mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-15 23:00:46 +01:00
557410b8f0
* llama : greatly reduce logits memory usage * llama : more compact state saving and reloading * llama : fix lctx.n_outputs not being set before building graph * perplexity : adapt to the logits API changes * perplexity : fix Winogrande, use correct logits for second choice start The first logits used to evaluate the second choice were not from the end of the common prefix; instead, they were the logits from the end of the first choice. This has been corrected. The previous implementation sometimes had outliers in the scores of choices for some tasks, and the logic to skip choices words in the log-likelihood evaluation probably was an attempt to reduce those, but it was complex and didn't quite seem to be the right thing. This is simpler now, and the outlier scores aren't there anymore. * perplexity : normalize spaces and punctuation in Winogrande sentences * llama : fix embedding conditions * llama : fix llama_get_embeddings_ith when the resulting id is 0 * llama : fix wrong n_outputs in llama_set_inputs A mismatch happened when using a smaller n_ubatch than n_batch and then using llama_batch_get_one(). The decision of what n_outputs should be now almost fully depends on how lctx.n_outputs is set in llama_decode_internal. The conditions are simpler this way. * llama : when saving the state, recalculate n_outputs This ensures the correct number of outputs for the entire previous batch is stored in the session file, even when n_ubatch is smaller than n_batch. * llama : fix not-skipping outputs of non-causal models * llama : fix running a batch with n_outputs == 0 It previously worked because lctx.inp_out_ids was not initialized, so it pointed to some garbage address which was somehow still valid when I ran my tests. * llama : keep same graph topology even when n_outputs == 0 * ggml : saner ggml_can_repeat with empty tensors * ggml : future-proof ggml_is_empty by using GGML_MAX_DIMS - 1 * ggml : do not multi-thread ops returning empty tensors * ggml : make ggml_is_empty public and work with views * llama : use a vector for ctx->output_ids * llama : rework reallocation logic for llama_output_reserve Now comparing the actual size with the new total size of the output buffer to allow more efficient enabling and disabling of the embeddings and/or logits output in the future. * ggml : skip empty tensors in all backends * llama : fix llama_output_reserve nullptr deref when new_size is 0 * perplexity : make Winogrande work as it does on master The problems with the Winogrande implementation will need to be fixed in a separate PR to ease review. * llama : clearer error messages for invalid logits or embeddings ids * llama : assert all models that can have inp_out_ids Since the graph topology is now constant, this presence check can be done even when there are no outputs. * llama : assert logits and embd buffers exist before writing to them * llama : handle errors from llama_output_reserve at call sites * perplexity : make hellaswag and multiple-choice outputs identical to master Due to how the KV cache is updated, the logprobs for tokens in a batch are very slightly affected by the other tokens present in the batch, so to make hellaswag and multiple-choice return exactly the same results as on master, the last token of each sequence needs to be evaluated even though its output is not used at all. This will probably be changed back in the future to make these benchmarks a tiny bit faster. * perplexity : fix division by zero when using less than 100 multiple-choice tasks * llama : allow loading state saved with a different ctx size When loading a session file, the context size is now only required to be at least enough to load the KV cells contained in that session file, instead of requiring to use exactly the same context size as when saving. Doing this enables the use-case of extending or shrinking the context size of a saved session. This breaks existing session files because the meaning of kv_buf_size is slightly changed (previously it was the size of the whole KV cache, now it's only the size of the saved part of it). This allows for finer-grained sanity checks when loading in an effort to keep kv_buf_size useful even when the kv_size is changed. * llama : minor ggml-ci * readme : update recent API changes, and warn about Vulkan --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
2302 lines
84 KiB
C++
2302 lines
84 KiB
C++
#include "ggml.h"
|
|
#include "ggml-opencl.h"
|
|
#include "ggml-backend-impl.h"
|
|
|
|
#include <array>
|
|
#include <atomic>
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#include <cstring>
|
|
#include <limits>
|
|
#include <sstream>
|
|
#include <vector>
|
|
|
|
#define CL_TARGET_OPENCL_VERSION 120
|
|
#include <clblast.h>
|
|
|
|
#if defined(_MSC_VER)
|
|
#pragma warning(disable: 4244 4267) // possible loss of data
|
|
#endif
|
|
|
|
#define CL_DMMV_LOCAL_SIZE 32
|
|
|
|
#ifndef K_QUANTS_PER_ITERATION
|
|
#define K_QUANTS_PER_ITERATION 1
|
|
#else
|
|
static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2");
|
|
#endif
|
|
|
|
#define MULTILINE_QUOTE(...) #__VA_ARGS__
|
|
static std::string program_source = MULTILINE_QUOTE(
|
|
|
|
typedef char int8_t;
|
|
typedef uchar uint8_t;
|
|
typedef short int16_t;
|
|
typedef ushort uint16_t;
|
|
typedef int int32_t;
|
|
typedef uint uint32_t;
|
|
|
|
struct __attribute__ ((packed)) block_q4_0
|
|
{
|
|
half d;
|
|
uint8_t qs[QK4_0 / 2];
|
|
};
|
|
|
|
struct __attribute__ ((packed)) block_q4_1
|
|
{
|
|
half d;
|
|
half m;
|
|
uint8_t qs[QK4_1 / 2];
|
|
};
|
|
|
|
struct __attribute__ ((packed)) block_q5_0
|
|
{
|
|
half d;
|
|
uint32_t qh;
|
|
uint8_t qs[QK5_0 / 2];
|
|
};
|
|
|
|
struct __attribute__ ((packed)) block_q5_1
|
|
{
|
|
half d;
|
|
half m;
|
|
uint32_t qh;
|
|
uint8_t qs[QK5_1 / 2];
|
|
};
|
|
|
|
struct __attribute__ ((packed)) block_q8_0
|
|
{
|
|
half d;
|
|
int8_t qs[QK8_0];
|
|
};
|
|
|
|
struct __attribute__((packed)) block_q2_K
|
|
{
|
|
uint8_t scales[16];
|
|
uint8_t qs[64];
|
|
half d;
|
|
half dmin;
|
|
};
|
|
|
|
struct __attribute__((packed)) block_q3_K
|
|
{
|
|
uint8_t hmask[32];
|
|
uint8_t qs[64];
|
|
uint8_t scales[12];
|
|
half d;
|
|
};
|
|
|
|
struct __attribute__((packed)) block_q4_K
|
|
{
|
|
half d;
|
|
half dmin;
|
|
uint8_t scales[12];
|
|
uint8_t qs[128];
|
|
};
|
|
|
|
struct __attribute__((packed)) block_q5_K
|
|
{
|
|
half d;
|
|
half dmin;
|
|
uint8_t scales[12];
|
|
uint8_t qh[32];
|
|
uint8_t qs[128];
|
|
};
|
|
|
|
struct __attribute__((packed)) block_q6_K
|
|
{
|
|
uint8_t ql[128];
|
|
uint8_t qh[64];
|
|
int8_t scales[16];
|
|
half d;
|
|
};
|
|
|
|
__kernel void convert_fp16_to_fp32(__global half* x, __global float* y) {
|
|
const uint i = get_global_id(0);
|
|
|
|
y[i] = vload_half(0, &x[i]);
|
|
}
|
|
|
|
void dequantize_q4_0(__global const struct block_q4_0* x, const int ib, const int iqs, float* v0, float* v1) {
|
|
const float d = vload_half(0, &x[ib].d);
|
|
|
|
const uint8_t vui = x[ib].qs[iqs];
|
|
|
|
const int8_t vi0 = vui & 0xF;
|
|
const int8_t vi1 = vui >> 4;
|
|
|
|
*v0 = (vi0 - 8)*d;
|
|
*v1 = (vi1 - 8)*d;
|
|
}
|
|
void dequantize_q4_1(__global const struct block_q4_1* x, const int ib, const int iqs, float* v0, float* v1) {
|
|
const float d = vload_half(0, &x[ib].d);
|
|
const float m = vload_half(0, &x[ib].m);
|
|
|
|
const uint8_t vui = x[ib].qs[iqs];
|
|
|
|
const int8_t vi0 = vui & 0xF;
|
|
const int8_t vi1 = vui >> 4;
|
|
|
|
*v0 = vi0*d + m;
|
|
*v1 = vi1*d + m;
|
|
}
|
|
void dequantize_q5_0(__global const struct block_q5_0* x, const int ib, const int iqs, float* v0, float* v1) {
|
|
const float d = vload_half(0, &x[ib].d);
|
|
|
|
uint32_t qh = x[ib].qh;
|
|
|
|
const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
|
|
const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
|
|
|
|
const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0) - 16;
|
|
const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1) - 16;
|
|
|
|
*v0 = x0*d;
|
|
*v1 = x1*d;
|
|
}
|
|
void dequantize_q5_1(__global const struct block_q5_1* x, const int ib, const int iqs, float* v0, float* v1) {
|
|
const float d = vload_half(0, &x[ib].d);
|
|
const float m = vload_half(0, &x[ib].m);
|
|
|
|
uint32_t qh = x[ib].qh;
|
|
|
|
const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
|
|
const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
|
|
|
|
const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0);
|
|
const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1);
|
|
|
|
*v0 = x0*d + m;
|
|
*v1 = x1*d + m;
|
|
}
|
|
void dequantize_q8_0(__global const struct block_q8_0* x, const int ib, const int iqs, float* v0, float* v1) {
|
|
const float d = vload_half(0, &x[ib].d);
|
|
|
|
const int8_t vi0 = x[ib].qs[iqs + 0];
|
|
const int8_t vi1 = x[ib].qs[iqs + 1];
|
|
|
|
*v0 = vi0*d;
|
|
*v1 = vi1*d;
|
|
}
|
|
void convert_f16(__global half* x, const int ib, const int iqs, float* v0, float* v1){
|
|
*v0 = vload_half(0, &x[ib + 0]);
|
|
*v1 = vload_half(0, &x[ib + 1]);
|
|
}
|
|
);
|
|
|
|
static std::string k_quants_source = MULTILINE_QUOTE(
|
|
inline void get_scale_min_k4(int j, const __global uint8_t *q, uint8_t *d, uint8_t *m)
|
|
{
|
|
if (j < 4)
|
|
{
|
|
*d = q[j] & 63;
|
|
*m = q[j + 4] & 63;
|
|
}
|
|
else
|
|
{
|
|
*d = (q[j + 4] & 0xF) | ((q[j - 4] >> 6) << 4);
|
|
*m = (q[j + 4] >> 4) | ((q[j - 0] >> 6) << 4);
|
|
}
|
|
}
|
|
|
|
__kernel void dequantize_block_q2_K(__global const struct block_q2_K *x, __global float *yy)
|
|
{
|
|
const int i = get_group_id(0) + get_global_offset(0);
|
|
const int tid = get_local_id(0);
|
|
const int n = tid / 32;
|
|
const int l = tid - 32 * n;
|
|
const int is = 8 * n + l / 16;
|
|
|
|
const uint8_t q = x[i].qs[32 * n + l];
|
|
__global float *y = yy + get_group_id(0) * QK_K + 128 * n;
|
|
|
|
const float dall = vload_half(0, &x[i].d);
|
|
const float dmin = vload_half(0, &x[i].dmin);
|
|
|
|
y[l + 0] = dall * (x[i].scales[is + 0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is + 0] >> 4);
|
|
y[l + 32] = dall * (x[i].scales[is + 2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is + 2] >> 4);
|
|
y[l + 64] = dall * (x[i].scales[is + 4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is + 4] >> 4);
|
|
y[l + 96] = dall * (x[i].scales[is + 6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is + 6] >> 4);
|
|
}
|
|
|
|
__kernel void dequantize_block_q3_K(__global const struct block_q3_K *x, __global float *yy)
|
|
{
|
|
int r = get_local_id(0) / 4;
|
|
int i = get_group_id(0) + get_global_offset(0);
|
|
int tid = r / 2;
|
|
int is0 = r % 2;
|
|
int l0 = 16 * is0 + 4 * (get_local_id(0) % 4);
|
|
int n = tid / 4;
|
|
int j = tid - 4 * n;
|
|
|
|
uint8_t m = 1 << (4 * n + j);
|
|
int is = 8 * n + 2 * j + is0;
|
|
int shift = 2 * j;
