
// input gradient
|
|
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36->grad, 1.0f));
|
|
// KQ_pos
|
|
ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, KQ_pos, 1.0f));
|
|
GGML_ASSERT(t36->grad->data == NULL && t36->grad->view_src == NULL);
|
|
ggml_set_input(t36->grad);
|
|
|
|
// allocating checkpoints in one block to reduce memory fragmentation
|
|
// note: they will be freed in reverse order
|
|
for (int i = 0; i < (int) checkpoints.size(); ++i) {
|
|
if (checkpoints[i]->data == NULL && checkpoints[i]->view_src == NULL) {
|
|
ggml_set_input(checkpoints[i]);
|
|
}
|
|
}
|
|
|
|
//int n_leafs_after = gb->n_leafs;
|
|
//int n_nodes_after = gb->n_nodes;
|
|
if (measure_only) {
|
|
// FIXME: will still allocate
|
|
ggml_gallocr_reserve(alloc, gb);
|
|
} else {
|
|
ggml_gallocr_alloc_graph(alloc, gb);
|
|
|
|
if (!measure_only) {
|
|
int * data = (int *) KQ_pos->data;
|
|
for (int i = 0; i < N; ++i) {
|
|
data[i] = n_past + i;
|
|
}
|
|
}
|
|
}
|
|
|
|
// remove the additional nodes and leafs
|
|
for (int i = n_leafs_before; i < gb->n_leafs; ++i) {
|
|
gb->leafs[i] = NULL;
|
|
}
|
|
for (int i = n_nodes_before; i < gb->n_nodes; ++i) {
|
|
gb->nodes[i] = NULL;
|
|
}
|
|
gb->n_leafs = n_leafs_before;
|
|
gb->n_nodes = n_nodes_before;
|
|
}
|
|
|
|
*logits = t35;
|
|
return t36;
|
|
}
|
|
|
|
#define GGUF_GET_KEY(ctx, dst, func, type, req, key) \
|
|
do { \
|
|
const std::string skey(key); \
|
|
const int kid = gguf_find_key(ctx, skey.c_str()); \
|
|
if (kid >= 0) { \
|
|
enum gguf_type ktype = gguf_get_kv_type(ctx, kid); \
|
|
if (ktype != (type)) { \
|
|
die_fmt("key %s has wrong type: %s", skey.c_str(), gguf_type_name(ktype)); \
|
|
} \
|
|
(dst) = func(ctx, kid); \
|
|
} else if (req) { \
|
|
die_fmt("key not found in model: %s", skey.c_str()); \
|
|
} \
|
|
} while (0)
|
|
|
|
static void load_llama_model_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model) {
|
|
// NOTE: gguf_context must be initialized with f_ggml_ctx and no_alloc=false, otherwise tensor data can not be read
|
|
std::string arch;
|
|
|
|
std::vector<char> keybuf;
|
|
keybuf.resize(512);
|
|
auto kv = [&arch, &keybuf](const char * key) -> const char * {
|
|
snprintf(keybuf.data(), keybuf.size(), key, arch.c_str());
|
|
return keybuf.data();
|
|
};
|
|
|
|
std::vector<char> tn_buf;
|
|
tn_buf.resize(GGML_MAX_NAME);
|
|
auto tn = [&tn_buf](const char * key) -> const char * {
|
|
snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", key);
|
|
return tn_buf.data();
|
|
};
|
|
auto tni = [&tn_buf](const char * key, int bid) -> const char * {
|
|
snprintf(tn_buf.data(), tn_buf.size(), key, bid);
|
|
std::string s = tn_buf.data();
|
|
snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", s.c_str());
|
|
return tn_buf.data();
|
|
};
|
|
|
|
GGUF_GET_KEY(fctx, arch, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_GENERAL_ARCHITECTURE);
|
|
GGML_ASSERT(arch == "llama");
|
|
|
|
uint32_t ftype_u;
|
|
GGUF_GET_KEY(fctx, ftype_u, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_GENERAL_FILE_TYPE);
|
|
GGML_ASSERT((enum llama_ftype) ftype_u == LLAMA_FTYPE_ALL_F32);
|
|
|
|
// n_ctx was not saved in earlier checkpoint file versions, so we make it optional here
|
|
GGUF_GET_KEY(fctx, model->hparams.n_ctx, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_CONTEXT_LENGTH));
|
|
|
|
GGUF_GET_KEY(fctx, model->hparams.n_embd, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_EMBEDDING_LENGTH));
|
|
GGUF_GET_KEY(fctx, model->hparams.n_ff, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_FEED_FORWARD_LENGTH));
|
|
GGUF_GET_KEY(fctx, model->hparams.n_head, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_ATTENTION_HEAD_COUNT));
|
|
GGUF_GET_KEY(fctx, model->hparams.n_layer, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_BLOCK_COUNT));
|
|
|
|
model->hparams.n_rot = model->hparams.n_embd / model->hparams.n_head;
|
|
GGUF_GET_KEY(fctx, model->hparams.n_rot, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ROPE_DIMENSION_COUNT));
|
|
|
|
float rope_freq_scale = 1.0f;
|
|
GGUF_GET_KEY(fctx, model->hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
|
|
GGUF_GET_KEY(fctx, model->hparams.rope_freq_base, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_FREQ_BASE));
|
|
