mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-26 20:22:25 +01:00
3fd62a6b1c
* py : type-check all Python scripts with Pyright * server-tests : use trailing slash in openai base_url * server-tests : add more type annotations * server-tests : strip "chat" from base_url in oai_chat_completions * server-tests : model metadata is a dict * ci : disable pip cache in type-check workflow The cache is not shared between branches, and it's 250MB in size, so it would become quite a big part of the 10GB cache limit of the repo. * py : fix new type errors from master branch * tests : fix test-tokenizer-random.py Apparently, gcc applies optimisations even when pre-processing, which confuses pycparser. * ci : only show warnings and errors in python type-check The "information" level otherwise has entries from 'examples/pydantic_models_to_grammar.py', which could be confusing for someone trying to figure out what failed, considering that these messages can safely be ignored even though they look like errors.
500 lines
26 KiB
Python
500 lines
26 KiB
Python
#!/usr/bin/env python3
|
|
# train-text-from-scratch checkpoint --> gguf conversion
|
|
|
|
import argparse
|
|
import os
|
|
import struct
|
|
import sys
|
|
import numpy as np
|
|
from pathlib import Path
|
|
|
|
if 'NO_LOCAL_GGUF' not in os.environ:
|
|
sys.path.insert(1, str(Path(__file__).parent / '..' / '..' / 'gguf-py'))
|
|
import gguf
|
|
|
|
# gguf constants
|
|
LLM_KV_OPTIMIZER_TYPE = "optimizer.type"
|
|
LLM_KV_OPTIMIZER_TYPE_ADAM = "adam"
|
|
LLM_KV_OPTIMIZER_TYPE_LBFGS = "lbfgs"
|
|
LLM_KV_OPTIMIZER_FILE_VERSION = "optimizer.file_version"
|
|
LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT = "optimizer.convergence_past_count"
|
|
LLM_KV_OPTIMIZER_PARAMETER_COUNT = "optimizer.parameter_count"
|
|
LLM_KV_OPTIMIZER_ITERATION_COUNT = "optimizer.iteration_count"
|
|
LLM_KV_OPTIMIZER_JUST_INITIALIZED = "optimizer.just_initialized"
|
|
LLM_KV_OPTIMIZER_ADAM_BEST_LOSS = "optimizer.adam.best_loss"
|
|
LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS = "optimizer.adam.previous_loss"
|
|
LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT = "optimizer.adam.no_improvement_count"
|
|
LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT = "optimizer.lbfgs.approx_hessian_count"
|
|
LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS = "optimizer.lbfgs.best_loss"
|
|
LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP = "optimizer.lbfgs.line_search_step"
|
|
LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J = "optimizer.lbfgs.line_search_j"
|
|
LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K = "optimizer.lbfgs.line_search_k"
|
|
LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END = "optimizer.lbfgs.line_search_end"
|
|
LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT = "optimizer.lbfgs.no_improvement_count"
|
|
|
|
LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS = "optimizer.adam.first_moments"
|
|
LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS = "optimizer.adam.second_moments"
|
|
LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES = "optimizer.adam.past_loss_values"
|
|
|
|
LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS = "optimizer.lbfgs.current_parameters"
|
|
LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS = "optimizer.lbfgs.previous_parameters"
|
|
LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS = "optimizer.lbfgs.current_gradients"
|
|
LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS = "optimizer.lbfgs.previous_gradients"
|
|
LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION = "optimizer.lbfgs.search_direction"
|
|
LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES = "optimizer.lbfgs.past_loss_values"
|
|
LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA = "optimizer.lbfgs.memory_alpha"
|
|
LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS = "optimizer.lbfgs.memory_ys"
