mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-22 09:39:08 +01:00
295f85654a
renamed ggml_backend functions changed ggml_buffer and ggml_backend to always be used as pointers rename ggml_tensor::params -> op_params
1818 lines
71 KiB
Plaintext
1818 lines
71 KiB
Plaintext
static const int GGML_CUDA_MAX_SUBSTREAMS = 1;
|
|
static const bool GGML_CUDA_SEQ_COMPUTE = true;
|
|
|
|
#define WARP_SIZE 32
|
|
#define CUDA_ADD_BLOCK_SIZE 256
|
|
#define CUDA_MUL_BLOCK_SIZE 256
|
|
#define CUDA_SILU_BLOCK_SIZE 256
|
|
#define CUDA_CPY_BLOCK_SIZE 32
|
|
#define CUDA_SCALE_BLOCK_SIZE 256
|
|
#define CUDA_ROPE_BLOCK_SIZE 256
|
|
#define CUDA_DIAG_MASK_INF_BLOCK_SIZE 32
|
|
#define CUDA_DEQUANTIZE_BLOCK_SIZE 256
|
|
#define CUDA_GET_ROWS_BLOCK_SIZE 256
|
|
#define CUDA_QUANTIZE_BLOCK_SIZE 256
|
|
|
|
// dmmv = dequantize_mul_mat_vec
|
|
#ifndef GGML_CUDA_DMMV_X
|
|
#define GGML_CUDA_DMMV_X 32
|
|
#endif
|
|
#ifndef GGML_CUDA_DMMV_Y
|
|
#define GGML_CUDA_DMMV_Y 1
|
|
#endif
|
|
#ifndef GGML_CUDA_MMV_Y
|
|
#define GGML_CUDA_MMV_Y 1
|
|
#endif
|
|
|
|
|
|
#ifndef K_QUANTS_PER_ITERATION
|
|
#define K_QUANTS_PER_ITERATION 2
|
|
#else
|
|
static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2");
|
|
#endif
|
|
|
|
#include <algorithm>
|
|
#include <assert.h>
|
|
#include <atomic>
|
|
#include <climits>
|
|
#include <condition_variable>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <limits>
|
|
#include <mutex>
|
|
#include <queue>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <thread>
|
|
#include <unordered_map>
|
|
#include <unordered_set>
|
|
#include <vector>
|
|
|
|
#include <cuda.h>
|
|
#include <cuda_fp16.h>
|
|
#include <cuda_runtime.h>
|
|
#include <cublas_v2.h>
|
|
#include <curand_kernel.h>
|
|
#include <nvtx3/nvToolsExt.h>
|
|
|
|
#include "ggml.h"
|
|
#include "ggml-cuda.h"
|
|
#include "ggml-cuda-kern.h"
|
|
#include "ggml-cuda-quant.h"
|
|
|
|
#if defined(_MSC_VER)
|
|
#pragma warning(disable: 4244 4267) // possible loss of data
|
|
#endif
|
|
|
|
static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");
|
|
|
|
#define CUDA_CHECK(err) \
|
|
do { \
|
|
cudaError_t err_ = (err); \
|
|
if (err_ != cudaSuccess) { \
|
|
fprintf(stderr, "CUDA error %d at %s (%s:%d): %s\n", err_, \
|
|
__func__, __FILE__, __LINE__, cudaGetErrorString(err_)); \
|
|
exit(1); \
|
|
} \
|
|
} while (0)
|
|
|
|
#if CUDART_VERSION >= 12000
|
|
#define CUBLAS_CHECK(err) \
|
|
do { \
|
|
cublasStatus_t err_ = (err); \
|
|
if (err_ != CUBLAS_STATUS_SUCCESS) { \
|
|
fprintf(stderr, "\ncuBLAS error %d at %s (%s:%d): %s\n", err_, \
|
|
__func__, __FILE__, __LINE__, cublasGetStatusString(err_)); \
|
|
exit(1); \
|
|
} \
|
|
} while (0)
|
|
#else
|
|
#define CUBLAS_CHECK(err) \
|
|
do { \
|
|
cublasStatus_t err_ = (err); \
|
|
if (err_ != CUBLAS_STATUS_SUCCESS) { \
|
|
fprintf(stderr, "\ncuBLAS error %d at %s:%d\n", err_, __FILE__, __LINE__); \
|
|
exit(1); \
|
|
} \
|
|
} while (0)
|
|
#endif // CUDART_VERSION >= 12000
|
|
|
|
#define UNUSED(x) (void)(x)
|
|
|
|
typedef void (*ggml_cuda_op_t)(
|
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
|
void * src0_d, void * src1_d, void * dst_d,
|
|
int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
|
|
cudaStream_t cudaStream_main);
|
|
|
|
struct cuda_pool_buffer {
|
|
void * ptr;
|
|
size_t size;
|
|
};
|
|
|
|
static std::unordered_map<cudaStream_t, std::vector<cuda_pool_buffer>> g_cuda_stream_pools;
|
|
static size_t g_cuda_pool_size = 0;
|
|
|
|
static void * ggml_cuda_pool_malloc(size_t size, size_t * actual_size, cudaStream_t stream) {
|
|
std::vector<cuda_pool_buffer>& pool = g_cuda_stream_pools[stream];
|
|
|
|
// find existing
|
|
for (size_t i = 0; i < pool.size(); ++i) {
|
|
cuda_pool_buffer& b = pool[i];
|
|
if (b.size >= size && b.ptr != nullptr) {
|
|
void * ptr = b.ptr;
|
|
*actual_size = b.size;
|
|
pool.erase(pool.begin() + i);
|
|
return ptr;
|
|
}
|
|
}
|
|
|
|
// allocate new
|
|
void * ptr;
|
|
CUDA_CHECK(cudaMalloc(&ptr, size));
|
|
*actual_size = size;
|
|
|
|
g_cuda_pool_size += size;
|
|
|
|
//fprintf(stderr, "cuda pool size: %.2f MB (allocating now: %.2f MB)\n", g_cuda_pool_size / 1024.0 / 1024.0, size / 1024.0 / 1024.0);
|
|
|
|
return ptr;
|
|
}
|
|
|
|
static void ggml_cuda_pool_free(void * ptr, size_t size, cudaStream_t stream) {
|
|
std::vector<cuda_pool_buffer>& pool = g_cuda_stream_pools[stream];
|
|
|
|
pool.push_back({ ptr, size });
|
|
}
|
|
|
|
static void ggml_cuda_pool_free_all() {
|
|
for (auto& p : g_cuda_stream_pools) {
|
|
for (auto& b : p.second) {
|
|
if (b.ptr != nullptr) {
|
|
CUDA_CHECK(cudaFree(b.ptr));
|
|
}
|
|
}
|
|
}
|
|
g_cuda_stream_pools.clear();
|
|
}
|
|
|
|
template<typename src_t>
|
|
static void quantize_row_q8_1_cuda(const src_t * x, void * vy, const int k, cudaStream_t stream) {
|
|
const int num_blocks = (k + CUDA_QUANTIZE_BLOCK_SIZE - 1) / CUDA_QUANTIZE_BLOCK_SIZE;
|
|
quantize_q8_1<<<num_blocks, CUDA_QUANTIZE_BLOCK_SIZE, 0, stream>>>(x, vy, k);
|
|
}
|
|
|
|
template<typename dst_t>
|
|
static void dequantize_row_q4_0_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
|
const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
|
|
dequantize_block<dst_t, QK4_0, QR4_0, dequantize_q4_0<dst_t>><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
|
|
}
|
|
|
|
template<typename dst_t>
|
|
static void dequantize_row_q4_1_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
|
const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
|
|
dequantize_block<dst_t, QK4_1, QR4_1, dequantize_q4_1<dst_t>><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
|
|
}
|
|
|
|
template<typename dst_t>
|
|
static void dequantize_row_q5_0_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
|
const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
|
|
dequantize_block<dst_t, QK5_0, QR5_0, dequantize_q5_0<dst_t>><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
|
|
}
|
|
|
|
template<typename dst_t>
|
|
static void dequantize_row_q5_1_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
|
const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
|
|
dequantize_block<dst_t, QK5_1, QR5_1, dequantize_q5_1<dst_t>><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
|
|
}
|
|
|
|
template<typename dst_t>
|
|
static void dequantize_row_q8_0_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
|
const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
|
|
dequantize_block<dst_t, QK8_0, QR8_0, dequantize_q8_0<dst_t>><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
|
|
}
|
|
|
|
/*
|
|
static void dequantize_row_q2_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
|
|
const int nb = k / QK_K;
|
|
dequantize_block_q2_K<<<nb, 64, 0, stream>>>(vx, y);
|
|
}
|
|
|
|
static void dequantize_row_q3_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
|
|
const int nb = k / QK_K;
|
|
dequantize_block_q3_K<<<nb, 64, 0, stream>>>(vx, y);
|
|
}
|
|
|
|
template<typename dst_t>
|
|
static void dequantize_row_q4_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
|
|
const int nb = k / QK_K;
|
|
dequantize_block_q4_K<<<nb, 32, 0, stream>>>(vx, y);
|
|
}
|
|
|
|
static void dequantize_row_q5_K_cuda(const void * vx, float * y, const int k, cudaStream_t stream) {
|
|
const int nb = k / QK_K;
|
|
dequantize_block_q5_K<<<nb, 64, 0, stream>>>(vx, y);
|
|
}
|
|
|
|
*/
|
|
template<typename dst_t>
|
|
static void dequantize_row_q6_K_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
|
const int nb = k / QK_K;
|
|
dequantize_block_q6_K<<<nb, 64, 0, stream>>>(vx, y);
|
|
}
|
|
|
|
template<typename src1_t, typename dst_t>
|
|
static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const src1_t * y, dst_t * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
|
|
const int block_num_y = (nrows + GGML_CUDA_DMMV_Y - 1) / GGML_CUDA_DMMV_Y;
|
|
const dim3 block_nums(1, block_num_y, 1);
|
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1);
|
|
dequantize_mul_mat_vec<src1_t, dst_t, QK4_0, QR4_0, dequantize_q4_0<dst_t>>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
|
}
|
|
|
|
template<typename src1_t, typename dst_t>
|
|
static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const src1_t * y, dst_t * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
|
|
const int block_num_y = (nrows + GGML_CUDA_DMMV_Y - 1) / GGML_CUDA_DMMV_Y;
|
|
const dim3 block_nums(1, block_num_y, 1);
|
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1);
|
|
dequantize_mul_mat_vec<src1_t, dst_t, QK4_1, QR4_1, dequantize_q4_1<dst_t>>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
|
}
|
|
|
|
template<typename src1_t, typename dst_t>
|
|
static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const src1_t * y, dst_t * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
|
|
const int block_num_y = (nrows + GGML_CUDA_DMMV_Y - 1) / GGML_CUDA_DMMV_Y;
|
|
const dim3 block_nums(1, block_num_y, 1);
|
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1);
|
|
dequantize_mul_mat_vec<src1_t, dst_t, QK5_0, QR5_0, dequantize_q5_0<dst_t>>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
|
}
|
|
|
|
template<typename src1_t, typename dst_t>
|
|
static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const src1_t * y, dst_t * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