|
|
|
|
int8_t us = is < 4 ? (x[i].scales[is - 0] & 0xF) | (((x[i].scales[is + 8] >> 0) & 3) << 4)
|
|
: is < 8 ? (x[i].scales[is - 0] & 0xF) | (((x[i].scales[is + 4] >> 2) & 3) << 4)
|
|
: is < 12 ? (x[i].scales[is - 8] >> 4) | (((x[i].scales[is + 0] >> 4) & 3) << 4)
|
|
: (x[i].scales[is - 8] >> 4) | (((x[i].scales[is - 4] >> 6) & 3) << 4);
|
|
float d_all = vload_half(0, &x[i].d);
|
|
float dl = d_all * (us - 32);
|
|
|
|
__global float *y = yy + get_group_id(0) * QK_K + 128 * n + 32 * j;
|
|
const __global uint8_t *q = x[i].qs + 32 * n;
|
|
const __global uint8_t *hm = x[i].hmask;
|
|
|
|
for (int l = l0; l < l0 + 4; ++l)
|
|
y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
|
|
}
|
|
|
|
__kernel void dequantize_block_q4_K(__global const struct block_q4_K *x, __global float *yy)
|
|
{
|
|
const int i = get_group_id(0) + get_global_offset(0);
|
|
const int tid = get_local_id(0);
|
|
const int il = tid / 8;
|
|
const int ir = tid % 8;
|
|
const int is = 2 * il;
|
|
const int n = 4;
|
|
|
|
__global float *y = yy + get_group_id(0) * QK_K + 64 * il + n * ir;
|
|
|
|
const float dall = vload_half(0, &x[i].d);
|
|
const float dmin = vload_half(0, &x[i].dmin);
|
|
|
|
__global const uint8_t *q = x[i].qs + 32 * il + n * ir;
|
|
|
|
uint8_t sc, m;
|
|
get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
|
|
float d1 = dall * sc;
|
|
float m1 = dmin * m;
|
|
get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
|
|
float d2 = dall * sc;
|
|
float m2 = dmin * m;
|
|
for (int l = 0; l < n; ++l)
|
|
{
|
|
y[l + 0] = d1 * (q[l] & 0xF) - m1;
|
|
y[l + 32] = d2 * (q[l] >> 4) - m2;
|
|
}
|
|
}
|
|
|
|
__kernel void dequantize_block_q5_K(__global const struct block_q5_K *x, __global float *yy)
|
|
{
|
|
const int i = get_group_id(0) + get_global_offset(0);
|
|
const int tid = get_local_id(0);
|
|
const int il = tid / 16;
|
|
const int ir = tid % 16;
|
|
const int is = 2 * il;
|
|
|
|
__global float *y = yy + get_group_id(0) * QK_K + 64 * il + 2 * ir;
|
|
|
|
const float dall = vload_half(0, &x[i].d);
|
|
const float dmin = vload_half(0, &x[i].dmin);
|
|
|
|
__global const uint8_t *ql = x[i].qs + 32 * il + 2 * ir;
|
|
__global const uint8_t *qh = x[i].qh + 2 * ir;
|
|
|
|
uint8_t sc, m;
|
|
get_scale_min_k4(is + 0, x[i].scales, &sc, &m);
|
|
const float d1 = dall * sc;
|
|
const float m1 = dmin * m;
|
|
get_scale_min_k4(is + 1, x[i].scales, &sc, &m);
|
|
const float d2 = dall * sc;
|
|
const float m2 = dmin * m;
|
|
|
|
uint8_t hm = 1 << (2 * il);
|
|
y[0] = d1 * ((ql[0] & 0xF) + (qh[0] & hm ? 16 : 0)) - m1;
|
|
y[1] = d1 * ((ql[1] & 0xF) + (qh[1] & hm ? 16 : 0)) - m1;
|
|
hm <<= 1;
|
|
y[32] = d2 * ((ql[0] >> 4) + (qh[0] & hm ? 16 : 0)) - m2;
|
|
y[33] = d2 * ((ql[1] >> 4) + (qh[1] & hm ? 16 : 0)) - m2;
|
|
}
|
|
|
|
__kernel void dequantize_block_q6_K(__global const struct block_q6_K *x, __global float *yy)
|
|
{
|
|
const int i = get_group_id(0) + get_global_offset(0);
|
|
const int tid = get_local_id(0);
|
|
const int ip = tid / 32;
|
|
const int il = tid - 32 * ip;
|
|
const int is = 8 * ip + il / 16;
|
|
|
|
__global float *y = yy + get_group_id(0) * QK_K + 128 * ip + il;
|
|
|
|
const float d = vload_half(0, &x[i].d);
|
|
|
|
__global const uint8_t *ql = x[i].ql + 64 * ip + il;
|
|
const uint8_t qh = x[i].qh[32 * ip + il];
|
|
__global const int8_t *sc = x[i].scales + is;
|
|
|
|
y[0] = d * sc[0] * ((int8_t)((ql[0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
|
|
y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32);
|
|
y[64] = d * sc[4] * ((int8_t)((ql[0] >> 4) | (((qh >> 4) & 3) << 4)) - 32);
|
|
y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32);
|
|
}
|
|
|
|
__kernel void dequantize_mul_mat_vec_q2_K(__global const struct block_q2_K * xx, __local float* tmp, __global float* yy, __global float* dst, const int ncols) {
|
|
|
|
const int row = get_group_id(0);
|
|
|
|
const int num_blocks_per_row = ncols / QK_K;
|
|
const int ib0 = row*num_blocks_per_row + get_global_offset(0);
|
|
|
|
__global const struct block_q2_K * x = xx + ib0;
|
|
|
|
const int tid = get_local_id(0)/K_QUANTS_PER_ITERATION; // 0...31 or 0...15
|
|
const int ix = get_local_id(0)%K_QUANTS_PER_ITERATION; // 0 or 0,1
|
|
|
|
const int step = 16/K_QUANTS_PER_ITERATION;
|
|
|
|
const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
|
|
const int in = tid - step*im; // 0...15 or 0...7
|
|
|
|
const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15 or 0...14 in steps of 2
|
|
const int q_offset = 32*im + l0;
|
|
const int s_offset = 8*im;
|
|
const int y_offset = 128*im + l0;
|
|
|
|
tmp[16 * ix + tid] = 0;
|
|
|
|
uint32_t aux[4];
|
|
const uint8_t * d = (const uint8_t *)aux;
|
|
const uint8_t * m = (const uint8_t *)(aux + 2);
|
|
|
|
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
|
|
|
__global const float * y = yy + i * QK_K + y_offset;
|
|
__global const uint8_t * q = x[i].qs + q_offset;
|
|
|
|
const float dall = vload_half(0, &x[i].d);
|
|
const float dmin = vload_half(0, &x[i].dmin);
|
|
|
|
__global const uint32_t * a = (__global const uint32_t *)(x[i].scales + s_offset);
|
|
aux[0] = a[0] & 0x0f0f0f0f;
|
|
aux[1] = a[1] & 0x0f0f0f0f;
|
|
aux[2] = (a[0] >> 4) & 0x0f0f0f0f;
|
|
aux[3] = (a[1] >> 4) & 0x0f0f0f0f;
|
|
|
|
float sum1 = 0, sum2 = 0;
|
|
for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
|
|
sum1 += y[l+ 0] * d[0] * ((q[l+ 0] >> 0) & 3)
|
|
+ y[l+32] * d[2] * ((q[l+ 0] >> 2) & 3)
|
|
+ y[l+64] * d[4] * ((q[l+ 0] >> 4) & 3)
|
|
+ y[l+96] * d[6] * ((q[l+ 0] >> 6) & 3)
|
|
+ y[l+16] * d[1] * ((q[l+16] >> 0) & 3)
|
|
+ y[l+48] * d[3] * ((q[l+16] >> 2) & 3)
|
|
+ y[l+80] * d[5] * ((q[l+16] >> 4) & 3)
|
|
+y[l+112] * d[7] * ((q[l+16] >> 6) & 3);
|
|
sum2 += y[l+ 0] * m[0] + y[l+32] * m[2] + y[l+64] * m[4] + y[ l+96] * m[6]
|
|
+ y[l+16] * m[1] + y[l+48] * m[3] + y[l+80] * m[5] + y[l+112] * m[7];
|
|
|
|
}
|
|
tmp[16 * ix + tid] += dall * sum1 - dmin * sum2;
|
|
|
|
}
|
|
|
|
// sum up partial sums and write back result
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
for (int s=16; s>0; s>>=1) {
|
|
if (tid < s) {
|
|
tmp[tid] += tmp[tid + s];
|
|
}
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
}
|
|
if (tid == 0) {
|
|
dst[row] = tmp[0];
|
|
}
|
|
}
|
|
|
|
__kernel void dequantize_mul_mat_vec_q3_K(__global const struct block_q3_K * xx, __local float* tmp, __global float* yy, __global float* dst, const int ncols) {
|
|
const uint16_t kmask1 = 0x0303;
|
|
const uint16_t kmask2 = 0x0f0f;
|
|
|
|
const int row = get_group_id(0);
|
|
|
|
const int num_blocks_per_row = ncols / QK_K;
|
|
const int ib0 = row*num_blocks_per_row + get_global_offset(0);
|
|
|
|
__global const struct block_q3_K * x = xx + ib0;
|
|
|
|
const int tid = get_local_id(0)/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
|
|
const int ix = get_local_id(0)%K_QUANTS_PER_ITERATION; // 0 or 0,1
|
|
|
|
const int n = K_QUANTS_PER_ITERATION; // iterations in the inner loop
|
|
const int step = 16/K_QUANTS_PER_ITERATION;
|
|
const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
|
|
const int in = tid - step*im; // 0....15 or 0...7
|
|
|
|
const uint8_t m = 1 << (4*im);
|
|
|
|
const int l0 = n*in; // 0...15 or 0...14 in steps of 2
|
|
const int q_offset = 32*im + l0;
|
|
const int y_offset = 128*im + l0;
|
|
|
|
uint16_t utmp[4];
|
|
const int8_t * s = (const int8_t *)utmp;
|
|
|
|
const uint16_t s_shift = 4*im;
|
|
|
|
tmp[16 * ix + tid] = 0;
|
|
|
|
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
|
|
|
__global const float * y = yy + i * QK_K + y_offset;
|
|
__global const uint8_t * q = x[i].qs + q_offset;
|
|
__global const uint8_t * h = x[i].hmask + l0;
|
|
|
|
__global const uint16_t * a = (__global const uint16_t *)x[i].scales;
|
|
utmp[0] = ((a[0] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 0)) & kmask1) << 4);
|
|
utmp[1] = ((a[1] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 0)) & kmask1) << 4);
|
|
utmp[2] = ((a[2] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 2)) & kmask1) << 4);
|
|
utmp[3] = ((a[3] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 2)) & kmask1) << 4);
|
|
|
|
const float d = vload_half(0, &x[i].d);
|
|
|
|
float sum = 0;
|
|
for (int l = 0; l < n; ++l) {
|
|
sum += y[l+ 0] * (s[0] - 32) * (((q[l] >> 0) & 3) - (h[l] & (m << 0) ? 0 : 4))
|
|
+ y[l+32] * (s[2] - 32) * (((q[l] >> 2) & 3) - (h[l] & (m << 1) ? 0 : 4))
|
|
+ y[l+64] * (s[4] - 32) * (((q[l] >> 4) & 3) - (h[l] & (m << 2) ? 0 : 4))
|
|
+ y[l+96] * (s[6] - 32) * (((q[l] >> 6) & 3) - (h[l] & (m << 3) ? 0 : 4));
|
|
sum += y[l+16] * (s[1] - 32) * (((q[l+16] >> 0) & 3) - (h[l+16] & (m << 0) ? 0 : 4))
|
|
+ y[l+48] * (s[3] - 32) * (((q[l+16] >> 2) & 3) - (h[l+16] & (m << 1) ? 0 : 4))
|
|
+ y[l+80] * (s[5] - 32) * (((q[l+16] >> 4) & 3) - (h[l+16] & (m << 2) ? 0 : 4))
|
|
+ y[l+112] * (s[7] - 32) * (((q[l+16] >> 6) & 3) - (h[l+16] & (m << 3) ? 0 : 4));
|
|
}
|
|
tmp[16 * ix + tid] += d * sum;
|
|
|
|
}
|
|
|
|
// sum up partial sums and write back result
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
for (int s=16; s>0; s>>=1) {
|
|
if (tid < s) {
|
|
tmp[tid] += tmp[tid + s];
|
|
}
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
}
|
|
if (tid == 0) {
|
|
dst[row] = tmp[0];
|
|
}
|
|
}
|
|
|
|
__kernel void dequantize_mul_mat_vec_q4_K(__global const struct block_q4_K * xx, __local float* tmp, __global float* yy, __global float* dst, const int ncols) {
|
|
|
|
//to rename it later, just to test now
|
|
const uint16_t kmask1 = 0x3f3f;
|
|
const uint16_t kmask2 = 0x0f0f;
|
|
const uint16_t kmask3 = 0xc0c0;
|
|
|
|
const int row = get_group_id(0);
|
|
const int num_blocks_per_row = ncols / QK_K;
|
|
const int ib0 = row*num_blocks_per_row + get_global_offset(0);
|
|
|
|
const int tid = get_local_id(0)/K_QUANTS_PER_ITERATION; // 0...15
|
|
const int ix = get_local_id(0)%K_QUANTS_PER_ITERATION;
|
|
|
|
const int step = 8/K_QUANTS_PER_ITERATION;
|
|
|
|
const int il = tid/step; // 0...3
|
|
const int ir = tid - step*il;// 0...3
|
|
const int n = 2*K_QUANTS_PER_ITERATION;
|
|
|
|
const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
|
|
const int in = il%2;
|
|
|
|
const int l0 = n*(2*ir + in);
|
|
const int q_offset = 32*im + l0;
|
|
const int y_offset = 64*im + l0;
|
|
|
|
uint16_t aux[4];
|
|
const uint8_t * sc = (const uint8_t *)aux;
|
|
|
|
__global const struct block_q4_K * x = xx + ib0;
|
|
|
|
tmp[16 * ix + tid] = 0;
|
|
|
|
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
|
|
|
__global const uint8_t * q1 = x[i].qs + q_offset;
|
|
__global const uint8_t * q2 = q1 + 64;
|
|
__global const float * y1 = yy + i*QK_K + y_offset;
|
|
__global const float * y2 = y1 + 128;
|
|
|
|
const float dall = vload_half(0, &x[i].d);
|
|
const float dmin = vload_half(0, &x[i].dmin);
|
|
|
|
__global const uint16_t * a = (__global const uint16_t *)x[i].scales;
|
|
aux[0] = a[im+0] & kmask1;