GGUF_GET_KEY(fctx, rope_freq_scale, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALE_LINEAR));
|
|
if (rope_freq_scale != 1.0f) {
|
|
model->hparams.rope_freq_scale = 1.0f / rope_freq_scale;
|
|
}
|
|
|
|
init_model(model);
|
|
|
|
copy_tensor_by_name(model->tok_embeddings, f_ggml_ctx, tn(LLM_TENSOR_TOKEN_EMBD));
|
|
copy_tensor_by_name(model->norm, f_ggml_ctx, tn(LLM_TENSOR_OUTPUT_NORM));
|
|
copy_tensor_by_name(model->output, f_ggml_ctx, tn(LLM_TENSOR_OUTPUT));
|
|
|
|
for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
|
|
auto & layer = model->layers[i];
|
|
|
|
copy_tensor_by_name(layer.attention_norm, f_ggml_ctx, tni(LLM_TENSOR_ATTN_NORM, i));
|
|
copy_tensor_by_name(layer.wq, f_ggml_ctx, tni(LLM_TENSOR_ATTN_Q, i));
|
|
copy_tensor_by_name(layer.wk, f_ggml_ctx, tni(LLM_TENSOR_ATTN_K, i));
|
|
copy_tensor_by_name(layer.wv, f_ggml_ctx, tni(LLM_TENSOR_ATTN_V, i));
|
|
copy_tensor_by_name(layer.wo, f_ggml_ctx, tni(LLM_TENSOR_ATTN_OUT, i));
|
|
copy_tensor_by_name(layer.ffn_norm, f_ggml_ctx, tni(LLM_TENSOR_FFN_NORM, i));
|
|
copy_tensor_by_name(layer.ffn_gate, f_ggml_ctx, tni(LLM_TENSOR_FFN_GATE, i));
|
|
copy_tensor_by_name(layer.ffn_down, f_ggml_ctx, tni(LLM_TENSOR_FFN_DOWN, i));
|
|
copy_tensor_by_name(layer.ffn_up, f_ggml_ctx, tni(LLM_TENSOR_FFN_UP, i));
|
|
}
|
|
}
|
|
|
|
static void save_llama_model_gguf(struct gguf_context * fctx, const char * fn_vocab_model, struct my_llama_model * model) {
|
|
const char * arch = "llama";
|
|
enum llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
|
|
|
|
std::vector<char> keybuf;
|
|
keybuf.resize(512);
|
|
auto kv = [arch, &keybuf](const char * key) -> const char * {
|
|
snprintf(keybuf.data(), keybuf.size(), key, arch);
|
|
return keybuf.data();
|
|
};
|
|
|
|
// set arch
|
|
gguf_set_val_str(fctx, LLM_KV_GENERAL_ARCHITECTURE, arch);
|
|
gguf_set_val_u32(fctx, LLM_KV_GENERAL_FILE_TYPE, ftype);
|
|
|
|
// set hparams
|
|
gguf_set_val_u32(fctx, kv(LLM_KV_CONTEXT_LENGTH), model->hparams.n_ctx );
|
|
gguf_set_val_u32(fctx, kv(LLM_KV_EMBEDDING_LENGTH), model->hparams.n_embd );
|
|
gguf_set_val_u32(fctx, kv(LLM_KV_FEED_FORWARD_LENGTH), model->hparams.n_ff );
|
|
gguf_set_val_u32(fctx, kv(LLM_KV_ATTENTION_HEAD_COUNT), model->hparams.n_head );
|
|
gguf_set_val_u32(fctx, kv(LLM_KV_BLOCK_COUNT), model->hparams.n_layer );
|
|
gguf_set_val_u32(fctx, kv(LLM_KV_ROPE_DIMENSION_COUNT), model->hparams.n_rot );
|
|
|
|
gguf_set_val_f32(fctx, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS), model->hparams.f_norm_rms_eps );
|
|
gguf_set_val_f32(fctx, kv(LLM_KV_ROPE_FREQ_BASE), model->hparams.rope_freq_base ); // TODO load in llama.cpp
|
|
gguf_set_val_f32(fctx, kv(LLM_KV_ROPE_SCALE_LINEAR), 1.0f / model->hparams.rope_freq_scale );
|
|
|
|
// set vocab by copying from vocab_model gguf file
|
|
{
|
|
struct gguf_init_params params = {
|
|
/*.no_alloc = */ false,
|
|
/*.ctx = */ NULL,
|
|
};
|
|
struct gguf_context * vctx = gguf_init_from_file(fn_vocab_model, params);
|
|
|
|
const int token_idx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_LIST));
|
|
if (token_idx == -1) {
|
|
die("cannot find tokenizer vocab in model file");
|
|
}
|
|
const uint32_t n_vocab = gguf_get_arr_n(vctx, token_idx);
|
|
|
|
const int score_idx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_SCORES));
|
|
if (score_idx == -1) {
|
|
die("cannot find tokenizer scores in model file");
|
|
}
|
|
|
|
const float * scores = (const float * ) gguf_get_arr_data(vctx, score_idx);
|
|
|
|
const int toktype_idx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE));
|
|
if (toktype_idx == -1) {
|
|
die("cannot find token type list in GGUF file");
|
|
}
|
|
|
|
const int * toktypes = (const int * ) gguf_get_arr_data(vctx, toktype_idx);
|
|
|
|
std::string tokenizer_name;
|
|
GGUF_GET_KEY(vctx, tokenizer_name, gguf_get_val_str, GGUF_TYPE_STRING, true, kv(LLM_KV_TOKENIZER_MODEL));
|
|
|
|
gguf_set_val_str(fctx, kv(LLM_KV_TOKENIZER_MODEL), tokenizer_name.c_str());
|
|
gguf_set_arr_data(fctx, kv(LLM_KV_TOKENIZER_SCORES), GGUF_TYPE_FLOAT32, scores, n_vocab);
|
|
gguf_set_arr_data(fctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE), GGUF_TYPE_INT32, toktypes, n_vocab);
|
|
|
|
int32_t special_bos_id = 1;
|
|
int32_t special_eos_id = 2;
|
|
int32_t special_unk_id = 0;
|
|
int32_t special_sep_id = -1;
|
|
int32_t special_pad_id = -1;