|
|
LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S = "optimizer.lbfgs.memory_s"
|
|
LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y = "optimizer.lbfgs.memory_y"
|
|
|
|
LLM_KV_TRAINING_TYPE_TRAIN_MODEL = "train_model"
|
|
LLM_KV_TRAINING_TYPE_FINETUNE_LORA = "finetune_lora"
|
|
LLM_KV_TRAINING_TYPE = "training.type"
|
|
LLM_KV_TRAINING_FILE_VERSION = "training.file_version"
|
|
LLM_KV_TRAINING_ITERATION_COUNT = "training.iteration_count"
|
|
LLM_KV_TRAINING_SAMPLE_COUNT = "training.sample_count"
|
|
LLM_KV_TRAINING_TOKEN_COUNT = "training.token_count"
|
|
|
|
class Tensor:
|
|
def __init__(self, dtype='f', ne=None):
|
|
if ne is None:
|
|
ne = []
|
|
self.dtype = dtype
|
|
self.ne = ne
|
|
self.nbytes = 0
|
|
if self.dtype == 'f':
|
|
if len(self.ne) == 0:
|
|
self.nbytes = 0
|
|
else:
|
|
self.nbytes = int(np.prod(self.ne)) * 4
|
|
else:
|
|
raise ValueError(f"Unhandled data type '{self.dtype}'")
|
|
|
|
def load(self, data, offset):
|
|
nd = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
namelen = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
dtype = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
|
|
assert(nd == len(self.ne))
|
|
ne = []
|
|
for d in range(nd):
|
|
n = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
ne.append(n)
|
|
|
|
assert(tuple(ne) == tuple(self.ne))
|
|
|
|
if self.dtype == 'f':
|
|
assert(dtype == 0)
|
|
else:
|
|
raise ValueError(f"Unhandled data type '{self.dtype}'")
|
|
|
|
self.name = bytes(data[offset:offset+namelen]); offset += namelen
|
|
# 32-byte alignment
|
|
offset += (0 - offset) & 31
|
|
self.data = data[offset:offset+self.nbytes]
|
|
offset += self.nbytes
|
|
return offset
|
|
|
|
def max_storage_size(self):
|
|
result = 0
|
|
result += 4 # nd
|
|
result += 4 # namelen
|
|
result += 4 # dtype
|
|
result += len(self.ne)*8 # ne
|
|
result += 48 # name (maximum as of commit 3b5515bbe0e2224425986ba24f1f5d84aa38dce9)
|
|
result += 31 # 32-byte alignment
|
|
result += self.nbytes
|
|
return result
|
|
|
|
def save_gguf(self, gguf_writer, name):
|
|
gguf_writer.add_tensor(
|
|
name=name,
|
|
tensor=self.data,
|
|
raw_shape=np.array(list(reversed(self.ne))),
|
|
raw_dtype=gguf.GGMLQuantizationType.F32)
|
|
|
|
class OptimizationParamsV0:
|
|
def __init__(self):
|
|
pass
|
|
|
|
def load(self, data, offset):
|
|
self.type = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.n_threads = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.past = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.delta = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.print_forward_graph = struct.unpack('<?', bytes(data[offset:offset + 1]))[0]; offset += 4 # 32bit-aligned
|
|
self.print_backward_graph = struct.unpack('<?', bytes(data[offset:offset + 1]))[0]; offset += 4 # 32bit-aligned
|
|
self.adam_n_iter = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.adam_sched = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.adam_decay = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.adam_alpha = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.adam_beta1 = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.adam_beta2 = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.adam_eps = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.adam_eps_f = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.adam_eps_g = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.lbfgs_m = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.lbfgs_n_iter = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.lbfgs_max_linesearch = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.lbfgs_eps = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.lbfgs_ftol = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.lbfgs_wolfe = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.lbfgs_min_step = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.lbfgs_max_step = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.lbfgs_linesearch = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