|
|
aux[1] = a[im+2] & kmask1;
|
|
aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
|
|
aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
|
|
|
|
float4 s = (float4)(0.f);
|
|
float smin = 0;
|
|
for (int l = 0; l < n; ++l) {
|
|
s.x += y1[l] * (q1[l] & 0xF); s.y += y1[l+32] * (q1[l] >> 4);
|
|
s.z += y2[l] * (q2[l] & 0xF); s.w += y2[l+32] * (q2[l] >> 4);
|
|
smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
|
|
}
|
|
tmp[16 * ix + tid] += dall * (s.x * sc[0] + s.y * sc[1] + s.z * sc[4] + s.w * sc[5]) - dmin * smin;
|
|
|
|
}
|
|
|
|
// sum up partial sums and write back result
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
for (int s=16; s>0; s>>=1) {
|
|
if (tid < s) {
|
|
tmp[tid] += tmp[tid + s];
|
|
}
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
}
|
|
if (tid == 0) {
|
|
dst[row] = tmp[0];
|
|
}
|
|
}
|
|
|
|
__kernel void dequantize_mul_mat_vec_q5_K(__global const struct block_q5_K * xx, __local float* tmp, __global float* yy, __global float* dst, const int ncols) {
|
|
|
|
const uint16_t kmask1 = 0x3f3f;
|
|
const uint16_t kmask2 = 0x0f0f;
|
|
const uint16_t kmask3 = 0xc0c0;
|
|
|
|
const int row = get_group_id(0);
|
|
const int num_blocks_per_row = ncols / QK_K;
|
|
const int ib0 = row*num_blocks_per_row + get_global_offset(0);
|
|
|
|
const int tid = get_local_id(0)/2; // 0...15
|
|
const int ix = get_local_id(0)%2;
|
|
|
|
const int il = tid/4; // 0...3
|
|
const int ir = tid - 4*il;// 0...3
|
|
const int n = 2;
|
|
|
|
const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
|
|
const int in = il%2;
|
|
|
|
const int l0 = n*(2*ir + in);
|
|
const int q_offset = 32*im + l0;
|
|
const int y_offset = 64*im + l0;
|
|
|
|
const uint8_t hm1 = 1 << (2*im);
|
|
const uint8_t hm2 = hm1 << 4;
|
|
|
|
uint16_t aux[4];
|
|
const uint8_t * sc = (const uint8_t *)aux;
|
|
|
|
__global const struct block_q5_K * x = xx + ib0;
|
|
|
|
tmp[16 * ix + tid] = 0;
|
|
|
|
for (int i = ix; i < num_blocks_per_row; i += 2) {
|
|
|
|
__global const uint8_t * ql1 = x[i].qs + q_offset;
|
|
__global const uint8_t * ql2 = ql1 + 64;
|
|
__global const uint8_t * qh = x[i].qh + l0;
|
|
__global const float * y1 = yy + i*QK_K + y_offset;
|
|
__global const float * y2 = y1 + 128;
|
|
|
|
const float dall = vload_half(0, &x[i].d);
|
|
const float dmin = vload_half(0, &x[i].dmin);
|
|
|
|
__global const uint16_t * a = (__global const uint16_t *)x[i].scales;
|
|
aux[0] = a[im+0] & kmask1;
|
|
aux[1] = a[im+2] & kmask1;
|
|
aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
|
|
aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
|
|
|
|
float4 sum = (float4)(0.f);
|
|
float smin = 0;
|
|
for (int l = 0; l < n; ++l) {
|
|
sum.x += y1[l+ 0] * ((ql1[l+ 0] & 0xF) + (qh[l+ 0] & (hm1 << 0) ? 16 : 0))
|
|
+ y1[l+16] * ((ql1[l+16] & 0xF) + (qh[l+16] & (hm1 << 0) ? 16 : 0));
|
|
sum.y += y1[l+32] * ((ql1[l+ 0] >> 4) + (qh[l+ 0] & (hm1 << 1) ? 16 : 0))
|
|
+ y1[l+48] * ((ql1[l+16] >> 4) + (qh[l+16] & (hm1 << 1) ? 16 : 0));
|
|
sum.z += y2[l+ 0] * ((ql2[l+ 0] & 0xF) + (qh[l+ 0] & (hm2 << 0) ? 16 : 0))
|
|
+ y2[l+16] * ((ql2[l+16] & 0xF) + (qh[l+16] & (hm2 << 0) ? 16 : 0));
|
|
sum.w += y2[l+32] * ((ql2[l+ 0] >> 4) + (qh[l+ 0] & (hm2 << 1) ? 16 : 0))
|
|
+ y2[l+48] * ((ql2[l+16] >> 4) + (qh[l+16] & (hm2 << 1) ? 16 : 0));
|
|
smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3]
|
|
+ (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7];
|
|
}
|
|
tmp[16 * ix + tid] += dall * (sum.x * sc[0] + sum.y * sc[1] + sum.z * sc[4] + sum.w * sc[5]) - dmin * smin;
|
|
|
|
}
|
|
|
|
// sum up partial sums and write back result
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
for (int s=16; s>0; s>>=1) {
|
|
if (tid < s) {
|
|
tmp[tid] += tmp[tid + s];
|
|
}
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
}
|
|
if (tid == 0) {
|
|
dst[row] = tmp[0];
|
|
}
|
|
}
|
|
|
|
__kernel void dequantize_mul_mat_vec_q6_K(__global const struct block_q6_K * xx, __local float* tmp, __global const float * yy, __global float * dst, const int ncols) {
|
|
|
|
const int row = get_group_id(0);
|
|
|
|
const int num_blocks_per_row = ncols / QK_K;
|
|
const int ib0 = row*num_blocks_per_row + get_global_offset(0);
|
|
|
|
__global const struct block_q6_K * x = xx + ib0;
|
|
|
|
const int tid = get_local_id(0)/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
|
|
const int ix = get_local_id(0)%K_QUANTS_PER_ITERATION; // 0 or 0, 1
|
|
|
|
const int step = 16/K_QUANTS_PER_ITERATION; // 16 or 8
|
|
|
|
const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
|
|
const int in = tid - step*im; // 0...15 or 0...7
|
|
|
|
\n#if K_QUANTS_PER_ITERATION == 1\n
|
|
const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15
|
|
const int is = 0;
|
|
|
|
\n#else\n
|
|
|
|
const int l0 = 4 * in; // 0, 4, 8, ..., 28
|
|
const int is = in / 4;
|
|
|
|
\n#endif\n
|
|
|
|
const int ql_offset = 64*im + l0;
|
|
const int qh_offset = 32*im + l0;
|
|
const int s_offset = 8*im + is;
|
|
const int y_offset = 128*im + l0;
|
|
|
|
tmp[16 * ix + tid] = 0; // partial sum for thread in warp
|
|
|
|
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
|
|
|
__global const float * y = yy + i * QK_K + y_offset;
|
|
__global const uint8_t * ql = x[i].ql + ql_offset;
|
|
__global const uint8_t * qh = x[i].qh + qh_offset;
|
|
__global const int8_t * s = x[i].scales + s_offset;
|
|
|
|
const float d = vload_half(0, &x[i].d);
|
|
|
|
\n#if K_QUANTS_PER_ITERATION == 1\n
|
|
float sum = y[ 0] * s[0] * d * ((int8_t)((ql[ 0] & 0xF) | ((qh[ 0] & 0x03) << 4)) - 32)
|
|
+ y[16] * s[1] * d * ((int8_t)((ql[16] & 0xF) | ((qh[16] & 0x03) << 4)) - 32)
|
|
+ y[32] * s[2] * d * ((int8_t)((ql[32] & 0xF) | ((qh[ 0] & 0x0c) << 2)) - 32)
|
|
+ y[48] * s[3] * d * ((int8_t)((ql[48] & 0xF) | ((qh[16] & 0x0c) << 2)) - 32)
|
|
+ y[64] * s[4] * d * ((int8_t)((ql[ 0] >> 4) | ((qh[ 0] & 0x30) >> 0)) - 32)
|
|
+ y[80] * s[5] * d * ((int8_t)((ql[16] >> 4) | ((qh[16] & 0x30) >> 0)) - 32)
|
|
+ y[96] * s[6] * d * ((int8_t)((ql[32] >> 4) | ((qh[ 0] & 0xc0) >> 2)) - 32)
|
|
+y[112] * s[7] * d * ((int8_t)((ql[48] >> 4) | ((qh[16] & 0xc0) >> 2)) - 32);
|
|
tmp[16 * ix + tid] += sum;
|
|
\n#else\n
|
|
float sum = 0;
|
|
for (int l = 0; l < 4; ++l) {
|
|
sum += y[l+ 0] * s[0] * d * ((int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32)
|
|
+ y[l+32] * s[2] * d * ((int8_t)((ql[l+32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32)
|
|
+ y[l+64] * s[4] * d * ((int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32)
|
|
+ y[l+96] * s[6] * d * ((int8_t)((ql[l+32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32);
|
|
}
|
|
tmp[16 * ix + tid] += sum;
|
|
\n#endif\n
|
|
|
|
}
|
|
|
|
// sum up partial sums and write back result
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
for (int s=16; s>0; s>>=1) {
|
|
if (tid < s) {
|
|
tmp[tid] += tmp[tid + s];
|
|
}
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
}
|
|
if (tid == 0) {
|
|
dst[row] = tmp[0];
|
|
}
|
|
}
|
|
);
|
|
|
|
|
|
std::string dequant_template = MULTILINE_QUOTE(
|
|
__kernel void KERNEL_NAME(__global X_TYPE* x, __global float* y) {
|
|
const int i = get_group_id(0)*get_local_size(0) + get_local_id(0)*2;
|
|
|
|
if (i >= get_global_size(0)) {
|
|
return;
|
|
}
|
|
|
|
const uint qk = QUANT_K;
|
|
const uint qr = QUANT_R;
|
|
|
|
const int ib = i/qk + get_global_offset(0); // block index
|
|
const int iqs = (i%qk)/qr; // quant index
|
|
const int iybs = i - i%qk; // y block start index
|
|
const int y_offset = qr == 1 ? 1 : qk/2;
|
|
|
|
// dequantize
|
|
float v0, v1;
|
|
DEQUANT_FUNC(x, ib, iqs, &v0, &v1);
|
|
y[iybs + iqs + 0] = v0;
|
|
y[iybs + iqs + y_offset] = v1;
|
|
}
|
|
);
|
|
|
|
std::string dequant_mul_mat_vec_template = MULTILINE_QUOTE(
|
|
__kernel void KERNEL_NAME(__global X_TYPE* x, __local float* tmp, __global float* y, __global float* dst, const int ncols) {
|
|
const int local_size = get_local_size(0);
|
|
const int row = get_group_id(0);
|
|
const int tid = get_local_id(0);
|
|
|
|
const uint qk = QUANT_K;
|
|
const uint qr = QUANT_R;
|
|
|
|
const int col_step = local_size * 2;
|
|
const int y_offset = qr == 1 ? 1 : qk/2;
|
|
|
|
x += get_global_offset(0);
|
|
|
|
tmp[tid] = 0;
|
|
|
|
for (int col = tid*2; col < ncols; col += col_step) {
|
|
const int ib = (row*ncols + col)/qk; // block index
|
|
const int iqs = (col%qk)/qr; // quant index
|
|
const int iybs = col - col%qk; // y block start index
|
|
|
|
// dequantize
|
|
float v0, v1;
|
|
DEQUANT_FUNC(x, ib, iqs, &v0, &v1);
|
|
|
|
// matrix multiplication
|
|
tmp[tid] += v0 * y[iybs + iqs + 0];
|
|
tmp[tid] += v1 * y[iybs + iqs + y_offset];
|
|
}
|
|
|
|
// sum up partial sums and write back result
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
for (int s=local_size/2; s>0; s>>=1) {
|
|
if (tid < s) {
|
|
tmp[tid] += tmp[tid + s];
|
|
}
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
}
|
|
if (tid == 0) {
|
|
dst[row] = tmp[0];
|
|
}
|
|
}
|
|
|
|
);
|
|
|
|
|
|
std::string mul_template = MULTILINE_QUOTE(
|
|
__kernel void KERNEL_NAME(__global TYPE* x, const int x_offset, __global TYPE* y, const int y_offset, __global TYPE* dst, const int dst_offset, const int ky) {
|
|
const int i = get_group_id(0)*get_local_size(0) + get_local_id(0);
|
|
|
|
if (i >= get_global_size(0)) {
|
|
return;
|
|
}
|
|
|
|
dst[dst_offset + i] = x[x_offset + i] * y[y_offset + i%ky];
|
|
}
|
|
);
|
|
|
|
std::string add_template = MULTILINE_QUOTE(
|
|
__kernel void add_f32(__global float * x, const int x_offset, __global float * y, const int y_offset, __global float * dst, const int dst_offset, const int ky) {
|
|
const int i = get_group_id(0)*get_local_size(0) + get_local_id(0);
|
|
|
|
if (i >= get_global_size(0)) {
|
|
return;
|
|
}
|
|
|
|
dst[dst_offset + i] = x[x_offset + i] + y[y_offset + i%ky];
|
|
}
|
|
);
|
|
|
|
#define CL_CHECK(err) \
|
|
do { \
|
|
cl_int err_ = (err); \
|
|
if (err_ != CL_SUCCESS) { \
|
|
fprintf(stderr, "ggml_opencl: %s error %d at %s:%d\n", \
|
|
#err, err_, __FILE__, __LINE__); \
|
|
exit(1); \
|
|
} \
|
|
} while (0)
|
|
|
|
#define CLBLAST_CHECK(err) \
|
|
do { \
|
|
CLBlastStatusCode err_ = (err); \
|
|
if (err_ != CLBlastSuccess) { \
|
|
fprintf(stderr, "ggml_opencl: %s error %d at %s:%d\n", \
|
|
#err, err_, __FILE__, __LINE__); \
|
|
exit(1); \
|
|
} \
|
|
} while (0)
|
|
|
|
std::array<std::string, 5> dequant_str_keys = {
|
|
"KERNEL_NAME", "X_TYPE", "QUANT_K", "QUANT_R", "DEQUANT_FUNC"
|
|
};
|
|
|
|
std::array<std::string, 30> dequant_str_values = {
|
|
"dequantize_row_q4_0", "struct block_q4_0", "QK4_0", "QR4_0", "dequantize_q4_0",
|
|
"dequantize_row_q4_1", "struct block_q4_1", "QK4_1", "QR4_1", "dequantize_q4_1",
|
|
"dequantize_row_q5_0", "struct block_q5_0", "QK5_0", "QR5_0", "dequantize_q5_0",
|
|
"dequantize_row_q5_1", "struct block_q5_1", "QK5_1", "QR5_1", "dequantize_q5_1",