|
|
const int block_num_y = (nrows + GGML_CUDA_DMMV_Y - 1) / GGML_CUDA_DMMV_Y;
|
|
const dim3 block_nums(1, block_num_y, 1);
|
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1);
|
|
dequantize_mul_mat_vec<src1_t, dst_t, QK5_1, QR5_1, dequantize_q5_1<dst_t>>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
|
}
|
|
|
|
template<typename src1_t, typename dst_t>
|
|
static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const src1_t * y, dst_t * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
|
|
const int block_num_y = (nrows + GGML_CUDA_DMMV_Y - 1) / GGML_CUDA_DMMV_Y;
|
|
const dim3 block_nums(1, block_num_y, 1);
|
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1);
|
|
dequantize_mul_mat_vec<src1_t, dst_t, QK8_0, QR8_0, dequantize_q8_0<dst_t>>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
|
}
|
|
/*
|
|
template<typename src1_t, typename dst_t>
|
|
static void dequantize_mul_mat_vec_q2_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % QK_K == 0);
|
|
const int ny = 2;
|
|
const int block_num_y = (nrows + ny - 1) / ny;
|
|
const dim3 block_nums(1, block_num_y, 1);
|
|
const dim3 block_dims(32, ny, 1);
|
|
dequantize_mul_mat_vec_q2_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
|
}
|
|
|
|
template<typename src1_t, typename dst_t>
|
|
static void dequantize_mul_mat_vec_q3_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % QK_K == 0);
|
|
const dim3 block_dims(32, 1, 1);
|
|
dequantize_mul_mat_vec_q3_k<<<nrows, block_dims, 0, stream>>>(vx, y, dst, ncols);
|
|
}
|
|
|
|
template<typename src1_t, typename dst_t>
|
|
static void dequantize_mul_mat_vec_q4_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % QK_K == 0);
|
|
const dim3 block_dims(32, 1, 1);
|
|
dequantize_mul_mat_vec_q4_k<<<nrows, block_dims, 0, stream>>>(vx, y, dst, ncols);
|
|
}
|
|
|
|
template<typename src1_t, typename dst_t>
|
|
static void dequantize_mul_mat_vec_q5_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % QK_K == 0);
|
|
const dim3 block_dims(32, 1, 1);
|
|
dequantize_mul_mat_vec_q5_k<<<nrows, block_dims, 0, stream>>>(vx, y, dst, ncols);
|
|
}
|
|
*/
|
|
|
|
template<typename src1_t, typename dst_t>
|
|
static void dequantize_mul_mat_vec_q6_K_cuda(const void * vx, const src1_t * y, dst_t * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % QK_K == 0);
|
|
const int ny = 2 / K_QUANTS_PER_ITERATION;
|
|
const int block_num_y = (nrows + ny - 1) / ny;
|
|
const dim3 block_nums(1, block_num_y, 1);
|
|
const dim3 block_dims(32, ny, 1);
|
|
dequantize_mul_mat_vec_q6_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
|
}
|
|
|
|
template<typename src1_t, typename dst_t>
|
|
static void convert_mul_mat_vec_f16_cuda(const void * vx, const src1_t * y, dst_t * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
|
|
const int block_num_y = (nrows + GGML_CUDA_DMMV_Y - 1) / GGML_CUDA_DMMV_Y;
|
|
const dim3 block_nums(1, block_num_y, 1);
|
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_DMMV_Y, 1);
|
|
dequantize_mul_mat_vec<src1_t, dst_t, 1, 1, convert_fp16<dst_t>><<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
|
}
|
|
|
|
template<typename dst_t>
|
|
static void mul_mat_vec_q4_0_q8_1_cuda(const void * vx, const void * vy, dst_t * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
|
|
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
|
const dim3 block_nums(1, block_num_y, 1);
|
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
|
mul_mat_vec_q<dst_t, QK4_0, QI4_0, block_q4_0, vec_dot_q4_0_q8_1>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
|
|
}
|
|
|
|
template<typename dst_t>
|
|
static void mul_mat_vec_q4_1_q8_1_cuda(const void * vx, const void * vy, dst_t * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
|
|
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
|
const dim3 block_nums(1, block_num_y, 1);
|
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
|
mul_mat_vec_q<dst_t, QK4_0, QI4_1, block_q4_1, vec_dot_q4_1_q8_1>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
|
|
}
|
|
|
|
template<typename dst_t>
|
|
static void mul_mat_vec_q5_0_q8_1_cuda(const void * vx, const void * vy, dst_t * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
|
|
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
|
const dim3 block_nums(1, block_num_y, 1);
|
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
|
mul_mat_vec_q<dst_t, QK5_0, QI5_0, block_q5_0, vec_dot_q5_0_q8_1>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
|
|
}
|
|
|
|
template<typename dst_t>
|
|
static void mul_mat_vec_q5_1_q8_1_cuda(const void * vx, const void * vy, dst_t * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
|
|
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
|
const dim3 block_nums(1, block_num_y, 1);
|
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
|
mul_mat_vec_q<dst_t, QK5_1, QI5_1, block_q5_1, vec_dot_q5_1_q8_1>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
|
|
}
|
|
|
|
template<typename dst_t>
|
|
static void mul_mat_vec_q8_0_q8_1_cuda(const void * vx, const void * vy, dst_t * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
|
|
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
|
const dim3 block_nums(1, block_num_y, 1);
|
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
|
mul_mat_vec_q<dst_t, QK8_0, QI8_0, block_q8_0, vec_dot_q8_0_q8_1>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
|
|
}
|
|
|
|
template<typename dst_t>
|
|
static void convert_fp16_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
|
const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
|
|
dequantize_block<dst_t, 1, 1, convert_fp16<dst_t>><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
|
|
}
|
|
|
|
template<typename dst_t>
|
|
static to_t_cuda_t<dst_t> ggml_get_to_t_cuda(ggml_type type) {
|
|
switch (type) {
|
|
case GGML_TYPE_Q4_0:
|
|
return dequantize_row_q4_0_cuda;
|
|
case GGML_TYPE_Q4_1:
|
|
return dequantize_row_q4_1_cuda;
|
|
case GGML_TYPE_Q5_0:
|
|
return dequantize_row_q5_0_cuda;
|
|
case GGML_TYPE_Q5_1:
|
|
return dequantize_row_q5_1_cuda;
|
|
case GGML_TYPE_Q8_0:
|
|
return dequantize_row_q8_0_cuda;
|
|
/*
|
|
case GGML_TYPE_Q2_K:
|
|
return dequantize_row_q2_K_cuda;
|
|
case GGML_TYPE_Q3_K:
|
|
return dequantize_row_q3_K_cuda;
|
|
case GGML_TYPE_Q4_K:
|
|
return dequantize_row_q4_K_cuda;
|
|
case GGML_TYPE_Q5_K:
|
|
return dequantize_row_q5_K_cuda;
|
|
*/
|
|
case GGML_TYPE_Q6_K:
|
|
return dequantize_row_q6_K_cuda;
|
|
case GGML_TYPE_F16:
|
|
return convert_fp16_cuda;
|
|
default:
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
template<typename src0_t, typename src1_t, typename dst_t>
|
|
static void ggml_mul_mat_p021_cuda(const src0_t * vx, const src1_t * y, dst_t * dst, const int ncols_x, const int nrows_x, const int nchannels_x, cudaStream_t stream) {
|
|
const dim3 block_nums(1, nrows_x, nchannels_x);
|
|
const dim3 block_dims(WARP_SIZE, 1, 1);
|
|
k_mul_mat_p021<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols_x, nrows_x, nchannels_x);
|
|
}
|
|
|
|
template<typename src0_t, typename src1_t, typename dst_t>
|
|
static void ggml_mul_mat_vec_nc_cuda(
|
|
const src0_t * vx, const src1_t * y, dst_t * dst, const int ncols_x, const int nrows_x, const int row_stride_x,
|
|
const int nchannels_x, const int channel_stride_x, cudaStream_t stream) {
|
|
|
|
const dim3 block_nums(1, nrows_x, nchannels_x);
|
|
const dim3 block_dims(WARP_SIZE, 1, 1);
|
|
k_mul_mat_vec_nc<<<block_nums, block_dims, 0, stream>>>
|
|
(vx, y, dst, ncols_x, nrows_x, row_stride_x, nchannels_x, channel_stride_x);
|
|
}
|
|
|
|
template<typename src_t, typename dst_t>
|
|
static void ggml_cpy_cuda(
|
|
const char * cx, char * cdst, const int ne,
|
|
const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
|
|
const int ne10, const int ne11, const int nb10, const int nb11, const int nb12, cudaStream_t stream) {
|
|
|
|
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
|
|
k_cpy<src_t, dst_t><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
|
|
(cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
|
|
}
|
|
|
|
template<typename src0_t, typename src1_t, typename dst_t>
|
|
static void add_cuda(const src0_t * x, const src1_t * y, dst_t * dst, const int k, cudaStream_t stream) {
|
|
const int num_blocks = (k + CUDA_ADD_BLOCK_SIZE - 1) / CUDA_ADD_BLOCK_SIZE;
|
|
k_add<<<num_blocks, CUDA_ADD_BLOCK_SIZE, 0, stream>>>(x, y, dst, k);
|
|
}
|
|
|
|
template<typename src0_t, typename src1_t, typename dst_t>
|
|
static void mul_cuda(const src0_t * x, const src1_t * y, dst_t * dst, const int kx, const int ky, cudaStream_t stream) {
|
|
const int num_blocks = (kx + CUDA_MUL_BLOCK_SIZE - 1) / CUDA_MUL_BLOCK_SIZE;
|
|
k_mul<<<num_blocks, CUDA_MUL_BLOCK_SIZE, 0, stream>>>(x, y, dst, kx, ky);
|
|
}
|
|
|
|
template<typename src0_t, typename dst_t>
|
|
static void silu_cuda(const src0_t * x, dst_t * dst, const int k, cudaStream_t stream) {
|
|
const int num_blocks = (k + CUDA_SILU_BLOCK_SIZE - 1) / CUDA_SILU_BLOCK_SIZE;
|
|
k_silu<<<num_blocks, CUDA_SILU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
|
}
|
|
|
|
template<typename src0_t, typename dst_t>
|
|
