Georgi Gerganov 152610eda9
server : output embeddings for all tokens when pooling = none (#10861)
* server : add "tokens" output

ggml-ci

* server : output embeddings for all tokens when pooling = none

ggml-ci

* server : update readme [no ci]

* server : fix spacing [no ci]

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>

* server : be explicit about the pooling type in the tests

ggml-ci

* server : update /embeddings and /v1/embeddings endpoints

ggml-ci

* server : do not normalize embeddings when there is no pooling

ggml-ci

* server : update readme

ggml-ci

* server : fixes

* tests : update server tests

ggml-ci

* server : update readme [no ci]

* server : remove rebase artifact

---------

Co-authored-by: Xuan Son Nguyen <thichthat@gmail.com>
2024-12-18 13:01:41 +02:00

383 lines
12 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# type: ignore[reportUnusedImport]
import subprocess
import os
import re
import json
import sys
import requests
import time
from concurrent.futures import ThreadPoolExecutor, as_completed
from typing import (
Any,
Callable,
ContextManager,
Iterable,
Iterator,
List,
Literal,
Tuple,
Set,
)
from re import RegexFlag
class ServerResponse:
headers: dict
status_code: int
body: dict | Any
class ServerProcess:
# default options
debug: bool = False
server_port: int = 8080
server_host: str = "127.0.0.1"
model_hf_repo: str = "ggml-org/models"
model_hf_file: str = "tinyllamas/stories260K.gguf"
model_alias: str = "tinyllama-2"
temperature: float = 0.8
seed: int = 42
# custom options
model_alias: str | None = None
model_url: str | None = None
model_file: str | None = None
model_draft: str | None = None
n_threads: int | None = None
n_gpu_layer: int | None = None
n_batch: int | None = None
n_ubatch: int | None = None
n_ctx: int | None = None
n_ga: int | None = None
n_ga_w: int | None = None
n_predict: int | None = None
n_prompts: int | None = 0
slot_save_path: str | None = None
id_slot: int | None = None
cache_prompt: bool | None = None
n_slots: int | None = None
server_continuous_batching: bool | None = False
server_embeddings: bool | None = False
server_reranking: bool | None = False
server_metrics: bool | None = False
server_slots: bool | None = False
pooling: str | None = None
draft: int | None = None
api_key: str | None = None
response_format: str | None = None
lora_files: List[str] | None = None
disable_ctx_shift: int | None = False
draft_min: int | None = None
draft_max: int | None = None
no_webui: bool | None = None
# session variables
process: subprocess.Popen | None = None
def __init__(self):
if "N_GPU_LAYERS" in os.environ:
self.n_gpu_layer = int(os.environ["N_GPU_LAYERS"])
if "DEBUG" in os.environ:
self.debug = True
if "PORT" in os.environ:
self.server_port = int(os.environ["PORT"])
def start(self, timeout_seconds: int = 10) -> None:
if "LLAMA_SERVER_BIN_PATH" in os.environ:
server_path = os.environ["LLAMA_SERVER_BIN_PATH"]
elif os.name == "nt":
server_path = "../../../build/bin/Release/llama-server.exe"
else:
server_path = "../../../build/bin/llama-server"
server_args = [
"--host",
self.server_host,
"--port",
self.server_port,
"--temp",
self.temperature,
"--seed",
self.seed,
]
if self.model_file:
server_args.extend(["--model", self.model_file])
if self.model_url:
server_args.extend(["--model-url", self.model_url])
if self.model_draft:
server_args.extend(["--model-draft", self.model_draft])
if self.model_hf_repo:
server_args.extend(["--hf-repo", self.model_hf_repo])
if self.model_hf_file:
server_args.extend(["--hf-file", self.model_hf_file])
if self.n_batch:
server_args.extend(["--batch-size", self.n_batch])
