mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-07 11:23:56 +01:00
295f85654a
renamed ggml_backend functions changed ggml_buffer and ggml_backend to always be used as pointers rename ggml_tensor::params -> op_params
158 lines
8.6 KiB
C
158 lines
8.6 KiB
C
#pragma once
|
|
|
|
#include "ggml.h"
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
struct ggml_backend;
|
|
|
|
|
|
// backend buffers
|
|
typedef void * ggml_buffer_context_t;
|
|
struct ggml_backend_buffer;
|
|
|
|
struct ggml_backend_buffer_interface {
|
|
// allocator functions
|
|
void (*free_buffer) (struct ggml_backend_buffer * alloc);
|
|
void (*alloc_tensor) (struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor);
|
|
void (*free_tensor) (struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor);
|
|
void (*reset) (struct ggml_backend_buffer * alloc);
|
|
// functions overriden by the backend
|
|
size_t (*get_alloc_size)(struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor); // pre-allocation callback
|
|
void (*init_tensor) (struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor); // post-allocation callback
|
|
void (*free_data) (struct ggml_backend_buffer * alloc); // free backend-specific data // TODO: better name
|
|
};
|
|
|
|
struct ggml_backend_buffer {
|
|
struct ggml_backend_buffer_interface interface;
|
|
ggml_buffer_context_t context;
|
|
void * backend_data;
|
|
};
|
|
|
|
// backend buffer helper functions
|
|
GGML_API void ggml_backend_buffer_free(struct ggml_backend_buffer * alloc);
|
|
static inline void ggml_backend_buffer_tensor_alloc(struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor) { alloc->interface.alloc_tensor(alloc, tensor); }
|
|
static inline void ggml_backend_buffer_free_tensor(struct ggml_backend_buffer * alloc, struct ggml_tensor * tensor) { alloc->interface.free_tensor(alloc, tensor); }
|
|
static inline void ggml_backend_buffer_reset(struct ggml_backend_buffer * alloc) { alloc->interface.reset(alloc); }
|
|
|
|
// default buffer allocators
|
|
// simple buffer allocator: cannot free tensors, good for weights and small contexts
|
|
// default buffer allocator: can free tensors, good for compute contexts
|
|
GGML_API struct ggml_backend_buffer * ggml_allocator_simple_init(void * data, size_t size, size_t alignment);
|
|
GGML_API struct ggml_backend_buffer * ggml_allocator_default_init(void * data, size_t size, size_t alignment, int max_free_blocks);
|
|
|
|
// buffer
|
|
|
|
// buffers have space for the tensor structs in host memory, and tensor data in backend-specific memory
|
|
struct ggml_buffer {
|
|
// host memory
|
|
size_t mem_size;
|
|
void * mem_buffer;
|
|
|
|
// tensor data
|
|
struct ggml_backend * backend;
|
|
struct ggml_backend_buffer * backend_buffer;
|
|
};
|
|
|
|
GGML_API struct ggml_buffer * ggml_buffer_alloc(struct ggml_backend * backend, size_t size, size_t max_tensors);
|
|
GGML_API void ggml_buffer_free(struct ggml_buffer * buffer);
|
|
|
|
// backend
|
|
typedef void * ggml_backend_context_t;
|
|
typedef void * ggml_graph_plan_t;
|
|
|
|
struct ggml_backend_interface {
|
|
const char * (*get_name)(struct ggml_backend * backend);
|
|
|
|
void (*free)(struct ggml_backend * backend);
|
|
|
|
// buffer allocation
|
|
struct ggml_backend_buffer * (*alloc_buffer)(struct ggml_backend * backend, size_t size);
|
|
|
|
// tensor data access
|
|
// these functions can be asynchronous. helper functions are provided for synchronous access that automatically call synchronize
|
|
void (*set_tensor_async)(struct ggml_backend * backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
|
void (*get_tensor_async)(struct ggml_backend * backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
|
void (*synchronize) (struct ggml_backend * backend);
|
|
|
|
// (optional) copy tensor between different backends, allow for single-copy tranfers
|
|
void (*cpy_tensor_from)(struct ggml_backend * backend, struct ggml_tensor * src, struct ggml_tensor * dst);
|
|
void (*cpy_tensor_to) (struct ggml_backend * backend, struct ggml_tensor * src, struct ggml_tensor * dst);
|
|
|
|
// compute graph with a plan
|
|
ggml_graph_plan_t (*graph_plan_create) (struct ggml_backend * backend, struct ggml_cgraph * cgraph);
|
|
void (*graph_plan_free) (struct ggml_backend * backend, ggml_graph_plan_t plan);
|
|