return offset
|
|
|
|
class OptimizationContext:
|
|
def __init__(self):
|
|
pass
|
|
|
|
def load(self, data, offset):
|
|
self.version = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]
|
|
offset += 4
|
|
|
|
if self.version == 0:
|
|
params = OptimizationParamsV0()
|
|
offset = params.load(data, offset)
|
|
self.past = params.past
|
|
self.lbfgs_m = params.lbfgs_m
|
|
self.nx = struct.unpack('N', bytes(data[offset:offset + 8]))[0]; offset += 8
|
|
self.iter = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.just_initialized = bool(struct.unpack('<i', bytes(data[offset:offset + 4]))[0]); offset += 4
|
|
self.type = params.type
|
|
|
|
self.adam_m = Tensor('f', [self.nx])
|
|
self.adam_v = Tensor('f', [self.nx])
|
|
self.adam_pf = Tensor('f', [self.past] if self.past > 0 else [])
|
|
|
|
self.lbfgs_x = Tensor('f', [self.nx])
|
|
self.lbfgs_xp = Tensor('f', [self.nx])
|
|
self.lbfgs_g = Tensor('f', [self.nx])
|
|
self.lbfgs_gp = Tensor('f', [self.nx])
|
|
self.lbfgs_d = Tensor('f', [self.nx])
|
|
self.lbfgs_pf = Tensor('f', [self.past] if self.past > 0 else [])
|
|
self.lbfgs_lmal = Tensor('f', [self.lbfgs_m])
|
|
self.lbfgs_lmys = Tensor('f', [self.lbfgs_m])
|
|
self.lbfgs_lms = Tensor('f', [self.nx, self.lbfgs_m])
|
|
self.lbfgs_lmy = Tensor('f', [self.nx, self.lbfgs_m])
|
|
|
|
if self.type == 0:
|
|
# these tensors are stored, but we don't need their data
|
|
x = Tensor('f', [self.nx])
|
|
g = Tensor('f', [self.nx])
|
|
g2 = Tensor('f', [self.nx])
|
|
mh = Tensor('f', [self.nx])
|
|
vh = Tensor('f', [self.nx])
|
|
|
|
offset = x.load(data, offset)
|
|
offset = g.load(data, offset)
|
|
offset = g2.load(data, offset)
|
|
offset = self.adam_m.load(data, offset)
|
|
offset = self.adam_v.load(data, offset)
|
|
offset = mh.load(data, offset)
|
|
offset = vh.load(data, offset)
|
|
offset = self.adam_pf.load(data, offset)
|
|
|
|
self.adam_fx_best = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.adam_fx_prev = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.adam_n_no_improvement = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
|
|
elif self.type == 1:
|
|
offset = self.lbfgs_x.load(data, offset)
|
|
offset = self.lbfgs_xp.load(data, offset)
|
|
offset = self.lbfgs_g.load(data, offset)
|
|
offset = self.lbfgs_gp.load(data, offset)
|
|
offset = self.lbfgs_d.load(data, offset)
|
|
offset = self.lbfgs_pf.load(data, offset)
|
|
offset = self.lbfgs_lmal.load(data, offset)
|
|
offset = self.lbfgs_lmys.load(data, offset)
|
|
offset = self.lbfgs_lms.load(data, offset)
|
|
offset = self.lbfgs_lmy.load(data, offset)
|
|
|
|
self.lbfgs_fx_best = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.lbfgs_step = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.lbfgs_j = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.lbfgs_k = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.lbfgs_end = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.lbfgs_n_no_improvement = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
|
|
else:
|
|
raise ValueError('Unknown optimizer type')
|
|
|
|
|
|
elif self.version == 1:
|
|
self.past = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.lbfgs_m = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.nx = struct.unpack('N', bytes(data[offset:offset + 8]))[0]; offset += 8
|
|
self.iter = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.just_initialized = bool(struct.unpack('<i', bytes(data[offset:offset + 4]))[0]); offset += 4
|
|
|
|
self.adam_m = Tensor('f', [self.nx])
|
|
self.adam_v = Tensor('f', [self.nx])
|
|
self.adam_pf = Tensor('f', [self.past] if self.past > 0 else [])
|
|
|
|
self.lbfgs_x = Tensor('f', [self.nx])
|
|
self.lbfgs_xp = Tensor('f', [self.nx])
|
|
self.lbfgs_g = Tensor('f', [self.nx])
|
|
self.lbfgs_gp = Tensor('f', [self.nx])