|
|
if (tokenizer_name == "llama") {
|
|
// default special tokens
|
|
special_bos_id = 1;
|
|
special_eos_id = 2;
|
|
special_unk_id = 0;
|
|
special_sep_id = -1;
|
|
special_pad_id = -1;
|
|
} else if (tokenizer_name == "gpt2") {
|
|
// read and copy bpe merges
|
|
const int merges_keyidx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_MERGES));
|
|
if (merges_keyidx == -1) {
|
|
die("cannot find tokenizer merges in model file");
|
|
}
|
|
|
|
const int n_merges = gguf_get_arr_n(vctx, merges_keyidx);
|
|
|
|
std::vector<const char*> merges;
|
|
merges.resize(n_merges);
|
|
for (int i = 0; i < n_merges; i++) {
|
|
merges[i] = gguf_get_arr_str(vctx, merges_keyidx, i);
|
|
}
|
|
gguf_set_arr_str(fctx, kv(LLM_KV_TOKENIZER_MERGES), merges.data(), n_merges);
|
|
|
|
// default special tokens
|
|
special_bos_id = 11;
|
|
special_eos_id = 11;
|
|
special_unk_id = -1;
|
|
special_sep_id = -1;
|
|
special_pad_id = -1;
|
|
} else {
|
|
fprintf(stderr, "%s: unknown tokenizer: '%s'", __func__, tokenizer_name.c_str());
|
|
fprintf(stderr, "%s: using default tokenizer: 'llama'", __func__);
|
|
}
|
|
|
|
std::vector<const char*> tokens;
|
|
tokens.resize(n_vocab);
|
|
for (uint32_t i = 0; i < n_vocab; i++) {
|
|
tokens[i] = gguf_get_arr_str(vctx, token_idx, i);
|
|
}
|
|
gguf_set_arr_str(fctx, kv(LLM_KV_TOKENIZER_LIST), tokens.data(), n_vocab);
|
|
|
|
GGUF_GET_KEY(vctx, special_bos_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_BOS_ID));
|
|
GGUF_GET_KEY(vctx, special_eos_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_EOS_ID));
|
|
GGUF_GET_KEY(vctx, special_unk_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_UNK_ID));
|
|
GGUF_GET_KEY(vctx, special_sep_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_SEP_ID));
|
|
GGUF_GET_KEY(vctx, special_pad_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_PAD_ID));
|
|
|
|
gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_BOS_ID), special_bos_id);
|
|
gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_EOS_ID), special_eos_id);
|
|
gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_UNK_ID), special_unk_id);
|
|
gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_SEP_ID), special_sep_id);
|
|
gguf_set_val_u32(fctx, kv(LLM_KV_TOKENIZER_PAD_ID), special_pad_id);
|
|
|
|
gguf_free(vctx);
|
|
}
|
|
|
|
// add tensors
|
|
gguf_add_tensor(fctx, model->tok_embeddings);
|
|
gguf_add_tensor(fctx, model->norm);
|
|
gguf_add_tensor(fctx, model->output);
|
|
for (uint32_t i = 0; i < model->hparams.n_layer; ++i) {
|
|
auto & layer = model->layers[i];
|
|
|
|
|
|
gguf_add_tensor(fctx, layer.attention_norm);
|
|
gguf_add_tensor(fctx, layer.wq);
|
|
gguf_add_tensor(fctx, layer.wk);
|
|
gguf_add_tensor(fctx, layer.wv);
|
|
gguf_add_tensor(fctx, layer.wo);
|
|
gguf_add_tensor(fctx, layer.ffn_norm);
|
|
gguf_add_tensor(fctx, layer.ffn_gate);
|
|
gguf_add_tensor(fctx, layer.ffn_down);
|
|
gguf_add_tensor(fctx, layer.ffn_up);
|
|
}
|
|
}
|
|
|
|
static void save_llama_model_file(const char * filename, const char * fn_vocab_model, struct my_llama_model * model) {
|
|
printf("%s: saving to %s\n", __func__, filename);
|
|
struct gguf_context * fctx = gguf_init_empty();
|
|
|
|
save_llama_model_gguf(fctx, fn_vocab_model, model);
|
|
|
|
// write file
|
|
const bool only_meta = false;
|
|
gguf_write_to_file(fctx, filename, only_meta);
|
|
gguf_free(fctx);
|
|
}
|
|
|
|
static void load_checkpoint_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model, struct train_state * train) {
|
|
load_llama_model_gguf(fctx, f_ggml_ctx, model);
|
|
if (load_train_state_gguf(fctx, f_ggml_ctx, train)) {
|
|
std::string train_type = LLM_KV_TRAINING_TYPE_TRAIN_MODEL;
|
|
GGUF_GET_KEY(fctx, train_type, gguf_get_val_str, GGUF_TYPE_STRING, false, LLM_KV_TRAINING_TYPE);
|
|
GGML_ASSERT(train_type == LLM_KV_TRAINING_TYPE_TRAIN_MODEL);
|
|
} else {
|
|
printf("%s: loaded llama model as checkpoint\n", __func__);
|
|
}
|
|
}
|
|
|
|
static void save_checkpoint_gguf(struct gguf_context * fctx, const char * fn_vocab_model, struct my_llama_model * model, struct train_state * train) {
|
|
gguf_set_val_str(fctx, LLM_KV_TRAINING_TYPE, LLM_KV_TRAINING_TYPE_TRAIN_MODEL);
|
|
save_llama_model_gguf(fctx, fn_vocab_model, model);
|
|
save_train_state_gguf(fctx, train);
|
|
}
|
|
|
|
