mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-22 09:39:08 +01:00
6381d4e110
* gguf : first API pass
* gguf : read header + meta data
* gguf : read tensor info
* gguf : initial model loading - not tested
* gguf : add gguf_get_tensor_name()
* gguf : do not support passing existing ggml_context to gguf_init
* gguf : simplify gguf_get_val
* gguf : gguf.c is now part of ggml.c
* gguf : read / write sample models
* gguf : add comments
* refactor : reduce code duplication and better API (#2415)
* gguf : expose the gguf_type enum through the API for now
* gguf : add array support
* gguf.py : some code style changes
* convert.py : start a new simplified implementation by removing old stuff
* convert.py : remove GGML vocab + other obsolete stuff
* GGUF : write tensor (#2426)
* WIP: Write tensor
* GGUF : Support writing tensors in Python
* refactor : rm unused import and upd todos
* fix : fix errors upd writing example
* rm example.gguf
* gitignore *.gguf
* undo formatting
* gguf : add gguf_find_key (#2438)
* gguf.cpp : find key example
* ggml.h : add gguf_find_key
* ggml.c : add gguf_find_key
* gguf : fix writing tensors
* gguf : do not hardcode tensor names to read
* gguf : write sample tensors to read
* gguf : add tokenization constants
* quick and dirty conversion example
* gguf : fix writing gguf arrays
* gguf : write tensors one by one and code reuse
* gguf : fix writing gguf arrays
* gguf : write tensors one by one
* gguf : write tensors one by one
* gguf : write tokenizer data
* gguf : upd gguf conversion script
* Update convert-llama-h5-to-gguf.py
* gguf : handle already encoded string
* ggml.h : get array str and f32
* ggml.c : get arr str and f32
* gguf.py : support any type
* Update convert-llama-h5-to-gguf.py
* gguf : fix set is not subscriptable
* gguf : update convert-llama-h5-to-gguf.py
* constants.py : add layer norm eps
* gguf.py : add layer norm eps and merges
* ggml.h : increase GGML_MAX_NAME to 64
* ggml.c : add gguf_get_arr_n
* Update convert-llama-h5-to-gguf.py
* add gptneox gguf example
* Makefile : add gptneox gguf example
* Update convert-llama-h5-to-gguf.py
* add gptneox gguf example
* Update convert-llama-h5-to-gguf.py
* Update convert-gptneox-h5-to-gguf.py
* Update convert-gptneox-h5-to-gguf.py
* Update convert-llama-h5-to-gguf.py
* gguf : support custom alignment value
* gguf : fix typo in function call
* gguf : mmap tensor data example
* fix : update convert-llama-h5-to-gguf.py
* Update convert-llama-h5-to-gguf.py
* convert-gptneox-h5-to-gguf.py : Special tokens
* gptneox-main.cpp : special tokens
* Update gptneox-main.cpp
* constants.py : special tokens
* gguf.py : accumulate kv and tensor info data + special tokens
* convert-gptneox-h5-to-gguf.py : accumulate kv and ti + special tokens
* gguf : gguf counterpart of llama-util.h
* gguf-util.h : update note
* convert-llama-h5-to-gguf.py : accumulate kv / ti + special tokens
* convert-llama-h5-to-gguf.py : special tokens
* Delete gptneox-common.cpp
* Delete gptneox-common.h
* convert-gptneox-h5-to-gguf.py : gpt2bpe tokenizer
* gptneox-main.cpp : gpt2 bpe tokenizer
* gpt2 bpe tokenizer (handles merges and unicode)
* Makefile : remove gptneox-common
* gguf.py : bytesarray for gpt2bpe tokenizer
* cmpnct_gpt2bpe.hpp : comments
* gguf.py : use custom alignment if present
* gguf : minor stuff
* Update gptneox-main.cpp
* map tensor names
* convert-gptneox-h5-to-gguf.py : map tensor names
* convert-llama-h5-to-gguf.py : map tensor names
* gptneox-main.cpp : map tensor names
* gguf : start implementing libllama in GGUF (WIP)
* gguf : start implementing libllama in GGUF (WIP)
* rm binary commited by mistake
* upd .gitignore
* gguf : calculate n_mult
* gguf : inference with 7B model working (WIP)
* gguf : rm deprecated function
* gguf : start implementing gguf_file_saver (WIP)
* gguf : start implementing gguf_file_saver (WIP)
* gguf : start implementing gguf_file_saver (WIP)
* gguf : add gguf_get_kv_type
* gguf : add gguf_get_kv_type
* gguf : write metadata in gguf_file_saver (WIP)
* gguf : write metadata in gguf_file_saver (WIP)
* gguf : write metadata in gguf_file_saver
* gguf : rm references to old file formats
* gguf : shorter name for member variable
* gguf : rm redundant method
* gguf : get rid of n_mult, read n_ff from file
* Update gguf_tensor_map.py
* Update gptneox-main.cpp
* gguf : rm references to old file magics
* gguf : start implementing quantization (WIP)
* gguf : start implementing quantization (WIP)
* gguf : start implementing quantization (WIP)
* gguf : start implementing quantization (WIP)
* gguf : start implementing quantization (WIP)
* gguf : start implementing quantization (WIP)
* gguf : quantization is working
* gguf : roper closing of file
* gguf.py : no need to convert tensors twice
* convert-gptneox-h5-to-gguf.py : no need to convert tensors twice
* convert-llama-h5-to-gguf.py : no need to convert tensors twice
* convert-gptneox-h5-to-gguf.py : simplify nbytes
* convert-llama-h5-to-gguf.py : simplify nbytes
* gptneox-main.cpp : n_layer --> n_block
* constants.py : n_layer --> n_block
* gguf.py : n_layer --> n_block
* convert-gptneox-h5-to-gguf.py : n_layer --> n_block
* convert-llama-h5-to-gguf.py : n_layer --> n_block
* gptneox-main.cpp : n_layer --> n_block
* Update gguf_tensor_map.py
* convert-gptneox-h5-to-gguf.py : load model in parts to save memory
* convert-llama-h5-to-gguf.py : load model in parts to save memory
* convert : write more metadata for LLaMA
* convert : rm quantization version
* convert-gptneox-h5-to-gguf.py : add file_type key
* gptneox-main.cpp : add file_type key
* fix conflicts
* gguf : add todos and comments
* convert-gptneox-h5-to-gguf.py : tensor name map changes
* Create gguf_namemap.py : tensor name map changes
* Delete gguf_tensor_map.py
* gptneox-main.cpp : tensor name map changes
* convert-llama-h5-to-gguf.py : fixes
* gguf.py : dont add empty strings
* simple : minor style changes
* gguf : use UNIX line ending
* Create convert-llama-7b-pth-to-gguf.py
* llama : sync gguf-llama.cpp with latest llama.cpp (#2608)
* llama : sync gguf-llama.cpp with latest llama.cpp
* minor : indentation + assert
* llama : refactor gguf_buffer and gguf_ctx_buffer
* llama : minor
* gitignore : add gptneox-main
* llama : tokenizer fixes (#2549)
* Merge tokenizer fixes into the gguf branch.
* Add test vocabularies
* convert : update convert-new.py with tokenizer fixes (#2614)
* Merge tokenizer fixes into the gguf branch.