|
|
self.lbfgs_d = Tensor('f', [self.nx])
|
|
self.lbfgs_pf = Tensor('f', [self.past] if self.past > 0 else [])
|
|
self.lbfgs_lmal = Tensor('f', [self.lbfgs_m])
|
|
self.lbfgs_lmys = Tensor('f', [self.lbfgs_m])
|
|
self.lbfgs_lms = Tensor('f', [self.nx, self.lbfgs_m])
|
|
self.lbfgs_lmy = Tensor('f', [self.nx, self.lbfgs_m])
|
|
|
|
# forgot to save type in version 1:
|
|
# guess self.type from number of remaining bytes
|
|
size_type_0 = 12 + sum([t.max_storage_size() for t in
|
|
[self.adam_m, self.adam_v]
|
|
+([self.adam_pf] if (self.past > 0) else [])])
|
|
size_type_1 = 24 + sum([t.max_storage_size() for t in
|
|
[self.lbfgs_x, self.lbfgs_xp, self.lbfgs_g,
|
|
self.lbfgs_gp, self.lbfgs_d, self.lbfgs_pf,
|
|
self.lbfgs_lmal, self.lbfgs_lmys,
|
|
self.lbfgs_lms, self.lbfgs_lmy]
|
|
+([self.lbfgs_pf] if (self.past > 0) else [])])
|
|
# due to alignment padding the size might not by exact
|
|
# but the difference in size for both types is significant,
|
|
# so we can just use whichever is closest
|
|
remaining = len(data) - offset
|
|
if abs(remaining - size_type_0) < abs(remaining - size_type_1):
|
|
self.type = 0
|
|
else:
|
|
self.type = 1
|
|
|
|
if self.type == 0:
|
|
offset = self.adam_m.load(data, offset)
|
|
offset = self.adam_v.load(data, offset)
|
|
offset = self.adam_pf.load(data,offset)
|
|
|
|
self.adam_fx_best = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.adam_fx_prev = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.adam_n_no_improvement = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
|
|
elif self.type == 1:
|
|
offset = self.lbfgs_x.load(data, offset)
|
|
offset = self.lbfgs_xp.load(data, offset)
|
|
offset = self.lbfgs_g.load(data, offset)
|
|
offset = self.lbfgs_gp.load(data, offset)
|
|
offset = self.lbfgs_d.load(data, offset)
|
|
offset = self.lbfgs_pf.load(data, offset)
|
|
offset = self.lbfgs_lmal.load(data, offset)
|
|
offset = self.lbfgs_lmys.load(data, offset)
|
|
offset = self.lbfgs_lms.load(data, offset)
|
|
offset = self.lbfgs_lmy.load(data, offset)
|
|
|
|
self.lbfgs_fx_best = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.lbfgs_step = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.lbfgs_j = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.lbfgs_k = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.lbfgs_end = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.lbfgs_n_no_improvement = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
|
|
else:
|
|
raise ValueError('Invalid version of checkpoint file')
|
|
|
|
return offset
|
|
|
|
def save_gguf(self, gguf_writer):
|
|
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_FILE_VERSION, 0)
|
|
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT, self.past)
|
|
gguf_writer.add_uint64(LLM_KV_OPTIMIZER_PARAMETER_COUNT, self.nx)
|
|
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_ITERATION_COUNT, self.iter)
|
|
gguf_writer.add_bool(LLM_KV_OPTIMIZER_JUST_INITIALIZED, self.just_initialized)
|
|
|
|
if self.type == 0:
|
|
gguf_writer.add_string(LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_ADAM)
|
|
gguf_writer.add_float32(LLM_KV_OPTIMIZER_ADAM_BEST_LOSS, self.adam_fx_best)
|
|
gguf_writer.add_float32(LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS, self.adam_fx_prev)
|
|
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT, self.adam_n_no_improvement)
|
|
|
|
self.adam_m.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS)
|
|
self.adam_v.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS)
|
|
if self.past > 0:
|
|
self.adam_pf.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES)
|
|
|
|
elif self.type == 1:
|
|
gguf_writer.add_string(LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_LBFGS)
|
|
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT, self.lbfgs_m)
|
|
gguf_writer.add_float32(LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS, self.lbfgs_fx_best)
|