static void rms_norm_cuda(const src0_t * x, dst_t * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % WARP_SIZE == 0);
|
|
const dim3 block_dims(WARP_SIZE, 1, 1);
|
|
k_rms_norm<<<nrows, block_dims, 0, stream>>>(x, dst, ncols);
|
|
}
|
|
|
|
template<typename src0_t, typename src1_t, typename dst_t>
|
|
static void scale_cuda(const src0_t * x, dst_t * dst, const src1_t * scale, const int k, cudaStream_t stream) {
|
|
const int num_blocks = (k + CUDA_SCALE_BLOCK_SIZE - 1) / CUDA_SCALE_BLOCK_SIZE;
|
|
k_scale<<<num_blocks, CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, k);
|
|
}
|
|
|
|
template<typename src0_t, typename dst_t>
|
|
static void rope_cuda(const src0_t * x, dst_t * dst, const int ncols, const int nrows, const float p, const float theta_scale, cudaStream_t stream) {
|
|
GGML_ASSERT(nrows % 2 == 0);
|
|
const dim3 block_dims(2*CUDA_ROPE_BLOCK_SIZE, 1, 1);
|
|
const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
|
|
const dim3 block_nums(num_blocks_x, nrows, 1);
|
|
k_rope<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, p, theta_scale);
|
|
}
|
|
|
|
template<typename src0_t, typename dst_t>
|
|
static void diag_mask_inf_cuda(const src0_t * x, dst_t * dst, const int ncols_x, const int nrows_x, const int rows_per_channel, const int n_past, cudaStream_t stream) {
|
|
const dim3 block_dims(CUDA_DIAG_MASK_INF_BLOCK_SIZE, 1, 1);
|
|
const int block_num_x = (ncols_x + CUDA_DIAG_MASK_INF_BLOCK_SIZE - 1) / CUDA_DIAG_MASK_INF_BLOCK_SIZE;
|
|
const dim3 block_nums(block_num_x, nrows_x, 1);
|
|
k_diag_mask_inf<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x, rows_per_channel, n_past);
|
|
}
|
|
|
|
template<typename src0_t, typename dst_t>
|
|
static void soft_max_cuda(const src0_t * x, dst_t * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
// TODO: implement fast numerically stable version for small ncols
|
|
//if (ncols >= 1024) {
|
|
int num_blocks = nrows;
|
|
if (ncols % 2 == 0) {
|
|
k_soft_max<src0_t, dst_t, 2 , 1024>
|
|
<<<num_blocks, 1024, 0, stream>>>(x, dst, nrows, ncols);
|
|
}
|
|
else {
|
|
k_soft_max<src0_t, dst_t, 1, 1024>
|
|
<<<num_blocks, 1024, 0, stream>>>(x, dst, nrows, ncols);
|
|
}
|
|
//}
|
|
//else {
|
|
// const dim3 block_dims(WARP_SIZE, 1, 1);
|
|
// const dim3 block_nums(1, nrows, 1);
|
|
// k_soft_max_orig<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
|
|
//}
|
|
}
|
|
|
|
template<typename dst_t, int qk, int qr, dequantize_kernel_t<dst_t> dq>
|
|
static void get_rows_cuda(const void * x, const int * y, dst_t * dst, const int nrows, const int ncols, cudaStream_t stream) {
|
|
const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
|
|
const int block_num = (ncols/2 + CUDA_GET_ROWS_BLOCK_SIZE - 1) / CUDA_GET_ROWS_BLOCK_SIZE;
|
|
const dim3 block_nums(block_num, nrows, 1);
|
|
k_get_rows<dst_t, qk, qr, dq><<<block_nums, block_dims, 0, stream>>>(x, y, dst, ncols);
|
|
}
|
|
|
|
// TODO: move to context
|
|
static cublasHandle_t g_cublas_handle = nullptr;
|
|
static cudaStream_t g_cudaStream_main = nullptr;
|
|
static cudaEvent_t g_cudaEvent_main = nullptr;
|
|
static cudaStream_t g_cudaStreams[GGML_CUDA_MAX_SUBSTREAMS] = { };
|
|
static cudaEvent_t g_cudaEvents[GGML_CUDA_MAX_SUBSTREAMS] = { };
|
|
#define GGML_CUDA_MAX_DEVICES 16
|
|
static int g_compute_capabilities[GGML_CUDA_MAX_DEVICES];
|
|
|
|
static void ggml_init_cublas() {
|
|
static bool initialized = false;
|
|
|
|
if (!initialized) {
|
|
int device_count;
|
|
CUDA_CHECK(cudaGetDeviceCount(&device_count));
|
|
int64_t total_vram = 0;
|
|
fprintf(stderr, "%s: found %d CUDA devices:\n", __func__, device_count);
|
|
for (int id = 0; id < device_count; ++id) {
|
|
cudaDeviceProp prop;
|
|
CUDA_CHECK(cudaGetDeviceProperties(&prop, id));
|
|
fprintf(stderr, " Device %d: %s (%.0f GB)\n", id, prop.name, prop.totalGlobalMem / 1024.0 / 1024.0 / 1024.0);
|
|
total_vram += prop.totalGlobalMem;
|
|
g_compute_capabilities[id] = 100*prop.major + 10*prop.minor;
|
|
}
|
|
|
|
// create main stream and event
|
|
CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStream_main, cudaStreamNonBlocking));
|
|
CUDA_CHECK(cudaEventCreateWithFlags(&g_cudaEvent_main, cudaEventDisableTiming));
|
|
|
|
// create secondary streams and events
|
|
for (int i = 0; i < GGML_CUDA_MAX_SUBSTREAMS; ++i) {
|
|
CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams[i], cudaStreamNonBlocking));
|
|
CUDA_CHECK(cudaEventCreateWithFlags(&g_cudaEvents[i], cudaEventDisableTiming));
|
|
}
|
|
|
|
// create cublas handle
|
|
CUBLAS_CHECK(cublasCreate(&g_cublas_handle));
|
|
//CUBLAS_CHECK(cublasSetMathMode(g_cublas_handle, CUBLAS_TF32_TENSOR_OP_MATH));
|
|
|
|
// configure logging to stdout
|
|
//CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr));
|
|
|
|
initialized = true;
|
|
}
|
|
}
|
|
|
|
void * ggml_cuda_host_malloc(size_t size) {
|
|
if (getenv("GGML_CUDA_NO_PINNED") != nullptr) {
|
|
return nullptr;
|
|
}
|
|
|
|
void * ptr = nullptr;
|
|
cudaError_t err = cudaMallocHost((void **) &ptr, size);
|
|
if (err != cudaSuccess) {
|
|
// The allocation error can be bypassed. A null ptr will assigned out of this function.
|
|
// This can fixed the OOM error in WSL.
|
|
cudaGetLastError();
|
|
fprintf(stderr, "WARNING: failed to allocate %.2f MB of pinned memory: %s\n",
|
|
size/1024.0/1024.0, cudaGetErrorString(err));
|
|
return nullptr;
|
|
}
|
|
|
|
return ptr;
|
|
}
|
|
|
|
void ggml_cuda_host_free(void * ptr) {
|
|
CUDA_CHECK(cudaFreeHost(ptr));
|
|
}
|
|
|
|
void ggml_cuda_host_register(void * ptr, size_t size) {
|
|
CUDA_CHECK(cudaHostRegister(ptr, size, 0));
|
|
}
|
|
|
|
void ggml_cuda_host_unregister(void * ptr) {
|
|
CUDA_CHECK(cudaHostUnregister(ptr));
|
|
}
|
|
|
|
template<typename src0_t, typename src1_t, typename dst_t>
|
|
static void ggml_cuda_op_add(
|
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
|
void * src0_d, void * src1_d, void * dst_d,
|
|
int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
|
|
cudaStream_t stream) {
|
|
|
|
const int64_t ne0 = src0->ne[0];
|
|
const int64_t i01_diff = i01_high - i01_low;
|
|
|
|
// compute
|
|
add_cuda((src0_t *)src0_d, (src1_t *) src1_d, (dst_t *) dst_d, ne0*i01_diff, stream);
|
|
CUDA_CHECK(cudaGetLastError());
|
|
|
|
UNUSED(src1);
|
|
UNUSED(dst);
|
|
UNUSED(i02);
|
|
UNUSED(i1);
|
|
}
|
|
|
|
template<typename src0_t, typename src1_t, typename dst_t>
|
|
static void ggml_cuda_op_mul(
|
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
|
void * src0_d, void * src1_d, void * dst_d,
|
|
int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
|
|
cudaStream_t stream) {
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
|
|
const int64_t ne10 = src1->ne[0];
|
|
const int64_t ne11 = src1->ne[1];
|
|
|
|
for (int64_t i01 = i01_low; i01 < i01_high; i01++) {
|
|
const int64_t i11 = i1*ne11 + i01%ne11; // broadcast src1 across src0
|
|
|
|
src0_t * src0_d_i01 = (src0_t *) src0_d + i01*ne00;
|
|
src1_t * src1_d_i01 = (src1_t *) src1_d + i11*ne10;
|
|
dst_t * dst_d_i01 = (dst_t *) dst_d + i01*ne00;
|
|
|
|
// compute
|
|
mul_cuda(src0_d_i01, src1_d_i01, dst_d_i01, ne00, ne10, stream);
|
|
CUDA_CHECK(cudaGetLastError());
|
|
}
|
|
|
|
UNUSED(dst);
|
|
UNUSED(i02);
|
|
}
|
|
|
|
template<typename src0_t, typename src1_t, typename dst_t>
|
|
static void ggml_cuda_op_silu(
|
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
|
void * src0_d, void * src1_d, void * dst_d,
|
|
int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
|
|
cudaStream_t stream) {
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t i01_diff = i01_high - i01_low;
|
|
|
|
// compute
|
|
silu_cuda((src0_t *)src0_d, (dst_t *)dst_d, ne00*i01_diff, stream);
|
|
CUDA_CHECK(cudaGetLastError());
|
|
|
|
UNUSED(src1);
|
|
UNUSED(src1_d);
|
|
UNUSED(dst);
|
|
UNUSED(i02);
|
|
UNUSED(i1);
|
|
}
|
|
|
|
template<typename src0_t, typename src1_t, typename dst_t>
|
|
static void ggml_cuda_op_rms_norm(
|
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
|
void * src0_d, void * src1_d, void * dst_d,
|
|
int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
|
|
cudaStream_t stream) {
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t i01_diff = i01_high - i01_low;
|
|
|
|
// compute
|
|
rms_norm_cuda((src0_t *)src0_d, (dst_t *)dst_d, ne00, i01_diff, stream);
|
|
CUDA_CHECK(cudaGetLastError());
|
|
|
|
UNUSED(src1);
|
|
UNUSED(src1_d);
|
|
UNUSED(dst);
|
|
UNUSED(i02);
|
|
UNUSED(i1);
|
|
}
|
|
|
|
template<typename src0_t, typename src1_t, typename dst_t>
|
|
static void ggml_cuda_op_dequantize_mul_mat_vec(
|
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
|
void * src0_d, void * src1_d, void * dst_d,
|
|
int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
|
|
cudaStream_t stream) {
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t nrows = i01_high - i01_low;
|
|
|
|
#ifdef GGML_CUDA_FORCE_DMMV
|
|
const bool use_mul_mat_vec_q = false;
|
|
#else
|
|
int id;
|
|
CUDA_CHECK(cudaGetDevice(&id));
|
|
|
|
const bool mul_mat_vec_q_implemented = src0->type == GGML_TYPE_Q4_0 ||
|
|
src0->type == GGML_TYPE_Q4_1 ||
|
|
src0->type == GGML_TYPE_Q5_0 ||
|
|
src0->type == GGML_TYPE_Q5_1 ||
|
|
src0->type == GGML_TYPE_Q8_0;
|
|
|
|
// The integer intrinsics used in mul_mat_vec_q are available with compute capability 6.
