mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-15 06:40:45 +01:00
cbef542879
- use f-strings where possible - drop first param of encode/decode functions since "utf-8" is the default
275 lines
8.9 KiB
Python
275 lines
8.9 KiB
Python
# Convert a LLaMA model checkpoint to a ggjt compatible file
|
|
#
|
|
# Load the model using Torch
|
|
# Iterate over all variables and write them to a binary file.
|
|
#
|
|
# For each variable, write the following:
|
|
# - Number of dimensions (int)
|
|
# - Name length (int)
|
|
# - Dimensions (int[n_dims])
|
|
# - Name (char[name_length])
|
|
# - Data (float[n_dims])
|
|
#
|
|
# At the start of the ggml file we write the model parameters
|
|
# and vocabulary.
|
|
#
|
|
|
|
import argparse
|
|
import os
|
|
import sys
|
|
import json
|
|
import struct
|
|
import numpy as np
|
|
import torch
|
|
|
|
from sentencepiece import SentencePieceProcessor
|
|
|
|
QK = 32
|
|
|
|
GGML_TYPE_Q4_0 = 0
|
|
GGML_TYPE_Q4_1 = 1
|
|
GGML_TYPE_I8 = 2
|
|
GGML_TYPE_I16 = 3
|
|
GGML_TYPE_I32 = 4
|
|
GGML_TYPE_F16 = 5
|
|
GGML_TYPE_F32 = 6
|
|
|
|
WTYPES = {
|
|
0: GGML_TYPE_F32,
|
|
1: GGML_TYPE_F16,
|
|
2: GGML_TYPE_Q4_0,
|
|
3: GGML_TYPE_Q4_1,
|
|
}
|
|
|
|
GGML_BLCK_SIZE = {
|
|
GGML_TYPE_Q4_0: QK,
|
|
GGML_TYPE_Q4_1: QK,
|
|
GGML_TYPE_I8: 1,
|
|
GGML_TYPE_I16: 1,
|
|
GGML_TYPE_I32: 1,
|
|
GGML_TYPE_F16: 1,
|
|
GGML_TYPE_F32: 1,
|
|
}
|
|
|
|
GGML_TYPE_SIZE = {
|
|
GGML_TYPE_Q4_0: 4 + QK//2,
|
|
GGML_TYPE_Q4_1: 4*2 + QK//2,
|
|
GGML_TYPE_I8: 1,
|
|
GGML_TYPE_I16: 2,
|
|
GGML_TYPE_I32: 4,
|
|
GGML_TYPE_F16: 2,
|
|
GGML_TYPE_F32: 4,
|
|
}
|
|
|
|
def ggml_nelements(shape):
|
|
r = 1
|
|
for i in shape:
|
|
r *= i
|
|
return r
|
|
|
|
def ggml_nbytes(shape, ftype):
|
|
x = ggml_nelements(shape)
|
|
t = WTYPES[ftype]
|
|
x *= GGML_TYPE_SIZE[t]
|
|
x //= GGML_BLCK_SIZE[t]
|
|
return x
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(description='Convert a LLaMA model checkpoint to a ggml compatible file')
|
|
parser.add_argument('dir_model', help='directory containing the model checkpoint')
|
|
parser.add_argument('ftype', help='file type (0: float32, 1: float16)', type=int, choices=[0, 1], default=1)
|
|
parser.add_argument('vocab_only', help='only write vocab to file', type=int, default=0, nargs='?')
|
|
return parser.parse_args()
|
|
|
|
def get_n_parts(dim):
|
|
mappings = {4096: 1, 5120: 2, 6656: 4, 8192: 8}
|
|
n_parts = mappings.get(dim)
|
|
if n_parts is None:
|
|
print(f"Invalid dim: {dim}")
|
|
sys.exit(1)
|
|
|
|
print(f"n_parts = {n_parts}\n")
|
|
return n_parts
|
|
|
|
def load_hparams_and_tokenizer(dir_model):