|
|
"dequantize_row_q8_0", "struct block_q8_0", "QK8_0", "QR8_0", "dequantize_q8_0",
|
|
"convert_row_f16", "half", "1", "1", "convert_f16"
|
|
};
|
|
|
|
std::array<std::string, 30> dequant_mul_mat_vec_str_values = {
|
|
"dequantize_mul_mat_vec_q4_0", "struct block_q4_0", "QK4_0", "QR4_0", "dequantize_q4_0",
|
|
"dequantize_mul_mat_vec_q4_1", "struct block_q4_1", "QK4_1", "QR4_1", "dequantize_q4_1",
|
|
"dequantize_mul_mat_vec_q5_0", "struct block_q5_0", "QK5_0", "QR5_0", "dequantize_q5_0",
|
|
"dequantize_mul_mat_vec_q5_1", "struct block_q5_1", "QK5_1", "QR5_1", "dequantize_q5_1",
|
|
"dequantize_mul_mat_vec_q8_0", "struct block_q8_0", "QK8_0", "QR8_0", "dequantize_q8_0",
|
|
"convert_mul_mat_vec_f16", "half", "1", "1", "convert_f16"
|
|
};
|
|
|
|
std::array<std::string, 2> mul_str_keys = {
|
|
"KERNEL_NAME", "TYPE"
|
|
};
|
|
std::array<std::string, 2> mul_str_values = {
|
|
"mul_f32", "float"
|
|
};
|
|
|
|
static std::string& replace(std::string& s, const std::string& from, const std::string& to) {
|
|
size_t pos = 0;
|
|
while ((pos = s.find(from, pos)) != std::string::npos) {
|
|
s.replace(pos, from.length(), to);
|
|
pos += to.length();
|
|
}
|
|
return s;
|
|
}
|
|
|
|
static std::string generate_kernels() {
|
|
std::stringstream src;
|
|
src << program_source << '\n';
|
|
src << k_quants_source << '\n';
|
|
for (size_t i = 0; i < dequant_str_values.size(); i += dequant_str_keys.size()) {
|
|
std::string dequant_kernel = dequant_template;
|
|
std::string dmmv_kernel = dequant_mul_mat_vec_template;
|
|
for (size_t j = 0; j < dequant_str_keys.size(); j++) {
|
|
replace(dequant_kernel, dequant_str_keys[j], dequant_str_values[i + j]);
|
|
replace(dmmv_kernel, dequant_str_keys[j], dequant_mul_mat_vec_str_values[i + j]);
|
|
}
|
|
src << dequant_kernel << '\n';
|
|
src << dmmv_kernel << '\n';
|
|
}
|
|
for (size_t i = 0; i < mul_str_values.size(); i += mul_str_keys.size()) {
|
|
std::string mul_kernel = mul_template;
|
|
for (size_t j = 0; j < mul_str_keys.size(); j++) {
|
|
replace(mul_kernel, mul_str_keys[j], mul_str_values[i + j]);
|
|
}
|
|
src << mul_kernel << '\n';
|
|
}
|
|
src << add_template << '\n';
|
|
|
|
return src.str();
|
|
}
|
|
|
|
static cl_platform_id platform;
|
|
static cl_device_id device;
|
|
static cl_context context;
|
|
static cl_command_queue queue;
|
|
static cl_program program;
|
|
static cl_kernel convert_row_f16_cl;
|
|
static cl_kernel dequantize_row_q4_0_cl, dequantize_row_q4_1_cl, dequantize_row_q5_0_cl, dequantize_row_q5_1_cl, dequantize_row_q8_0_cl;
|
|
static cl_kernel dequantize_mul_mat_vec_q4_0_cl, dequantize_mul_mat_vec_q4_1_cl, dequantize_mul_mat_vec_q5_0_cl, dequantize_mul_mat_vec_q5_1_cl, dequantize_mul_mat_vec_q8_0_cl, convert_mul_mat_vec_f16_cl;
|
|
static cl_kernel dequantize_block_q2_k_cl, dequantize_block_q3_k_cl, dequantize_block_q4_k_cl, dequantize_block_q5_k_cl, dequantize_block_q6_k_cl;
|
|
static cl_kernel dequantize_mul_mat_vec_q2_K_cl, dequantize_mul_mat_vec_q3_K_cl, dequantize_mul_mat_vec_q4_K_cl, dequantize_mul_mat_vec_q5_K_cl, dequantize_mul_mat_vec_q6_K_cl;
|
|
static cl_kernel mul_f32_cl;
|
|
static cl_kernel add_f32_cl;
|
|
static bool fp16_support;
|
|
|
|
static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer) {
|
|
cl_program p;
|
|
char *program_log;
|
|
size_t program_size;
|
|
size_t log_size;
|
|
int err;
|
|
|
|
program_size = strlen(program_buffer);
|
|
|
|
p = clCreateProgramWithSource(ctx, 1, (const char**)&program_buffer, &program_size, &err);
|
|
if(err < 0) {
|
|
fprintf(stderr, "OpenCL error creating program");
|
|
exit(1);
|
|
}
|
|
|
|
std::string compile_opts = "-cl-mad-enable -cl-unsafe-math-optimizations -cl-finite-math-only -cl-fast-relaxed-math "
|
|
"-DQK4_0=32 -DQR4_0=2 -DQK4_1=32 -DQR4_1=2 -DQK5_0=32 -DQR5_0=2 -DQK5_1=32 -DQR5_1=2 -DQK8_0=32 -DQR8_0=1 "
|
|
"-DQK_K=256 -DK_QUANTS_PER_ITERATION=" + std::to_string(K_QUANTS_PER_ITERATION);
|
|
|
|
err = clBuildProgram(p, 0, NULL, compile_opts.c_str(), NULL, NULL);
|
|
if(err < 0) {
|
|
|
|
clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
|
|
program_log = (char*) malloc(log_size + 1);
|
|
program_log[log_size] = '\0';
|
|
clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, log_size + 1, program_log, NULL);
|
|
fprintf(stderr, "ggml_opencl: kernel compile error:\n\n%s\n", program_log);
|
|
free(program_log);
|
|
exit(1);
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
void ggml_cl_init(void) {
|
|
static bool initialized = false;
|
|
if (initialized) {
|
|
return;
|
|
}
|
|
initialized = true;
|
|
|
|
cl_int err;
|
|
|
|
struct cl_device;
|
|
struct cl_platform {
|
|
cl_platform_id id;
|
|
unsigned number;
|
|
char name[128];
|
|
char vendor[128];
|
|
struct cl_device * devices;
|
|
unsigned n_devices;
|
|
struct cl_device * default_device;
|
|
};
|
|
|
|
struct cl_device {
|
|
struct cl_platform * platform;
|
|
cl_device_id id;
|
|
unsigned number;
|
|
cl_device_type type;
|
|
char name[128];
|
|
};
|
|
|
|
enum { NPLAT = 16, NDEV = 16 };
|
|
|
|
struct cl_platform platforms[NPLAT];
|
|
unsigned n_platforms = 0;
|
|
struct cl_device devices[NDEV];
|
|
unsigned n_devices = 0;
|
|
struct cl_device * default_device = NULL;
|
|
|
|
platform = NULL;
|
|
device = NULL;
|
|
|
|
cl_platform_id platform_ids[NPLAT];
|
|
CL_CHECK(clGetPlatformIDs(NPLAT, platform_ids, &n_platforms));
|
|
|
|
for (unsigned i = 0; i < n_platforms; i++) {
|
|
struct cl_platform * p = &platforms[i];
|
|
p->number = i;
|
|
p->id = platform_ids[i];
|
|
CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_NAME, sizeof(p->name), &p->name, NULL));
|
|
CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_VENDOR, sizeof(p->vendor), &p->vendor, NULL));
|
|
|
|
cl_device_id device_ids[NDEV];
|
|
cl_int clGetDeviceIDsError = clGetDeviceIDs(p->id, CL_DEVICE_TYPE_ALL, NDEV, device_ids, &p->n_devices);
|
|
if (clGetDeviceIDsError == CL_DEVICE_NOT_FOUND) {
|
|
p->n_devices = 0;
|
|
} else {
|
|
CL_CHECK(clGetDeviceIDsError);
|
|
}
|
|
p->devices = p->n_devices > 0 ? &devices[n_devices] : NULL;
|
|
p->default_device = NULL;
|
|
|
|
for (unsigned j = 0; j < p->n_devices; j++) {
|
|
struct cl_device * d = &devices[n_devices];
|
|
d->number = n_devices++;
|
|
d->id = device_ids[j];
|
|
d->platform = p;
|
|
CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_NAME, sizeof(d->name), &d->name, NULL));
|
|
CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_TYPE, sizeof(d->type), &d->type, NULL));
|
|
|
|
if (p->default_device == NULL && d->type == CL_DEVICE_TYPE_GPU) {
|
|
p->default_device = d;
|
|
}
|
|
}
|
|
|
|
if (default_device == NULL && p->default_device != NULL) {
|
|
default_device = p->default_device;
|
|
}
|
|
}
|
|
|
|
if (n_devices == 0) {
|
|
fprintf(stderr, "ggml_opencl: could find any OpenCL devices.\n");
|
|
exit(1);
|
|
}
|
|
|
|
char * user_platform_string = getenv("GGML_OPENCL_PLATFORM");
|
|
char * user_device_string = getenv("GGML_OPENCL_DEVICE");
|
|
int user_platform_number = -1;
|
|
int user_device_number = -1;
|
|
|
|
unsigned n;
|
|
if (user_platform_string != NULL && sscanf(user_platform_string, " %u", &n) == 1 && n < n_platforms) {
|
|
user_platform_number = (int)n;
|
|
}
|
|
if (user_device_string != NULL && sscanf(user_device_string, " %u", &n) == 1 && n < n_devices) {
|
|
user_device_number = (int)n;
|
|
}
|
|
if (user_platform_number != -1 && user_device_number != -1) {
|
|
cl_platform* platform = &platforms[user_platform_number];
|
|
if ((unsigned)user_device_number >= platform->n_devices) {
|
|
fprintf(stderr, "ggml_opencl: invalid device number %d\n", user_device_number);
|
|
exit(1);
|
|
}
|
|
default_device = &platform->devices[user_device_number];
|
|
} else {
|
|
|
|
struct cl_device * selected_devices = devices;
|
|
unsigned n_selected_devices = n_devices;
|
|
|
|
if (user_platform_number == -1 && user_platform_string != NULL && user_platform_string[0] != 0) {
|
|
for (unsigned i = 0; i < n_platforms; i++) {
|
|
struct cl_platform * p = &platforms[i];
|
|
if (strstr(p->name, user_platform_string) != NULL ||
|
|
strstr(p->vendor, user_platform_string) != NULL) {
|
|
user_platform_number = (int)i;
|
|
break;
|
|
}
|
|
}
|
|
if (user_platform_number == -1) {
|
|
fprintf(stderr, "ggml_opencl: no platform matching '%s' was found.\n", user_platform_string);
|
|
exit(1);
|
|
}
|
|
}
|
|
if (user_platform_number != -1) {
|
|
struct cl_platform * p = &platforms[user_platform_number];
|
|
selected_devices = p->devices;
|
|
n_selected_devices = p->n_devices;
|
|
default_device = p->default_device;
|
|
if (n_selected_devices == 0) {
|
|
fprintf(stderr, "ggml_opencl: selected platform '%s' does not have any devices.\n", p->name);
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
if (user_device_number == -1 && user_device_string != NULL && user_device_string[0] != 0) {
|
|
for (unsigned i = 0; i < n_selected_devices; i++) {
|
|
struct cl_device * d = &selected_devices[i];
|
|
if (strstr(d->name, user_device_string) != NULL) {
|
|
user_device_number = d->number;
|
|
break;
|
|
}
|
|
}
|
|
if (user_device_number == -1) {
|
|
fprintf(stderr, "ggml_opencl: no device matching '%s' was found.\n", user_device_string);
|
|
exit(1);
|
|
}
|
|
}
|
|
if (user_device_number != -1) {
|
|
selected_devices = &devices[user_device_number];
|
|
n_selected_devices = 1;
|
|
default_device = &selected_devices[0];
|
|
}
|
|
|
|
GGML_ASSERT(n_selected_devices > 0);
|
|
|
|
if (default_device == NULL) {
|
|
default_device = &selected_devices[0];
|
|
}
|
|
}
|
|
|
|
fprintf(stderr, "ggml_opencl: selecting platform: '%s'\n", default_device->platform->name);
|
|
fprintf(stderr, "ggml_opencl: selecting device: '%s'\n", default_device->name);
|
|
if (default_device->type != CL_DEVICE_TYPE_GPU) {
|
|
fprintf(stderr, "ggml_opencl: warning, not a GPU: '%s'.\n", default_device->name);
|
|
}
|
|
|
|
platform = default_device->platform->id;
|
|
device = default_device->id;
|
|
|
|
size_t ext_str_size;
|
|
clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, 0, NULL, &ext_str_size);
|
|
char *ext_buffer = (char *)alloca(ext_str_size + 1);
|
|
clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, ext_str_size, ext_buffer, NULL);
|
|
ext_buffer[ext_str_size] = '\0'; // ensure it is null terminated
|
|
// Disabled due to faulty outputs
|
|
// Check if ext_buffer contains cl_khr_fp16
|
|
fp16_support = false; // strstr(ext_buffer, "cl_khr_fp16") != NULL;
|
|
// fprintf(stderr, "ggml_opencl: device FP16 support: %s\n", fp16_support ? "true" : "false");
|
|
|
|
cl_context_properties properties[] = {
|
|
(intptr_t)CL_CONTEXT_PLATFORM, (intptr_t)platform, 0
|
|
};
|
|
|
|
CL_CHECK((context = clCreateContext(properties, 1, &device, NULL, NULL, &err), err));
|
|
|
|
CL_CHECK((queue = clCreateCommandQueue(context, device, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err),
|
|