|
gguf_writer.add_float32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP, self.lbfgs_step)
|
|
gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J, self.lbfgs_j)
|
|
gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K, self.lbfgs_k)
|
|
gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END, self.lbfgs_end)
|
|
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT, self.lbfgs_n_no_improvement)
|
|
|
|
self.lbfgs_x.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS)
|
|
self.lbfgs_xp.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS)
|
|
self.lbfgs_g.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS)
|
|
self.lbfgs_gp.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS)
|
|
self.lbfgs_d.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION)
|
|
if self.past > 0:
|
|
self.lbfgs_pf.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES)
|
|
self.lbfgs_lmal.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA)
|
|
self.lbfgs_lmys.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS)
|
|
self.lbfgs_lms.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S)
|
|
self.lbfgs_lmy.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y)
|
|
else:
|
|
raise ValueError('Unknown optimizer type')
|
|
|
|
class ModelParams:
|
|
def __init__(self):
|
|
pass
|
|
|
|
def load(self, data, offset):
|
|
self.n_vocab = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.n_embd = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.n_mult = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.n_head = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.n_layer = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.n_rot = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
return offset
|
|
|
|
def get_n_ff(self):
|
|
# struct my_llama_model::get_n_ff in train-text-from-scratch.cpp commit 3b5515bbe0e2224425986ba24f1f5d84aa38dce9
|
|
return ((2*(4*self.n_embd)//3 + self.n_mult - 1)//self.n_mult)*self.n_mult
|
|
|
|
def save_gguf(self, gguf_writer):
|
|
# self.n_vocab not saved
|
|
gguf_writer.add_embedding_length(self.n_embd)
|
|
gguf_writer.add_head_count(self.n_head)
|
|
gguf_writer.add_block_count(self.n_layer)
|
|
gguf_writer.add_rope_dimension_count(self.n_rot)
|
|
gguf_writer.add_feed_forward_length(self.get_n_ff())
|
|
|
|
def tensor_name(key, bid=None):
|
|
return gguf.TENSOR_NAMES[key].format(bid=bid) + ".weight"
|
|
|
|
class Layer:
|
|
def __init__(self, params, bid):
|
|
self.bid = bid
|
|
self.att_norm = Tensor('f', [params.n_embd])
|
|
self.wq = Tensor('f', [params.n_embd, params.n_embd])
|
|
self.wk = Tensor('f', [params.n_embd, params.n_embd])
|
|
self.wv = Tensor('f', [params.n_embd, params.n_embd])
|
|
self.wo = Tensor('f', [params.n_embd, params.n_embd])
|
|
self.ffn_norm = Tensor('f', [params.n_embd])
|
|
self.w1 = Tensor('f', [params.n_embd, params.get_n_ff()])
|
|
self.w2 = Tensor('f', [params.get_n_ff(), params.n_embd])
|
|
self.w3 = Tensor('f', [params.n_embd, params.get_n_ff()])
|
|
|
|
def load(self, data, offset):
|
|
offset = self.att_norm.load(data, offset)
|
|
offset = self.wq.load(data, offset)
|
|
offset = self.wk.load(data, offset)
|
|
offset = self.wv.load(data, offset)
|
|
offset = self.wo.load(data, offset)
|
|
offset = self.ffn_norm.load(data, offset)
|
|
offset = self.w1.load(data, offset)
|
|
offset = self.w2.load(data, offset)
|
|
offset = self.w3.load(data, offset)
|
|
return offset
|
|
|
|
def save_gguf(self, gguf_writer):
|
|
self.att_norm.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_NORM, self.bid))
|
|
self.wq.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_Q, self.bid))
|
|
self.wk.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_K, self.bid))
|
|
self.wv.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_V, self.bid))
|
|
self.wo.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, self.bid))
|
|
self.ffn_norm.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_NORM, self.bid))