static bool load_checkpoint_file(const char * filename, struct my_llama_model * model, struct train_state * train) {
|
|
struct ggml_context * f_ggml_ctx;
|
|
struct gguf_init_params params;
|
|
params.no_alloc = false;
|
|
params.ctx = &f_ggml_ctx;
|
|
struct gguf_context * fctx = gguf_init_from_file(filename, params);
|
|
if (fctx == NULL) {
|
|
return false;
|
|
}
|
|
|
|
load_checkpoint_gguf(fctx, f_ggml_ctx, model, train);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void save_checkpoint_file(const char * filename, const char * fn_vocab_model, struct my_llama_model * model, struct train_state * train) {
|
|
printf("%s: saving to %s\n", __func__, filename);
|
|
struct gguf_context * fctx = gguf_init_empty();
|
|
|
|
save_checkpoint_gguf(fctx, fn_vocab_model, model, train);
|
|
|
|
// write file
|
|
const bool only_meta = false;
|
|
gguf_write_to_file(fctx, filename, only_meta);
|
|
gguf_free(fctx);
|
|
}
|
|
|
|
struct train_params {
|
|
struct train_params_common common;
|
|
|
|
const char * fn_vocab_model;
|
|
const char * fn_model_out;
|
|
|
|
bool only_write_model;
|
|
|
|
int n_ctx;
|
|
int n_embd;
|
|
int n_head;
|
|
int n_layer;
|
|
int n_ff;
|
|
|
|
float f_norm_rms_eps;
|
|
float rope_freq_base;
|
|
float rope_freq_scale;
|
|
};
|
|
|
|
static struct train_params get_default_train_params() {
|
|
struct train_params params;
|
|
params.common = get_default_train_params_common();
|
|
params.fn_vocab_model = "ggml-vic7b-uncensored-q4_0.bin";
|
|
params.fn_model_out = "ggml-checkpoint-f32.bin";
|
|
|
|
params.only_write_model = false;
|
|
|
|
params.n_ctx = 128;
|
|
params.n_embd = 256;
|
|
params.n_head = 8;
|
|
params.n_layer = 16;
|
|
params.n_ff = 768;
|
|
|
|
params.f_norm_rms_eps = 1e-5f;
|
|
params.rope_freq_base = 10000.0f;
|
|
params.rope_freq_scale = 1.0f;
|
|
|
|
return params;
|
|
}
|
|
|
|
static void train_print_usage(int argc, char ** argv, const struct train_params * params) {
|
|
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
|
fprintf(stderr, "\n");
|
|
fprintf(stderr, "options:\n");
|
|
fprintf(stderr, " -h, --help show this help message and exit\n");
|
|
|
|
fprintf(stderr, " --vocab-model FNAME model path from which to load vocab (default '%s')\n", params->fn_vocab_model);
|
|
fprintf(stderr, " --model-out FNAME path to save ggml model (default '%s')\n", params->fn_model_out);
|
|
fprintf(stderr, " --only-write-model only save llama model, don't do any training. use this if you only want to convert a checkpoint to a model.\n");
|
|
fprintf(stderr, " --embd N Embedding size used for new models (default %d)\n", params->n_embd);
|
|
fprintf(stderr, " --ff N Feedforward size used for new models. (default %d)\n", params->n_ff);
|
|
fprintf(stderr, " --head N Number of heads for new models (default %d)\n", params->n_head);
|
|
fprintf(stderr, " --layer N Number of layers for new models (default %d)\n", params->n_layer);
|
|
fprintf(stderr, " --norm-rms-eps F RMS-Norm epsilon value (default %f)\n", params->f_norm_rms_eps);
|
|
fprintf(stderr, " --rope-freq-base F Frequency base for ROPE (default %f)\n", params->rope_freq_base);
|
|
fprintf(stderr, " --rope-freq-scale F Frequency scale for ROPE (default %f)\n", params->rope_freq_scale);
|
|
|
|
print_common_train_usage(argc, argv, ¶ms->common);
|
|
}
|
|
|
|
static bool train_params_parse(int argc, char ** argv, struct train_params * params) {
|
|
bool invalid_param = false;
|
|
std::string arg;
|
|
struct train_params default_params = get_default_train_params();
|
|
const std::string arg_prefix = "--";
|
|
|
|
for (int i = 1; i < argc; i++) {
|
|
arg = argv[i];
|
|
if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
|
|
std::replace(arg.begin(), arg.end(), '_', '-');
|
|
}
|
|
|
|
if (consume_common_train_arg(argc, argv, &i, ¶ms->common, &invalid_param)) {
|
|
if (invalid_param) {
|
|
break;
|
|
} else if (params->common.print_usage) {
|
|
train_print_usage(argc, argv, &default_params);
|
|
exit(0);
|
|
}
|
|
} else if (arg == "--vocab-model") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params->fn_vocab_model = argv[i];
|
|
} else if (arg == "--model-out") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params->fn_model_out = argv[i];
|
|
} else if (arg == "--only-write-model") {
|
|
params->only_write_model = true;