if self.n_ubatch:
server_args.extend(["--ubatch-size", self.n_ubatch])
if self.n_threads:
server_args.extend(["--threads", self.n_threads])
if self.n_gpu_layer:
server_args.extend(["--n-gpu-layers", self.n_gpu_layer])
if self.draft is not None:
server_args.extend(["--draft", self.draft])
if self.server_continuous_batching:
server_args.append("--cont-batching")
if self.server_embeddings:
server_args.append("--embedding")
if self.server_reranking:
server_args.append("--reranking")
if self.server_metrics:
server_args.append("--metrics")
if self.server_slots:
server_args.append("--slots")
if self.pooling:
server_args.extend(["--pooling", self.pooling])
if self.model_alias:
server_args.extend(["--alias", self.model_alias])
if self.n_ctx:
server_args.extend(["--ctx-size", self.n_ctx])
if self.n_slots:
server_args.extend(["--parallel", self.n_slots])
if self.n_predict:
server_args.extend(["--n-predict", self.n_predict])
if self.slot_save_path:
server_args.extend(["--slot-save-path", self.slot_save_path])
if self.n_ga:
server_args.extend(["--grp-attn-n", self.n_ga])
if self.n_ga_w:
server_args.extend(["--grp-attn-w", self.n_ga_w])
if self.debug:
server_args.append("--verbose")
if self.lora_files:
for lora_file in self.lora_files:
server_args.extend(["--lora", lora_file])
if self.disable_ctx_shift:
server_args.extend(["--no-context-shift"])
if self.api_key:
server_args.extend(["--api-key", self.api_key])
if self.draft_max:
server_args.extend(["--draft-max", self.draft_max])
if self.draft_min:
server_args.extend(["--draft-min", self.draft_min])
if self.no_webui:
server_args.append("--no-webui")
args = [str(arg) for arg in [server_path, *server_args]]
print(f"bench: starting server with: {' '.join(args)}")
flags = 0
if "nt" == os.name:
flags |= subprocess.DETACHED_PROCESS
flags |= subprocess.CREATE_NEW_PROCESS_GROUP
flags |= subprocess.CREATE_NO_WINDOW
self.process = subprocess.Popen(
[str(arg) for arg in [server_path, *server_args]],
creationflags=flags,
stdout=sys.stdout,
stderr=sys.stdout,
env={**os.environ, "LLAMA_CACHE": "tmp"},
)
server_instances.add(self)
print(f"server pid={self.process.pid}, pytest pid={os.getpid()}")
# wait for server to start
start_time = time.time()
while time.time() - start_time < timeout_seconds:
try:
response = self.make_request("GET", "/health", headers={
"Authorization": f"Bearer {self.api_key}" if self.api_key else None
})
if response.status_code == 200:
self.ready = True
return # server is ready
except Exception as e:
pass
print(f"Waiting for server to start...")
time.sleep(0.5)
raise TimeoutError(f"Server did not start within {timeout_seconds} seconds")
def stop(self) -> None:
if self in server_instances:
server_instances.remove(self)
if self.process:
print(f"Stopping server with pid={self.process.pid}")
self.process.kill()
self.process = None
def make_request(
self,
method: str,
path: str,
data: dict | Any | None = None,
headers: dict | None = None,
) -> ServerResponse:
url = f"http://{self.server_host}:{self.server_port}{path}"
parse_body = False
if method == "GET":
response = requests.get(url, headers=headers)
parse_body = True
elif method == "POST":
response = requests.post(url, headers=headers, json=data)
parse_body = True
elif method == "OPTIONS":
response = requests.options(url, headers=headers)
else:
raise ValueError(f"Unimplemented method: {method}")
result = ServerResponse()
result.headers = dict(response.headers)
result.status_code = response.status_code
result.body = response.json() if parse_body else None
print("Response from server", json.dumps(result.body, indent=2))
return result