(err != CL_INVALID_QUEUE_PROPERTIES && err != CL_INVALID_VALUE ? err :
|
|
(queue = clCreateCommandQueue(context, device, 0, &err), err)
|
|
)));
|
|
|
|
const std::string kernel_src = generate_kernels();
|
|
|
|
program = build_program_from_source(context, device, kernel_src.c_str());
|
|
|
|
// FP16 to FP32 kernel
|
|
CL_CHECK((convert_row_f16_cl = clCreateKernel(program, "convert_row_f16", &err), err));
|
|
|
|
// Dequantize kernels
|
|
CL_CHECK((dequantize_row_q4_0_cl = clCreateKernel(program, "dequantize_row_q4_0", &err), err));
|
|
CL_CHECK((dequantize_row_q4_1_cl = clCreateKernel(program, "dequantize_row_q4_1", &err), err));
|
|
CL_CHECK((dequantize_row_q5_0_cl = clCreateKernel(program, "dequantize_row_q5_0", &err), err));
|
|
CL_CHECK((dequantize_row_q5_1_cl = clCreateKernel(program, "dequantize_row_q5_1", &err), err));
|
|
CL_CHECK((dequantize_row_q8_0_cl = clCreateKernel(program, "dequantize_row_q8_0", &err), err));
|
|
CL_CHECK((dequantize_row_q8_0_cl = clCreateKernel(program, "dequantize_row_q8_0", &err), err));
|
|
CL_CHECK((dequantize_block_q2_k_cl = clCreateKernel(program, "dequantize_block_q2_K", &err), err));
|
|
CL_CHECK((dequantize_block_q3_k_cl = clCreateKernel(program, "dequantize_block_q3_K", &err), err));
|
|
CL_CHECK((dequantize_block_q4_k_cl = clCreateKernel(program, "dequantize_block_q4_K", &err), err));
|
|
CL_CHECK((dequantize_block_q5_k_cl = clCreateKernel(program, "dequantize_block_q5_K", &err), err));
|
|
CL_CHECK((dequantize_block_q6_k_cl = clCreateKernel(program, "dequantize_block_q6_K", &err), err));
|
|
|
|
// dequant mul mat kernel
|
|
CL_CHECK((dequantize_mul_mat_vec_q4_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_0", &err), err));
|
|
CL_CHECK((dequantize_mul_mat_vec_q4_1_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_1", &err), err));
|
|
CL_CHECK((dequantize_mul_mat_vec_q5_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_0", &err), err));
|
|
CL_CHECK((dequantize_mul_mat_vec_q5_1_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_1", &err), err));
|
|
CL_CHECK((dequantize_mul_mat_vec_q8_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q8_0", &err), err));
|
|
CL_CHECK((convert_mul_mat_vec_f16_cl = clCreateKernel(program, "convert_mul_mat_vec_f16", &err), err));
|
|
CL_CHECK((dequantize_mul_mat_vec_q2_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q2_K", &err), err));
|
|
CL_CHECK((dequantize_mul_mat_vec_q3_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q3_K", &err), err));
|
|
CL_CHECK((dequantize_mul_mat_vec_q4_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_K", &err), err));
|
|
CL_CHECK((dequantize_mul_mat_vec_q5_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_K", &err), err));
|
|
CL_CHECK((dequantize_mul_mat_vec_q6_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q6_K", &err), err));
|
|
|
|
// mul kernel
|
|
CL_CHECK((mul_f32_cl = clCreateKernel(program, "mul_f32", &err), err));
|
|
|
|
CL_CHECK((add_f32_cl = clCreateKernel(program, "add_f32", &err), err));
|
|
}
|
|
|
|
static cl_kernel* ggml_get_to_fp32_cl(ggml_type type) {
|
|
switch (type) {
|
|
case GGML_TYPE_Q4_0:
|
|
return &dequantize_row_q4_0_cl;
|
|
case GGML_TYPE_Q4_1:
|
|
return &dequantize_row_q4_1_cl;
|
|
case GGML_TYPE_Q5_0:
|
|
return &dequantize_row_q5_0_cl;
|
|
case GGML_TYPE_Q5_1:
|
|
return &dequantize_row_q5_1_cl;
|
|
case GGML_TYPE_Q8_0:
|
|
return &dequantize_row_q8_0_cl;
|
|
case GGML_TYPE_Q2_K:
|
|
return &dequantize_block_q2_k_cl;
|
|
case GGML_TYPE_Q3_K:
|
|
return &dequantize_block_q3_k_cl;
|
|
case GGML_TYPE_Q4_K:
|
|
return &dequantize_block_q4_k_cl;
|
|
case GGML_TYPE_Q5_K:
|
|
return &dequantize_block_q5_k_cl;
|
|
case GGML_TYPE_Q6_K:
|
|
return &dequantize_block_q6_k_cl;
|
|
case GGML_TYPE_F16:
|
|
return &convert_row_f16_cl;
|
|
default:
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
static size_t ggml_cl_global_denom(ggml_type type) {
|
|
switch (type) {
|
|
case GGML_TYPE_Q4_0:
|
|
case GGML_TYPE_Q4_1:
|
|
case GGML_TYPE_Q5_0:
|
|
case GGML_TYPE_Q5_1:
|
|
case GGML_TYPE_Q8_0:
|
|
return 1;
|
|
case GGML_TYPE_Q2_K:
|
|
case GGML_TYPE_Q3_K:
|
|
return 4;
|
|
case GGML_TYPE_Q4_K:
|
|
return 8;
|
|
case GGML_TYPE_Q5_K:
|
|
case GGML_TYPE_Q6_K:
|
|
return 4;
|
|
case GGML_TYPE_F16:
|
|
default:
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
static size_t ggml_cl_local_size(ggml_type type) {
|
|
switch (type) {
|
|
case GGML_TYPE_Q4_0:
|
|
case GGML_TYPE_Q4_1:
|
|
case GGML_TYPE_Q5_0:
|
|
case GGML_TYPE_Q5_1:
|
|
case GGML_TYPE_Q8_0:
|
|
return 0;
|
|
case GGML_TYPE_Q2_K:
|
|
case GGML_TYPE_Q3_K:
|
|
return 64;
|
|
case GGML_TYPE_Q4_K:
|
|
return 32;
|
|
case GGML_TYPE_Q5_K:
|
|
case GGML_TYPE_Q6_K:
|
|
return 64;
|
|
case GGML_TYPE_F16:
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static cl_kernel* ggml_get_dequantize_mul_mat_vec_cl(ggml_type type) {
|
|
switch (type) {
|
|
case GGML_TYPE_Q4_0:
|
|
return &dequantize_mul_mat_vec_q4_0_cl;
|
|
case GGML_TYPE_Q4_1:
|
|
return &dequantize_mul_mat_vec_q4_1_cl;
|
|
case GGML_TYPE_Q5_0:
|
|
return &dequantize_mul_mat_vec_q5_0_cl;
|
|
case GGML_TYPE_Q5_1:
|
|
return &dequantize_mul_mat_vec_q5_1_cl;
|
|
case GGML_TYPE_Q8_0:
|
|
return &dequantize_mul_mat_vec_q8_0_cl;
|
|
case GGML_TYPE_F16:
|
|
return &convert_mul_mat_vec_f16_cl;
|
|
case GGML_TYPE_Q2_K:
|
|
return &dequantize_mul_mat_vec_q2_K_cl;
|
|
case GGML_TYPE_Q3_K:
|
|
return &dequantize_mul_mat_vec_q3_K_cl;
|
|
case GGML_TYPE_Q4_K:
|
|
return &dequantize_mul_mat_vec_q4_K_cl;
|
|
case GGML_TYPE_Q5_K:
|
|
return &dequantize_mul_mat_vec_q5_K_cl;
|
|
case GGML_TYPE_Q6_K:
|
|
return &dequantize_mul_mat_vec_q6_K_cl;
|
|
default:
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// buffer pool for cl
|
|
#define MAX_CL_BUFFERS 256
|
|
|
|
struct scoped_spin_lock {
|
|
std::atomic_flag& lock;
|
|
scoped_spin_lock(std::atomic_flag& lock) : lock(lock) {
|
|
while (lock.test_and_set(std::memory_order_acquire)) {
|
|
; // spin
|
|
}
|
|
}
|
|
~scoped_spin_lock() {
|
|
lock.clear(std::memory_order_release);
|
|
}
|
|
scoped_spin_lock(const scoped_spin_lock&) = delete;
|
|
scoped_spin_lock& operator=(const scoped_spin_lock&) = delete;
|
|
};
|
|
|
|
struct cl_buffer {
|
|
cl_mem mem;
|
|
size_t size = 0;
|
|
};
|
|
|
|
static cl_buffer g_cl_buffer_pool[MAX_CL_BUFFERS];
|
|
static std::atomic_flag g_cl_pool_lock = ATOMIC_FLAG_INIT;
|
|
|
|
static cl_mem ggml_cl_pool_malloc(size_t size, size_t * actual_size) {
|
|
scoped_spin_lock lock(g_cl_pool_lock);
|
|
cl_int err;
|
|
|
|
int best_i = -1;
|
|
size_t best_size = std::numeric_limits<size_t>::max(); //smallest unused buffer that fits our needs
|
|
int worst_i = -1;
|
|
size_t worst_size = 0; //largest unused buffer seen so far
|
|
for (int i = 0; i < MAX_CL_BUFFERS; ++i) {
|
|
cl_buffer &b = g_cl_buffer_pool[i];
|
|
if (b.size > 0 && b.size >= size && b.size < best_size)
|
|
{
|
|
best_i = i;
|
|
best_size = b.size;
|
|
}
|
|
if (b.size > 0 && b.size > worst_size)
|
|
{
|
|
worst_i = i;
|
|
worst_size = b.size;
|
|
}
|
|
}
|
|
if(best_i!=-1) //found the smallest buffer that fits our needs
|
|
{
|
|
cl_buffer& b = g_cl_buffer_pool[best_i];
|
|
cl_mem mem = b.mem;
|
|
*actual_size = b.size;
|
|
b.size = 0;
|
|
return mem;
|
|
}
|
|
if(worst_i!=-1) //no buffer that fits our needs, resize largest one to save memory
|
|
{
|
|
cl_buffer& b = g_cl_buffer_pool[worst_i];
|
|
cl_mem mem = b.mem;
|
|
b.size = 0;
|
|
clReleaseMemObject(mem);
|
|
}
|
|
cl_mem mem;
|
|
CL_CHECK((mem = clCreateBuffer(context, CL_MEM_READ_WRITE, size, NULL, &err), err));
|
|
*actual_size = size;
|
|
return mem;
|
|
}
|
|
|
|
static void ggml_cl_pool_free(cl_mem mem, size_t size) {
|
|
scoped_spin_lock lock(g_cl_pool_lock);
|
|
|
|
for (int i = 0; i < MAX_CL_BUFFERS; ++i) {
|
|
cl_buffer& b = g_cl_buffer_pool[i];
|
|
if (b.size == 0) {
|
|
b.mem = mem;
|
|
b.size = size;
|
|
return;
|
|
}
|
|
}
|
|
fprintf(stderr, "WARNING: cl buffer pool full, increase MAX_CL_BUFFERS\n");
|
|
clReleaseMemObject(mem);
|
|
}
|
|
|
|
void ggml_cl_free_data(const struct ggml_tensor* tensor) {
|
|
if (tensor->backend != GGML_BACKEND_TYPE_GPU) {
|
|
return;
|
|
}
|
|
|
|
cl_mem mem = (cl_mem)tensor->extra;
|
|
clReleaseMemObject(mem);
|
|
}
|
|
|
|
static cl_int ggml_cl_h2d_tensor_2d(cl_command_queue queue, cl_mem dst, size_t offset, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cl_event* ev) {
|
|
cl_int err;
|
|
const uint64_t ne0 = src->ne[0];
|
|
const uint64_t ne1 = src->ne[1];
|
|
const uint64_t nb0 = src->nb[0];
|
|
const uint64_t nb1 = src->nb[1];
|
|
const uint64_t nb2 = src->nb[2];
|
|
const uint64_t nb3 = src->nb[3];
|
|
const enum ggml_type type = src->type;
|
|
const size_t ts = ggml_type_size(type);
|
|
const size_t bs = ggml_blck_size(type);
|
|
const uint64_t row_size = ts*ne0/bs;
|
|
|
|
const char * x = (const char *) src->data + i2*nb2 + i3*nb3;
|
|
if (nb0 == ts && nb1 == row_size) {
|
|
return clEnqueueWriteBuffer(queue, dst, CL_FALSE, offset, ne1*row_size, x, 0, NULL, ev);
|
|
}
|
|
if (nb0 == ts) {
|
|
const size_t buffer_origin[3] = { offset, 0, 0 };
|
|
const size_t host_origin[3] = { 0, 0, 0 };
|
|
const size_t region[3] = { row_size, ne1, 1 };
|
|
return clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, row_size, 0, nb1, 0, x, 0, NULL, ev);
|
|
}
|
|
std::vector<cl_event> events;
|
|
if (ev && ne1>1) events.reserve(ne1-1);
|
|
for (uint64_t i1 = 0; i1 < ne1; i1++) {
|
|
// pretend the row is a matrix with cols=1
|
|
const size_t buffer_origin[3] = { offset + i1*row_size, 0, 0 };
|
|
const size_t host_origin[3] = { 0, 0, 0 };
|
|
const size_t region[3] = { ts, ne0/bs, 1 };
|
|
// if an event is requested, make the last write wait for all previous writes to complete
|
|
if (ev && i1) {
|
|
events.push_back(*ev);
|
|
}
|
|
cl_uint nevents = i1 == ne1-1 ? events.size() : 0U;
|
|
err = clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, ts, 0, nb0, 0, x + i1*nb1, nevents, nevents ? events.data() : nullptr, ev);
|
|
if (err != CL_SUCCESS) {
|
|
for (auto event : events) {
|
|
clReleaseEvent(event);
|
|
}
|
|
return err;
|
|
}
|
|
}
|
|
for (auto event : events) {
|
|
CL_CHECK(clReleaseEvent(event));
|
|
}
|
|
return CL_SUCCESS;
|
|
}
|
|
|
|
static void ggml_cl_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_ASSERT(src1->backend == GGML_BACKEND_TYPE_GPU);
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int64_t ne02 = src0->ne[2];
|
|
const int64_t ne03 = src0->ne[3];
|
|
const int64_t ne10 = src1->ne[0];
|
|
const int64_t ne11 = src1->ne[1];
|
|
const int64_t ne12 = src1->ne[2];
|
|
const int64_t ne13 = src1->ne[3];
|
|
const int nb2 = dst->nb[2];
|
|
const int nb3 = dst->nb[3];
|
|
size_t x_size;
|
|
size_t d_size;
|
|
|
|
cl_mem d_X = ggml_cl_pool_malloc(ne00 * ne01 * sizeof(float), &x_size); // src0
|
|
cl_mem d_Y = (cl_mem) src1->extra; // src1 is already on device, broadcasted.