|
|
// However, they have bad performance with Pascal cards.
|
|
// Therefore, in a multi GPU setting decide at runtime which GPUs should use mul_mat_vec_q.
|
|
const bool use_mul_mat_vec_q = g_compute_capabilities[id] >= 700 && mul_mat_vec_q_implemented;
|
|
#endif
|
|
|
|
if (use_mul_mat_vec_q) {
|
|
size_t as;
|
|
void * src1_q8_1 = ggml_cuda_pool_malloc(ne00*sizeof(block_q8_1)/QK8_1, &as, stream);
|
|
quantize_row_q8_1_cuda((src1_t *)src1_d, src1_q8_1, ne00, stream);
|
|
|
|
switch (src0->type) {
|
|
case GGML_TYPE_Q4_0:
|
|
mul_mat_vec_q4_0_q8_1_cuda(src0_d, src1_q8_1, (dst_t *)dst_d, ne00, nrows, stream);
|
|
break;
|
|
case GGML_TYPE_Q4_1:
|
|
mul_mat_vec_q4_1_q8_1_cuda(src0_d, src1_q8_1, (dst_t *)dst_d, ne00, nrows, stream);
|
|
break;
|
|
case GGML_TYPE_Q5_0:
|
|
mul_mat_vec_q5_0_q8_1_cuda(src0_d, src1_q8_1, (dst_t *)dst_d, ne00, nrows, stream);
|
|
break;
|
|
case GGML_TYPE_Q5_1:
|
|
mul_mat_vec_q5_1_q8_1_cuda(src0_d, src1_q8_1, (dst_t *)dst_d, ne00, nrows, stream);
|
|
break;
|
|
case GGML_TYPE_Q8_0:
|
|
mul_mat_vec_q8_0_q8_1_cuda(src0_d, src1_q8_1, (dst_t *)dst_d, ne00, nrows, stream);
|
|
break;
|
|
default:
|
|
GGML_ASSERT(false);
|
|
break;
|
|
}
|
|
|
|
ggml_cuda_pool_free(src1_q8_1, as, stream);
|
|
}
|
|
else {
|
|
switch (src0->type) {
|
|
case GGML_TYPE_Q4_0:
|
|
dequantize_mul_mat_vec_q4_0_cuda(src0_d, (src1_t *)src1_d, (dst_t *)dst_d, ne00, nrows, stream);
|
|
break;
|
|
case GGML_TYPE_Q4_1:
|
|
dequantize_mul_mat_vec_q4_1_cuda(src0_d, (src1_t *)src1_d, (dst_t *)dst_d, ne00, nrows, stream);
|
|
break;
|
|
case GGML_TYPE_Q5_0:
|
|
dequantize_mul_mat_vec_q5_0_cuda(src0_d, (src1_t *)src1_d, (dst_t *)dst_d, ne00, nrows, stream);
|
|
break;
|
|
case GGML_TYPE_Q5_1:
|
|
dequantize_mul_mat_vec_q5_1_cuda(src0_d, (src1_t *)src1_d, (dst_t *)dst_d, ne00, nrows, stream);
|
|
break;
|
|
case GGML_TYPE_Q8_0:
|
|
dequantize_mul_mat_vec_q8_0_cuda(src0_d, (src1_t *)src1_d, (dst_t *)dst_d, ne00, nrows, stream);
|
|
break;
|
|
/*
|
|
case GGML_TYPE_Q2_K:
|
|
dequantize_mul_mat_vec_q2_K_cuda(src0_d, (src1_t *)src1_d, (dst_t *)dst_d, ne00, nrows, cudaStream_main);
|
|
break;
|
|
case GGML_TYPE_Q3_K:
|
|
dequantize_mul_mat_vec_q3_K_cuda(src0_d, (src1_t *)src1_d, (dst_t *)dst_d, ne00, nrows, cudaStream_main);
|
|
break;
|
|
case GGML_TYPE_Q4_K:
|
|
dequantize_mul_mat_vec_q4_K_cuda(src0_d, (src1_t *)src1_d, (dst_t *)dst_d, ne00, nrows, cudaStream_main);
|
|
break;
|
|
case GGML_TYPE_Q5_K:
|
|
dequantize_mul_mat_vec_q5_K_cuda(src0_d, (src1_t *)src1_d, (dst_t *)dst_d, ne00, nrows, cudaStream_main);
|
|
break;
|
|
*/
|
|
case GGML_TYPE_Q6_K:
|
|
dequantize_mul_mat_vec_q6_K_cuda(src0_d, (src1_t *)src1_d, (dst_t *)dst_d, ne00, nrows, stream);
|
|
break;
|
|
case GGML_TYPE_F16:
|
|
convert_mul_mat_vec_f16_cuda(src0_d, (src1_t *)src1_d, (dst_t *)dst_d, ne00, nrows, stream);
|
|
break;
|
|
default:
|
|
GGML_ASSERT(false);
|
|
break;
|
|
}
|
|
}
|
|
CUDA_CHECK(cudaGetLastError());
|
|
|
|
UNUSED(src1);
|
|
UNUSED(dst);
|
|
UNUSED(i02);
|
|
UNUSED(i1);
|
|
}
|
|
|
|
template<typename src0_t, typename src1_t, typename dst_t>
|
|
static void ggml_cuda_op_rope(
|
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
|
void * src0_d, void * src1_d, void * dst_d,
|
|
int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
|
|
cudaStream_t stream) {
|
|
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t i01_diff = i01_high - i01_low;
|
|
|
|
const int n_past = ((int32_t *) dst->op_params)[0];
|
|
const int n_dims = ((int32_t *) dst->op_params)[1];
|
|
const int mode = ((int32_t *) dst->op_params)[2];
|
|
//const int n_ctx = ((int32_t *) dst->params)[3];
|
|
GGML_ASSERT(mode == 0);
|
|
|
|
const float theta_scale = powf(10000.0, -2.0f/n_dims);
|
|
const float p = ((mode & 1) == 0 ? n_past + i02 : i02);
|
|
|
|
// compute
|
|
rope_cuda((src0_t *)src0_d, (dst_t *)dst_d, ne00, i01_diff, p, theta_scale, stream);
|
|
CUDA_CHECK(cudaGetLastError());
|
|
|
|
UNUSED(dst);
|
|
UNUSED(src1);
|
|
UNUSED(src1_d);
|
|
UNUSED(i1);
|
|
}
|
|
|
|
template<typename src0_t, typename src1_t, typename dst_t>
|
|
static void ggml_cuda_op_diag_mask_inf(
|
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
|
void * src0_d, void * src1_d, void * dst_d,
|
|
int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
|
|
cudaStream_t stream) {
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int64_t i01_diff = i01_high - i01_low;
|
|
|
|
const int n_past = ((int32_t *) dst->op_params)[0];
|
|
|
|
// compute
|
|
diag_mask_inf_cuda((src0_t *)src0_d, (dst_t *)dst_d, ne00, i01_diff, ne01, n_past, stream);
|
|
CUDA_CHECK(cudaGetLastError());
|
|
|
|
UNUSED(dst);
|
|
UNUSED(src1);
|
|
UNUSED(src1_d);
|
|
UNUSED(i02);
|
|
UNUSED(i1);
|
|
}
|
|
|
|
template<typename src0_t, typename src1_t, typename dst_t>
|
|
static void ggml_cuda_op_soft_max(
|
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
|
void * src0_d, void * src1_d, void * dst_d,
|
|
int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
|
|
cudaStream_t stream) {
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t i01_diff = i01_high - i01_low;
|
|
|
|
// compute
|
|
soft_max_cuda((src0_t *)src0_d, (dst_t *)dst_d, ne00, i01_diff, stream);
|
|
CUDA_CHECK(cudaGetLastError());
|
|
|
|
UNUSED(src1);
|
|
UNUSED(src1_d);
|
|
UNUSED(dst);
|
|
UNUSED(i02);
|
|
UNUSED(i1);
|
|
}
|
|
|
|
template<typename src0_t, typename src1_t, typename dst_t>
|
|
static void ggml_cuda_op_scale(
|
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
|
void * src0_d, void * src1_d, void * dst_d,
|
|
int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
|
|
cudaStream_t stream) {
|
|
|
|
//const src1_t scale = ((src1_t *) src1->data)[0];
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t i01_diff = i01_high - i01_low;
|
|
|
|
// compute
|
|
scale_cuda<src0_t, src1_t>((src0_t *)src0_d, (dst_t *)dst_d, (src1_t *)src1_d, ne00*i01_diff, stream);
|
|
CUDA_CHECK(cudaGetLastError());
|
|
|
|
UNUSED(src1);
|
|
UNUSED(src1_d);
|
|
UNUSED(dst);
|
|
UNUSED(i02);
|
|
UNUSED(i1);
|
|
}
|
|
|
|
template<typename src0_t, typename src1_t, typename dst_t>
|
|
static void ggml_cuda_op_get_rows(
|
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
|
void * src0_d, void * src1_d, void * dst_d,
|
|
int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
|
|
cudaStream_t stream) {
|
|
|
|
GGML_ASSERT(src1->type == GGML_TYPE_I32);
|
|
GGML_ASSERT(ggml_is_contiguous(src0));
|
|
GGML_ASSERT(ggml_is_contiguous(src1));
|
|
GGML_ASSERT(ggml_is_contiguous(dst));
|
|
|
|
const int ncols = src0->ne[0];
|
|
const int nrows = ggml_nelements(src1);
|
|
|
|
switch (src0->type) {
|
|
case GGML_TYPE_F16:
|
|
get_rows_cuda<dst_t, 1, 1, convert_fp16<dst_t>>(src0_d, (int *) src1_d, (dst_t *)dst_d, nrows, ncols, stream);
|
|
break;
|
|
case GGML_TYPE_F32:
|
|
get_rows_cuda<dst_t, 1, 1, convert_fp32<dst_t>>(src0_d, (int *) src1_d, (dst_t *)dst_d, nrows, ncols, stream);
|
|
break;
|
|
case GGML_TYPE_Q4_0:
|
|
get_rows_cuda<dst_t, QK4_0, QR4_0, dequantize_q4_0<dst_t>>(src0_d, (int *) src1_d, (dst_t *)dst_d, nrows, ncols, stream);
|
|
break;
|
|
case GGML_TYPE_Q4_1:
|
|
get_rows_cuda<dst_t, QK4_1, QR4_1, dequantize_q4_1<dst_t>>(src0_d, (int *) src1_d, (dst_t *)dst_d, nrows, ncols, stream);
|
|
break;
|
|
case GGML_TYPE_Q5_0:
|
|
get_rows_cuda<dst_t, QK5_0, QR5_0, dequantize_q5_0<dst_t>>(src0_d, (int *) src1_d, (dst_t *)dst_d, nrows, ncols, stream);
|
|
break;
|
|
case GGML_TYPE_Q5_1:
|
|
get_rows_cuda<dst_t, QK5_1, QR5_1, dequantize_q5_1<dst_t>>(src0_d, (int *) src1_d, (dst_t *)dst_d, nrows, ncols, stream);
|
|
break;
|
|
case GGML_TYPE_Q8_0:
|
|
get_rows_cuda<dst_t, QK8_0, QR8_0, dequantize_q8_0<dst_t>>(src0_d, (int *) src1_d, (dst_t *)dst_d, nrows, ncols, stream);
|
|
break;
|
|
|
|
default:
|
|
GGML_ASSERT(false);
|
|