* Add test vocabularies
* Adapt convert-new.py (and fix a clang-cl compiler error on windows)
* llama : sync gguf-llama with llama (#2613)
* llama : sync gguf-llama with llama
* tests : fix build + warnings (test-tokenizer-1 still fails)
* tests : fix wstring_convert
* convert : fix layer names
* llama : sync gguf-llama.cpp
* convert : update HF converter to new tokenizer voodoo magics
* llama : update tokenizer style
* convert-llama-h5-to-gguf.py : add token types
* constants.py : add token types
* gguf.py : add token types
* convert-llama-7b-pth-to-gguf.py : add token types
* gguf-llama.cpp : fix n_head_kv
* convert-llama-h5-to-gguf.py : add 70b gqa support
* gguf.py : add tensor data layout
* convert-llama-h5-to-gguf.py : add tensor data layout
* convert-llama-7b-pth-to-gguf.py : add tensor data layout
* gptneox-main.cpp : add tensor data layout
* convert-llama-h5-to-gguf.py : clarify the reverse permute
* llama : refactor model loading code (#2620)
* llama : style formatting + remove helper methods
* llama : fix quantization using gguf tool
* llama : simplify gguf_file_saver
* llama : fix method names
* llama : simplify write_header()
* llama : no need to pass full file loader to the file saver
just gguf_ctx
* llama : gguf_file_saver write I32
* llama : refactor tensor names (#2622)
* gguf: update tensor names searched in quantization
* gguf : define tensor names as constants
* gguf : initial write API (not tested yet)
* gguf : write to file API (not tested)
* gguf : initial write API ready + example
* gguf : fix header write
* gguf : fixes + simplify example + add ggml_nbytes_pad()
* gguf : minor
* llama : replace gguf_file_saver with new gguf write API
* gguf : streaming support when writing files
* gguf : remove oboslete write methods
* gguf : remove obosolete gguf_get_arr_xxx API
* llama : simplify gguf_file_loader
* llama : move hparams and vocab from gguf_file_loader to llama_model_loader
* llama : merge gguf-util.h in llama.cpp
* llama : reorder definitions in .cpp to match .h
* llama : minor simplifications
* llama : refactor llama_model_loader (WIP)
wip : remove ggml_ctx from llama_model_loader
wip : merge gguf_file_loader in llama_model_loader
* llama : fix shape prints
* llama : fix Windows build + fix norm_rms_eps key
* llama : throw error on missing KV paris in model meta data
* llama : improve printing + log meta data
* llama : switch print order of meta data
---------
Co-authored-by: M. Yusuf Sarıgöz <yusufsarigoz@gmail.com>
* gguf : deduplicate (#2629)
* gguf : better type names
* dedup : CPU + Metal is working
* ggml : fix warnings about unused results
* llama.cpp : fix line feed and compiler warning
* llama : fix strncpy warning + note token_to_str does not write null
* llama : restore the original load/save session implementation
Will migrate this to GGUF in the future
* convert-llama-h5-to-gguf.py : support alt ctx param name
* ggml : assert when using ggml_mul with non-F32 src1
* examples : dedup simple
---------
Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>
* gguf.py : merge all files in gguf.py
* convert-new.py : pick #2427 for HF 70B support
* examples/gguf : no need to keep q option for quantization any more
* llama.cpp : print actual model size
* llama.cpp : use ggml_elements()
* convert-new.py : output gguf (#2635)
* convert-new.py : output gguf (WIP)
* convert-new.py : add gguf key-value pairs
* llama : add hparams.ctx_train + no longer print ftype
* convert-new.py : minor fixes
* convert-new.py : vocab-only option should work now
* llama : fix tokenizer to use llama_char_to_byte
* tests : add new ggml-vocab-llama.gguf
* convert-new.py : tensor name mapping
* convert-new.py : add map for skipping tensor serialization
* convert-new.py : convert script now works
* gguf.py : pick some of the refactoring from #2644
* convert-new.py : minor fixes
* convert.py : update to support GGUF output
* Revert "ci : disable CI temporary to not waste energy"
This reverts commit 7e82d25f40
.
* convert.py : n_head_kv optional and .gguf file extension
* convert.py : better always have n_head_kv and default it to n_head
* llama : sync with recent PRs on master
* editorconfig : ignore models folder
ggml-ci
* ci : update ".bin" to ".gguf" extension
ggml-ci
* llama : fix llama_model_loader memory leak
* gptneox : move as a WIP example
* llama : fix lambda capture
ggml-ci
* ggml : fix bug in gguf_set_kv
ggml-ci
* common.h : .bin --> .gguf
* quantize-stats.cpp : .bin --> .gguf
* convert.py : fix HF tensor permuting / unpacking
ggml-ci
* llama.cpp : typo
* llama : throw error if gguf fails to init from file
ggml-ci
* llama : fix tensor name grepping during quantization
ggml-ci
* gguf.py : write tensors in a single pass (#2644)
* gguf : single pass for writing tensors + refactoring writer
* gguf : single pass for writing tensors + refactoring writer
* gguf : single pass for writing tensors + refactoring writer
* gguf : style fixes in simple conversion script
* gguf : refactor gptneox conversion script
* gguf : rename h5 to hf (for HuggingFace)
* gguf : refactor pth to gguf conversion script
* gguf : rm file_type key and method
* gguf.py : fix vertical alignment
* gguf.py : indentation
---------
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
* convert-gptneox-hf-to-gguf.py : fixes
* gguf.py : gptneox mapping
* convert-llama-hf-to-gguf.py : fixes
* convert-llama-7b-pth-to-gguf.py : fixes
* ggml.h : reverse GGUF_MAGIC
* gguf.py : reverse GGUF_MAGIC
* test-tokenizer-0.cpp : fix warning
* llama.cpp : print kv general.name
* llama.cpp : get special token kv and linefeed token id
* llama : print number of tensors per type + print arch + style
* tests : update vocab file with new magic
* editorconfig : fix whitespaces
* llama : re-order functions
* llama : remove C++ API + reorganize common source in /common dir
* llama : minor API updates
* llama : avoid hardcoded special tokens
* llama : fix MPI build
ggml-ci
* llama : introduce enum llama_vocab_type + remove hardcoded string constants
* convert-falcon-hf-to-gguf.py : falcon HF --> gguf conversion, not tested
* falcon-main.cpp : falcon inference example
* convert-falcon-hf-to-gguf.py : remove extra kv
* convert-gptneox-hf-to-gguf.py : remove extra kv
* convert-llama-7b-pth-to-gguf.py : remove extra kv
* convert-llama-hf-to-gguf.py : remove extra kv
* gguf.py : fix for falcon 40b
* falcon-main.cpp : fix for falcon 40b
* convert-falcon-hf-to-gguf.py : update ref
* convert-falcon-hf-to-gguf.py : add tensor data layout
* cmpnct_gpt2bpe.hpp : fixes
* falcon-main.cpp : fixes
* gptneox-main.cpp : fixes
* cmpnct_gpt2bpe.hpp : remove non-general stuff
* Update examples/server/README.md
Co-authored-by: slaren <slarengh@gmail.com>
* cmpnct_gpt2bpe.hpp : cleanup
* convert-llama-hf-to-gguf.py : special tokens
* convert-llama-7b-pth-to-gguf.py : special tokens
* convert-permute-debug.py : permute debug print
* convert-permute-debug-master.py : permute debug for master
* convert-permute-debug.py : change permute type of attn_q
* convert.py : 70b model working (change attn_q permute)
* Delete convert-permute-debug-master.py
* Delete convert-permute-debug.py
* convert-llama-hf-to-gguf.py : fix attn_q permute
* gguf.py : fix rope scale kv
* convert-llama-hf-to-gguf.py : rope scale and added tokens
* convert-llama-7b-pth-to-gguf.py : rope scale and added tokens
* llama.cpp : use rope scale kv
* convert-llama-7b-pth-to-gguf.py : rope scale fix
* convert-llama-hf-to-gguf.py : rope scale fix
* py : fix whitespace
* gguf : add Python script to convert GGMLv3 LLaMA models to GGUF (#2682)
* First pass at converting GGMLv3 LLaMA models to GGUF
* Cleanups, better output during conversion
* Fix vocab space conversion logic
* More vocab conversion fixes
* Add description to converted GGUF files
* Improve help text, expand warning
* Allow specifying name and description for output GGUF
* Allow overriding vocab and hyperparams from original model metadata
* Use correct params override var name
* Fix wrong type size for Q8_K
Better handling of original style metadata
* Set default value for gguf add_tensor raw_shape KW arg
* llama : improve token type support (#2668)
* Merge tokenizer fixes into the gguf branch.
* Add test vocabularies
* Adapt convert-new.py (and fix a clang-cl compiler error on windows)
* Improved tokenizer test
But does it work on MacOS?
* Improve token type support
- Added @klosax code to convert.py
- Improved token type support in vocabulary
* Exclude platform dependent tests
* More sentencepiece compatibility by eliminating magic numbers
* Restored accidentally removed comment
* llama : add API for token type
ggml-ci
* tests : use new tokenizer type API (#2692)
* Merge tokenizer fixes into the gguf branch.