|
|
} else if (arg == "--embd") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params->n_embd = std::stoi(argv[i]);
|
|
} else if (arg == "--ff") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params->n_ff = std::stoi(argv[i]);
|
|
} else if (arg == "--head") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params->n_head = std::stoi(argv[i]);
|
|
} else if (arg == "--layer") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params->n_layer = std::stoi(argv[i]);
|
|
} else if (arg == "--norm-rms-eps") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params->f_norm_rms_eps = std::stof(argv[i]);
|
|
} else if (arg == "--rope-freq-base") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params->rope_freq_base = std::stof(argv[i]);
|
|
} else if (arg == "--rope-freq-scale") {
|
|
if (++i >= argc) {
|
|
invalid_param = true;
|
|
break;
|
|
}
|
|
params->rope_freq_scale = std::stof(argv[i]);
|
|
} else {
|
|
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
|
train_print_usage(argc, argv, &default_params);
|
|
exit(1);
|
|
}
|
|
}
|
|
if (invalid_param) {
|
|
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
|
|
train_print_usage(argc, argv, &default_params);
|
|
exit(1);
|
|
}
|
|
finish_processing_train_args(¶ms->common);
|
|
|
|
return true;
|
|
}
|
|
|
|
struct save_train_files_data {
|
|
const char * fn_checkpoint_out;
|
|
const char * fn_model_out;
|
|
const char * fn_vocab_model;
|
|
const char * pattern_fn_it;
|
|
const char * fn_latest;
|
|
struct my_llama_model * model;
|
|
};
|
|
|
|
static void save_train_files(void * vdata, struct train_state * train) {
|
|
struct save_train_files_data * data = (struct save_train_files_data *) vdata;
|
|
int64_t iter = train->opt->iter;
|
|
|
|
if (strlen(data->fn_checkpoint_out) > 0) {
|
|
save_checkpoint_file(get_train_filename(data->fn_checkpoint_out, data->pattern_fn_it, data->fn_latest, iter).c_str(), data->fn_vocab_model, data->model, train);
|
|
save_checkpoint_file(get_train_filename(data->fn_checkpoint_out, data->pattern_fn_it, data->fn_latest, -1 ).c_str(), data->fn_vocab_model, data->model, train);
|
|
|
|
}
|
|
if (strlen(data->fn_model_out) > 0) {
|
|
save_llama_model_file(get_train_filename(data->fn_model_out, data->pattern_fn_it, data->fn_latest, iter).c_str(), data->fn_vocab_model, data->model);
|
|
save_llama_model_file(get_train_filename(data->fn_model_out, data->pattern_fn_it, data->fn_latest, -1 ).c_str(), data->fn_vocab_model, data->model);
|
|
}
|
|
}
|
|
|
|
static int64_t get_parameter_count(struct my_llama_model* model) {
|
|
int64_t nx = 0;
|
|
nx += ggml_nelements(model->tok_embeddings);
|
|
nx += ggml_nelements(model->norm);
|
|
nx += ggml_nelements(model->output);
|
|
|
|
for (uint32_t i = 0; i < model->layers.size(); ++i) {
|
|
auto & layer = model->layers[i];
|
|
nx += ggml_nelements(layer.attention_norm);
|
|
nx += ggml_nelements(layer.wq);
|
|
nx += ggml_nelements(layer.wk);
|
|
nx += ggml_nelements(layer.wv);
|
|
nx += ggml_nelements(layer.wo);
|
|
nx += ggml_nelements(layer.ffn_norm);
|
|
nx += ggml_nelements(layer.ffn_gate);
|
|
nx += ggml_nelements(layer.ffn_down);
|
|
nx += ggml_nelements(layer.ffn_up);
|
|
}
|
|
return nx;
|
|
}
|
|
|
|
int main(int argc, char ** argv) {
|
|
struct train_params params = get_default_train_params();
|
|
|
|
if (!train_params_parse(argc, argv, ¶ms)) {
|
|
return 1;
|
|
}
|
|
|
|
if (params.common.seed == LLAMA_DEFAULT_SEED) {
|
|
params.common.seed = time(NULL);
|
|
}
|
|
printf("%s: seed: %u\n", __func__, params.common.seed);
|
|
srand(params.common.seed);
|
|
|
|
struct llama_model_params mparams = llama_model_default_params();
|
|
mparams.vocab_only = true;
|
|
|
|
struct llama_context_params cparams = llama_context_default_params();
|
|
|
|
struct llama_model * lmodel = llama_load_model_from_file(params.fn_vocab_model, mparams);
|
|
struct llama_context * lctx = llama_new_context_with_model(lmodel, cparams);
|
|
|
|
struct my_llama_model model;
|
|
model.hparams.n_vocab = llama_n_vocab(lmodel);
|
|
model.hparams.n_ctx = params.common.n_ctx;
|
|
model.hparams.n_embd = params.n_embd;
|
|
model.hparams.n_head = params.n_head;
|
|
model.hparams.n_layer = params.n_layer;
|
|
model.hparams.n_ff = params.n_ff;
|
|
// llama.cpp requires n_rot to be exactly n_embd / n_head
|
|