break;
|
|
}
|
|
CUDA_CHECK(cudaGetLastError());
|
|
|
|
UNUSED(i02);
|
|
UNUSED(i01_low);
|
|
UNUSED(i01_high);
|
|
UNUSED(i1);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
struct ggml_cuda_buffer {
|
|
const char * name;
|
|
|
|
void * data;
|
|
size_t size;
|
|
void * device;
|
|
};
|
|
|
|
struct ggml_cuda_context {
|
|
std::vector<ggml_cuda_buffer> buffers;
|
|
};
|
|
|
|
ggml_cuda_context * ggml_cuda_init() {
|
|
ggml_init_cublas();
|
|
|
|
ggml_cuda_context * ctx = new ggml_cuda_context;
|
|
|
|
return ctx;
|
|
}
|
|
|
|
void ggml_cuda_free(ggml_cuda_context * ctx) {
|
|
for (size_t n = 0; n < ctx->buffers.size(); ++n) {
|
|
if (ctx->buffers[n].device != nullptr) {
|
|
CUDA_CHECK(cudaFree(ctx->buffers[n].device));
|
|
}
|
|
}
|
|
|
|
// this will free the global memory pool for all contexts
|
|
ggml_cuda_pool_free_all();
|
|
|
|
delete ctx;
|
|
}
|
|
|
|
static void * ggml_cuda_get_buffer(ggml_cuda_context * ctx, ggml_tensor * t) {
|
|
return t->data;
|
|
|
|
UNUSED(ctx);
|
|
}
|
|
|
|
static cudaError_t ggml_cuda_cpy_tensor_2d(ggml_cuda_context * ctx,
|
|
void * dst, ggml_tensor * src, int64_t i3, int64_t i2, int64_t i1_low, int64_t i1_high, cudaStream_t stream) {
|
|
|
|
cudaMemcpyKind kind = cudaMemcpyDeviceToDevice;
|
|
const char * src_ptr = (const char *) ggml_cuda_get_buffer(ctx, src);
|
|
char * dst_ptr = (char *) dst;
|
|
|
|
const int64_t ne0 = src->ne[0];
|
|
const int64_t nb0 = src->nb[0];
|
|
const int64_t nb1 = src->nb[1];
|
|
const int64_t nb2 = src->nb[2];
|
|
const int64_t nb3 = src->nb[3];
|
|
const enum ggml_type type = src->type;
|
|
const int64_t ts = ggml_type_size(type);
|
|
const int64_t bs = ggml_blck_size(type);
|
|
int64_t i1_diff = i1_high - i1_low;
|
|
|
|
GGML_ASSERT(i1_low == 0);
|
|
const char * x = src_ptr + i1_low*nb1 + i2*nb2 + i3*nb3;
|
|
if (nb0 == ts && nb1 == ts*ne0/bs) {
|
|
return cudaMemcpyAsync(dst_ptr, x, i1_diff*nb1, kind, stream);
|
|
} else if (nb0 == ts) {
|
|
return cudaMemcpy2DAsync(dst_ptr, ts*ne0/bs, x, nb1, ts*ne0/bs, i1_diff, kind, stream);
|
|
} else {
|
|
for (int64_t i1 = 0; i1 < i1_diff; i1++) {
|
|
const void * rx = (const void *) ((const char *) x + i1*nb1);
|
|
void * rd = (void *) (dst_ptr + i1*ts*ne0/bs);
|
|
// pretend the row is a matrix with cols=1
|
|
cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, kind, stream);
|
|
if (r != cudaSuccess) return r;
|
|
}
|
|
return cudaSuccess;
|
|
}
|
|
}
|
|
|
|
static const ggml_type GGML_TYPE_NONE = GGML_TYPE_COUNT;
|
|
|
|
struct ggml_cuda_op_dispatch_t {
|
|
ggml_cuda_op_t d[GGML_TYPE_COUNT][GGML_TYPE_COUNT+1][GGML_TYPE_COUNT] = { nullptr };
|
|
};
|
|
|
|
template<template <typename src0_t, typename src1_t, typename dst_t> class Op>
|
|
static ggml_cuda_op_dispatch_t gen_op_dispatch_table() {
|
|
ggml_cuda_op_dispatch_t dispatch;
|
|
|
|
dispatch.d[GGML_TYPE_F16][GGML_TYPE_NONE][GGML_TYPE_F16] = &Op<half, half, half>::op;
|
|
//dispatch.d[GGML_TYPE_F16][GGML_TYPE_NONE][GGML_TYPE_F32] = &Op<half, half, float>::op;
|
|
dispatch.d[GGML_TYPE_F16][GGML_TYPE_F16][GGML_TYPE_F16] = &Op<half, half, half>::op;
|
|
dispatch.d[GGML_TYPE_F16][GGML_TYPE_F16][GGML_TYPE_F32] = &Op<half, half, float>::op;
|
|
dispatch.d[GGML_TYPE_F16][GGML_TYPE_F32][GGML_TYPE_F16] = &Op<half, float, half>::op;
|
|
dispatch.d[GGML_TYPE_F16][GGML_TYPE_F32][GGML_TYPE_F32] = &Op<half, float, float>::op;
|
|
//dispatch.d[GGML_TYPE_F32][GGML_TYPE_NONE][GGML_TYPE_F16] = &Op<float, float, half>::op;
|
|
dispatch.d[GGML_TYPE_F32][GGML_TYPE_NONE][GGML_TYPE_F32] = &Op<float, float, float>::op;
|
|
//dispatch.d[GGML_TYPE_F32][GGML_TYPE_F16][GGML_TYPE_F16] = &Op<float, half, half>::op;
|
|
dispatch.d[GGML_TYPE_F32][GGML_TYPE_F16][GGML_TYPE_F32] = &Op<float, half, float>::op;
|
|
//dispatch.d[GGML_TYPE_F32][GGML_TYPE_F32][GGML_TYPE_F16] = &Op<float, float, half>::op;
|
|
dispatch.d[GGML_TYPE_F32][GGML_TYPE_F32][GGML_TYPE_F32] = &Op<float, float, float>::op;
|
|
|
|
return dispatch;
|
|
}
|
|
|
|
template<template <typename src0_t, typename src1_t, typename dst_t> class Op>
|
|
static ggml_cuda_op_t get_op_fn(ggml_type t0, ggml_type t1, ggml_type t2) {
|
|
static const ggml_cuda_op_dispatch_t dispatch = gen_op_dispatch_table<Op>();
|
|
|
|
if (dispatch.d[t0][t1][t2] == nullptr) {
|
|
fprintf(stderr, "Unsupported type combination: %s %s %s\n",
|
|
ggml_type_name(t0), ggml_type_name(t1), ggml_type_name(t2));
|
|
}
|
|
|
|
GGML_ASSERT(dispatch.d[t0][t1][t2] && "Unsupported type combination");
|
|
return dispatch.d[t0][t1][t2];
|
|
}
|
|
|
|
template<template <typename src0_t, typename src1_t, typename dst_t> class Op>
|
|
static void ggml_cuda_op(ggml_cuda_context * ctx,
|
|
ggml_tensor * src0,
|
|
ggml_tensor * src1,
|
|
ggml_tensor * dst,
|
|
cudaStream_t main_stream,
|
|
bool flatten_rows) {
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int64_t ne02 = src0->ne[2];
|
|
const int64_t ne03 = src0->ne[3];
|
|
const int64_t nrows0 = ggml_nrows(src0);
|
|
|
|
const bool use_src1 = src1 != nullptr;
|
|
const int64_t ne10 = use_src1 ? src1->ne[0] : 1;
|
|
const int64_t ne11 = use_src1 ? src1->ne[1] : 1;
|
|
const int64_t ne12 = use_src1 ? src1->ne[2] : 1;
|
|
const int64_t ne13 = use_src1 ? src1->ne[3] : 1;
|
|
|
|
const int64_t ne0 = dst->ne[0];
|
|
const int64_t ne1 = dst->ne[1];
|
|
|
|
ggml_type t0 = src0->type;
|
|
ggml_type t1 = use_src1 ? src1->type : GGML_TYPE_NONE;
|
|
ggml_type t2 = dst->type;
|
|
// HACK
|
|
// get rows
|
|
if (t1 == GGML_TYPE_I32) {
|
|
t1 = t2;
|
|
}
|
|
// mul mat
|
|
if (ggml_is_quantized(t0)) {
|
|
t0 = t1;
|
|
}
|
|
|
|
ggml_cuda_op_t op = get_op_fn<Op>(t0, t1, t2);
|
|
|
|
//const int nb2 = dst->nb[2];
|
|
//const int nb3 = dst->nb[3];
|
|
|
|
// strides for iteration over dims 3 and 2
|
|
const int64_t num_iters = flatten_rows ? 1 : ne02 * ne03;
|
|
const int64_t stride_mod = flatten_rows ? ne02 * ne03 : 1;
|
|
const int64_t src0_stride = ne00 * ne01 * stride_mod;
|
|
const int64_t src1_stride = ne10 * ne11 * stride_mod;
|
|
const int64_t dst_stride = ne0 * ne1 * stride_mod;
|
|
|
|
const size_t src0_ts = ggml_type_size(src0->type);
|
|
const size_t src0_bs = ggml_blck_size(src0->type);
|
|
const size_t src1_ts = use_src1 ? ggml_type_size(src1->type) : 0;
|
|
const size_t src1_bs = use_src1 ? ggml_blck_size(src1->type) : 1;
|
|
const size_t dst_ts = ggml_type_size(dst->type);
|
|
const size_t dst_bs = ggml_blck_size(dst->type);
|
|
|
|
const bool src0_is_contiguous = ggml_is_contiguous(src0);
|
|
const bool src1_is_contiguous = use_src1 ? ggml_is_contiguous(src1) : true;
|
|
|
|
void * src0_d = src0 ? ggml_cuda_get_buffer(ctx, src0) : nullptr;
|
|
void * src1_d = src1 ? ggml_cuda_get_buffer(ctx, src1) : nullptr;
|
|
void * dst_d = dst ? ggml_cuda_get_buffer(ctx, dst) : nullptr;
|
|
|
|
int64_t row_low = 0;
|
|
int64_t row_high = nrows0;
|
|
int64_t row_diff = row_high - row_low;
|
|
|
|
size_t src0_as = 0;
|
|
size_t src1_as = 0;
|
|
if (!src0_is_contiguous) {
|
|
src0_d = (float *) ggml_cuda_pool_malloc(row_diff*ne00 * src0_ts/src0_bs, &src0_as, main_stream);
|
|
}
|
|
|
|
if (!src1_is_contiguous) {
|
|
src1_d = (float *) ggml_cuda_pool_malloc(num_iters*src1_stride * src1_ts/src1_bs, &src1_as, main_stream);
|
|
}
|
|
|
|
const int64_t i03_max = flatten_rows ? 1 : ne03;
|
|
const int64_t i02_max = flatten_rows ? 1 : ne02;
|
|
const int64_t rows_per_iter = flatten_rows ? nrows0 : ne01;
|
|
const int64_t num_ops = i03_max * i02_max;
|
|
|
|
if (num_ops > 1 && GGML_CUDA_MAX_SUBSTREAMS > 1) {
|
|
// record an event on the stream to synchronize the sub-streams
|
|
CUDA_CHECK(cudaEventRecord(g_cudaEvent_main, main_stream));
|
|
}
|
|
|
|
for (int64_t i03 = 0; i03 < i03_max; i03++) {
|
|
const int64_t i13 = i03 % ne13;
|
|
for (int64_t i02 = 0; i02 < i02_max; i02++) {
|
|
