mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-12 21:37:19 +01:00
3fd62a6b1c
* py : type-check all Python scripts with Pyright * server-tests : use trailing slash in openai base_url * server-tests : add more type annotations * server-tests : strip "chat" from base_url in oai_chat_completions * server-tests : model metadata is a dict * ci : disable pip cache in type-check workflow The cache is not shared between branches, and it's 250MB in size, so it would become quite a big part of the 10GB cache limit of the repo. * py : fix new type errors from master branch * tests : fix test-tokenizer-random.py Apparently, gcc applies optimisations even when pre-processing, which confuses pycparser. * ci : only show warnings and errors in python type-check The "information" level otherwise has entries from 'examples/pydantic_models_to_grammar.py', which could be confusing for someone trying to figure out what failed, considering that these messages can safely be ignored even though they look like errors.
160 lines
6.9 KiB
Python
160 lines
6.9 KiB
Python
import argparse
|
|
import glob
|
|
import os
|
|
import torch
|
|
from safetensors import safe_open
|
|
from safetensors.torch import save_file
|
|
from typing import Any, ContextManager, cast
|
|
|
|
# Function to determine if file is a SafeTensor file
|
|
def is_safetensor_file(file_path):
|
|
return file_path.endswith('.safetensors')
|
|
|
|
|
|
# Unified loading function
|
|
def load_model(file_path):
|
|
if is_safetensor_file(file_path):
|
|
tensors = {}
|
|
with cast(ContextManager[Any], safe_open(file_path, framework="pt", device="cpu")) as f:
|
|
for key in f.keys():
|
|
tensors[key] = f.get_tensor(key).clone()
|
|
# output shape
|
|
print(f"{key} : {tensors[key].shape}")
|
|
return tensors, 'safetensor'
|
|
else:
|
|
return torch.load(file_path, map_location=torch.device('cpu')), 'pytorch'
|
|
|
|
|
|
# Unified saving function
|
|
def save_model(model, file_path, file_type):
|
|
if file_type == 'safetensor':
|
|
# safe_save(model, file_path)
|
|
save_file(model, file_path)
|
|
else:
|
|
torch.save(model, file_path)
|
|
|
|
|
|
# Adapted function to clean vision tower from checkpoint
|
|
def clean_vision_tower_from_checkpoint(checkpoint_path):
|
|
checkpoint, file_type = load_model(checkpoint_path)
|
|
# file_type = 'pytorch'
|
|
model_path = os.path.dirname(checkpoint_path)
|
|
print(f"Searching for vision tower tensors in {checkpoint_path}")
|
|
clip_tensors = [k for k, v in checkpoint.items() if (k.startswith("model.vision_tower") or k.startswith("vit."))]
|
|
|
|
if len(clip_tensors) > 0:
|
|
print(f"Found {len(clip_tensors)} tensors to extract from {checkpoint_path}")
|
|
# Adapted for file type
|
|
clip_path = os.path.join(model_path, "llava.clip")
|
|
|
|
if os.path.exists(clip_path):
|
|
print(f"Loading existing llava.clip from {clip_path}")
|
|
existing_clip, _ = load_model(clip_path)
|
|
else:
|
|
print(f"Creating new llava.clip at {clip_path}")
|
|
existing_clip = {}
|
|
# Update existing_clip with new tensors, avoid duplicates
|
|
for name in clip_tensors:
|
|
simple_name = name[name.index('vision_model.'):] if 'vision_model.' in name else name
|
|
print(f"Adding {simple_name} to llava.clip")
|
|
if simple_name not in existing_clip:
|
|
existing_clip[simple_name] = checkpoint[name]
|
|
|
|
# Save the updated clip tensors back to llava.clip
|
|
save_model(existing_clip, clip_path, 'pytorch')
|
|
|
|
# Remove the tensors from the original checkpoint
|
|
for name in clip_tensors:
|
|
del checkpoint[name]
|
|
|
|
checkpoint_path = checkpoint_path
|
|
return True
|
|
return False
|
|
|
|
def find_relevant_checkpoints(checkpoint_paths, newline_criteria, projector):
|
|
newline_checkpoint_path = None
|
|
projector_checkpoint_path = None
|
|
|
|
for path in checkpoint_paths:
|
|
checkpoint, _ = load_model(path)
|
|
if newline_criteria(checkpoint) and newline_checkpoint_path is None:
|
|
newline_checkpoint_path = path
|
|
if projector(checkpoint):
|
|
projector_checkpoint_path = path
|
|
|
|
return newline_checkpoint_path, projector_checkpoint_path
