mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-01 16:58:59 +01:00
57bb2c40cd
* server : fix logprobs, make it openai-compatible * update docs * add std::log * return pre-sampling p * sort before apply softmax * add comment * fix test * set p for sampled token * update docs * add --multi-token-probs * update docs * add `post_sampling_probs` option * update docs [no ci] * remove --multi-token-probs * "top_probs" with "post_sampling_probs" * resolve review comments * rename struct token_prob to prob_info * correct comment placement * fix setting prob for sampled token
4137 lines
160 KiB
C++
4137 lines
160 KiB
C++
#include "utils.hpp"
|
|
|
|
#include "arg.h"
|
|
#include "common.h"
|
|
#include "json-schema-to-grammar.h"
|
|
#include "llama.h"
|
|
#include "log.h"
|
|
#include "sampling.h"
|
|
#include "speculative.h"
|
|
|
|
// Change JSON_ASSERT from assert() to GGML_ASSERT:
|
|
#define JSON_ASSERT GGML_ASSERT
|
|
#include "json.hpp"
|
|
// mime type for sending response
|
|
#define MIMETYPE_JSON "application/json; charset=utf-8"
|
|
|
|
// auto generated files (update with ./deps.sh)
|
|
#include "index.html.gz.hpp"
|
|
#include "loading.html.hpp"
|
|
|
|
#include <atomic>
|
|
#include <condition_variable>
|
|
#include <cstddef>
|
|
#include <cinttypes>
|
|
#include <deque>
|
|
#include <memory>
|
|
#include <mutex>
|
|
#include <signal.h>
|
|
#include <thread>
|
|
#include <unordered_map>
|
|
#include <unordered_set>
|
|
|
|
using json = nlohmann::ordered_json;
|
|
|
|
enum stop_type {
|
|
STOP_TYPE_NONE,
|
|
STOP_TYPE_EOS,
|
|
STOP_TYPE_WORD,
|
|
STOP_TYPE_LIMIT,
|
|
};
|
|
|
|
// state diagram: https://github.com/ggerganov/llama.cpp/pull/9283
|
|
enum slot_state {
|
|
SLOT_STATE_IDLE,
|
|
SLOT_STATE_STARTED, // TODO: this state is only used for setting up the initial prompt processing; maybe merge it with launch_slot_with_task in the future
|
|
SLOT_STATE_PROCESSING_PROMPT,
|
|
SLOT_STATE_DONE_PROMPT,
|
|
SLOT_STATE_GENERATING,
|
|
};
|
|
|
|
enum server_state {
|
|
SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
|
|
SERVER_STATE_READY, // Server is ready and model is loaded
|
|
};
|
|
|
|
enum server_task_type {
|
|
SERVER_TASK_TYPE_COMPLETION,
|
|
SERVER_TASK_TYPE_EMBEDDING,
|
|
SERVER_TASK_TYPE_RERANK,
|
|
SERVER_TASK_TYPE_INFILL,
|
|
SERVER_TASK_TYPE_CANCEL,
|
|
SERVER_TASK_TYPE_NEXT_RESPONSE,
|
|
SERVER_TASK_TYPE_METRICS,
|
|
SERVER_TASK_TYPE_SLOT_SAVE,
|
|
SERVER_TASK_TYPE_SLOT_RESTORE,
|
|
SERVER_TASK_TYPE_SLOT_ERASE,
|
|
SERVER_TASK_TYPE_SET_LORA,
|
|
};
|
|
|
|
// https://community.openai.com/t/openai-chat-list-of-error-codes-and-types/357791/11
|
|
enum error_type {
|
|
ERROR_TYPE_INVALID_REQUEST,
|
|
ERROR_TYPE_AUTHENTICATION,
|
|
ERROR_TYPE_SERVER,
|
|
ERROR_TYPE_NOT_FOUND,
|
|
ERROR_TYPE_PERMISSION,
|
|
ERROR_TYPE_UNAVAILABLE, // custom error
|
|
ERROR_TYPE_NOT_SUPPORTED, // custom error
|
|
};
|
|
|
|
struct slot_params {
|
|
bool stream = true;
|
|
bool cache_prompt = true; // remember the prompt to avoid reprocessing all prompt
|
|
bool return_tokens = false;
|
|
|
|
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
|
int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
|
|
int32_t n_predict = -1; // new tokens to predict
|
|
int32_t n_indent = 0; // mininum line indentation for the generated text in number of whitespace characters
|
|
|
|
int64_t t_max_prompt_ms = -1; // TODO: implement
|
|
int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
|
|
|
|
std::vector<std::string> antiprompt;
|
|
bool timings_per_token = false;
|
|