* Add test vocabularies
* Adapt convert-new.py (and fix a clang-cl compiler error on windows)
* Improved tokenizer test
But does it work on MacOS?
* Improve token type support
- Added @klosax code to convert.py
- Improved token type support in vocabulary
* Exclude platform dependent tests
* More sentencepiece compatibility by eliminating magic numbers
* Restored accidentally removed comment
* Improve commentary
* Use token type API in test-tokenizer-1.cpp
* py : cosmetics
* readme : add notice about new file format
ggml-ci
---------
Co-authored-by: M. Yusuf Sarıgöz <yusufsarigoz@gmail.com>
Co-authored-by: klosax <131523366+klosax@users.noreply.github.com>
Co-authored-by: goerch <jhr.walter@t-online.de>
Co-authored-by: slaren <slarengh@gmail.com>
Co-authored-by: Kerfuffle <44031344+KerfuffleV2@users.noreply.github.com>
1112 lines
41 KiB
C++
1112 lines
41 KiB
C++
#include "ggml.h"
|
|
#include "cmpnct_gpt2bpe.hpp"
|
|
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <cstdio>
|
|
#include <cstring>
|
|
#include <cinttypes>
|
|
#include <fstream>
|
|
#include <map>
|
|
#include <string>
|
|
#include <vector>
|
|
#include <thread>
|
|
#include <random>
|
|
|
|
#if defined(_MSC_VER)
|
|
#pragma warning(disable: 4244 4267) // possible loss of data
|
|
#endif
|
|
|
|
// default hparams
|
|
struct falcon_hparams {
|
|
size_t n_merges = 0;
|
|
size_t n_vocab = 0;
|
|
uint32_t n_ctx = 0;
|
|
uint32_t n_embd = 0;
|
|
uint32_t n_head = 0;
|
|
uint32_t n_head_kv = 1; // Needs to be 1 for 7B model
|
|
uint32_t n_ff = 0;
|
|
uint32_t n_block = 0;
|
|
float norm_eps = 1e-5;
|
|
};
|
|
struct falcon_block {
|
|
// normalization
|
|
struct ggml_tensor* input_layernorm;
|
|
struct ggml_tensor* input_layernorm_b;
|
|
struct ggml_tensor* attention_norm; // Falcon-40B only
|
|
struct ggml_tensor* attention_norm_b; // Falcon-40B only
|
|
|
|
// attention
|
|
struct ggml_tensor* query_key_value;
|
|
struct ggml_tensor* wo;
|
|
|
|
// ff
|
|
struct ggml_tensor* ffn_up;
|
|
struct ggml_tensor* ffn_down;
|
|
};
|
|
|
|
struct falcon_model {
|
|
falcon_hparams hparams;
|
|
|
|
struct ggml_tensor* tok_embeddings;
|
|
struct ggml_tensor* output_norm;
|
|
struct ggml_tensor* output_norm_b;
|
|
struct ggml_tensor* lm_head;
|
|
|
|
std::vector<falcon_block> blocks;
|
|
|
|
// key + value memory
|
|
struct ggml_tensor* memory_k;
|
|
struct ggml_tensor* memory_v;
|
|
|
|
struct gguf_context * ggufctx;
|
|
struct ggml_context * ctx;
|
|
struct ggml_context * kvctx;
|
|
|
|
std::map<std::string, struct ggml_tensor*> tensors;
|
|
};
|
|
|
|
struct gpt_params {
|
|
int32_t seed = -1; // RNG seed
|
|
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
|
|
uint32_t n_predict = 200; // new tokens to predict
|
|
uint32_t n_batch = 512; // batch size for prompt processing
|
|
|
|
// sampling parameters
|
|
int32_t top_k = 40;
|
|
float top_p = 1.0f;
|
|
float temp = 0.8f;
|
|
int32_t repeat_last_n = 64;
|
|
float repeat_penalty = 1.02f;
|
|
|
|
std::string model = ""; // model path
|
|
std::string prompt = "";
|
|
|
|
std::string token_test = "";
|
|
bool interactive = false;
|
|
int32_t interactive_port = -1;
|
|
int32_t n_gpu_layers = 0;
|
|
};
|
|
|
|
void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
|
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
|
fprintf(stderr, "\n");
|
|
fprintf(stderr, "options:\n");
|
|
fprintf(stderr, " -h, --help show this help message and exit\n");
|
|
fprintf(stderr, " -s SEED, --seed SEED RNG seed (default: -1)\n");
|
|
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
|
|
fprintf(stderr, " -ngl N, --gpu-layers N number of layers to offload to GPU on supported models (default: %d)\n", params.n_gpu_layers);
|
|
fprintf(stderr, " -p PROMPT, --prompt PROMPT\n");
|
|
fprintf(stderr, " prompt to start generation with (default: random)\n");
|
|
fprintf(stderr, " -f FNAME, --file FNAME\n");
|
|
fprintf(stderr, " load prompt from a file\n");
|
|
fprintf(stderr, " -tt TOKEN_TEST, --token_test TOKEN_TEST\n");
|
|
fprintf(stderr, " test tokenization\n");
|
|
fprintf(stderr, " -n N, --n_predict N number of tokens to predict (default: %d)\n", params.n_predict);
|
|
fprintf(stderr, " --top_k N top-k sampling, 0 = n_vocab (default: %d)\n", params.top_k);
|
|
fprintf(stderr, " --top_p N top-p sampling (default: %.1f)\n", params.top_p);
|
|
fprintf(stderr, " --temp N temperature (default: %.1f)\n", params.temp);
|
|
fprintf(stderr, " --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled)\n", params.repeat_last_n);
|
|
fprintf(stderr, " --repeat-penalty N penalize repeat sequence of tokens (default: %.2f, 1.0 = disabled)\n", (double)params.repeat_penalty);
|
|
fprintf(stderr, " -b N, --batch_size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
|
fprintf(stderr, " -m FNAME, --model FNAME\n");
|
|
fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
|
|
fprintf(stderr, "\n");
|
|
}
|
|
|
|
// Function to check if the next argument exists
|
|
std::string get_next_arg(int& i, int argc, char** argv, const std::string& flag, gpt_params& params) {
|
|
if (i + 1 < argc && argv[i + 1][0] != '-') {
|
|
return argv[++i];
|
|
} else {
|
|
fprintf(stderr, "error: %s requires one argument.\n", flag.c_str());
|
|
gpt_print_usage(argc, argv, params);
|
|
exit(0);
|
|
}
|
|
}
|
|
|
|
bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
|
for (int i = 1; i < argc; i++) {
|
|
std::string arg = argv[i];
|
|
|
|
if (arg == "-s" || arg == "--seed") {
|
|
params.seed = std::stoi(get_next_arg(i, argc, argv, arg, params));
|
|
} else if (arg == "-t" || arg == "--threads") {
|
|
params.n_threads = std::stoi(get_next_arg(i, argc, argv, arg, params));
|
|
} else if (arg == "-ngl" || arg == "--gpu-layers" || arg == "--n-gpu-layers") {
|
|
params.n_gpu_layers = std::stoi(get_next_arg(i, argc, argv, arg, params));
|
|
} else if (arg == "-p" || arg == "--prompt") {
|
|
params.prompt = get_next_arg(i, argc, argv, arg, params);
|
|
} else if (arg == "-n" || arg == "--n_predict") {
|
|
params.n_predict = std::stoi(get_next_arg(i, argc, argv, arg, params));
|
|
} else if (arg == "--top_k") {
|
|
params.top_k = std::stoi(get_next_arg(i, argc, argv, arg, params));
|
|
} else if (arg == "--top_p") {
|
|
params.top_p = std::stof(get_next_arg(i, argc, argv, arg, params));
|
|
} else if (arg == "--temp") {
|
|
params.temp = std::stof(get_next_arg(i, argc, argv, arg, params));
|
|