|
|
cl_mem d_D = ggml_cl_pool_malloc(ne00 * ne01 * sizeof(float), &d_size); // dst
|
|
|
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
cl_event ev;
|
|
|
|
// copy src0 to device
|
|
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, &ev));
|
|
|
|
const int64_t i13 = i03%ne13;
|
|
const int64_t i12 = i02%ne12;
|
|
const int i1 = i13*ne12*ne11 + i12*ne11;
|
|
|
|
cl_int x_offset = 0;
|
|
cl_int y_offset = i1*ne10;
|
|
cl_int d_offset = 0;
|
|
|
|
size_t global = ne00 * ne01;
|
|
cl_int ky = ne10 * ne11;
|
|
|
|
CL_CHECK(clSetKernelArg(mul_f32_cl, 0, sizeof(cl_mem), &d_X));
|
|
CL_CHECK(clSetKernelArg(mul_f32_cl, 1, sizeof(cl_int), &x_offset));
|
|
CL_CHECK(clSetKernelArg(mul_f32_cl, 2, sizeof(cl_mem), &d_Y));
|
|
CL_CHECK(clSetKernelArg(mul_f32_cl, 3, sizeof(cl_int), &y_offset));
|
|
CL_CHECK(clSetKernelArg(mul_f32_cl, 4, sizeof(cl_mem), &d_D));
|
|
CL_CHECK(clSetKernelArg(mul_f32_cl, 5, sizeof(cl_int), &d_offset));
|
|
CL_CHECK(clSetKernelArg(mul_f32_cl, 6, sizeof(cl_int), &ky));
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, mul_f32_cl, 1, NULL, &global, NULL, 1, &ev, NULL));
|
|
|
|
CL_CHECK(clReleaseEvent(ev));
|
|
CL_CHECK(clFinish(queue));
|
|
|
|
// copy dst to host
|
|
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
|
|
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * ne00*ne01, d, 0, NULL, NULL));
|
|
}
|
|
}
|
|
ggml_cl_pool_free(d_X, x_size);
|
|
ggml_cl_pool_free(d_D, d_size);
|
|
}
|
|
|
|
void ggml_cl_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
|
|
ggml_cl_mul_f32(src0, src1, dst);
|
|
}
|
|
|
|
static void ggml_cl_add_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
GGML_ASSERT(src1->backend == GGML_BACKEND_TYPE_GPU);
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int64_t ne02 = src0->ne[2];
|
|
const int64_t ne03 = src0->ne[3];
|
|
const int64_t ne10 = src1->ne[0];
|
|
const int64_t ne11 = src1->ne[1];
|
|
const int64_t ne12 = src1->ne[2];
|
|
const int64_t ne13 = src1->ne[3];
|
|
const int nb2 = dst->nb[2];
|
|
const int nb3 = dst->nb[3];
|
|
size_t x_size;
|
|
size_t d_size;
|
|
|
|
cl_mem d_X = ggml_cl_pool_malloc(ne00 * ne01 * sizeof(float), &x_size); // src0
|
|
cl_mem d_Y = (cl_mem) src1->extra; // src1 is already on device, broadcasted.
|
|
cl_mem d_D = ggml_cl_pool_malloc(ne00 * ne01 * sizeof(float), &d_size); // dst
|
|
|
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
cl_event ev;
|
|
|
|
// copy src0 to device
|
|
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, &ev));
|
|
|
|
const int64_t i13 = i03%ne13;
|
|
const int64_t i12 = i02%ne12;
|
|
const int i1 = i13*ne12*ne11 + i12*ne11;
|
|
|
|
cl_int x_offset = 0;
|
|
cl_int y_offset = i1*ne10;
|
|
cl_int d_offset = 0;
|
|
|
|
size_t global = ne00 * ne01;
|
|
cl_int ky = ne10 * ne11;
|
|
|
|
CL_CHECK(clSetKernelArg(add_f32_cl, 0, sizeof(cl_mem), &d_X));
|
|
CL_CHECK(clSetKernelArg(add_f32_cl, 1, sizeof(cl_int), &x_offset));
|
|
CL_CHECK(clSetKernelArg(add_f32_cl, 2, sizeof(cl_mem), &d_Y));
|
|
CL_CHECK(clSetKernelArg(add_f32_cl, 3, sizeof(cl_int), &y_offset));
|
|
CL_CHECK(clSetKernelArg(add_f32_cl, 4, sizeof(cl_mem), &d_D));
|
|
CL_CHECK(clSetKernelArg(add_f32_cl, 5, sizeof(cl_int), &d_offset));
|
|
CL_CHECK(clSetKernelArg(add_f32_cl, 6, sizeof(cl_int), &ky));
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, add_f32_cl, 1, NULL, &global, NULL, 1, &ev, NULL));
|
|
|
|
CL_CHECK(clReleaseEvent(ev));
|
|
CL_CHECK(clFinish(queue));
|
|
|
|
// copy dst to host
|
|
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
|
|
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * ne00*ne01, d, 0, NULL, NULL));
|
|
}
|
|
}
|
|
ggml_cl_pool_free(d_X, x_size);
|
|
ggml_cl_pool_free(d_D, d_size);
|
|
}
|
|
|
|
void ggml_cl_add(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
|
|
GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
|
|
ggml_cl_add_f32(src0, src1, dst);
|
|
}
|
|
|
|
static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int64_t ne02 = src0->ne[2];
|
|
const int64_t ne03 = src0->ne[3];
|
|
|
|
const int64_t ne10 = src1->ne[0];
|
|
const int64_t ne11 = src1->ne[1];
|
|
const int64_t ne12 = src1->ne[2];
|
|
const int64_t ne13 = src1->ne[3];
|
|
|
|
const int nb2 = dst->nb[2];
|
|
const int nb3 = dst->nb[3];
|
|
|
|
const int64_t r2 = ne12 / ne02;
|
|
const int64_t r3 = ne13 / ne03;
|
|
|
|
const float alpha = 1.0f;
|
|
const float beta = 0.0f;
|
|
const int x_ne = ne01 * ne00;
|
|
const int y_ne = ne11 * ne10;
|
|
const int d_ne = ne11 * ne01;
|
|
|
|
size_t x_size;
|
|
size_t y_size;
|
|
size_t d_size;
|
|
cl_mem d_X;
|
|
if (src0->backend == GGML_BACKEND_TYPE_GPU) { // NOLINT
|
|
d_X = (cl_mem) src0->extra;
|
|
} else {
|
|
d_X = ggml_cl_pool_malloc(sizeof(float) * x_ne, &x_size);
|
|
}
|
|
cl_mem d_Y = src1->backend == GGML_BACKEND_TYPE_GPU ? (cl_mem) src1->extra : ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size);
|
|
cl_mem d_D = dst->backend == GGML_BACKEND_TYPE_GPU ? (cl_mem) dst->extra : ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
|
|
|
|
size_t x_offset = 0;
|
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
// TODO: copy src0 here when r3>1
|
|
for (int64_t i13 = i03 * r3, e13 = i13 + r3; i13 < e13; i13++) {
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
if (src0->backend == GGML_BACKEND_TYPE_GPU) {
|
|
x_offset = (i03 * ne02 + i02) * x_ne;
|
|
} else {
|
|
// copy src0 to device
|
|
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
|
|
}
|
|
|
|
for (int64_t i12 = i02 * r2, e12 = i12 + r2; i12 < e12; i12++) {
|
|
// copy src1 to device
|
|
if (src1->backend == GGML_BACKEND_TYPE_CPU) {
|
|
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, NULL));
|
|
}
|
|
|
|
CL_CHECK(clFinish(queue));
|
|
|
|
// compute
|
|
cl_event ev_sgemm;
|
|
clblast::StatusCode status = clblast::Gemm<cl_float>(clblast::Layout::kColMajor,
|
|
clblast::Transpose::kYes, clblast::Transpose::kNo,
|
|
ne01, ne11, ne10,
|
|
alpha,
|
|
d_X, x_offset, ne00,
|
|
d_Y, 0, ne10,
|
|
beta,
|
|
d_D, 0, ne01,
|
|
&queue, &ev_sgemm);
|
|
|
|
if (status != clblast::StatusCode::kSuccess) {
|
|
GGML_ASSERT(false);
|
|
}
|
|
|
|
// copy dst to host
|
|
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
|
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
|
|
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (src0->backend != GGML_BACKEND_TYPE_GPU) {
|
|
ggml_cl_pool_free(d_X, x_size);
|
|
}
|
|
if (src1->backend != GGML_BACKEND_TYPE_GPU) {
|
|
ggml_cl_pool_free(d_Y, y_size);
|
|
}
|
|
if (dst->backend != GGML_BACKEND_TYPE_GPU) {
|
|
ggml_cl_pool_free(d_D, d_size);
|
|
}
|
|
}
|
|
|
|
static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t wsize) {
|
|
GGML_ASSERT(fp16_support);
|
|
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int64_t ne02 = src0->ne[2];
|
|
const int64_t ne03 = src0->ne[3];
|
|
|
|
const int64_t ne10 = src1->ne[0];
|
|
const int64_t ne11 = src1->ne[1];
|
|
const int64_t ne12 = src1->ne[2];
|
|
const int64_t ne13 = src1->ne[3];
|
|
|
|
const int nb10 = src1->nb[0];
|
|
const int nb11 = src1->nb[1];
|
|
const int nb12 = src1->nb[2];
|
|
const int nb13 = src1->nb[3];
|
|
|
|
const int nb2 = dst->nb[2];
|
|
const int nb3 = dst->nb[3];
|
|
|
|
const int64_t r2 = ne12 / ne02;
|
|
const int64_t r3 = ne13 / ne03;
|
|
|
|
const ggml_fp16_t alpha = ggml_fp32_to_fp16(1.0f);
|
|
const ggml_fp16_t beta = ggml_fp32_to_fp16(0.0f);
|
|
const int x_ne = ne01 * ne00;
|
|
const int y_ne = ne11 * ne10;
|
|
const int d_ne = ne11 * ne01;
|
|
|
|
GGML_ASSERT(wsize >= sizeof(ggml_fp16_t) * y_ne);
|
|
GGML_ASSERT(wsize >= sizeof(ggml_fp16_t) * d_ne);
|
|
ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata;
|
|
|
|
size_t x_size;
|
|
size_t y_size;
|
|
size_t d_size;
|
|
cl_mem d_X;
|
|
if (src0->backend == GGML_BACKEND_TYPE_GPU) { // NOLINT
|
|
d_X = (cl_mem) src0->extra;
|
|
} else {
|
|
d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size);
|
|
}
|
|
cl_mem d_Y = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * y_ne, &y_size);
|
|
cl_mem d_D = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * d_ne, &d_size);
|
|
|
|
bool src1_cont_rows = nb10 == sizeof(float);
|
|
bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float);
|
|
|
|
size_t x_offset = 0;
|
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
// TODO: copy src0 here when r3>1
|
|
for (int64_t i13 = i03 * r3, e13 = i13 + r3; i13 < e13; i13++) {
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
if (src0->backend == GGML_BACKEND_TYPE_GPU) {
|
|
x_offset = (i03 * ne02 + i02) * x_ne;
|
|
} else {
|
|
// copy src0 to device
|
|
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
|
|
}
|
|
|
|
// FIXME: convert on device
|
|
|
|
for (int64_t i12 = i02 * r2, e12 = i12 + r2; i12 < e12; i12++) {
|
|
// convert src1 to fp16
|
|
// TODO: use multiple threads
|
|
char * src1i = (char *) src1->data + i13*nb13 + i12*nb12;
|
|
if (src1_cont_rows) {
|
|
if (src1_cont_cols) {
|
|
ggml_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11);
|
|
}
|
|
else {
|
|
for (int64_t i11 = 0; i11 < ne11; i11++) {
|
|
ggml_fp32_to_fp16_row((float *) (src1i + i11*nb11), tmp + i11*ne10, ne10);
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
for (int64_t i11 = 0; i11 < ne11; i11++) {
|
|
for (int64_t i10 = 0; i10 < ne10; i10++) {
|
|
// very slow due to no inlining
|
|
tmp[i11*ne10 + i10] = ggml_fp32_to_fp16(*(float *) (src1i + i11*nb11 + i10*nb10));
|
|
}
|
|
}
|
|
}
|
|
|
|
// copy src1 to device
|
|
CL_CHECK(clEnqueueWriteBuffer(queue, d_Y, false, 0, sizeof(ggml_fp16_t) * y_ne, tmp, 0, NULL, NULL));
|
|
|
|
CL_CHECK(clFinish(queue));