bool post_sampling_probs = false;
|
|
bool ignore_eos = false;
|
|
|
|
struct common_params_sampling sampling;
|
|
struct common_params_speculative speculative;
|
|
|
|
// OAI-compat fields
|
|
bool verbose = false;
|
|
bool oaicompat = false;
|
|
bool oaicompat_chat = true;
|
|
std::string oaicompat_model;
|
|
std::string oaicompat_cmpl_id;
|
|
|
|
json to_json() const {
|
|
std::vector<std::string> samplers;
|
|
samplers.reserve(sampling.samplers.size());
|
|
for (const auto & sampler : sampling.samplers) {
|
|
samplers.emplace_back(common_sampler_type_to_str(sampler));
|
|
}
|
|
|
|
return json {
|
|
{"n_predict", n_predict}, // Server configured n_predict
|
|
{"seed", sampling.seed},
|
|
{"temperature", sampling.temp},
|
|
{"dynatemp_range", sampling.dynatemp_range},
|
|
{"dynatemp_exponent", sampling.dynatemp_exponent},
|
|
{"top_k", sampling.top_k},
|
|
{"top_p", sampling.top_p},
|
|
{"min_p", sampling.min_p},
|
|
{"xtc_probability", sampling.xtc_probability},
|
|
{"xtc_threshold", sampling.xtc_threshold},
|
|
{"typical_p", sampling.typ_p},
|
|
{"repeat_last_n", sampling.penalty_last_n},
|
|
{"repeat_penalty", sampling.penalty_repeat},
|
|
{"presence_penalty", sampling.penalty_present},
|
|
{"frequency_penalty", sampling.penalty_freq},
|
|
{"dry_multiplier", sampling.dry_multiplier},
|
|
{"dry_base", sampling.dry_base},
|
|
{"dry_allowed_length", sampling.dry_allowed_length},
|
|
{"dry_penalty_last_n", sampling.dry_penalty_last_n},
|
|
{"dry_sequence_breakers", sampling.dry_sequence_breakers},
|
|
{"mirostat", sampling.mirostat},
|
|
{"mirostat_tau", sampling.mirostat_tau},
|
|
{"mirostat_eta", sampling.mirostat_eta},
|
|
{"stop", antiprompt},
|
|
{"max_tokens", n_predict}, // User configured n_predict
|
|
{"n_keep", n_keep},
|
|
{"n_discard", n_discard},
|
|
{"ignore_eos", sampling.ignore_eos},
|
|
{"stream", stream},
|
|
{"logit_bias", format_logit_bias(sampling.logit_bias)},
|
|
{"n_probs", sampling.n_probs},
|
|
{"min_keep", sampling.min_keep},
|
|
{"grammar", sampling.grammar},
|
|
{"samplers", samplers},
|
|
{"speculative.n_max", speculative.n_max},
|
|
{"speculative.n_min", speculative.n_min},
|
|
{"speculative.p_min", speculative.p_min},
|
|
{"timings_per_token", timings_per_token},
|
|
{"post_sampling_probs", post_sampling_probs},
|
|
};
|
|
}
|
|
};
|
|
|
|
struct server_task {
|
|
int id = -1; // to be filled by server_queue
|
|
int index = -1; // used when there are multiple prompts (batch request)
|
|
|
|
server_task_type type;
|
|
|
|
// used by SERVER_TASK_TYPE_CANCEL
|
|
int id_target = -1;
|
|
|
|
// used by SERVER_TASK_TYPE_INFERENCE
|
|
slot_params params;
|
|
llama_tokens prompt_tokens;
|
|
int id_selected_slot = -1;
|
|
|
|
// used by SERVER_TASK_TYPE_SLOT_SAVE, SERVER_TASK_TYPE_SLOT_RESTORE, SERVER_TASK_TYPE_SLOT_ERASE
|
|
struct slot_action {
|
|
int slot_id;
|
|
std::string filename;
|
|
std::string filepath;
|
|
};
|
|
slot_action slot_action;
|
|
|
|
// used by SERVER_TASK_TYPE_METRICS
|
|
bool metrics_reset_bucket = false;
|
|
|
|
server_task(server_task_type type) : type(type) {}
|
|
|
|
static slot_params params_from_json_cmpl(
|
|
const llama_model * model,
|
|
const llama_context * ctx,
|
|
const common_params & params_base,
|
|
const json & data) {
|
|
slot_params params;
|
|
|
|
// Sampling parameter defaults are loaded from the global server context (but individual requests can still override them)
|
|
slot_params defaults;
|
|
defaults.sampling = params_base.sampling;
|
|
defaults.speculative = params_base.speculative;
|
|
|
|