def make_stream_request(
self,
method: str,
path: str,
data: dict | None = None,
headers: dict | None = None,
) -> Iterator[dict]:
url = f"http://{self.server_host}:{self.server_port}{path}"
if method == "POST":
response = requests.post(url, headers=headers, json=data, stream=True)
else:
raise ValueError(f"Unimplemented method: {method}")
for line_bytes in response.iter_lines():
line = line_bytes.decode("utf-8")
if '[DONE]' in line:
break
elif line.startswith('data: '):
data = json.loads(line[6:])
print("Partial response from server", json.dumps(data, indent=2))
yield data
server_instances: Set[ServerProcess] = set()
class ServerPreset:
@staticmethod
def tinyllama2() -> ServerProcess:
server = ServerProcess()
server.model_hf_repo = "ggml-org/models"
server.model_hf_file = "tinyllamas/stories260K.gguf"
server.model_alias = "tinyllama-2"
server.n_ctx = 256
server.n_batch = 32
server.n_slots = 2
server.n_predict = 64
server.seed = 42
return server
@staticmethod
def bert_bge_small() -> ServerProcess:
server = ServerProcess()
server.model_hf_repo = "ggml-org/models"
server.model_hf_file = "bert-bge-small/ggml-model-f16.gguf"
server.model_alias = "bert-bge-small"
server.n_ctx = 512
server.n_batch = 128
server.n_ubatch = 128
server.n_slots = 2
server.seed = 42
server.server_embeddings = True
return server
@staticmethod
def tinyllama_infill() -> ServerProcess:
server = ServerProcess()
server.model_hf_repo = "ggml-org/models"
server.model_hf_file = "tinyllamas/stories260K-infill.gguf"
server.model_alias = "tinyllama-infill"
server.n_ctx = 2048
server.n_batch = 1024
server.n_slots = 1
server.n_predict = 64
server.temperature = 0.0
server.seed = 42
return server
@staticmethod
def stories15m_moe() -> ServerProcess:
server = ServerProcess()
server.model_hf_repo = "ggml-org/stories15M_MOE"
server.model_hf_file = "stories15M_MOE-F16.gguf"
server.model_alias = "stories15m-moe"
server.n_ctx = 2048
server.n_batch = 1024
server.n_slots = 1
server.n_predict = 64
server.temperature = 0.0
server.seed = 42
return server
@staticmethod
def jina_reranker_tiny() -> ServerProcess:
server = ServerProcess()
server.model_hf_repo = "ggml-org/models"
server.model_hf_file = "jina-reranker-v1-tiny-en/ggml-model-f16.gguf"
server.model_alias = "jina-reranker"
server.n_ctx = 512
server.n_batch = 512
server.n_slots = 1
server.seed = 42
server.server_reranking = True
return server
def parallel_function_calls(function_list: List[Tuple[Callable[..., Any], Tuple[Any, ...]]]) -> List[Any]:
"""
Run multiple functions in parallel and return results in the same order as calls. Equivalent to Promise.all in JS.
Example usage:
results = parallel_function_calls([
(func1, (arg1, arg2)),
(func2, (arg3, arg4)),
])
"""
results = [None] * len(function_list)
exceptions = []
def worker(index, func, args):
try:
result = func(*args)
results[index] = result
except Exception as e:
exceptions.append((index, str(e)))
with ThreadPoolExecutor() as executor:
futures = []
for i, (func, args) in enumerate(function_list):
future = executor.submit(worker, i, func, args)
futures.append(future)
# Wait for all futures to complete
for future in as_completed(futures):
pass
# Check if there were any exceptions
if exceptions:
print("Exceptions occurred:")
for index, error in exceptions:
print(f"Function at index {index}: {error}")
return results
def match_regex(regex: str, text: str) -> bool:
return (
re.compile(
regex, flags=RegexFlag.IGNORECASE | RegexFlag.MULTILINE | RegexFlag.DOTALL
).search(text)
is not None
)
def is_slow_test_allowed():
return os.environ.get("SLOW_TESTS") == "1" or os.environ.get("SLOW_TESTS") == "ON"