} else if (arg == "--repeat-last-n") {
|
|
params.repeat_last_n = std::stoi(get_next_arg(i, argc, argv, arg, params));
|
|
} else if (arg == "--repeat-penalty") {
|
|
params.repeat_penalty = std::stof(get_next_arg(i, argc, argv, arg, params));
|
|
} else if (arg == "-b" || arg == "--batch_size") {
|
|
params.n_batch= std::stoi(get_next_arg(i, argc, argv, arg, params));
|
|
} else if (arg == "-m" || arg == "--model") {
|
|
params.model = get_next_arg(i, argc, argv, arg, params);
|
|
} else if (arg == "-i" || arg == "--interactive") {
|
|
params.interactive = true;
|
|
} else if (arg == "-ip" || arg == "--interactive-port") {
|
|
params.interactive = true;
|
|
params.interactive_port = std::stoi(get_next_arg(i, argc, argv, arg, params));
|
|
} else if (arg == "-h" || arg == "--help") {
|
|
gpt_print_usage(argc, argv, params);
|
|
exit(0);
|
|
} else if (arg == "-f" || arg == "--file") {
|
|
get_next_arg(i, argc, argv, arg, params);
|
|
std::ifstream file(argv[i]);
|
|
if (!file) {
|
|
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
|
|
break;
|
|
}
|
|
std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
|
|
if (params.prompt.back() == '\n') {
|
|
params.prompt.pop_back();
|
|
}
|
|
} else if (arg == "-tt" || arg == "--token_test") {
|
|
params.token_test = get_next_arg(i, argc, argv, arg, params);
|
|
}
|
|
else {
|
|
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
|
gpt_print_usage(argc, argv, params);
|
|
exit(0);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
gpt2bpe_vocab::id sample_top_k_top_p_repeat(
|
|
const gpt2bpe_vocab & vocab,
|
|
const float * logits,
|
|
const int32_t * last_n_tokens_data,
|
|
size_t last_n_tokens_data_size,
|
|
int top_k,
|
|
double top_p,
|
|
double temp,
|
|
int repeat_last_n,
|
|
float repeat_penalty,
|
|
std::mt19937 & rng) {
|
|
|
|
int n_logits = vocab.id_to_token.size();
|
|
|
|
const auto * plogits = logits;
|
|
|
|
const auto last_n_tokens = std::vector<int32_t>(last_n_tokens_data, last_n_tokens_data + last_n_tokens_data_size);
|
|
|
|
if (temp <= 0) {
|
|
// select the token with the highest logit directly
|
|
float max_logit = plogits[0];
|
|
gpt2bpe_vocab::id max_id = 0;
|
|
|
|
for (int i = 1; i < n_logits; ++i) {
|
|
if (plogits[i] > max_logit) {
|
|
max_logit = plogits[i];
|
|
max_id = i;
|
|
}
|
|
}
|
|
return max_id;
|
|
}
|
|
|
|
|
|
std::vector<std::pair<double, gpt2bpe_vocab::id>> logits_id;
|
|
logits_id.reserve(n_logits);
|
|
|
|
{
|
|
const float scale = 1.0f/temp;
|
|
for (int i = 0; i < n_logits; ++i) {
|
|
// repetition penalty from ctrl paper (https://arxiv.org/abs/1909.05858)
|
|
// credit https://github.com/facebookresearch/llama/compare/main...shawwn:llama:main
|
|
if (repeat_last_n > 0 && std::find(last_n_tokens.end()-repeat_last_n, last_n_tokens.end(), i) != last_n_tokens.end()) {
|
|
// if score < 0 then repetition penalty has to multiplied to reduce the previous token probability
|
|
if (plogits[i] < 0.0f) {
|
|
logits_id.push_back(std::make_pair(plogits[i]*scale*repeat_penalty, i));
|
|
} else {
|
|
logits_id.push_back(std::make_pair(plogits[i]*scale/repeat_penalty, i));
|
|
}
|
|
} else {
|
|
logits_id.push_back(std::make_pair(plogits[i]*scale, i));
|
|
}
|
|
}
|
|
}
|
|
|
|
// find the top K tokens
|
|
std::partial_sort(
|
|
logits_id.begin(),
|
|
logits_id.begin() + top_k, logits_id.end(),
|
|
[](const std::pair<double, gpt2bpe_vocab::id> & a, const std::pair<double, gpt2bpe_vocab::id> & b) {
|
|
return a.first > b.first;
|
|
});
|
|
|
|
logits_id.resize(top_k);
|
|
|
|
double maxl = -INFINITY;
|
|
for (const auto & kv : logits_id) {
|
|
maxl = std::max(maxl, kv.first);
|
|
}
|
|
|
|
// compute probs for the top K tokens
|
|
std::vector<double> probs;
|
|
probs.reserve(logits_id.size());
|
|
|
|
double sum = 0.0;
|
|
for (const auto & kv : logits_id) {
|
|
double p = exp(kv.first - maxl);
|
|
probs.push_back(p);
|
|
sum += p;
|
|
}
|
|
|
|
// normalize the probs
|
|
for (auto & p : probs) {
|
|
p /= sum;
|
|
}
|
|
|
|
if (top_p < 1.0f) {
|
|
double cumsum = 0.0f;
|
|
for (int i = 0; i < top_k; i++) {
|
|
cumsum += probs[i];
|
|
if (cumsum >= top_p) {
|
|
top_k = i + 1;
|
|
probs.resize(top_k);
|
|
logits_id.resize(top_k);
|
|
break;
|
|
}
|
|
}
|
|
|
|
cumsum = 1.0/cumsum;
|
|
for (int i = 0; i < (int) probs.size(); i++) {
|
|
probs[i] *= cumsum;
|
|
}
|
|
}
|
|
|
|
// printf("\n");
|
|
// for (int i = 0; i < (int) probs.size(); i++) {
|
|
// for (int i = 0; i < 10; i++) {
|
|
// printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]);
|
|
// }
|
|
|
|
std::discrete_distribution<> dist(probs.begin(), probs.end());
|
|
int idx = dist(rng);
|
|
|
|
return logits_id[idx].second;
|
|
|
|
}
|
|
|
|
struct ggml_tensor * get_tensor_ex( struct ggml_context * ctx, std::string name){
|
|
|
|
struct ggml_tensor * cur = ggml_get_tensor(ctx, name.c_str());
|
|
if( cur == NULL ) {
|
|
fprintf(stdout, "%s: tensor '%s' not found!\n", __func__, name.c_str());
|
|
} else {
|
|
// fprintf(stdout, "%s: n_dims = %d, name = '%s'\n", __func__, cur->n_dims, cur->name);
|
|
}
|
|
|
|
return cur;
|
|
}
|
|
|
|
// load the model's weights from a file
|
|
bool falcon_model_load(const std::string & fname, falcon_model & model, gpt2bpe_vocab & vocab) {
|
|
printf("%s: loading model from '%s'..\n", __func__, fname.c_str());
|
|
|
|
model.ctx = NULL;
|
|
|
|
struct gguf_init_params ggufparams = {
|
|
/*.no_alloc = */ false,
|
|
/*.ctx = */ &model.ctx,
|
|
};
|
|
|
|
auto & ggufctx = model.ggufctx;
|
|
|
|
ggufctx = gguf_init_from_file(fname.c_str(), ggufparams);
|
|
|
|
if (!ggufctx) {
|
|
fprintf(stderr, "%s: gguf_init_from_file() failed\n", __func__);
|
|
return false;
|
|
}
|
|
|
|
fprintf(stdout, "%s: gguf version = %d\n", __func__, gguf_get_version(ggufctx));
|
|
fprintf(stdout, "%s: gguf alignment = %zu\n", __func__, gguf_get_alignment(ggufctx));
|
|
fprintf(stdout, "%s: gguf data offset = %zu\n", __func__, gguf_get_data_offset(ggufctx));
|
|
|
|
// print all kv
|
|
#if 0
|
|
{
|
|
const int n_kv = gguf_get_n_kv(ggufctx);
|
|
|
|
fprintf(stdout, "%s: n_kv: %d\n", __func__, n_kv);
|
|
|
|
for (int i = 0; i < n_kv; ++i) {
|
|
const char * key = gguf_get_key(ggufctx, i);
|
|
|
|
fprintf(stdout, "%s: kv[%d]: key = %s\n", __func__, i, key);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// print some standard metadata
|
|
{
|
|
int keyidx;
|
|
|
|
keyidx = gguf_find_key(ggufctx, "general.name");
|
|