|
|
self.w1.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_GATE, self.bid))
|
|
self.w2.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, self.bid))
|
|
self.w3.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_UP, self.bid))
|
|
|
|
class Model:
|
|
def __init__(self):
|
|
self.params = ModelParams()
|
|
self.layers = []
|
|
|
|
def load(self, data, offset):
|
|
offset = self.params.load(data, offset)
|
|
|
|
self.tok_embd = Tensor('f', [self.params.n_embd, self.params.n_vocab])
|
|
self.norm = Tensor('f', [self.params.n_embd])
|
|
self.output = Tensor('f', [self.params.n_embd, self.params.n_vocab])
|
|
|
|
offset = self.tok_embd.load(data, offset)
|
|
offset = self.norm.load(data, offset)
|
|
offset = self.output.load(data, offset)
|
|
|
|
self.layers.clear()
|
|
for bid in range(self.params.n_layer):
|
|
layer = Layer(self.params, bid)
|
|
offset = layer.load(data, offset)
|
|
self.layers.append(layer)
|
|
|
|
return offset
|
|
|
|
def save_gguf(self, gguf_writer):
|
|
self.params.save_gguf(gguf_writer)
|
|
|
|
self.tok_embd.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD))
|
|
self.norm.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.OUTPUT_NORM))
|
|
self.output.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.OUTPUT))
|
|
|
|
for layer in self.layers:
|
|
layer.save_gguf(gguf_writer)
|
|
|
|
class Checkpoint:
|
|
def __init__(self):
|
|
self.model = Model()
|
|
self.opt_ctx = OptimizationContext()
|
|
|
|
def load(self, data, offset):
|
|
magic = bytes(reversed(data[offset:offset + 4])); offset += 4
|
|
if magic != b'ggcp':
|
|
raise ValueError(f"File header magic indicates, that this is no checkpoint file. Expected 'ggcp', Got '{str(magic)}'")
|
|
|
|
self.version = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
if self.version != 0:
|
|
raise ValueError('Invalid version of checkpoint file')
|
|
|
|
self.train_its = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.train_samples = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
self.train_tokens = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
|
|
|
offset = self.model.load(data, offset)
|
|
offset = self.opt_ctx.load(data, offset)
|
|
|
|
return offset
|
|
|
|
def save_gguf(self, gguf_writer):
|
|
gguf_writer.add_file_type(gguf.GGMLQuantizationType.F32)
|
|
gguf_writer.add_layer_norm_rms_eps(1e-5)
|
|
gguf_writer.add_uint32(LLM_KV_TRAINING_FILE_VERSION, 0)
|
|
gguf_writer.add_string(LLM_KV_TRAINING_TYPE, LLM_KV_TRAINING_TYPE_TRAIN_MODEL)
|
|
gguf_writer.add_uint32(LLM_KV_TRAINING_ITERATION_COUNT, self.train_its)
|
|
gguf_writer.add_uint32(LLM_KV_TRAINING_SAMPLE_COUNT, self.train_samples)
|
|
gguf_writer.add_uint32(LLM_KV_TRAINING_TOKEN_COUNT, self.train_tokens)
|
|
self.model.save_gguf(gguf_writer)
|
|
self.opt_ctx.save_gguf(gguf_writer)
|
|
|
|
def handle_args():
|
|
parser = argparse.ArgumentParser(description = 'Convert train-text-from-scratch checkpoints to GGUF')
|
|
parser.add_argument('--input', '-i', type = Path, help = 'Input train checkpoint filename', required=True)
|
|
parser.add_argument('--output', '-o', type = Path, help ='Output GGUF filename', required=True)
|
|
return parser.parse_args()
|
|
|
|
def main():
|
|
cfg = handle_args()
|
|
data = np.memmap(cfg.input, mode = 'r')
|
|
chk = Checkpoint()
|
|
offset = 0
|
|
offset = chk.load(data, offset)
|
|
# we should have read all available data
|
|
assert(offset == len(data))
|
|
|
|
gguf_writer = gguf.GGUFWriter(cfg.output, gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA], use_temp_file = False)
|
|
chk.save_gguf(gguf_writer)
|
|
print(" gguf: write header")
|
|
gguf_writer.write_header_to_file()
|
|
print(" gguf: write metadata")
|
|
gguf_writer.write_kv_data_to_file()
|
|
print(" gguf: write tensors")
|
|
gguf_writer.write_tensors_to_file()
|
|
gguf_writer.close()
|
|
|
|
if __name__ == '__main__':
|
|
main()
|