const int64_t i12 = i02 % ne12;
|
|
|
|
const int64_t i0 = i03*ne02 + i02;
|
|
const int64_t i0_offset_low = row_low/rows_per_iter;
|
|
//const int64_t i0_offset_high = row_high/rows_per_iter;
|
|
|
|
int64_t i01_low = 0;
|
|
int64_t i01_high = rows_per_iter;
|
|
|
|
const int64_t i01_diff = i01_high - i01_low;
|
|
if (i01_diff == 0) {
|
|
continue;
|
|
}
|
|
const int64_t i11 = i13*ne12 + i12;
|
|
|
|
cudaStream_t op_stream;
|
|
if (num_ops > 1 && GGML_CUDA_MAX_SUBSTREAMS > 1) {
|
|
op_stream = g_cudaStreams[i0 % GGML_CUDA_MAX_SUBSTREAMS];
|
|
// wait for the main stream to finish, but only the first time per sub-stream
|
|
if (i0 < GGML_CUDA_MAX_SUBSTREAMS) {
|
|
CUDA_CHECK(cudaStreamWaitEvent(op_stream, g_cudaEvent_main, 0));
|
|
}
|
|
} else {
|
|
op_stream = main_stream;
|
|
}
|
|
// TODO: use different streams, record event, wait for all events on main stream at the end
|
|
|
|
// for split tensors the data begins at i0 == i0_offset_low
|
|
void * src0_d_i = (char *) src0_d + (i0 - i0_offset_low)*src0_stride*src0_ts/src0_bs;
|
|
void * src1_d_i = (char *) src1_d + i11*src1_stride*src1_ts/src1_bs;
|
|
void * dst_d_i = (char *) dst_d + (i0 - i0_offset_low)*dst_stride*dst_ts/dst_bs;
|
|
|
|
// copy src0, src1 to device if necessary
|
|
// CUDA_CHECK(cudaEventRecord(cudaEvent_memcpy_src1, cudaStream_memcpy_src1));
|
|
if (!src0_is_contiguous) {
|
|
CUDA_CHECK(ggml_cuda_cpy_tensor_2d(ctx, src0_d_i, src0, i03, i02, i01_low, i01_high, op_stream));
|
|
}
|
|
if (!src1_is_contiguous) {
|
|
CUDA_CHECK(ggml_cuda_cpy_tensor_2d(ctx, src1_d_i, src1, i03, i02, 0, ne11, op_stream));
|
|
}
|
|
|
|
op(src0, src1, dst,
|
|
src0_d_i, src1_d_i, dst_d_i,
|
|
i02, i01_low, i01_high, i11,
|
|
op_stream);
|
|
|
|
if (num_ops > 1 && GGML_CUDA_MAX_SUBSTREAMS > 1) {
|
|
// record an event on the stream to synchronize with the main stream
|
|
// only wait for the event if it is the last operation in this stream
|
|
if (i0 >= (num_ops - GGML_CUDA_MAX_SUBSTREAMS)) {
|
|
CUDA_CHECK(cudaEventRecord(g_cudaEvents[i0 % GGML_CUDA_MAX_SUBSTREAMS], op_stream));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (num_ops > 1 && GGML_CUDA_MAX_SUBSTREAMS > 1) {
|
|
// wait for all events on the main stream
|
|
for (int64_t i0 = 0; i0 < std::min((int)num_ops, GGML_CUDA_MAX_SUBSTREAMS); i0++) {
|
|
// wait on the main stream for the event
|
|
CUDA_CHECK(cudaStreamWaitEvent(main_stream, g_cudaEvents[i0], 0));
|
|
}
|
|
}
|
|
|
|
if (src1_as > 0) {
|
|
ggml_cuda_pool_free(src1_d, src1_as, main_stream);
|
|
}
|
|
if (src0_as > 0) {
|
|
ggml_cuda_pool_free(src0_d, src0_as, main_stream);
|
|
}
|
|
}
|
|
|
|
static void ggml_cuda_cpy(ggml_cuda_context * ctx, ggml_tensor * src0, ggml_tensor * src1, ggml_tensor * dst, cudaStream_t stream) {
|
|
const int64_t ne = ggml_nelements(src0);
|
|
GGML_ASSERT(ne == ggml_nelements(src1));
|
|
|
|
GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX);
|
|
GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX);
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
GGML_ASSERT(src0->ne[3] == 1);
|
|
|
|
const int64_t nb00 = src0->nb[0];
|
|
const int64_t nb01 = src0->nb[1];
|
|
const int64_t nb02 = src0->nb[2];
|
|
|
|
const int64_t ne10 = src1->ne[0];
|
|
const int64_t ne11 = src1->ne[1];
|
|
GGML_ASSERT(src1->ne[3] == 1);
|
|
|
|
const int64_t nb10 = src1->nb[0];
|
|
const int64_t nb11 = src1->nb[1];
|
|
const int64_t nb12 = src1->nb[2];
|
|
|
|
cudaStream_t cudaStream_main = stream;
|
|
|
|
void * d_src0 = src0 ? ggml_cuda_get_buffer(ctx, src0) : nullptr;
|
|
void * d_src1 = src1 ? ggml_cuda_get_buffer(ctx, src1) : nullptr;
|
|
|
|
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
|
|
ggml_cpy_cuda<float, float>((char *) d_src0, (char *) d_src1, ne, ne00, ne01, nb00, nb01, nb02,
|
|
ne10, ne11, nb10, nb11, nb12, cudaStream_main);
|
|
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
|
|
ggml_cpy_cuda<half, half>((char *) d_src0, (char *) d_src1, ne, ne00, ne01, nb00, nb01, nb02,
|
|
ne10, ne11, nb10, nb11, nb12, cudaStream_main);
|
|
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
|
|
ggml_cpy_cuda<half, float>((char *) d_src0, (char *) d_src1, ne, ne00, ne01, nb00, nb01, nb02,
|
|
ne10, ne11, nb10, nb11, nb12, cudaStream_main);
|
|
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
|
|
ggml_cpy_cuda<float, half>((char *) d_src0, (char *) d_src1, ne, ne00, ne01, nb00, nb01, nb02,
|
|
ne10, ne11, nb10, nb11, nb12, cudaStream_main);
|
|
} else if (src0->type == GGML_TYPE_I32 && src1->type == GGML_TYPE_I32) {
|
|
ggml_cpy_cuda<int32_t, int32_t>((char *) d_src0, (char *) d_src1, ne, ne00, ne01, nb00, nb01, nb02,
|
|
ne10, ne11, nb10, nb11, nb12, cudaStream_main);
|
|
} else {
|
|
GGML_ASSERT(false);
|
|
}
|
|
CUDA_CHECK(cudaGetLastError());
|
|
|
|
UNUSED(dst);
|
|
}
|
|
|
|
static void ggml_cuda_mul_mat_vec_p021(ggml_cuda_context * ctx, ggml_tensor * src0, ggml_tensor * src1, ggml_tensor * dst, cudaStream_t stream) {
|
|
GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
|
|
GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
|
|
GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int64_t ne02 = src0->ne[2];
|
|
|
|
cudaStream_t cudaStream_main = stream;
|
|
|
|
void * src0_d = src0 ? ggml_cuda_get_buffer(ctx, src0) : nullptr;
|
|
void * src1_d = src1 ? ggml_cuda_get_buffer(ctx, src1) : nullptr;
|
|
void * dst_d = dst ? ggml_cuda_get_buffer(ctx, dst) : nullptr;
|
|
|
|
if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
|
|
ggml_mul_mat_p021_cuda<half, half, half>((half *)src0_d, (half *)src1_d, (half *)dst_d, ne00, ne01, ne02, cudaStream_main);
|
|
}
|
|
else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
|
ggml_mul_mat_p021_cuda<half, float, float>((half *)src0_d, (float *)src1_d, (float *)dst_d, ne00, ne01, ne02, cudaStream_main);
|
|
}
|
|
else {
|
|
GGML_ASSERT(false);
|
|
}
|
|
}
|
|
|
|
static void ggml_cuda_mul_mat_vec_nc(ggml_cuda_context * ctx, ggml_tensor * src0, ggml_tensor * src1, ggml_tensor * dst, cudaStream_t stream) {
|
|
GGML_ASSERT(!ggml_is_contiguous(src0) && ggml_is_contiguous(src1));
|
|
GGML_ASSERT(!ggml_is_permuted(src0));
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int64_t ne02 = src0->ne[2];
|
|
|
|
const int64_t nb01 = src0->nb[1];
|
|
const int64_t nb02 = src0->nb[2];
|
|
|
|
cudaStream_t cudaStream_main = stream;
|
|
|
|
void * src0_d = src0 ? ggml_cuda_get_buffer(ctx, src0) : nullptr;
|
|
void * src1_d = src1 ? ggml_cuda_get_buffer(ctx, src1) : nullptr;
|
|
void * dst_d = dst ? ggml_cuda_get_buffer(ctx, dst) : nullptr;
|
|
|
|
const int row_stride_x = nb01 / ggml_type_size(src0->type);
|
|
const int channel_stride_x = nb02 / ggml_type_size(src0->type);
|
|
|
|
if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) {
|
|
ggml_mul_mat_vec_nc_cuda<half, half, half>((half *)src0_d, (half *)src1_d, (half *)dst_d, ne00, ne01, row_stride_x, ne02, channel_stride_x, cudaStream_main);
|
|
}
|
|
else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
|
ggml_mul_mat_vec_nc_cuda<half, float, float>((half *)src0_d, (float *)src1_d, (float *)dst_d, ne00, ne01, row_stride_x, ne02, channel_stride_x, cudaStream_main);
|
|
}
|
|
else {
|
|
GGML_ASSERT(false);
|
|
}
|
|
}
|
|
|
|
static cudaDataType ggml_to_cuda_type(ggml_type t) {
|
|
switch (t) {
|
|
case GGML_TYPE_F16: return CUDA_R_16F;
|
|
case GGML_TYPE_F32: return CUDA_R_32F;
|
|
default: puts(ggml_type_name(t)); GGML_ASSERT(false);
|
|
}
|
|
}
|
|
|
|
template<typename src0_t, typename src1_t, typename dst_t>
|
|
static void ggml_cuda_op_mul_mat_cublas(
|
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
|
void * src0_d, void * src1_d, void * dst_d,
|
|
int64_t i02, int64_t i01_low, int64_t i01_high, int i1,
|
|
cudaStream_t stream) {
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