if (keyidx != -1) { fprintf(stdout, "%s: model name = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
|
|
keyidx = gguf_find_key(ggufctx, "general.description");
|
|
if (keyidx != -1) { fprintf(stdout, "%s: model description = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
|
|
keyidx = gguf_find_key(ggufctx, "general.author");
|
|
if (keyidx != -1) { fprintf(stdout, "%s: model author = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
|
|
keyidx = gguf_find_key(ggufctx, "general.license");
|
|
if (keyidx != -1) { fprintf(stdout, "%s: model license = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
|
|
keyidx = gguf_find_key(ggufctx, "general.architecture");
|
|
if (keyidx != -1) { fprintf(stdout, "%s: model architecture = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
|
|
keyidx = gguf_find_key(ggufctx, "general.file_type");
|
|
if (keyidx != -1) { fprintf(stdout, "%s: model file type = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
|
|
keyidx = gguf_find_key(ggufctx, "gptneox.tensor_data_layout");
|
|
if (keyidx != -1) { fprintf(stdout, "%s: model data layout = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
|
|
keyidx = gguf_find_key(ggufctx, "general.source.hugginface.repository");
|
|
if (keyidx != -1) { fprintf(stdout, "%s: model source HF repo = %s\n", __func__, gguf_get_val_str(ggufctx, keyidx)); }
|
|
}
|
|
|
|
// check required metadata
|
|
{
|
|
int keyidx;
|
|
|
|
// check model architecture kv
|
|
keyidx = gguf_find_key(ggufctx, "general.architecture");
|
|
if (keyidx != -1) {
|
|
if ( strcmp(gguf_get_val_str(ggufctx, keyidx), "falcon") != 0) {
|
|
fprintf(stdout, "%s: model architecture not supported!\n", __func__);
|
|
return false;
|
|
}
|
|
} else {
|
|
fprintf(stdout, "%s: gguf model architecture not found!\n", __func__);
|
|
return false;
|
|
}
|
|
|
|
// check model tensor data layout kv
|
|
keyidx = gguf_find_key(ggufctx, "falcon.tensor_data_layout");
|
|
if (keyidx != -1) {
|
|
if ( strcmp(gguf_get_val_str(ggufctx, keyidx), "jploski") != 0) {
|
|
fprintf(stdout, "%s: model tensor data layout not supported!\n", __func__);
|
|
return false;
|
|
}
|
|
} else {
|
|
fprintf(stdout, "%s: gguf model tensor data layout not found!\n", __func__);
|
|
return false;
|
|
}
|
|
|
|
}
|
|
|
|
// load hparams
|
|
{
|
|
auto & hparams = model.hparams;
|
|
|
|
bool ok = true;
|
|
int keyidx;
|
|
|
|
if (ok) { keyidx = gguf_find_key(ggufctx, "falcon.context_length");
|
|
if (keyidx != -1) { hparams.n_ctx = gguf_get_val_u32(ggufctx, keyidx); } else { ok = false; } }
|
|
|
|
if (ok) { keyidx = gguf_find_key(ggufctx, "falcon.embedding_length");
|
|
if (keyidx != -1) { hparams.n_embd = gguf_get_val_u32(ggufctx, keyidx); } else { ok = false; } }
|
|
|
|
if (ok) { keyidx = gguf_find_key(ggufctx, "falcon.attention.head_count");
|
|
if (keyidx != -1) { hparams.n_head = gguf_get_val_u32(ggufctx, keyidx); } else { ok = false; } }
|
|
|
|
if (ok) { keyidx = gguf_find_key(ggufctx, "falcon.feed_forward_length");
|
|
if (keyidx != -1) { hparams.n_ff = gguf_get_val_u32(ggufctx, keyidx); } else { ok = false; } }
|
|
|
|
if (ok) { keyidx = gguf_find_key(ggufctx, "falcon.block_count");
|
|
if (keyidx != -1) { hparams.n_block = gguf_get_val_u32(ggufctx, keyidx); } else { ok = false; } }
|
|
|
|
if (ok) { keyidx = gguf_find_key(ggufctx, "falcon.attention.layer_norm_epsilon");
|
|
if (keyidx != -1) { hparams.norm_eps= gguf_get_val_f32(ggufctx, keyidx); } else { ok = false; } }
|
|
|
|
if (!ok) {
|
|
fprintf(stderr, "%s: required hparam missing!\n", __func__);
|
|
return false;
|
|
}
|
|
|
|
keyidx = gguf_find_key(ggufctx, "falcon.attention.head_count_kv");
|
|
if (keyidx != -1) { hparams.n_head_kv = gguf_get_val_u32(ggufctx, keyidx); }
|
|
|
|
|
|
printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx);
|
|
printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
|
|
printf("%s: n_head = %d\n", __func__, hparams.n_head);
|
|
printf("%s: n_head_kv = %d\n", __func__, hparams.n_head_kv);
|
|
printf("%s: n_block = %d\n", __func__, hparams.n_block);
|
|
printf("%s: norm_eps = %g\n", __func__, hparams.norm_eps);
|
|
|
|
}
|
|
|
|
// load vocab
|
|
{
|
|
auto & hparams = model.hparams;
|
|
|
|
int keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.model");
|
|
|
|
if (keyidx != -1) {
|
|
if ( strcmp(gguf_get_val_str(ggufctx, keyidx), "gpt2") != 0) {
|
|
fprintf(stdout, "%s: tokenizer model not supported!\n", __func__);
|
|
return false;
|
|
}
|
|
} else {
|
|
fprintf(stdout, "%s: tokenizer model not found!\n", __func__);
|
|
return false;
|
|
}
|
|
|
|
|
|
int tokens_keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.tokens");
|
|
|
|
if (tokens_keyidx == -1) {
|
|
fprintf(stdout, "%s: gpt2 tokenizer vocab not found!\n", __func__);
|
|
return false;
|
|
}
|
|
|
|
int merges_keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.merges");
|
|
|
|
if (merges_keyidx == -1) {
|
|
fprintf(stdout, "%s: gpt2 tokenizer merges not found!\n", __func__);
|
|
return false;
|
|
}
|
|
|
|
hparams.n_vocab = gguf_get_arr_n(ggufctx,tokens_keyidx);
|
|
hparams.n_merges = gguf_get_arr_n(ggufctx,merges_keyidx);
|
|
|
|
fprintf(stdout, "%s: gpt2 tokenizer vocab = %zu\n", __func__, hparams.n_vocab);
|
|
fprintf(stdout, "%s: gpt2 tokenizer merges = %zu\n", __func__, hparams.n_merges);
|
|
|
|
for (size_t i = 0; i < hparams.n_vocab; i++) {
|
|
std::string word = gguf_get_arr_str(ggufctx, tokens_keyidx, i);
|
|
|
|
// printf("token %d = '%s'\n",i,word.c_str() );
|
|
|
|
vocab.token_to_id[word] = i;
|
|
vocab.id_to_token[i] = word;
|
|
|
|
if( vocab.id_to_token[i] == "\n" ) {
|
|
vocab.linefeed_id = i;
|
|
}
|
|
}
|
|
|
|
std::vector<std::pair<std::string, std::string>> bpe_merges;
|
|
|
|
for (size_t i = 0; i < hparams.n_merges; i++) {
|
|
|
|
std::string word = gguf_get_arr_str(ggufctx, merges_keyidx, i);
|
|
|
|
// Split the merges
|
|
std::string first, second;
|
|
size_t pos = word.find(' ', 1); // Start the search from the second character
|
|
if (pos != std::string::npos) {
|
|
first = word.substr(0, pos);
|
|
second = word.substr(pos + 1);
|
|
}
|
|
|
|
bpe_merges.push_back(std::make_pair(first, second));
|
|
}
|
|
|
|
vocab.populate_bpe_ranks(bpe_merges);
|
|
|
|
|
|
keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.bos_token_id"); if( keyidx != -1 ) { vocab.special_bos_id = (int32_t)gguf_get_val_u32(ggufctx, keyidx); }
|
|
keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.eos_token_id"); if( keyidx != -1 ) { vocab.special_eos_id = (int32_t)gguf_get_val_u32(ggufctx, keyidx); }
|
|
keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.unknown_token_id"); if( keyidx != -1 ) { vocab.special_unk_id = (int32_t)gguf_get_val_u32(ggufctx, keyidx); }
|
|
keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.separator_token_id"); if( keyidx != -1 ) { vocab.special_sep_id = (int32_t)gguf_get_val_u32(ggufctx, keyidx); }
|
|
keyidx = gguf_find_key(ggufctx, "tokenizer.ggml.padding_token_id"); if( keyidx != -1 ) { vocab.special_pad_id = (int32_t)gguf_get_val_u32(ggufctx, keyidx); }
|
|
|
|
if( vocab.special_bos_id != -1 ) { fprintf(stdout, "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].c_str() ); }
|
|
if( vocab.special_eos_id != -1 ) { fprintf(stdout, "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].c_str() ); }
|
|
if( vocab.special_unk_id != -1 ) { fprintf(stdout, "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].c_str() ); }
|
|
if( vocab.special_sep_id != -1 ) { fprintf(stdout, "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].c_str() ); }
|
|
if( vocab.special_pad_id != -1 ) { fprintf(stdout, "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].c_str() ); }
|
|
if( vocab.linefeed_id != -1 ) { fprintf(stdout, "%s: LF token = %d\n", __func__, vocab.linefeed_id ); }
|
|
|
|
}
|
|
|
|
|
|
auto & ctx = model.ctx;
|
|
size_t ctx_size = ggml_get_mem_size(ctx);
|
|
|
|
printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
|
|
|
|
// print tensor info
|
|
#if 0
|
|
{
|
|
const int n_tensors = gguf_get_n_tensors(ggufctx);
|
|
|
|
fprintf(stdout, "%s: n_tensors: %d\n", __func__, n_tensors);
|
|
|
|
for (int i = 0; i < n_tensors; ++i) {
|
|
const char * name = gguf_get_tensor_name (ggufctx, i);
|
|
const size_t offset = gguf_get_tensor_offset(ggufctx, i);
|
|
|
|
fprintf(stdout, "%s: tensor[%d]: name = %s, offset = %zu\n", __func__, i, name, offset);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// prepare memory for the weights
|
|
{
|
|
|
|
auto & hparams = model.hparams;
|
|
|
|
const int n_block = hparams.n_block;
|
|
|
|
model.blocks.resize(n_block);
|
|
|
|
model.tok_embeddings = ggml_get_tensor(ctx, "token_embd.weight");
|
|
|
|
model.output_norm = ggml_get_tensor(ctx, "output_norm.weight");
|
|
model.output_norm_b = ggml_get_tensor(ctx, "output_norm.bias");
|
|
model.lm_head = ggml_get_tensor(ctx, "output.weight");
|
|
|
|
// map by name
|
|
model.tensors["token_embd.weight"] = model.tok_embeddings;
|
|
model.tensors["output_norm.weight"] = model.output_norm;
|
|
model.tensors["output_norm.bias"] = model.output_norm_b;
|
|
model.tensors["output.weight"] = model.lm_head;
|
|
|
|
for (int i = 0; i < n_block; ++i) {
|
|
|
|
auto& block = model.blocks[i];
|
|
std::string blocknamestart = "blk." + std::to_string(i) + ".";
|
|
|
|
block.input_layernorm = get_tensor_ex(ctx, blocknamestart + "attn_norm.weight" );
|
|
block.input_layernorm_b = get_tensor_ex(ctx, blocknamestart + "attn_norm.bias" );
|
|
|
|
if ( hparams.n_head_kv == 8 ) { // Falcon-40B
|
|
block.attention_norm = get_tensor_ex(ctx, blocknamestart + "attn_norm_2.weight" );
|
|
block.attention_norm_b = get_tensor_ex(ctx, blocknamestart + "attn_norm_2.bias" );
|
|
}
|
|
|
|
// query_key_value shape for config.multi_query == True:
|
|
block.query_key_value = get_tensor_ex(ctx, blocknamestart + "attn_qkv.weight" );
|
|
block.wo = get_tensor_ex(ctx, blocknamestart + "attn_output.weight" );
|
|
|
|
block.ffn_up = get_tensor_ex(ctx, blocknamestart + "ffn_up.weight" );
|
|
block.ffn_down = get_tensor_ex(ctx, blocknamestart + "ffn_down.weight" );
|
|
|
|
// map by name
|
|
if ( hparams.n_head_kv == 8 ) { // Falcon-40B
|
|
// Falcon-40B:
|
|
model.tensors[blocknamestart + "attn_norm.weight"] = block.input_layernorm;
|
|
model.tensors[blocknamestart + "attn_norm.bias"] = block.input_layernorm_b;
|
|
model.tensors[blocknamestart + "attn_norm_2.weight"] = block.attention_norm;
|
|
model.tensors[blocknamestart + "attn_norm_2.bias"] = block.attention_norm_b;
|
|
} else {
|
|
// Falcon-7B:
|
|
model.tensors[blocknamestart + "attn_norm.weight"] = block.input_layernorm;
|
|
model.tensors[blocknamestart + "attn_norm.bias"] = block.input_layernorm_b;
|
|
}
|
|
|
|
model.tensors[blocknamestart + "attn_qkv.weight"] = block.query_key_value;
|
|
model.tensors[blocknamestart + "attn_output.weight"] = block.wo;
|
|
|
|
model.tensors[blocknamestart + "ffn_up.weight"] = block.ffn_up;
|
|
model.tensors[blocknamestart + "ffn_down.weight"] = block.ffn_down;
|
|
}
|
|
}
|
|
|
|
// key + value memory
|
|
{
|
|
const auto & kvctx = model.kvctx;
|
|
const auto & hparams = model.hparams;
|
|
|
|
const int n_block = hparams.n_block;
|
|
const int n_ctx = hparams.n_ctx;
|
|
const int n_embd = hparams.n_embd;
|
|
|
|
const int64_t n_mem = n_block*n_ctx;
|
|
const int64_t n_elements = n_embd*n_mem;
|
|
|
|
// create the ggml context
|
|
{
|
|
struct ggml_init_params params = {
|
|
/*.mem_size =*/ size_t(n_elements*4+ggml_tensor_overhead()*2),
|
|
/*.mem_buffer =*/ NULL,
|
|
/*.no_alloc =*/ false,
|
|
};
|
|
|
|
model.kvctx = ggml_init(params);
|
|
if (!model.kvctx) {
|
|
fprintf(stderr, "%s: kv ggml_init() failed\n", __func__);
|
|
return false;
|
|
}
|
|
|
|
}
|
|
|
|
|
|
model.memory_k = ggml_new_tensor_1d(kvctx, GGML_TYPE_F16, n_elements);
|
|
model.memory_v = ggml_new_tensor_1d(kvctx, GGML_TYPE_F16, n_elements);
|
|
|
|
const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v);
|
|
|
|
printf("%s: memory_size = %8.2f MB, n_mem = %" PRId64 "\n", __func__, memory_size/1024.0/1024.0, n_mem);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
// evaluate the transformer
|
|
//
|
|
// - model: the model
|
|
// - n_threads: number of threads to use
|
|
// - n_past: the context size so far
|
|
// - embd_inp: the embeddings of the tokens in the context
|
|
// - embd_w: the predicted logits for the next token
|
|
//
|
|
bool falcon_eval(
|
|
const falcon_model & model,
|
|
const int n_threads,
|
|
const int n_past,
|
|
const std::vector<gpt2bpe_vocab::id> & embd_inp,
|
|
std::vector<float> & embd_w,
|
|
size_t & mem_per_token) {
|
|
|
|
|
|
const int N = embd_inp.size();
|
|
|
|
const auto & hparams = model.hparams;
|
|
|
|
const int n_embd = hparams.n_embd;
|
|
const int n_block = hparams.n_block;
|
|
const int n_ctx = hparams.n_ctx;
|
|
const int n_head = hparams.n_head;