model.hparams.n_rot = model.hparams.n_embd / model.hparams.n_head;
|
|
model.hparams.f_norm_rms_eps = params.f_norm_rms_eps;
|
|
model.hparams.rope_freq_base = params.rope_freq_base;
|
|
model.hparams.rope_freq_scale = params.rope_freq_scale;
|
|
|
|
struct train_state * train = init_train_state();
|
|
struct ggml_opt_context * opt = train->opt;
|
|
|
|
// set opt params from command line
|
|
opt->params = ggml_opt_default_params(GGML_OPT_ADAM);
|
|
opt->params.print_forward_graph = false;
|
|
opt->params.print_backward_graph = false;
|
|
opt->params.graph_size = LLAMA_TRAIN_MAX_NODES;
|
|
opt->params.n_threads = params.common.n_threads;
|
|
opt->params.past = params.common.opt_past;
|
|
opt->params.delta = params.common.opt_delta;
|
|
opt->params.max_no_improvement = params.common.opt_max_no_improvement;
|
|
opt->params.n_gradient_accumulation = params.common.n_gradient_accumulation;
|
|
opt->params.adam.n_iter = params.common.adam_n_iter;
|
|
opt->params.adam.sched = 1.0f;
|
|
opt->params.adam.alpha = params.common.adam_alpha;
|
|
opt->params.adam.decay = params.common.adam_decay;
|
|
opt->params.adam.decay_min_ndim = params.common.adam_decay_min_ndim;
|
|
opt->params.adam.beta1 = params.common.adam_beta1;
|
|
opt->params.adam.beta2 = params.common.adam_beta2;
|
|
opt->params.adam.gclip = params.common.adam_gclip;
|
|
opt->params.adam.eps_f = params.common.adam_eps_f;
|
|
|
|
printf("%s: init model\n", __func__);
|
|
bool existed = load_checkpoint_file(params.common.fn_checkpoint_in, &model, train);
|
|
if (existed) {
|
|
// overwrite last n_ctx with user provided n_ctx
|
|
if (params.common.custom_n_ctx) {
|
|
model.hparams.n_ctx = params.common.n_ctx;
|
|
}
|
|
|
|
const bool opt_past_changed = opt->params.past != params.common.opt_past;
|
|
|
|
if (opt_past_changed) {
|
|
die("Optimizer parameter '--opt-past N' differs from checkpoint file. To use different value train from scratch with empty input checkpoint, e.g --checkpoint-in ''. Aborting");
|
|
// need to discard previous optimizer past function value statistics and opt_init with new shapes
|
|
// TODO
|
|
}
|
|
} else {
|
|
init_model(&model);
|
|
randomize_model(&model, params.common.seed, 0.0f, 1.0f, -1.0f, +1.0f);
|
|
if (!params.only_write_model) {
|
|
ggml_opt_init(opt->ctx, opt, opt->params, get_parameter_count(&model));
|
|
}
|
|
}
|
|
opt->iter = train->train_its;
|
|
|
|
print_params(&model.hparams);
|
|
printf("%s: total train_iterations %llu\n", __func__, (long long unsigned) train->train_its);
|
|
printf("%s: seen train_samples %llu\n", __func__, (long long unsigned) train->train_samples);
|
|
printf("%s: seen train_tokens %llu\n", __func__, (long long unsigned) train->train_tokens);
|
|
printf("%s: completed train_epochs %llu\n", __func__, (long long unsigned) train->train_epochs);
|
|
printf("%s: model_size = %zu bytes (%.1f MB)\n", __func__, (ggml_used_mem(model.ctx) + ggml_backend_buffer_get_size(model.data)), (float) (ggml_used_mem(model.ctx) + ggml_backend_buffer_get_size(model.data)) / (1024.0f*1024.0f));
|
|
|
|
if (params.only_write_model) {
|
|
save_train_files_data save_data;
|
|
save_data.fn_checkpoint_out = "";
|
|
save_data.fn_model_out = params.fn_model_out;
|
|
save_data.fn_vocab_model = params.fn_vocab_model;
|
|
save_data.pattern_fn_it = params.common.pattern_fn_it;
|
|
save_data.fn_latest = params.common.fn_latest;
|
|
save_data.model = &model;
|
|
|
|
save_train_files(&save_data, train);
|
|
|
|
free_train_state(train);
|
|
ggml_free(model.ctx);
|
|
llama_free(lctx);
|
|
llama_free_model(lmodel);
|
|
return 0;
|
|
}
|
|
|
|
printf("%s: opt_size = %zu bytes (%.1f MB)\n", __func__, ggml_get_mem_size(opt->ctx), (float) ggml_get_mem_size(opt->ctx) / (1024.0f*1024.0f));
|
|
printf("%s: opt iter %d\n", __func__, opt->iter);
|
|
|
|
int n_tokens = model.hparams.n_ctx;
|
|
int n_vocab = model.hparams.n_vocab;
|
|
int n_batch = params.common.n_batch;
|
|
|
|
// context for input tensors without their data
|
|
struct ggml_init_params ctx_input_params = {
|
|
ggml_tensor_overhead() * 2, // mem_size
|
|
NULL, // mem_buffer
|
|
true, // no_alloc
|
|
};
|
|
struct ggml_context * ctx_input = ggml_init(ctx_input_params);
|
|
|
|
// the input tensors
|
|
struct ggml_tensor * tokens_input = ggml_new_tensor_2d(ctx_input, GGML_TYPE_I32, n_tokens, n_batch);