|
|
const int64_t ne10 = src1->ne[0];
|
|
const int64_t ne11 = src1->ne[1];
|
|
|
|
const int64_t ne0 = dst->ne[0];
|
|
const int64_t i01_diff = i01_high - i01_low;
|
|
|
|
// the main device has a larger memory buffer to hold the results from all GPUs
|
|
// ldc == nrows of the matrix that cuBLAS writes into
|
|
const int ldc = ne0; //dst->backend == GGML_BACKEND_GPU && id == g_main_device ? ne0 : i01_diff;
|
|
|
|
ggml_type ts0 = src0->type;
|
|
ggml_type ts1 = src1->type;
|
|
ggml_type td = dst->type;
|
|
|
|
size_t src0_as = 0;
|
|
cublasComputeType_t compute_type;
|
|
|
|
if (ts0 == GGML_TYPE_F16 && ts1 == GGML_TYPE_F16 && td == GGML_TYPE_F16) {
|
|
compute_type = CUBLAS_COMPUTE_16F;
|
|
}
|
|
else if (ts0 == GGML_TYPE_F32 && ts1 == GGML_TYPE_F32 && td == GGML_TYPE_F32) {
|
|
compute_type = CUBLAS_COMPUTE_32F_FAST_TF32;
|
|
}
|
|
else if (ts1 == GGML_TYPE_F32 && td == GGML_TYPE_F32) {
|
|
compute_type = CUBLAS_COMPUTE_32F_FAST_TF32;
|
|
|
|
int ne = i01_diff * ne00;
|
|
void * src0_f32 = ggml_cuda_pool_malloc(ne * sizeof(float), &src0_as, stream);
|
|
|
|
const to_t_cuda_t<float> to_fp32_cuda = ggml_get_to_t_cuda<float>(src0->type);
|
|
GGML_ASSERT(to_fp32_cuda);
|
|
//printf("converting %s from %s\n", src0->name, ggml_type_name(src0->type));
|
|
to_fp32_cuda(src0_d, (float *)src0_f32, ne, stream);
|
|
CUDA_CHECK(cudaGetLastError());
|
|
src0_d = src0_f32;
|
|
ts0 = GGML_TYPE_F32;
|
|
}
|
|
else if (ts1 == GGML_TYPE_F16) {
|
|
if (td == GGML_TYPE_F16) {
|
|
compute_type = CUBLAS_COMPUTE_16F;
|
|
}
|
|
else if (td == GGML_TYPE_F32) {
|
|
compute_type = CUBLAS_COMPUTE_32F_FAST_TF32;
|
|
}
|
|
else {
|
|
GGML_ASSERT(false);
|
|
}
|
|
|
|
int ne = i01_diff * ne00;
|
|
void * src0_f16 = ggml_cuda_pool_malloc(ne * sizeof(half), &src0_as, stream);
|
|
|
|
const to_t_cuda_t<half> to_fp16_cuda = ggml_get_to_t_cuda<half>(src0->type);
|
|
GGML_ASSERT(to_fp16_cuda);
|
|
|
|
to_fp16_cuda(src0_d, (half *)src0_f16, ne, stream);
|
|
CUDA_CHECK(cudaGetLastError());
|
|
src0_d = src0_f16;
|
|
ts0 = GGML_TYPE_F16;
|
|
}
|
|
else {
|
|
fprintf(stderr, "cuBLAS: unsupported types: %s * %s -> %s\n",
|
|
ggml_type_name(ts0), ggml_type_name(ts1), ggml_type_name(td));
|
|
GGML_ASSERT(false);
|
|
}
|
|
|
|
half alpha_f16 = 1.0f;
|
|
half beta_f16 = 0.0f;
|
|
float alpha_f32 = 1.0f;
|
|
float beta_f32 = 0.0f;
|
|
const void * alpha;
|
|
const void * beta;
|
|
|
|
switch (compute_type) {
|
|
case CUBLAS_COMPUTE_16F:
|
|
alpha = &alpha_f16; beta = &beta_f16;
|
|
break;
|
|
case CUBLAS_COMPUTE_32F_FAST_TF32:
|
|
case CUBLAS_COMPUTE_32F:
|
|
alpha = &alpha_f32; beta = &beta_f32;
|
|
break;
|
|
default:
|
|
GGML_ASSERT(false);
|
|
break;
|
|
}
|
|
|
|
CUBLAS_CHECK(cublasSetStream(g_cublas_handle, stream));
|
|
CUBLAS_CHECK(
|
|
cublasGemmEx(g_cublas_handle, CUBLAS_OP_T, CUBLAS_OP_N,
|
|
i01_diff, ne11, ne10,
|
|
alpha, src0_d, ggml_to_cuda_type(ts0), ne00,
|
|
src1_d, ggml_to_cuda_type(ts1), ne10,
|
|
beta, dst_d, ggml_to_cuda_type(td), ldc,
|
|
compute_type,
|
|
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
|
|
|
|
if (src0_as) {
|
|
ggml_cuda_pool_free(src0_d, src0_as, stream);
|
|
}
|
|
|
|
UNUSED(i02);
|
|
UNUSED(i1);
|
|
}
|
|
|
|
#define DEFINE_GGML_CUDA_OP_S(op_name) \
|
|
template<typename src0_t, typename src1_t, typename dst_t> \
|
|
struct ggml_cuda_op_ ## op_name ## _s { \
|
|
static void op(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, \
|
|
void * src0_d, void * src1_d, void * dst_d, \
|
|
int64_t i02, int64_t i01_low, int64_t i01_high, int i1, \
|
|
cudaStream_t stream) { \
|
|
ggml_cuda_op_ ## op_name<src0_t, src1_t, dst_t>(src0, src1, dst, \
|
|
src0_d, src1_d, dst_d, \
|
|
i02, i01_low, i01_high, i1, \
|
|
stream); \
|
|
} \
|
|
}
|
|
|
|
DEFINE_GGML_CUDA_OP_S(add);
|
|
DEFINE_GGML_CUDA_OP_S(mul);
|
|
DEFINE_GGML_CUDA_OP_S(scale);
|
|
DEFINE_GGML_CUDA_OP_S(mul_mat_cublas);
|
|
DEFINE_GGML_CUDA_OP_S(dequantize_mul_mat_vec);
|
|
DEFINE_GGML_CUDA_OP_S(silu);
|
|
DEFINE_GGML_CUDA_OP_S(soft_max);
|
|
DEFINE_GGML_CUDA_OP_S(diag_mask_inf);
|
|
DEFINE_GGML_CUDA_OP_S(rms_norm);
|
|
DEFINE_GGML_CUDA_OP_S(rope);
|
|
DEFINE_GGML_CUDA_OP_S(get_rows);
|
|
|
|
#undef DEFINE_GGML_CUDA_OP_S
|
|
|
|
static void ggml_cuda_mul_mat(ggml_cuda_context * ctx, ggml_tensor * src0, ggml_tensor * src1, ggml_tensor * dst, cudaStream_t stream) {
|
|
if (ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
|
|
ggml_cuda_mul_mat_vec_p021(ctx, src0, src1, dst, stream);
|
|
} else if (!ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && src1->ne[1] == 1) {
|
|
ggml_cuda_mul_mat_vec_nc(ctx, src0, src1, dst, stream);
|
|
} else {
|
|
if (src1->ne[1] == 1 && src0->ne[0] % GGML_CUDA_DMMV_X == 0 && src0->ne[1] % GGML_CUDA_DMMV_Y == 0) {
|
|
ggml_cuda_op<ggml_cuda_op_dequantize_mul_mat_vec_s>(ctx, src0, src1, dst, stream, false);
|
|
} else {
|
|
ggml_cuda_op<ggml_cuda_op_mul_mat_cublas_s>(ctx, src0, src1, dst, stream, false);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ggml_cuda_exec_node(ggml_cuda_context * ctx, ggml_tensor * node, cudaStream_t stream) {
|
|
ggml_tensor * src0 = node->src[0];
|
|
ggml_tensor * src1 = node->src[1];
|
|
ggml_tensor * dst = node;
|
|
|
|
#if 0
|
|
fprintf(stdout, "%s: %s %s %s %s (%s, %s, %s) %d\n",
|
|
dst->name,
|
|
ggml_op_name(dst->op),
|
|
src0 ? ggml_type_name(src0->type) : "null",
|
|
src1 ? ggml_type_name(src1->type) : "null",
|
|
dst ? ggml_type_name(dst->type) : "null",
|
|
src0 ? ggml_get_name(src0) : "null",
|
|
src1 ? ggml_get_name(src1) : "null",
|
|
dst ? ggml_get_name(dst) : "null",
|
|
src1 ? ggml_is_contiguous(src1) : -1
|
|
);
|
|
#endif
|
|
switch ((int)dst->op) {
|
|
case GGML_OP_RESHAPE:
|
|
case GGML_OP_VIEW:
|
|
case GGML_OP_TRANSPOSE:
|
|
case GGML_OP_PERMUTE:
|
|
case GGML_OP_NONE:
|
|
{
|
|
// noop
|
|
} break;
|
|
case GGML_OP_ADD:
|
|
{
|
|
ggml_cuda_op<ggml_cuda_op_add_s>(ctx, src0, src1, dst, stream, true);
|
|
} break;
|
|
case GGML_OP_MUL:
|
|
{
|
|
ggml_cuda_op<ggml_cuda_op_mul_s>(ctx, src0, src1, dst, stream, false); // TODO ggml_cuda_op needs modification for flatten
|
|
} break;
|
|
case GGML_OP_SCALE:
|
|
{
|
|
ggml_cuda_op<ggml_cuda_op_scale_s>(ctx, src0, src1, dst, stream, true);
|
|
} break;
|
|
case GGML_OP_SILU:
|
|
{
|
|
ggml_cuda_op<ggml_cuda_op_silu_s>(ctx, src0, src1, dst, stream, true);
|
|
} break;
|
|
case GGML_OP_SOFT_MAX:
|
|
{
|
|
ggml_cuda_op<ggml_cuda_op_soft_max_s>(ctx, src0, src1, dst, stream, true);
|
|
} break;
|
|
case GGML_OP_DIAG_MASK_INF:
|
|
{
|
|
ggml_cuda_op<ggml_cuda_op_diag_mask_inf_s>(ctx, src0, src1, dst, stream, true);
|
|
} break;
|
|
case GGML_OP_MUL_MAT:
|
|
{
|
|
ggml_cuda_mul_mat(ctx, src0, src1, dst, stream);
|
|
} break;
|
|
case GGML_OP_GET_ROWS:
|
|
{
|
|
ggml_cuda_op<ggml_cuda_op_get_rows_s>(ctx, src0, src1, dst, stream, true);
|
|
} break;
|
|
case GGML_OP_RMS_NORM:
|
|
{
|
|
ggml_cuda_op<ggml_cuda_op_rms_norm_s>(ctx, src0, src1, dst, stream, true);
|
|
} break;
|
|
case GGML_OP_ROPE:
|
|
{
|
|
ggml_cuda_op<ggml_cuda_op_rope_s>(ctx, src0, src1, dst, stream, false); // FIXME flatten changes results
|
|
} break;
|
|
case GGML_OP_CPY:
|
|
{
|
|
ggml_cuda_cpy(ctx, src0, src1, dst, stream);
|
|
} break;
|
|
default:
|
|
fprintf(stderr, "%s: op = %8s not implemented\n", __func__, ggml_op_name(dst->op));
|
|
GGML_ASSERT(false);
|
|
}
|
|
}
|
|
|
|
static bool ggml_is_noop(ggml_tensor * t) {
|
|
return t->op == GGML_OP_RESHAPE || t->op == GGML_OP_VIEW || t->op == GGML_OP_TRANSPOSE ||
|
|
t->op == GGML_OP_PERMUTE || t->op == GGML_OP_NONE;
|
|
}
|
|
|
|
// TODO: reduce number of streams and events
|
|
static void ggml_cuda_graph_exec_parallel(ggml_cuda_context * ctx, ggml_cgraph * gf, cudaStream_t mainStream) {
|
|
// record an event for the nodes to add a dependency on
|
|
cudaEvent_t mainEvent = g_cudaEvent_main;