|
|
const int n_head_kv = hparams.n_head_kv;
|
|
const int n_vocab = hparams.n_vocab;
|
|
const size_t head_dim = n_embd / n_head;
|
|
|
|
static size_t buf_size = 256u*1024*1024;
|
|
static void * buf = malloc(buf_size);
|
|
|
|
// use 2 scratch buffers
|
|
// TODO: very hacky solution - reimplement in a more elegant way
|
|
static size_t scr0_size = 256u*1024*1024;
|
|
static void * scr0 = malloc(scr0_size);
|
|
|
|
static size_t scr1_size = 256u*1024*1024;
|
|
static void * scr1 = malloc(scr1_size);
|
|
|
|
if (mem_per_token > 0 && mem_per_token*N > buf_size) {
|
|
const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead
|
|
//printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new);
|
|
|
|
// reallocate
|
|
buf_size = buf_size_new;
|
|
buf = realloc(buf, buf_size);
|
|
if (buf == nullptr) {
|
|
fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
struct ggml_init_params params = {
|
|
/*.mem_size =*/ buf_size,
|
|
/*.mem_buffer =*/ buf,
|
|
/*.no_alloc =*/ false,
|
|
};
|
|
|
|
struct ggml_context * ctx0 = ggml_init(params);
|
|
struct ggml_cgraph gf = {};
|
|
// gf.n_threads = n_threads;
|
|
|
|
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
|
|
memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd));
|
|
|
|
// wte
|
|
struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.tok_embeddings, embd);
|
|
// struct ggml_tensor* repeat_dummy = ggml_new_tensor_3d(ctx0, inpL->type, head_dim, N + n_past, n_head);
|
|
|
|
ggml_type wtype = GGML_TYPE_F32;
|
|
const int sizeof_wtype = ggml_type_sizef(wtype);
|
|
|
|
for (int il = 0; il < n_block; ++il) {
|
|
struct ggml_tensor * cur;
|
|
struct ggml_tensor * layernorm_output;
|
|
|
|
ggml_set_scratch(ctx0, { 0, scr0_size, scr0, });
|
|
|
|
// self-attention
|
|
{
|
|
layernorm_output = ggml_norm(ctx0, inpL);
|
|
|
|
layernorm_output = ggml_add(ctx0,
|
|
ggml_mul(ctx0,
|
|
ggml_repeat(ctx0, model.blocks[il].input_layernorm, layernorm_output),
|
|
layernorm_output),
|
|
ggml_repeat(ctx0, model.blocks[il].input_layernorm_b, layernorm_output));
|
|
|
|
if ( hparams.n_head_kv == 8 ) { // Falcon-40B
|
|
cur = ggml_norm(ctx0, inpL);
|
|
|
|
cur = ggml_add(ctx0,
|
|
ggml_mul(ctx0,
|
|
ggml_repeat(ctx0, model.blocks[il].attention_norm, cur),
|
|
cur),
|
|
ggml_repeat(ctx0, model.blocks[il].attention_norm_b, cur));
|
|
}
|
|
else { // Falcon 7B
|
|
cur = layernorm_output;
|
|
}
|
|
|
|
// compute QKV
|
|
|
|
cur = ggml_mul_mat(ctx0, model.blocks[il].query_key_value, cur);
|
|
|
|
// Note that the strides for Kcur, Vcur are set up so that the
|
|
// resulting views are misaligned with the tensor's storage
|
|
// (by applying the K/V offset we shift the tensor's original
|
|
// view to stick out behind the viewed QKV tensor's allocated
|
|
// memory, so to say). This is ok because no actual accesses
|
|
// happen to that out-of-range memory, but it can require some
|
|
// trickery when trying to accurately dump these views for
|
|
// debugging.
|
|
|
|
struct ggml_tensor * Qcur = ggml_view_3d(
|
|
ctx0, cur, head_dim, n_head, N,
|
|
head_dim * sizeof_wtype,
|
|
head_dim * (n_head + 2 * n_head_kv) * sizeof_wtype,
|
|
0);
|
|
|
|
struct ggml_tensor * Kcur = ggml_view_3d(
|
|
ctx0, cur, head_dim, n_head_kv, N,
|
|
head_dim * sizeof_wtype,
|
|
head_dim * (n_head + 2 * n_head_kv) * sizeof_wtype,
|
|
head_dim * n_head * sizeof_wtype);
|
|
|
|
struct ggml_tensor * Vcur = ggml_view_3d(
|
|
ctx0, cur, head_dim, n_head_kv, N,
|
|
head_dim * sizeof_wtype,
|
|
head_dim * (n_head + 2 * n_head_kv) * sizeof_wtype,
|
|
head_dim * (n_head + n_head_kv) * sizeof_wtype);
|
|
|
|
// using mode = 2 for neox mode
|
|
Qcur = ggml_rope_inplace(ctx0, Qcur, n_past, head_dim, 2, 0);
|
|
Kcur = ggml_rope_inplace(ctx0, Kcur, n_past, head_dim, 2, 0);
|
|
|
|
// store key and value to memory
|
|
{
|
|
struct ggml_tensor* k = ggml_view_1d(
|
|
ctx0, model.memory_k, N * n_head_kv * head_dim,
|
|
(ggml_element_size(model.memory_k) * n_head_kv * head_dim) *
|
|
(il * n_ctx + n_past));
|
|
struct ggml_tensor* v = ggml_view_1d(
|
|
ctx0, model.memory_v, N * n_head_kv * head_dim,
|
|
(ggml_element_size(model.memory_v) * n_head_kv * head_dim) *
|
|
(il * n_ctx + n_past));
|
|
|
|
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
|
|
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
|
|
}
|
|
|
|
struct ggml_tensor * K = ggml_permute(
|
|
ctx0,
|
|
ggml_reshape_3d(
|
|
ctx0,
|
|
ggml_view_1d(ctx0, model.memory_k, (n_past + N) * n_head_kv * head_dim,
|
|
il * n_ctx *
|
|
ggml_element_size(model.memory_k) *
|
|
n_head_kv *
|
|
head_dim),
|
|
head_dim, n_head_kv, n_past + N),
|
|
0, 2, 1, 3);
|
|
|
|
// K * Q
|
|
|
|
// K = ggml_cont(ctx0, ggml_repeat2(ctx0, K, repeat_dummy));
|
|
|
|
struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
|
|
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
|
|
|
|
// KQ_scaled = KQ / sqrt(n_embd/n_head)
|
|
struct ggml_tensor * KQ_scaled =
|
|
ggml_scale_inplace(ctx0,
|
|
KQ,
|
|
ggml_new_f32(ctx0, 1.0f/sqrt(float(head_dim)))
|
|
);
|
|
|
|
// KQ_masked = mask_past(KQ_scaled)
|
|
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);
|
|
|
|
// KQ = soft_max(KQ_masked)
|
|
struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
|
|
|
|
// V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous()
|
|
struct ggml_tensor* V = ggml_permute(
|
|
ctx0,
|
|
ggml_reshape_3d(
|
|
ctx0,
|
|
ggml_view_1d(ctx0, model.memory_v, (n_past + N) * n_head_kv * head_dim,
|
|
il * n_ctx *
|
|
ggml_element_size(model.memory_v) *
|
|
n_head_kv *
|
|
head_dim),
|
|
head_dim, n_head_kv, n_past + N),
|
|
0, 2, 1, 3);
|
|
|
|
// V = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_repeat2(ctx0, V, repeat_dummy)));
|
|
V = ggml_cont(ctx0, ggml_transpose(ctx0, V));
|
|
|
|
// KQV = transpose(V) * KQ_soft_max
|
|
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
|
|
|
|
// KQV_merged = KQV.permute(0, 2, 1, 3)
|
|
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
|
|
|
|
// cur = KQV_merged.contiguous().view(n_embd, N)
|
|
cur = ggml_cpy(ctx0,
|
|
KQV_merged,
|
|
ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
|
|
|
|
// projection
|
|
{
|
|
cur = ggml_mul_mat(ctx0,
|
|
model.blocks[il].wo,
|
|
cur);
|
|
}
|
|
}
|
|
|
|
ggml_set_scratch(ctx0, { 0, scr1_size, scr1, });
|
|
|
|
struct ggml_tensor* inpFF = layernorm_output;
|
|
struct ggml_tensor* attn_out = ggml_cpy(
|
|