|
|
# `dir_model` is something like `models/7B` or `models/7B/`.
|
|
# "tokenizer.model" is expected under model's parent dir.
|
|
# When `dir_model` is a symlink, f"{dir_model}/../tokenizer.model" would not be found.
|
|
# Let's use the model's parent dir directly.
|
|
model_parent_dir = os.path.dirname(os.path.normpath(dir_model))
|
|
fname_hparams = f"{dir_model}/params.json"
|
|
fname_tokenizer = f"{model_parent_dir}/tokenizer.model"
|
|
with open(fname_hparams, "r") as f:
|
|
hparams = json.load(f)
|
|
print(hparams)
|
|
tokenizer = SentencePieceProcessor(fname_tokenizer)
|
|
hparams.update({"vocab_size": tokenizer.vocab_size()})
|
|
return hparams, tokenizer
|
|
|
|
def write_header(fout, hparams, ftype):
|
|
keys = ["vocab_size", "dim", "multiple_of", "n_heads", "n_layers"]
|
|
values = [
|
|
0x67676a74, # magic: ggjt in hex
|
|
1, # file version
|
|
*[hparams[key] for key in keys],
|
|
hparams["dim"] // hparams["n_heads"], # rot (obsolete)
|
|
ftype
|
|
]
|
|
fout.write(struct.pack("i" * len(values), *values))
|
|
|
|
def write_tokens(fout, tokenizer):
|
|
for i in range(tokenizer.vocab_size()):
|
|
if tokenizer.is_unknown(i):
|
|
text = " \u2047 ".encode()
|
|
elif tokenizer.is_control(i):
|
|
text = b""
|
|
elif tokenizer.is_byte(i):
|
|
piece = tokenizer.id_to_piece(i)
|
|
if len(piece) != 6:
|
|
print(f"Invalid token: {piece}")
|
|
sys.exit(1)
|
|
byte_value = int(piece[3:-1], 16)
|
|
text = struct.pack("B", byte_value)
|
|
else:
|
|
text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode()
|
|
fout.write(struct.pack("i", len(text)))
|
|
fout.write(text)
|
|
fout.write(struct.pack("f", tokenizer.get_score(i)))
|
|
|
|
def process_and_write_variables(fout, model, ftype, part_id, n_parts):
|
|
for name, datao in model.items():
|
|
if name.endswith("freqs"):
|
|
continue
|
|
|
|
# remove dimensions with a single element
|
|
data = datao.numpy().squeeze()
|
|
partshape = data.shape
|
|
n_dims = len(data.shape)
|
|
assert n_dims in (1, 2)
|
|
|
|
print(f"Processing variable: {name} with shape: {partshape} and type: {datao.dtype}")
|
|
|
|
# coerce single-dimensional tensors from float16 to float32
|
|
ftype_cur = 1
|
|
if ftype == 0 or n_dims == 1:
|
|
print(" Converting to float32")
|
|
data = data.astype(np.float32)
|
|
ftype_cur = 0
|
|
blck_size = GGML_BLCK_SIZE[WTYPES[ftype_cur]]
|
|
type_size = GGML_TYPE_SIZE[WTYPES[ftype_cur]]
|
|
|
|
# determine dimension along which multipart tensor is sharded
|
|
#
|
|
# split_dim 0 regex:
|
|
# - output.*
|
|
# - layers.*.attention.wq.weight
|
|
# - layers.*.attention.wk.weight
|
|
# - layers.*.attention.wv.weight
|
|
# - layers.*.feed_forward.w1.weight
|
|
# - layers.*.feed_forward.w3.weight
|
|
#
|
|
# split_dim 1 regex:
|
|
# - tok_embeddings.*
|
|
# - layers.*.attention.wo.weight
|
|
# - layers.*.feed_forward.w2.weight
|
|
#
|
|
if n_dims > 1:
|
|
split_dim = 1
|
|
if "tok_embeddings" in name:
|
|
split_dim = 1
|
|
elif "layers" in name:
|
|
if "attention.wo.weight" in name:
|
|
split_dim = 1
|
|
elif "feed_forward.w2.weight" in name:
|
|
split_dim = 1