void (*graph_plan_compute)(struct ggml_backend * backend, ggml_graph_plan_t plan);
|
|
|
|
// compute graph without a plan
|
|
void (*graph_compute) (struct ggml_backend * backend, struct ggml_cgraph * cgraph);
|
|
|
|
// check if a backend supports a given operation
|
|
// this could be used to fallback automatically to the CPU backend if a backend doesn't support an operation
|
|
// bool (*supports_op)(struct ggml_backend * backend, struct ggml_tensor * op);
|
|
};
|
|
|
|
struct ggml_backend {
|
|
struct ggml_backend_interface interface;
|
|
ggml_backend_context_t context;
|
|
};
|
|
|
|
// backend helper functions
|
|
static inline const char * ggml_backend_name(struct ggml_backend * backend) { return backend->interface.get_name(backend); }
|
|
static inline void ggml_backend_free(struct ggml_backend * backend) { backend->interface.free(backend); }
|
|
static inline void ggml_backend_tensor_set_async(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { tensor->backend->interface.set_tensor_async(tensor->backend, tensor, data, offset, size); }
|
|
static inline void ggml_backend_tensor_get_async(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { tensor->backend->interface.get_tensor_async(tensor->backend, tensor, data, offset, size); }
|
|
static inline void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { tensor->backend->interface.set_tensor_async(tensor->backend, tensor, data, offset, size); tensor->backend->interface.synchronize(tensor->backend); }
|
|
static inline void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { tensor->backend->interface.get_tensor_async(tensor->backend, tensor, data, offset, size); tensor->backend->interface.synchronize(tensor->backend); }
|
|
static inline void ggml_backend_synchronize(struct ggml_backend * backend) { backend->interface.synchronize(backend); }
|
|
static inline ggml_graph_plan_t ggml_backend_graph_plan_create(struct ggml_backend * backend, struct ggml_cgraph * cgraph) { return backend->interface.graph_plan_create(backend, cgraph); }
|
|
static inline void ggml_backend_graph_plan_free(struct ggml_backend * backend, ggml_graph_plan_t plan) { backend->interface.graph_plan_free(backend, plan); }
|
|
static inline void ggml_backend_graph_plan_compute(struct ggml_backend * backend, ggml_graph_plan_t plan) { backend->interface.graph_plan_compute(backend, plan); }
|
|
static inline void ggml_backend_graph_compute(struct ggml_backend * backend, struct ggml_cgraph * cgraph) { backend->interface.graph_compute(backend, cgraph); }
|
|
|
|
// tensor copy between different backends
|
|
GGML_API void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst);
|
|
|
|
// CPU backend
|
|
GGML_API struct ggml_backend * ggml_backend_cpu_init(void);
|
|
GGML_API void ggml_backend_cpu_set_n_threads(struct ggml_backend * backend_cpu, int n_threads);
|
|
|
|
///////////////////////////
|
|
|
|
// graph splitting
|
|
#define GGML_MAX_SPLITS 200
|
|
#define GGML_MAX_SPLIT_INPUTS 4
|
|
|
|
struct ggml_graph_split {
|
|
char name[GGML_MAX_NAME];
|
|
struct ggml_tensor * src_inputs[GGML_MAX_SPLIT_INPUTS + 1];
|
|
struct ggml_tensor * dst_inputs[GGML_MAX_SPLIT_INPUTS + 1];
|
|
struct ggml_cgraph * graph;
|
|
};
|
|
|
|
// TODO: this shouldn't be fixed size, allocate from ggml_context
|
|
struct ggml_graph_splits {
|
|
int n_splits;
|
|
struct ggml_graph_split splits[GGML_MAX_SPLITS];
|
|
};
|
|
|
|
// TODO: allocate in ggml_context
|
|
struct ggml_graph_splits ggml_graph_split_init(void);
|
|
// this won't be needed once we can allocate graphs from a ggml_context
|
|
GGML_API void ggml_graph_splits_free(struct ggml_graph_splits * splits);
|
|
|
|
// add a split to the graph - single and multiple inputs versions
|
|
GGML_API void ggml_graph_splits_add(struct ggml_graph_splits * splits, struct ggml_tensor ** input, struct ggml_context * ctx, const char * fmt, ...);
|
|
GGML_API void ggml_graph_splits_add_n(struct ggml_graph_splits * splits, struct ggml_tensor *** inputs, struct ggml_context * ctx, const char * fmt, ...);
|
|
|
|
// build graphs for all splits
|
|
GGML_API void ggml_graph_splits_build_forward(struct ggml_graph_splits * splits, struct ggml_tensor * output);
|
|
|
|
// compute
|
|
GGML_API void ggml_graph_splits_compute(struct ggml_graph_splits * splits);
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|