|
|
|
|
// compute
|
|
cl_event ev_sgemm;
|
|
clblast::StatusCode status = clblast::Gemm<cl_half>(clblast::Layout::kColMajor,
|
|
clblast::Transpose::kYes, clblast::Transpose::kNo,
|
|
ne01, ne11, ne10,
|
|
alpha,
|
|
d_X, x_offset, ne00,
|
|
d_Y, 0, ne10,
|
|
beta,
|
|
d_D, 0, ne01,
|
|
&queue, &ev_sgemm);
|
|
|
|
if (status != clblast::StatusCode::kSuccess) {
|
|
GGML_ASSERT(false);
|
|
}
|
|
|
|
// copy dst to host, then convert to float
|
|
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
|
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(ggml_fp16_t) * d_ne, tmp, 1, &ev_sgemm, NULL));
|
|
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
|
|
ggml_fp16_to_fp32_row(tmp, d, d_ne);
|
|
} else {
|
|
// FIXME: convert dst to fp32 on device
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (src0->backend != GGML_BACKEND_TYPE_GPU) {
|
|
ggml_cl_pool_free(d_X, x_size);
|
|
}
|
|
ggml_cl_pool_free(d_Y, y_size);
|
|
ggml_cl_pool_free(d_D, d_size);
|
|
}
|
|
|
|
static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t ne01 = src0->ne[1];
|
|
const int64_t ne02 = src0->ne[2];
|
|
const int64_t ne03 = src0->ne[3];
|
|
|
|
const int64_t ne10 = src1->ne[0];
|
|
const int64_t ne11 = src1->ne[1];
|
|
const int64_t ne12 = src1->ne[2];
|
|
const int64_t ne13 = src1->ne[3];
|
|
|
|
const int nb2 = dst->nb[2];
|
|
const int nb3 = dst->nb[3];
|
|
const ggml_type type = src0->type;
|
|
const bool mul_mat_vec = ne11 == 1 && ne00%2 == 0;
|
|
|
|
const int64_t r2 = ne12 / ne02;
|
|
const int64_t r3 = ne13 / ne03;
|
|
|
|
const float alpha = 1.0f;
|
|
const float beta = 0.0f;
|
|
const int x_ne = ne01 * ne00;
|
|
const int y_ne = ne11 * ne10;
|
|
const int d_ne = ne11 * ne01;
|
|
const int x_bps = x_ne / ggml_blck_size(type); // blocks per 2D slice
|
|
const size_t q_sz = ggml_type_size(type) * x_bps;
|
|
|
|
size_t x_size;
|
|
size_t y_size;
|
|
size_t d_size;
|
|
size_t q_size;
|
|
cl_mem d_X;
|
|
if (!mul_mat_vec) {
|
|
d_X = ggml_cl_pool_malloc(sizeof(float) * x_ne, &x_size);
|
|
}
|
|
cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size);
|
|
cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
|
|
cl_mem d_Q;
|
|
if (src0->backend == GGML_BACKEND_TYPE_CPU) {
|
|
d_Q = ggml_cl_pool_malloc(q_sz, &q_size);
|
|
}
|
|
|
|
cl_kernel* to_fp32_cl = ggml_get_to_fp32_cl(type);
|
|
cl_kernel* dmmv = ggml_get_dequantize_mul_mat_vec_cl(type);
|
|
GGML_ASSERT(to_fp32_cl != nullptr);
|
|
|
|
const size_t global_denom = ggml_cl_global_denom(type);
|
|
const size_t local = mul_mat_vec ? CL_DMMV_LOCAL_SIZE : ggml_cl_local_size(type);
|
|
|
|
size_t ev_idx = 0;
|
|
std::vector<cl_event> events;
|
|
|
|
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
|
// TODO: copy and dequantize src0 here when r3>1
|
|
for (int64_t i13 = i03 * r3, e13 = i13 + r3; i13 < e13; i13++) {
|
|
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
|
// copy src0 to device if necessary
|
|
if (src0->backend == GGML_BACKEND_TYPE_CPU) {
|
|
events.emplace_back();
|
|
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, events.data() + ev_idx++));
|
|
} else if (src0->backend == GGML_BACKEND_TYPE_GPU) {
|
|
d_Q = (cl_mem) src0->extra;
|
|
} else {
|
|
GGML_ASSERT(false);
|
|
}
|
|
|
|
if (!mul_mat_vec) {
|
|
// convert src0 to fp32 on device
|
|
const size_t global = x_ne / global_denom;
|
|
const size_t offset = src0->backend == GGML_BACKEND_TYPE_GPU ? (i03 * ne02 + i02) * x_bps : 0;
|
|
CL_CHECK(clSetKernelArg(*to_fp32_cl, 0, sizeof(cl_mem), &d_Q));
|
|
CL_CHECK(clSetKernelArg(*to_fp32_cl, 1, sizeof(cl_mem), &d_X));
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, &offset, &global, local > 0 ? &local : NULL, events.size(), !events.empty() ? events.data() : NULL, NULL));
|
|
}
|
|
|
|
for (int64_t i12 = i02 * r2, e12 = i12 + r2; i12 < e12; i12++) {
|
|
if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel
|
|
// copy src1 to device
|
|
events.emplace_back();
|
|
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, events.data() + ev_idx++));
|
|
|
|
// compute
|
|
const size_t global = ne01 * local;
|
|
const size_t offset = src0->backend == GGML_BACKEND_TYPE_GPU ? (i03 * ne02 + i02) * x_bps : 0;
|
|
const cl_int ncols = ne00;
|
|
events.emplace_back();
|
|
CL_CHECK(clSetKernelArg(*dmmv, 0, sizeof(cl_mem), &d_Q));
|
|
CL_CHECK(clSetKernelArg(*dmmv, 1, sizeof(float) * local, NULL));
|
|
CL_CHECK(clSetKernelArg(*dmmv, 2, sizeof(cl_mem), &d_Y));
|
|
CL_CHECK(clSetKernelArg(*dmmv, 3, sizeof(cl_mem), &d_D));
|
|
CL_CHECK(clSetKernelArg(*dmmv, 4, sizeof(cl_int), &ncols));
|
|
CL_CHECK(clEnqueueNDRangeKernel(queue, *dmmv, 1, &offset, &global, &local, events.size() - 1, events.data(), events.data() + ev_idx++));
|
|
} else { // CLBlast matrix matrix multiplication
|
|
// copy src1 to device
|
|
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, NULL));
|
|
|
|
// wait for conversion
|
|
CL_CHECK(clFinish(queue));
|
|
|
|
// compute
|
|
events.emplace_back();
|
|
clblast::StatusCode status = clblast::Gemm<cl_float>(clblast::Layout::kColMajor,
|
|
clblast::Transpose::kYes, clblast::Transpose::kNo,
|
|
ne01, ne11, ne10,
|
|
alpha,
|
|
d_X, 0, ne00,
|
|
d_Y, 0, ne10,
|
|
beta,
|
|
d_D, 0, ne01,
|
|
&queue, events.data() + ev_idx++);
|
|
|
|
if (status != clblast::StatusCode::kSuccess) {
|
|
GGML_ASSERT(false);
|
|
}
|
|
}
|
|
|
|
// copy dst to host
|
|
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
|
|
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &events[events.size() - 1], NULL));
|
|
for (auto *event : events) {
|
|
clReleaseEvent(event);
|
|
}
|
|
|
|
ev_idx = 0;
|
|
events.clear();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!mul_mat_vec) {
|
|
ggml_cl_pool_free(d_X, x_size);
|
|
}
|
|
ggml_cl_pool_free(d_Y, y_size);
|
|
ggml_cl_pool_free(d_D, d_size);
|
|
if (src0->backend == GGML_BACKEND_TYPE_CPU) {
|
|
ggml_cl_pool_free(d_Q, q_size);
|
|
}
|
|
}
|
|
|
|
|
|
bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, const struct ggml_tensor * dst) {
|
|
const int64_t ne10 = src1->ne[0];
|
|
|
|
const int64_t ne0 = dst->ne[0];
|
|
const int64_t ne1 = dst->ne[1];
|
|
|
|
// TODO: find the optimal values for these
|
|
if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
|
|
src1->type == GGML_TYPE_F32 &&
|
|
dst->type == GGML_TYPE_F32 &&
|
|
((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_TYPE_GPU)) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool ggml_cl_mul_mat_use_f16(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * /* dst */) {
|
|
// If device doesn't support FP16
|
|
if (!fp16_support) {
|
|
return false;
|
|
}
|
|
|
|
size_t src0_sz = ggml_nbytes(src0);
|
|
size_t src1_sz = ggml_nbytes(src1);
|
|
|
|
// mul_mat_q: src0 is converted to fp32 on device
|
|
size_t mul_mat_q_transfer = src0_sz + src1_sz;
|
|
|
|
// mul_mat_f16: src1 is converted to fp16 on cpu
|
|
size_t mul_mat_f16_transfer = src0_sz + sizeof(ggml_fp16_t) * ggml_nelements(src1);
|
|
|
|
// choose the smaller one to transfer to the device
|
|
// TODO: this is not always the best choice due to the overhead of converting to fp16
|
|
return mul_mat_f16_transfer < mul_mat_q_transfer;
|
|
}
|
|
|
|
void ggml_cl_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize) {
|
|
GGML_ASSERT(ggml_cl_can_mul_mat(src0, src1, dst));
|
|
|
|
if (src0->type == GGML_TYPE_F32) {
|
|
ggml_cl_mul_mat_f32(src0, src1, dst);
|
|
}
|
|
else if (src0->type == GGML_TYPE_F16) {
|
|
if (ggml_cl_mul_mat_use_f16(src0, src1, dst)) {
|
|
ggml_cl_mul_mat_f16(src0, src1, dst, wdata, wsize);
|
|
}
|
|
else {
|
|
ggml_cl_mul_mat_q_f32(src0, src1, dst);
|
|
}
|
|
}
|
|
else if (ggml_is_quantized(src0->type)) {
|
|
ggml_cl_mul_mat_q_f32(src0, src1, dst);
|
|
}
|
|
else {
|
|
GGML_ASSERT(false);
|
|
}
|
|
}
|
|
|
|
size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
|
|
if (src0->type == GGML_TYPE_F16 && ggml_cl_mul_mat_use_f16(src0, src1, dst)) {
|
|
return sizeof(ggml_fp16_t) * std::max(src1->ne[0] * src1->ne[1], dst->ne[0] * dst->ne[1]);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void ggml_cl_transform_tensor(void * data, ggml_tensor * tensor) {
|
|
const int64_t ne0 = tensor->ne[0];
|
|
const int64_t ne1 = tensor->ne[1];
|
|
const int64_t ne2 = tensor->ne[2];
|
|
const int64_t ne3 = tensor->ne[3];
|
|
|
|
const ggml_type type = tensor->type;
|
|
const size_t s_sz = ggml_type_size(type) * (size_t) (ne0 * ne1 / ggml_blck_size(type));
|
|
const size_t q_sz = s_sz * (size_t) (ne2 * ne3);
|
|
|
|
size_t q_size;
|
|
cl_mem dst = ggml_cl_pool_malloc(q_sz, &q_size);
|
|
|
|
tensor->data = data;
|
|
// copy tensor to device
|
|
size_t offset = 0;
|
|
for (int64_t i3 = 0; i3 < ne3; i3++) {
|
|
for (int64_t i2 = 0; i2 < ne2; i2++) {
|
|
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, dst, offset, tensor, i3, i2, NULL));
|
|
offset += s_sz;
|
|
}
|
|
}
|
|
|
|
CL_CHECK(clFinish(queue));
|
|
|
|
tensor->extra = dst;
|
|
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
|
|
}
|
|
|
|
// ggml-backend
|
|
|
|
// buffer
|
|
|
|
struct ggml_backend_opencl_buffer_context {
|
|
~ggml_backend_opencl_buffer_context() {
|
|
if (buffer) {
|
|
clReleaseMemObject(buffer);
|
|
}
|
|
for (auto * sub_buffer : sub_buffers) {
|
|
clReleaseMemObject(sub_buffer);
|
|
}
|
|
}
|
|
|
|
cl_mem buffer;
|
|
std::vector<cl_mem> sub_buffers;
|
|
};
|
|
|
|
static void * const cl_ptr_base = (void *)(uintptr_t) 0x1000;
|
|
|
|
static const char * ggml_backend_opencl_buffer_get_name(ggml_backend_buffer_t buffer) {
|
|
return "OpenCL";
|
|
|
|
GGML_UNUSED(buffer);
|
|
}
|
|
|
|
static void ggml_backend_opencl_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