|
|
|
|
CUDA_CHECK(cudaEventRecord(mainEvent, mainStream));
|
|
|
|
// TODO: move to context and free
|
|
static std::vector<cudaStream_t> free_streams;
|
|
static std::vector<cudaEvent_t> free_events;
|
|
|
|
// TODO: preserve the order to allow reusing pool allocations
|
|
free_streams.insert(free_streams.begin(), mainStream);
|
|
|
|
std::unordered_set<cudaStream_t> node_streams;
|
|
std::vector<cudaEvent_t> node_events;
|
|
std::unordered_map<ggml_tensor *, cudaEvent_t> event_map;
|
|
std::unordered_map<ggml_tensor *, cudaStream_t> stream_map;
|
|
|
|
for (int i = 0; i < gf->n_nodes; ++i) {
|
|
ggml_tensor * node = gf->nodes[i];
|
|
const bool is_noop = ggml_is_noop(node);
|
|
|
|
// assign an stream for the node
|
|
cudaStream_t stream = nullptr;
|
|
|
|
// take a stream from a parent
|
|
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
|
if (node->src[j] && stream_map.count(node->src[j]) && stream_map[node->src[j]] != nullptr) {
|
|
stream = stream_map[node->src[j]];
|
|
stream_map.erase(node->src[j]);
|
|
|
|
if (is_noop) {
|
|
// if this is a noop, we can use the parent's event
|
|
stream_map[node] = stream;
|
|
if (event_map.count(node->src[j]) > 0) {
|
|
event_map[node] = event_map[node->src[j]];
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (is_noop) {
|
|
continue;
|
|
}
|
|
|
|
// otherwise, create a new stream
|
|
if (!stream) {
|
|
if (!free_streams.empty()) {
|
|
stream = free_streams.back();
|
|
free_streams.pop_back();
|
|
}
|
|
else {
|
|
CUDA_CHECK(cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking));
|
|
}
|
|
}
|
|
|
|
// wait on parent streams
|
|
bool waited = false;
|
|
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
|
if (node->src[j] && event_map.count(node->src[j]) > 0) {
|
|
CUDA_CHECK(cudaStreamWaitEvent(stream, event_map[node->src[j]], 0));
|
|
waited = true;
|
|
}
|
|
}
|
|
|
|
// wait on the start event to introduce a dependency if no parents
|
|
if (!waited) {
|
|
CUDA_CHECK(cudaStreamWaitEvent(stream, mainEvent, 0));
|
|
}
|
|
|
|
// execute the node
|
|
ggml_cuda_exec_node(ctx, node, stream);
|
|
|
|
// record an event for the node
|
|
cudaEvent_t event;
|
|
if (!free_events.empty()) {
|
|
event = free_events.back();
|
|
free_events.pop_back();
|
|
}
|
|
else {
|
|
CUDA_CHECK(cudaEventCreateWithFlags(&event, cudaEventDisableTiming));
|
|
}
|
|
|
|
CUDA_CHECK(cudaEventRecord(event, stream));
|
|
|
|
// save stream and event
|
|
if (stream != mainStream) {
|
|
node_streams.insert(stream);
|
|
}
|
|
node_events.push_back(event);
|
|
event_map[node] = event;
|
|
stream_map[node] = stream;
|
|
}
|
|
|
|
// wait for the group streams to finish
|
|
for (auto & it : node_events) {
|
|
CUDA_CHECK(cudaStreamWaitEvent(mainStream, it, 0));
|
|
}
|
|
|
|
//printf("used %d events and %d streams\n", (int)node_events.size(), (int)node_streams.size());
|
|
|
|
// save streams and events for reuse
|
|
free_streams.insert(free_streams.end(), node_streams.begin(), node_streams.end());
|
|
free_events.insert(free_events.end(), node_events.begin(), node_events.end());
|
|
}
|
|
|
|
static void ggml_cuda_synchronize(struct ggml_cuda_context * ctx) {
|
|
CUDA_CHECK(cudaStreamSynchronize(g_cudaStream_main));
|
|
|
|
UNUSED(ctx);
|
|
}
|
|
|
|
static void ggml_cuda_cgraph_compute(ggml_cuda_context * ctx, ggml_cgraph * gf) {
|
|
cudaStream_t stream = g_cudaStream_main;
|
|
|
|
if (GGML_CUDA_SEQ_COMPUTE) {
|
|
for (int i = 0; i < gf->n_nodes; ++i) {
|
|
ggml_cuda_exec_node(ctx, gf->nodes[i], stream);
|
|
}
|
|
}
|
|
else {
|
|
ggml_cuda_graph_exec_parallel(ctx, gf, stream);
|
|
}
|
|
}
|
|
|
|
// backend interface
|
|
|
|
struct ggml_backend_cuda_context {
|
|
ggml_cuda_context * cuda_ctx = ggml_cuda_init();
|
|
};
|
|
|
|
static const char * ggml_backend_cuda_name(ggml_backend * backend) {
|
|
return "CUDA";
|
|
|
|
UNUSED(backend);
|
|
}
|
|
|
|
static void ggml_backend_cuda_free(ggml_backend * backend) {
|
|
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
|
ggml_cuda_free(cuda_ctx->cuda_ctx);
|
|
delete cuda_ctx;
|
|
delete backend;
|
|
}
|
|
|
|
struct cuda_backend_buffer {
|
|
void * data;
|
|
size_t offset;
|
|
size_t size;
|
|
};
|
|
|
|
static const size_t TENSOR_ALIGNMENT = 128;
|
|
|
|
static void ggml_backend_cuda_free_buffer(struct ggml_backend_buffer * alloc) {
|
|
CUDA_CHECK(cudaFree(alloc->backend_data));
|
|
}
|
|
|
|
static ggml_backend_buffer * ggml_backend_cuda_alloc_buffer(ggml_backend * backend, size_t size) {
|
|
void * data;
|
|
CUDA_CHECK(cudaMalloc(&data, size));
|
|
|
|
ggml_backend_buffer * buffer = ggml_allocator_simple_init(data, size, TENSOR_ALIGNMENT);
|
|
buffer->interface.free_data = ggml_backend_cuda_free_buffer;
|
|
buffer->backend_data = data;
|
|
|
|
return buffer;
|
|
|
|
UNUSED(backend);
|
|
}
|
|
|
|
static void ggml_backend_cuda_set_tensor_async(ggml_backend * backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
|
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
|
|
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
|
|
|
//ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
|
|
|
CUDA_CHECK(cudaMemcpyAsync((char*)tensor->data + offset, data, size, cudaMemcpyHostToDevice, g_cudaStream_main));
|
|
|
|
UNUSED(backend);
|
|
}
|
|
|
|
static void ggml_backend_cuda_get_tensor_async(ggml_backend * backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
|
GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
|
|
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
|
|
|
//ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
|
|
|
CUDA_CHECK(cudaMemcpyAsync(data, (const char*)tensor->data + offset, size, cudaMemcpyDeviceToHost, g_cudaStream_main));
|
|
|
|
UNUSED(backend);
|
|
}
|
|
|
|
static void ggml_backend_cuda_synchronize(ggml_backend * backend) {
|
|
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
|
ggml_cuda_synchronize(cuda_ctx->cuda_ctx);
|
|
}
|
|
|
|
static ggml_graph_plan_t ggml_backend_cuda_graph_plan_create(ggml_backend * backend, ggml_cgraph * cgraph) {
|
|
GGML_ASSERT(false);
|
|
|
|
return nullptr;
|
|
|
|
UNUSED(backend);
|
|
UNUSED(cgraph);
|
|
}
|
|
|
|
static void ggml_backend_cuda_graph_plan_free(ggml_backend * backend, ggml_graph_plan_t plan) {
|
|
GGML_ASSERT(false);
|
|
|
|
UNUSED(backend);
|
|
UNUSED(plan);
|
|
}
|
|
|
|
static void ggml_backend_cuda_graph_plan_compute(ggml_backend * backend, ggml_graph_plan_t plan) {
|
|
GGML_ASSERT(false);
|
|
|
|
UNUSED(backend);
|
|
UNUSED(plan);
|
|
}
|
|
|
|
static void ggml_backend_cuda_graph_compute(ggml_backend * backend, ggml_cgraph * cgraph) {
|
|
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
|
ggml_cuda_cgraph_compute(cuda_ctx->cuda_ctx, cgraph);
|
|
}
|
|
|
|
static ggml_backend_interface cuda_backend_interface = {
|
|
/* .get_name = */ ggml_backend_cuda_name,
|
|
/* .free = */ ggml_backend_cuda_free,
|
|
/* .alloc_buffer = */ ggml_backend_cuda_alloc_buffer,
|
|
/* .set_tensor_async = */ ggml_backend_cuda_set_tensor_async,
|
|
/* .get_tensor_async = */ ggml_backend_cuda_get_tensor_async,
|
|
/* .synchronize = */ ggml_backend_cuda_synchronize,
|
|
/* .cpy_tensor_from = */ nullptr,
|
|
/* .cpy_tensor_to = */ nullptr,
|
|
/* .graph_plan_create = */ ggml_backend_cuda_graph_plan_create,
|
|
/* .graph_plan_free = */ ggml_backend_cuda_graph_plan_free,
|
|
/* .graph_plan_compute = */ ggml_backend_cuda_graph_plan_compute,
|
|
/* .graph_compute = */ ggml_backend_cuda_graph_compute
|
|
};
|
|
|
|
ggml_backend * ggml_backend_cuda_init(void) {
|
|
ggml_backend_cuda_context * ctx = new ggml_backend_cuda_context;
|
|
|
|
ggml_backend * cuda_backend = new ggml_backend;
|
|
*cuda_backend = (ggml_backend){
|
|
/* .interface = */ cuda_backend_interface,
|
|
/* .context = */ ctx
|
|
};
|
|
return cuda_backend;
|
|
}
|