ctx0, cur, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
|
|
|
|
{
|
|
cur = ggml_mul_mat(ctx0, model.blocks[il].ffn_up, inpFF);
|
|
cur = ggml_gelu(ctx0, cur);
|
|
cur = ggml_mul_mat(ctx0, model.blocks[il].ffn_down, cur);
|
|
}
|
|
|
|
cur = ggml_add(ctx0, cur, attn_out);
|
|
cur = ggml_add(ctx0, cur, inpL);
|
|
// input for next layer
|
|
inpL = cur;
|
|
}
|
|
|
|
ggml_set_scratch(ctx0, { 0, scr0_size, scr0, });
|
|
|
|
// norm
|
|
{
|
|
inpL = ggml_norm(ctx0, inpL);
|
|
|
|
// inpL = ln_f_g*inpL + ln_f_b
|
|
inpL = ggml_add(ctx0,
|
|
ggml_mul(ctx0,
|
|
ggml_repeat(ctx0, model.output_norm, inpL),
|
|
inpL),
|
|
ggml_repeat(ctx0, model.output_norm_b, inpL));
|
|
}
|
|
|
|
ggml_set_scratch(ctx0, { 0, 0, nullptr, });
|
|
|
|
// lm_head
|
|
{
|
|
inpL = ggml_mul_mat(ctx0, model.lm_head, inpL);
|
|
|
|
//inpL = ggml_add(ctx0,
|
|
// ggml_repeat(ctx0, model.lmh_b, inpL),
|
|
// inpL);
|
|
}
|
|
|
|
// logits -> probs
|
|
//inpL = ggml_soft_max_inplace(ctx0, inpL);
|
|
|
|
// run the computation
|
|
ggml_build_forward_expand(&gf, inpL);
|
|
// ggml_graph_compute (ctx0, &gf);
|
|
ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
|
|
|
|
//if (n_past%100 == 0) {
|
|
// ggml_graph_print (&gf);
|
|
// ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot");
|
|
//}
|
|
|
|
// return result for just the last token
|
|
embd_w.resize(n_vocab);
|
|
memcpy(embd_w.data(), (float *)ggml_get_data(inpL) + (n_vocab * (N - 1)), sizeof(float) * n_vocab);
|
|
|
|
if (mem_per_token == 0) {
|
|
mem_per_token = ggml_used_mem(ctx0)/N;
|
|
}
|
|
//printf("used_mem = %zu\n", ggml_used_mem(ctx0));
|
|
|
|
ggml_free(ctx0);
|
|
|
|
return true;
|
|
}
|
|
|
|
int main(int argc, char ** argv) {
|
|
ggml_time_init();
|
|
|
|
const int64_t t_main_start_us = ggml_time_us();
|
|
|
|
gpt_params params;
|
|
|
|
if (gpt_params_parse(argc, argv, params) == false) {
|
|
return 1;
|
|
}
|
|
|
|
int64_t t_load_us = 0;
|
|
|
|
gpt2bpe_vocab vocab;
|
|
falcon_model model;
|
|
|
|
// load the model
|
|
{
|
|
const int64_t t_start_us = ggml_time_us();
|
|
|
|
if (!falcon_model_load(params.model, model, vocab)) {
|
|
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
|
|
return 1;
|
|
}
|
|
|
|
t_load_us = ggml_time_us() - t_start_us;
|
|
|
|
}
|
|
|
|
if (params.seed < 0) {
|
|
params.seed = time(NULL);
|
|
}
|
|
|
|
if (params.top_k == 0) {
|
|
params.top_k = model.hparams.n_vocab;
|
|
}
|
|
|
|
printf("%s: seed = %d\n", __func__, params.seed);
|
|
printf("%s: temp = %.3f\n", __func__, params.temp);
|
|
printf("%s: top_k = %d\n", __func__, params.top_k);
|
|
printf("%s: top_p = %.3f\n", __func__, params.top_p);
|
|
printf("%s: repeat_last_n = %d\n", __func__, params.repeat_last_n);
|
|
printf("%s: repeat_penalty = %.3f\n", __func__, params.repeat_penalty);
|
|
|
|
std::mt19937 rng(params.seed);
|
|
|
|
if (params.prompt.empty()) {
|
|
params.prompt = "Once upon";
|
|
}
|
|
|
|
std::vector<int32_t> last_n_tokens(model.hparams.n_ctx);
|
|
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
|
|
|
|
int n_past = 0;
|
|
|
|
int64_t t_sample_us = 0;
|
|
int64_t t_predict_us = 0;
|
|
|
|
std::vector<float> logits;
|
|
|
|
// tokenize the prompt
|
|
std::vector<gpt2bpe_vocab::id> embd_inp = gpt2bpe_tokenize(vocab, params.prompt,false, false);
|
|
|
|
params.n_predict = std::min(params.n_predict, model.hparams.n_ctx - (int) embd_inp.size());
|
|
|
|
printf("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
|
|
// for (size_t i = 0; i < embd_inp.size(); i++) {
|
|
// printf("%s: token[%zu] = %6d, %s\n", __func__, i, embd_inp[i], vocab.id_to_token[embd_inp[i]].c_str());
|
|
// }
|
|
|
|
if( model.hparams.n_ctx < params.n_predict+embd_inp.size() ) {
|
|
params.n_predict = model.hparams.n_ctx-embd_inp.size();
|
|
}
|
|
|
|
printf("%s: n_predict = %d\n", __func__, params.n_predict);
|
|
printf("\n");
|
|
|
|
std::vector<gpt2bpe_vocab::id> embd;
|
|
|
|
// determine the required inference memory per token:
|
|
size_t mem_per_token = 0;
|
|
falcon_eval(model, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token);
|
|
|
|
for (size_t i = embd.size(); i < embd_inp.size() + params.n_predict; i++) {
|
|
// predict
|
|
if (embd.size() > 0) {
|
|
const int64_t t_start_us = ggml_time_us();
|
|
|
|
if (!falcon_eval(model, params.n_threads, n_past, embd, logits, mem_per_token)) {
|
|
printf("Failed to predict\n");
|
|
return 1;
|
|
}
|
|
|
|
t_predict_us += ggml_time_us() - t_start_us;
|
|
}
|
|
|
|
n_past += embd.size();
|
|
embd.clear();
|
|
|
|
if (i >= embd_inp.size()) {
|
|
// sample next token
|
|
const int top_k = params.top_k;
|
|
const float top_p = params.top_p;
|
|
const float temp = params.temp;
|
|
const int repeat_last_n = params.repeat_last_n;
|
|
const float repeat_penalty = params.repeat_penalty;
|
|
|
|
const int n_vocab = model.hparams.n_vocab;
|
|
|
|
gpt2bpe_vocab::id id = 0;
|
|
|
|
{
|
|
const int64_t t_start_sample_us = ggml_time_us();
|
|
|
|
id = sample_top_k_top_p_repeat(vocab, logits.data() + (logits.size() - n_vocab), last_n_tokens.data(), last_n_tokens.size(), top_k, top_p, temp, repeat_last_n, repeat_penalty, rng);
|
|
|
|
last_n_tokens.erase(last_n_tokens.begin());
|
|
last_n_tokens.push_back(id);
|
|
|
|
t_sample_us += ggml_time_us() - t_start_sample_us;
|
|
}
|
|
|
|
// add it to the context
|
|
embd.push_back(id);
|
|
} else {
|
|
// if here, it means we are still processing the input prompt
|
|
for (size_t k = i; k < embd_inp.size(); k++) {
|
|
embd.push_back(embd_inp[k]);
|
|
if (embd.size() > params.n_batch) {
|
|
break;
|
|
}
|
|
}
|
|
i += embd.size() - 1;
|
|
}
|
|
|
|
// display text
|
|
for (auto id : embd) {
|
|
printf("%s", vocab.id_to_token[id].c_str() );
|
|
}
|
|
fflush(stdout);
|
|
|
|
// end of text token
|
|
if (vocab.special_eos_id != -1 && embd.back() == vocab.special_eos_id) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// report timing
|
|
{
|
|
const int64_t t_main_end_us = ggml_time_us();
|
|
|
|
printf("\n\n");
|
|
printf("%s: mem per token = %8zu bytes\n", __func__, mem_per_token);
|
|
printf("%s: load time = %8.2f ms\n", __func__, t_load_us/1000.0f);
|
|
printf("%s: sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f);
|
|
printf("%s: predict time = %8.2f ms / %.2f ms per token\n", __func__, t_predict_us/1000.0f, t_predict_us/1000.0f/n_past);
|
|
printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f);
|
|
}
|
|
|
|
ggml_free(model.ctx);
|
|
|
|
return 0;
|
|
}
|