// enabling this will output extra debug information in the HTTP responses from the server
|
|
params.verbose = params_base.verbosity > 9;
|
|
params.timings_per_token = json_value(data, "timings_per_token", false);
|
|
|
|
params.stream = json_value(data, "stream", false);
|
|
params.cache_prompt = json_value(data, "cache_prompt", true);
|
|
params.return_tokens = json_value(data, "return_tokens", false);
|
|
params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", defaults.n_predict));
|
|
params.n_indent = json_value(data, "n_indent", defaults.n_indent);
|
|
params.n_keep = json_value(data, "n_keep", defaults.n_keep);
|
|
params.n_discard = json_value(data, "n_discard", defaults.n_discard);
|
|
//params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", defaults.t_max_prompt_ms); // TODO: implement
|
|
params.t_max_predict_ms = json_value(data, "t_max_predict_ms", defaults.t_max_predict_ms);
|
|
|
|
params.sampling.top_k = json_value(data, "top_k", defaults.sampling.top_k);
|
|
params.sampling.top_p = json_value(data, "top_p", defaults.sampling.top_p);
|
|
params.sampling.min_p = json_value(data, "min_p", defaults.sampling.min_p);
|
|
params.sampling.xtc_probability = json_value(data, "xtc_probability", defaults.sampling.xtc_probability);
|
|
params.sampling.xtc_threshold = json_value(data, "xtc_threshold", defaults.sampling.xtc_threshold);
|
|
params.sampling.typ_p = json_value(data, "typical_p", defaults.sampling.typ_p);
|
|
params.sampling.temp = json_value(data, "temperature", defaults.sampling.temp);
|
|
params.sampling.dynatemp_range = json_value(data, "dynatemp_range", defaults.sampling.dynatemp_range);
|
|
params.sampling.dynatemp_exponent = json_value(data, "dynatemp_exponent", defaults.sampling.dynatemp_exponent);
|
|
params.sampling.penalty_last_n = json_value(data, "repeat_last_n", defaults.sampling.penalty_last_n);
|
|
params.sampling.penalty_repeat = json_value(data, "repeat_penalty", defaults.sampling.penalty_repeat);
|
|
params.sampling.penalty_freq = json_value(data, "frequency_penalty", defaults.sampling.penalty_freq);
|
|
params.sampling.penalty_present = json_value(data, "presence_penalty", defaults.sampling.penalty_present);
|
|
params.sampling.dry_multiplier = json_value(data, "dry_multiplier", defaults.sampling.dry_multiplier);
|
|
params.sampling.dry_base = json_value(data, "dry_base", defaults.sampling.dry_base);
|
|
params.sampling.dry_allowed_length = json_value(data, "dry_allowed_length", defaults.sampling.dry_allowed_length);
|
|
params.sampling.dry_penalty_last_n = json_value(data, "dry_penalty_last_n", defaults.sampling.dry_penalty_last_n);
|
|
params.sampling.mirostat = json_value(data, "mirostat", defaults.sampling.mirostat);
|
|
params.sampling.mirostat_tau = json_value(data, "mirostat_tau", defaults.sampling.mirostat_tau);
|
|
params.sampling.mirostat_eta = json_value(data, "mirostat_eta", defaults.sampling.mirostat_eta);
|
|
params.sampling.seed = json_value(data, "seed", defaults.sampling.seed);
|
|
params.sampling.n_probs = json_value(data, "n_probs", defaults.sampling.n_probs);
|
|
params.sampling.min_keep = json_value(data, "min_keep", defaults.sampling.min_keep);
|
|
params.post_sampling_probs = json_value(data, "post_sampling_probs", defaults.post_sampling_probs);
|
|
|
|
params.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min);
|
|
params.speculative.n_max = json_value(data, "speculative.n_max", defaults.speculative.n_max);
|
|
params.speculative.p_min = json_value(data, "speculative.p_min", defaults.speculative.p_min);
|
|
|
|