|
|
struct ggml_tensor * target_probs = ggml_new_tensor_3d(ctx_input, GGML_TYPE_F32, n_vocab, n_tokens, n_batch);
|
|
|
|
// measure required memory for input tensors
|
|
// allocate input tensors
|
|
ggml_backend_buffer_t input_data = ggml_backend_alloc_ctx_tensors_from_buft(ctx_input, ggml_backend_cpu_buffer_type());
|
|
size_t max_input_size = ggml_backend_buffer_get_size(input_data);
|
|
printf("%s: input_size = %zu bytes (%.1f MB)\n", __func__, max_input_size, (float) max_input_size / (1024.0f*1024.0f));
|
|
|
|
// context for compute tensors without their data
|
|
const size_t estimated_compute_size_wo_data = (
|
|
2*LLAMA_TRAIN_MAX_NODES*ggml_tensor_overhead() +
|
|
(params.common.use_checkpointing ? 3 : 2)*(GGML_OBJECT_SIZE+ggml_graph_overhead_custom(LLAMA_TRAIN_MAX_NODES, true))
|
|
);
|
|
struct ggml_init_params ctx_compute_params = {
|
|
estimated_compute_size_wo_data, // mem_size
|
|
NULL, // mem_buffer
|
|
true, // no_alloc
|
|
};
|
|
struct ggml_context * ctx_compute = NULL;
|
|
|
|
struct ggml_tensor * loss = NULL;
|
|
struct ggml_tensor * logits = NULL;
|
|
|
|
struct ggml_cgraph * gf = NULL;
|
|
struct ggml_cgraph * gb = NULL;
|
|
struct ggml_cgraph * gb_tmp = NULL;
|
|
|
|
// measure required memory for compute tensors
|
|
size_t best_compute_size = SIZE_MAX;
|
|
enum ggml_cgraph_eval_order best_order = GGML_CGRAPH_EVAL_ORDER_COUNT;
|
|
// find best evaluation order
|
|
for (unsigned order = 0; order < (unsigned) GGML_CGRAPH_EVAL_ORDER_COUNT; ++order) {
|
|
ctx_compute = ggml_init(ctx_compute_params);
|
|
ggml_gallocr_t alloc = ggml_gallocr_new(ggml_backend_cpu_buffer_type());
|
|
gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
|
|
gf->order = (enum ggml_cgraph_eval_order) order;
|
|
gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
|
|
gb_tmp = params.common.use_checkpointing
|
|
? ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true)
|
|
: NULL;
|
|
loss = llama_build_train_graphs(
|
|
&model, alloc, ctx_compute,
|
|
gf, gb, gb_tmp,
|
|
&logits, tokens_input, target_probs,
|
|
n_tokens, n_batch,
|
|
params.common.use_flash,
|
|
params.common.use_checkpointing,
|
|
true
|
|
);
|
|
size_t max_compute_size = ggml_gallocr_get_buffer_size(alloc, 0); // FIXME: this will still allocate the buffer
|
|
if (max_compute_size < best_compute_size) {
|
|
best_compute_size = max_compute_size;
|
|
best_order = gf->order;
|
|
}
|
|
ggml_free(ctx_compute);
|
|
}
|
|
size_t max_compute_size = best_compute_size;
|
|
printf("%s: compute_size = %zu bytes (%.1f MB)\n", __func__, max_compute_size, (float) max_compute_size / (1024.0f*1024.0f));
|
|
printf("%s: evaluation order = %s\n", __func__,
|
|
(best_order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? "LEFT_TO_RIGHT" :
|
|
(best_order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? "RIGHT_TO_LEFT" :
|
|
"invalid");
|
|
|
|
// allocate compute tensors
|
|
ctx_compute = ggml_init(ctx_compute_params);
|
|
ggml_gallocr_t alloc = ggml_gallocr_new(ggml_backend_cpu_buffer_type());
|
|
gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
|
|
gf->order = best_order;
|
|
gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
|
|
gb_tmp = params.common.use_checkpointing
|
|
? ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true)
|
|
: NULL;
|
|
loss = llama_build_train_graphs(
|
|
&model, alloc, ctx_compute,
|
|
gf, gb, gb_tmp,
|
|
&logits, tokens_input, target_probs,
|
|
n_tokens, n_batch,
|
|
params.common.use_flash,
|
|
params.common.use_checkpointing,
|
|
false
|
|
);
|
|
|
|
std::vector<llama_token> train_tokens;
|
|
std::vector<size_t> train_samples_begin;
|
|
std::vector<size_t> train_samples_size;
|
|
printf("%s: tokenize training data\n", __func__);
|
|
tokenize_file(lctx,
|
|
params.common.fn_train_data,
|
|
params.common.sample_start,
|
|
params.common.include_sample_start,
|
|
params.common.overlapping_samples,
|
|
n_tokens,
|
|
train_tokens,
|
|
train_samples_begin,
|
|
train_samples_size);
|
|
GGML_ASSERT(train_samples_begin.size() == train_samples_size.size());
|
|
|
|
printf("%s: number of training tokens: %zu\n", __func__, train_tokens.size());
|
|
|
|
size_t shuffle_samples_hash = compute_samples_hash(params.common.fn_train_data, train_samples_begin.data(), train_samples_size.data(), train_samples_size.size());