|
ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
|
|
delete ctx;
|
|
}
|
|
|
|
static void * ggml_backend_opencl_buffer_get_base(ggml_backend_buffer_t buffer) {
|
|
return cl_ptr_base;
|
|
|
|
GGML_UNUSED(buffer);
|
|
}
|
|
|
|
static void ggml_backend_opencl_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
|
|
if (tensor->view_src != NULL && tensor->view_offs == 0) {
|
|
tensor->extra = tensor->view_src->extra;
|
|
} else {
|
|
ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
|
|
cl_buffer_region region = {(size_t)((char *)tensor->data - (char *)cl_ptr_base), ggml_nbytes(tensor)};
|
|
cl_int err;
|
|
cl_mem sub_buffer = clCreateSubBuffer(ctx->buffer, CL_MEM_READ_WRITE, CL_BUFFER_CREATE_TYPE_REGION, ®ion, &err);
|
|
CL_CHECK(err);
|
|
ctx->sub_buffers.push_back(sub_buffer);
|
|
tensor->extra = sub_buffer;
|
|
}
|
|
tensor->backend = GGML_BACKEND_TYPE_GPU;
|
|
}
|
|
|
|
static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
|
cl_mem tensor_buffer = (cl_mem) tensor->extra;
|
|
CL_CHECK(clEnqueueWriteBuffer(queue, tensor_buffer, true, offset, size, data, 0, NULL, NULL));
|
|
CL_CHECK(clFinish(queue));
|
|
|
|
GGML_UNUSED(buffer);
|
|
}
|
|
|
|
static void ggml_backend_opencl_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
|
cl_mem tensor_buffer = (cl_mem) tensor->extra;
|
|
CL_CHECK(clEnqueueReadBuffer(queue, tensor_buffer, true, offset, size, data, 0, NULL, NULL));
|
|
CL_CHECK(clFinish(queue));
|
|
|
|
GGML_UNUSED(buffer);
|
|
}
|
|
|
|
static void ggml_backend_opencl_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
|
ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
|
|
CL_CHECK(clEnqueueFillBuffer(queue, ctx->buffer, &value, sizeof(value), 0, buffer->size, 0, NULL, NULL));
|
|
CL_CHECK(clFinish(queue));
|
|
}
|
|
|
|
static void ggml_backend_opencl_buffer_reset(ggml_backend_buffer_t buffer) {
|
|
ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
|
|
for (auto * sub_buffer : ctx->sub_buffers) {
|
|
clReleaseMemObject(sub_buffer);
|
|
}
|
|
ctx->sub_buffers.clear();
|
|
}
|
|
|
|
static ggml_backend_buffer_i ggml_backend_opencl_buffer_interface = {
|
|
/* .get_name = */ ggml_backend_opencl_buffer_get_name,
|
|
/* .free_buffer = */ ggml_backend_opencl_buffer_free_buffer,
|
|
/* .get_base = */ ggml_backend_opencl_buffer_get_base,
|
|
/* .init_tensor = */ ggml_backend_opencl_buffer_init_tensor,
|
|
/* .set_tensor = */ ggml_backend_opencl_buffer_set_tensor,
|
|
/* .get_tensor = */ ggml_backend_opencl_buffer_get_tensor,
|
|
/* .cpy_tensor = */ NULL,
|
|
/* .clear = */ ggml_backend_opencl_buffer_clear,
|
|
/* .reset = */ ggml_backend_opencl_buffer_reset,
|
|
};
|
|
|
|
// buffer type
|
|
|
|
static const char * ggml_backend_opencl_buffer_type_name(ggml_backend_buffer_type_t buffer_type) {
|
|
return "OpenCL";
|
|
|
|
GGML_UNUSED(buffer_type);
|
|
}
|
|
|
|
static ggml_backend_buffer_t ggml_backend_opencl_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buffer_type, size_t size) {
|
|
ggml_cl_init();
|
|
|
|
cl_int err;
|
|
cl_mem mem = clCreateBuffer(context, CL_MEM_READ_WRITE, size, NULL, &err);
|
|
if (err != CL_SUCCESS) {
|
|
fprintf(stderr, "%s: failed to allocate %.2f MiB\n", __func__, size / 1024.0 / 1024.0);
|
|
return nullptr;
|
|
}
|
|
|
|
ggml_backend_opencl_buffer_context * ctx = new ggml_backend_opencl_buffer_context{mem, {}};
|
|
|
|
return ggml_backend_buffer_init(buffer_type, ggml_backend_opencl_buffer_interface, ctx, size);
|
|
}
|
|
|
|
static size_t ggml_backend_opencl_buffer_type_get_alignment(ggml_backend_buffer_type_t buffer_type) {
|
|
// FIXME: not thread safe, device may not be initialized yet
|
|
static cl_uint alignment = -1;
|
|
if (alignment == (cl_uint)-1) {
|
|
ggml_cl_init();
|
|
clGetDeviceInfo(device, CL_DEVICE_MEM_BASE_ADDR_ALIGN, sizeof(cl_uint), &alignment, NULL);
|
|
}
|
|
return alignment;
|
|
|
|
GGML_UNUSED(buffer_type);
|
|
}
|
|
|
|
static size_t ggml_backend_opencl_buffer_type_get_max_size(ggml_backend_buffer_type_t buffer_type) {
|
|
static size_t max_size = -1;
|
|
if (max_size == (size_t)-1) {
|
|
ggml_cl_init();
|
|
clGetDeviceInfo(device, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof(size_t), &max_size, NULL);
|
|
}
|
|
return max_size;
|
|
}
|
|
|
|
static bool ggml_backend_opencl_buffer_type_supports_backend(ggml_backend_buffer_type_t buffer_type, ggml_backend_t backend) {
|
|
//return ggml_backend_is_opencl(backend); // opencl must be used through the cpu backend
|
|
return ggml_backend_is_cpu(backend);
|
|
|
|
GGML_UNUSED(buffer_type);
|
|
}
|
|
|
|
static ggml_backend_buffer_type_i ggml_backend_opencl_buffer_type_interface = {
|
|
/* .get_name = */ ggml_backend_opencl_buffer_type_name,
|
|
/* .alloc_buffer = */ ggml_backend_opencl_buffer_type_alloc_buffer,
|
|
/* .get_alignment = */ ggml_backend_opencl_buffer_type_get_alignment,
|
|
/* .get_max_size = */ ggml_backend_opencl_buffer_type_get_max_size,
|
|
/* .get_alloc_size = */ NULL,
|
|
/* .supports_backend = */ ggml_backend_opencl_buffer_type_supports_backend,
|
|
/* .is_host = */ NULL,
|
|
};
|
|
|
|
|
|
ggml_backend_buffer_type_t ggml_backend_opencl_buffer_type() {
|
|
static ggml_backend_buffer_type buffer_type = {
|
|
/* .iface = */ ggml_backend_opencl_buffer_type_interface,
|
|
/* .context = */ nullptr,
|
|
};
|
|
|
|
return &buffer_type;
|
|
}
|
|
|
|
#if 0
|
|
// host buffer type
|
|
|
|
static const char * ggml_backend_opencl_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
|
|
return "CL_Host";
|
|
|
|
GGML_UNUSED(buft);
|
|
}
|
|
|
|
static const char * ggml_backend_opencl_host_buffer_name(ggml_backend_buffer_t buffer) {
|
|
return "CL_Host";
|
|
|
|
GGML_UNUSED(buffer);
|
|
}
|
|
|
|
static void ggml_backend_opencl_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
|
ggml_cl_host_free(buffer->context);
|
|
}
|
|
|
|
static ggml_backend_buffer_t ggml_backend_opencl_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
|
void * ptr = ggml_cl_host_malloc(size);
|
|
|
|
if (ptr == nullptr) {
|
|
// fallback to cpu buffer
|
|
return ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size);
|
|
}
|
|
|
|
ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
|
|
buffer->buft = buft;
|
|
buffer->iface.get_name = ggml_backend_opencl_host_buffer_name;
|
|
buffer->iface.free_buffer = ggml_backend_opencl_host_buffer_free_buffer;
|
|
|
|
return buffer;
|
|
}
|
|
|
|
ggml_backend_buffer_type_t ggml_backend_opencl_host_buffer_type() {
|
|
static struct ggml_backend_buffer_type ggml_backend_opencl_buffer_type_host = {
|
|
/* .iface = */ {
|
|
/* .get_name = */ ggml_backend_opencl_host_buffer_type_name,
|
|
/* .alloc_buffer = */ ggml_backend_opencl_host_buffer_type_alloc_buffer,
|
|
/* .get_alignment = */ ggml_backend_cpu_buffer_type()->iface.get_alignment,
|
|
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
|
|
/* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
|
|
/* .supports_backend = */ ggml_backend_cpu_buffer_type()->iface.supports_backend,
|
|
/* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host,
|
|
},
|
|
/* .context = */ nullptr,
|
|
};
|
|
|
|
return &ggml_backend_opencl_buffer_type_host;
|
|
}
|
|
|
|
// backend
|
|
|
|
static const char * ggml_backend_opencl_name(ggml_backend_t backend) {
|
|
return "OpenCL";
|
|
|
|
GGML_UNUSED(backend);
|
|
}
|
|
|
|
static void ggml_backend_opencl_free(ggml_backend_t backend) {
|
|
GGML_UNUSED(backend);
|
|
}
|
|
|
|
static ggml_backend_buffer_type_t ggml_backend_opencl_get_default_buffer_type(ggml_backend_t backend) {
|
|
return ggml_backend_opencl_buffer_type();
|
|
|
|
GGML_UNUSED(backend);
|
|
}
|
|
|
|
static ggml_status ggml_backend_opencl_graph_compute(ggml_backend_t backend, ggml_cgraph * graph) {
|
|
for (int i = 0; i < graph->n_nodes; ++i) {
|
|
ggml_tensor * node = graph->nodes[i];
|
|
|
|
if (ggml_is_empty(node)) {
|
|
continue;
|
|
}
|
|
|
|
switch (node->op) {
|
|
case GGML_OP_MUL_MAT:
|
|
ggml_cl_mul_mat(node->src[0], node->src[1], node, nullptr, 0);
|
|
break;
|
|
case GGML_OP_MUL:
|
|
ggml_cl_mul(node->src[0], node->src[1], node);
|
|
break;
|
|
default:
|
|
GGML_ASSERT(false);
|
|
}
|
|
}
|
|
|
|
return GGML_STATUS_SUCCESS;
|
|
|
|
GGML_UNUSED(backend);
|
|
}
|
|
|
|
static bool ggml_backend_opencl_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
|
|
switch (op->op) {
|
|
case GGML_OP_MUL_MAT:
|
|
return ggml_cl_can_mul_mat(op->src[0], op->src[1], op);
|
|
case GGML_OP_MUL:
|
|
// return ggml_can_repeat_rows(op->src[1], op->src[0]);
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
GGML_UNUSED(backend);
|
|
}
|
|
|
|
static ggml_backend_i opencl_backend_i = {
|
|
/* .get_name = */ ggml_backend_opencl_name,
|
|
/* .free = */ ggml_backend_opencl_free,
|
|
/* .get_default_buffer_type = */ ggml_backend_opencl_get_default_buffer_type,
|
|
/* .set_tensor_async = */ NULL,
|
|
/* .get_tensor_async = */ NULL,
|
|
/* .cpy_tensor_from_async = */ NULL,
|
|
/* .cpy_tensor_to_async = */ NULL,
|
|
/* .synchronize = */ NULL,
|
|
/* .graph_plan_create = */ NULL,
|
|
/* .graph_plan_free = */ NULL,
|
|
/* .graph_plan_compute = */ NULL,
|
|
/* .graph_compute = */ ggml_backend_opencl_graph_compute,
|
|
/* .supports_op = */ ggml_backend_opencl_supports_op,
|
|
};
|
|
|
|
ggml_backend_t ggml_backend_opencl_init() {
|
|
ggml_backend_t backend = new ggml_backend {
|
|
/* .interface = */ opencl_backend_i,
|
|
/* .context = */ nullptr
|
|
};
|
|
|
|
return backend;
|
|
}
|
|
|
|
bool ggml_backend_is_opencl(ggml_backend_t backend) {
|
|
return backend && backend->iface.get_name == ggml_backend_opencl_name;
|
|
}
|
|
#endif
|