|
|
|
|
def newline_criteria(checkpoint):
|
|
return any(k.startswith("model.image_newline") for k in checkpoint.keys())
|
|
|
|
def proj_criteria(checkpoint):
|
|
return any(k.startswith("model.mm_projector") or k.startswith("vision_proj.") for k in checkpoint.keys())
|
|
|
|
|
|
# Command-line interface setup
|
|
ap = argparse.ArgumentParser()
|
|
ap.add_argument("-m", "--model", required=True, help="Path to LLaVA v1.5+ model")
|
|
ap.add_argument("-C", "--clean-vision-tower", action="store_true", help="Remove any vision tower from the model files")
|
|
args = ap.parse_args()
|
|
|
|
if args.clean_vision_tower:
|
|
# Generalized to handle both PyTorch and SafeTensors models
|
|
model_files = sorted(glob.glob(f"{args.model}/*"), key=os.path.getmtime, reverse=True)
|
|
# checkpoint_paths = [path for path in model_files if (path.endswith('.bin') and path.startswith('pytorch')) or (path.endswith('.safetensors') and path.startswith('model'))]
|
|
checkpoint_paths = [path for path in model_files if (path.endswith('.bin') and 'pytorch' in path.split('/')[-1].split('\\')[-1]) or (path.endswith('.safetensors') and 'model' in path.split('/')[-1].split('\\')[-1])]
|
|
for projector_checkpoint_path in checkpoint_paths:
|
|
print(f"Cleaning {projector_checkpoint_path}")
|
|
if not clean_vision_tower_from_checkpoint(projector_checkpoint_path):
|
|
print(f"No vision tower found in {projector_checkpoint_path}")
|
|
# we break once none is found, so far all models append them at the end
|
|
# break
|
|
print("Done! All vision tower tensors are removed from the model files and stored in llava.clip file.")
|
|
|
|
# Now we look for the projector in the last checkpoint
|
|
model_files = sorted(glob.glob(f"{args.model}/*"), key=os.path.getmtime, reverse=True)
|
|
checkpoint_paths = [path for path in model_files if (path.endswith('.bin') and 'pytorch' in path.split('/')[-1].split('\\')[-1]) or (path.endswith('.safetensors') and 'model' in path.split('/')[-1].split('\\')[-1])]
|
|
# last_checkpoint_path = checkpoint_paths[0]
|
|
# first_checkpoint_path = checkpoint_paths[-1]
|
|
newline_checkpoint_path, projector_checkpoint_path = find_relevant_checkpoints(checkpoint_paths, newline_criteria, proj_criteria)
|
|
|
|
print(f"Taking projector from {projector_checkpoint_path}")
|
|
first_mm_tensors = []
|
|
first_checkpoint = None
|
|
if newline_checkpoint_path is not None:
|
|
print(f"Taking newline from {newline_checkpoint_path}")
|
|
first_checkpoint, file_type = load_model(newline_checkpoint_path)
|
|
first_mm_tensors = [k for k, v in first_checkpoint.items() if k.startswith("model.image_newline")]
|
|
|
|
# Load the checkpoint
|
|
mm_tensors = []
|
|
last_checkpoint = None
|
|
if projector_checkpoint_path is not None:
|
|
last_checkpoint, file_type = load_model(projector_checkpoint_path)
|
|
mm_tensors = [k for k, v in last_checkpoint.items() if k.startswith("model.mm_projector") or k.startswith("vision_proj.")]
|
|
|
|
if len(mm_tensors) == 0:
|
|
if last_checkpoint is not None:
|
|
for k, v in last_checkpoint.items():
|
|
print(k)
|
|
print(f"Found {len(mm_tensors)} tensors to extract out of {len(last_checkpoint) if last_checkpoint is not None else 0} tensors.")
|
|
print("No tensors found. Is this a LLaVA model?")
|
|
exit()
|
|
|
|
print(f"Found {len(mm_tensors)} tensors to extract.")
|
|
print(f"Found additional {len(first_mm_tensors)} tensors to extract.")
|
|
# projector = {name: checkpoint.[name].float() for name in mm_tensors}
|
|
projector = {}
|
|
for name in mm_tensors:
|
|
assert last_checkpoint is not None
|
|
projector[name] = last_checkpoint[name].float()
|
|
for name in first_mm_tensors:
|
|
assert first_checkpoint is not None
|
|
projector[name] = first_checkpoint[name].float()
|
|
|
|
if len(projector) > 0:
|
|
save_model(projector, f"{args.model}/llava.projector", 'pytorch')
|
|
|
|
print("Done!")
|
|
print(f"Now you can convert {args.model} to a a regular LLaMA GGUF file.")
|
|
print(f"Also, use {args.model}/llava.projector to prepare a llava-encoder.gguf file.")
|