|
|
const bool changed_train_data = (shuffle_samples_hash != train->shuffle_samples_hash) || (train->shuffle_sample_count != train_samples_size.size());
|
|
if (changed_train_data) {
|
|
printf("%s: train data seems to have changed. restarting shuffled epoch.\n", __func__);
|
|
}
|
|
if (params.common.force_reshuffle) {
|
|
printf("%s: forced reshuffling of data. restarting with newly shuffled epoch.\n", __func__);
|
|
}
|
|
if ((train->shuffle_rng_state_current == "") || changed_train_data || params.common.force_reshuffle) {
|
|
train->shuffle_rng_state_current = mt19937_seed_to_state(params.common.seed);
|
|
train->shuffle_sample_count = train_samples_size.size();
|
|
train->shuffle_next_sample = 0;
|
|
train->shuffle_samples_hash = shuffle_samples_hash;
|
|
}
|
|
std::vector<size_t> train_shuffled_samples_offs;
|
|
std::vector<size_t> train_shuffled_samples_begin;
|
|
std::vector<size_t> train_shuffled_samples_size;
|
|
train_shuffled_samples_offs.resize(train_samples_begin.size());
|
|
train_shuffled_samples_begin.resize(train_samples_begin.size());
|
|
train_shuffled_samples_size.resize(train_samples_size.size());
|
|
train->shuffle_rng_state_next = shuffle_samples(
|
|
train->shuffle_rng_state_current,
|
|
train_shuffled_samples_offs.data(),
|
|
train_shuffled_samples_begin.data(),
|
|
train_shuffled_samples_size.data(),
|
|
train_samples_begin.data(),
|
|
train_samples_size.data(),
|
|
train_samples_size.size());
|
|
printf("%s: begin training\n", __func__);
|
|
|
|
save_train_files_data save_data;
|
|
save_data.fn_checkpoint_out = params.common.fn_checkpoint_out;
|
|
save_data.fn_model_out = params.fn_model_out;
|
|
save_data.fn_vocab_model = params.fn_vocab_model;
|
|
save_data.pattern_fn_it = params.common.pattern_fn_it;
|
|
save_data.fn_latest = params.common.fn_latest;
|
|
save_data.model = &model;
|
|
|
|
struct train_opt_callback_data opt_cb_data;
|
|
opt_cb_data.params = ¶ms.common;
|
|
opt_cb_data.train = train;
|
|
opt_cb_data.save_cb = &save_train_files;
|
|
opt_cb_data.save_data = &save_data;
|
|
opt_cb_data.lctx = lctx;
|
|
opt_cb_data.last_save_iter = opt->iter;
|
|
opt_cb_data.tokens_data = train_tokens.data();
|
|
opt_cb_data.tokens_size = train_tokens.size();
|
|
opt_cb_data.samples_begin = train_samples_begin.data();
|
|
opt_cb_data.samples_size = train_samples_size.data();
|
|
opt_cb_data.shuffled_samples_offs = train_shuffled_samples_offs.data();
|
|
opt_cb_data.shuffled_samples_begin = train_shuffled_samples_begin.data();
|
|
opt_cb_data.shuffled_samples_size = train_shuffled_samples_size.data();
|
|
opt_cb_data.samples_count = train_samples_size.size();
|
|
opt_cb_data.tokens_input = tokens_input;
|
|
opt_cb_data.target_probs = target_probs;
|
|
opt_cb_data.first_iter = opt->iter;
|
|
opt_cb_data.first_epoch = train->train_epochs;
|
|
opt_cb_data.iter_at_last_epoch = -1;
|
|
opt_cb_data.last_time = ggml_time_ms();
|
|
opt_cb_data.millis_per_iter = 0.0;
|
|
|
|
// measure required memory for work buffer
|
|
size_t max_work_size = ggml_graph_plan(gb, params.common.n_threads).work_size + GGML_OBJECT_SIZE;
|
|
printf("%s: work_size = %zu bytes (%.1f MB)\n", __func__, max_work_size, (float) max_work_size / (1024.0f*1024.0f));
|
|
|
|
// context for work buffer
|
|
struct ggml_init_params ctx_work_params = {
|
|
max_work_size, // mem_size
|
|
NULL, // mem_buffer
|
|
false, // no_alloc
|
|
};
|
|
struct ggml_context * ctx_work = ggml_init(ctx_work_params);
|
|
|
|
int64_t t0 = ggml_time_ms();
|
|
|
|
ggml_opt_resume_g(ctx_work, opt, loss, gf, gb, &train_opt_callback, (void *) &opt_cb_data);
|
|
|
|
ggml_free(ctx_work);
|
|
ggml_free(ctx_compute);
|
|
ggml_free(ctx_input);
|
|
|
|
int64_t t1 = ggml_time_ms();
|
|
printf("%s: total training time: ", __func__);
|
|
print_duration((double) (t1 - t0));
|
|
printf("\n");
|
|
|
|
int new_iters = opt->iter - opt_cb_data.last_save_iter;
|
|
if (new_iters > 0) {
|
|
train->train_its += new_iters;
|
|
train->train_tokens += new_iters * opt->params.n_gradient_accumulation * n_batch * n_tokens;
|
|
|
|
save_train_files(&save_data, train);
|
|
opt_cb_data.last_save_iter = opt->iter;
|
|
}
|
|
|
|
ggml_free(opt->ctx);
|
|
free_train_state(train);
|
|
ggml_free(model.ctx);
|
|
llama_free(lctx);
|
|
llama_free_model(lmodel);
|
|
return 0;
|
|
}
|