|
|
else:
|
|
split_dim = 0
|
|
elif "output" in name:
|
|
split_dim = 0
|
|
|
|
# output tensor header
|
|
fullshape = list(partshape)
|
|
if n_dims > 1:
|
|
fullshape[split_dim] *= n_parts
|
|
sname = name.encode()
|
|
fout.write(struct.pack("iii", n_dims, len(sname), ftype_cur))
|
|
for dim in reversed(fullshape):
|
|
fout.write(struct.pack("i", dim))
|
|
fout.write(sname)
|
|
|
|
# ensure tensor data is aligned
|
|
tensor_data_offset = fout.tell()
|
|
while tensor_data_offset % QK != 0:
|
|
fout.write(struct.pack("B", 0))
|
|
tensor_data_offset += 1
|
|
|
|
# output unified mappable tensor data
|
|
if n_dims == 1 or n_parts == 1:
|
|
# copy tensor which we thankfully received in one piece
|
|
if part_id == 0:
|
|
data.tofile(fout)
|
|
elif split_dim == 0:
|
|
# reassemble multifile tensor containing some of the rows
|
|
rows_per_chunk = partshape[0]
|
|
current_row = part_id * rows_per_chunk
|
|
bytes_per_row = fullshape[1] // blck_size * type_size
|
|
offset = current_row * bytes_per_row
|
|
fout.seek(tensor_data_offset + offset)
|
|
data.tofile(fout)
|
|
elif split_dim == 1:
|
|
# reassemble multifile tensor containing some of the cols
|
|
cols_per_chunk = partshape[1]
|
|
current_col = part_id * cols_per_chunk
|
|
bytes_per_row = fullshape[1] // blck_size * type_size
|
|
offset_current_col = current_col // blck_size * type_size
|
|
for row in range(partshape[0]):
|
|
offset_row = row * bytes_per_row
|
|
offset = offset_row + offset_current_col
|
|
fout.seek(tensor_data_offset + offset)
|
|
data[row].tofile(fout)
|
|
|
|
# advance file position to next tensor
|
|
fout.seek(tensor_data_offset + ggml_nbytes(fullshape, ftype_cur))
|
|
|
|
def main():
|
|
args = parse_args()
|
|
dir_model = args.dir_model
|
|
ftype = args.ftype
|
|
ftype_str = ["f32", "f16"]
|
|
hparams, tokenizer = load_hparams_and_tokenizer(dir_model)
|
|
|
|
print(args)
|
|
|
|
# if only writing vocab to file
|
|
if args.vocab_only:
|
|
fname_model = f"{dir_model}/consolidated.00.pth"
|
|
fname_out = f"{dir_model}/ggml-vocab.bin"
|
|
print(f"Extracting only the vocab from '{fname_model}'\n")
|
|
with open(fname_out, "wb") as fout:
|
|
write_header(fout, hparams, ftype)
|
|
write_tokens(fout, tokenizer)
|
|
print(f"Done. Output file: {fname_out}\n")
|
|
return
|
|
|
|
n_parts = get_n_parts(hparams["dim"])
|
|
fname_out = f"{dir_model}/ggml-model-{ftype_str[ftype]}.bin"
|
|
|
|
# we output a single file for ggml
|
|
with open(fname_out, "wb") as fout:
|
|
write_header(fout, hparams, ftype)
|
|
write_tokens(fout, tokenizer)
|
|
offset_of_tensors = fout.tell()
|
|
# the tensors we load could be split across multiple files
|
|
for part_id in range(n_parts):
|
|
fout.seek(offset_of_tensors)
|
|
print(f"Processing part {part_id+1} of {n_parts}\n")
|
|
fname_model = f"{dir_model}/consolidated.0{part_id}.pth"
|
|
model = torch.load(fname_model, map_location="cpu")
|
|
process_and_write_variables(fout, model, ftype, part_id, n_parts)
|
|
del model
|
|
|
|
print(f"Done. Output file: {fname_out}\n")
|
|
|
|
if __name__ == "__main__":
|
|
main()
|