params.speculative.n_min = std::min(params.speculative.n_max, params.speculative.n_min);
|
|
params.speculative.n_min = std::max(params.speculative.n_min, 2);
|
|
params.speculative.n_max = std::max(params.speculative.n_max, 0);
|
|
|
|
// TODO: add more sanity checks for the input parameters
|
|
|
|
if (params.sampling.penalty_last_n < -1) {
|
|
throw std::runtime_error("Error: repeat_last_n must be >= -1");
|
|
}
|
|
|
|
if (params.sampling.dry_penalty_last_n < -1) {
|
|
throw std::runtime_error("Error: dry_penalty_last_n must be >= -1");
|
|
}
|
|
|
|
if (params.sampling.penalty_last_n == -1) {
|
|
// note: should be the slot's context and not the full context, but it's ok
|
|
params.sampling.penalty_last_n = llama_n_ctx(ctx);
|
|
}
|
|
|
|
if (params.sampling.dry_penalty_last_n == -1) {
|
|
params.sampling.dry_penalty_last_n = llama_n_ctx(ctx);
|
|
}
|
|
|
|
if (params.sampling.dry_base < 1.0f) {
|
|
params.sampling.dry_base = defaults.sampling.dry_base;
|
|
}
|
|
|
|
// sequence breakers for DRY
|
|
{
|
|
// Currently, this is not compatible with TextGen WebUI, Koboldcpp and SillyTavern format
|
|
// Ref: https://github.com/oobabooga/text-generation-webui/blob/d1af7a41ade7bd3c3a463bfa640725edb818ebaf/extensions/openai/typing.py#L39
|
|
|
|
if (data.contains("dry_sequence_breakers")) {
|
|
params.sampling.dry_sequence_breakers = json_value(data, "dry_sequence_breakers", std::vector<std::string>());
|
|
if (params.sampling.dry_sequence_breakers.empty()) {
|
|
throw std::runtime_error("Error: dry_sequence_breakers must be a non-empty array of strings");
|
|
}
|
|
}
|
|
}
|
|
|
|
// process "json_schema" and "grammar"
|
|
if (data.contains("json_schema") && !data.at("json_schema").is_null() && data.contains("grammar") && !data.at("grammar").is_null()) {
|
|
throw std::runtime_error("Either \"json_schema\" or \"grammar\" can be specified, but not both");
|
|
}
|
|
if (data.contains("json_schema") && !data.contains("grammar")) {
|
|
try {
|
|
auto schema = json_value(data, "json_schema", json::object());
|
|
params.sampling.grammar = json_schema_to_grammar(schema);
|
|
} catch (const std::exception & e) {
|
|
throw std::runtime_error(std::string("\"json_schema\": ") + e.what());
|
|
}
|
|
} else {
|
|
params.sampling.grammar = json_value(data, "grammar", defaults.sampling.grammar);
|
|
}
|
|
|
|
{
|
|
params.sampling.logit_bias.clear();
|
|
params.ignore_eos = json_value(data, "ignore_eos", false);
|
|
|
|
const auto & logit_bias = data.find("logit_bias");
|
|
if (logit_bias != data.end() && logit_bias->is_array()) {
|
|
const int n_vocab = llama_n_vocab(model);
|
|
for (const auto & el : *logit_bias) {
|
|
// TODO: we may want to throw errors here, in case "el" is incorrect
|
|
if (el.is_array() && el.size() == 2) {
|
|
float bias;
|
|
if (el[1].is_number()) {
|
|
bias = el[1].get<float>();
|
|
} else if (el[1].is_boolean() && !el[1].get<bool>()) {
|
|
bias = -INFINITY;
|
|
} else {
|
|
continue;
|
|
}
|
|
|
|
if (el[0].is_number_integer()) {
|
|
llama_token tok = el[0].get<llama_token>();
|
|
if (tok >= 0 && tok < n_vocab) {
|
|
params.sampling.logit_bias.push_back({tok, bias});
|
|
}
|
|
} else if (el[0].is_string()) {
|
|
auto toks = common_tokenize(model, el[0].get<std::string>(), false);
|
|
for (auto tok : toks) {
|
|
params.sampling.logit_bias.push_back({tok, bias});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
params.antiprompt.clear();
|
|
|
|
const auto & stop = data.find("stop");
|
|
if (stop != data.end() && stop->is_array()) {
|
|
for (const auto & word : *stop) {
|
|
if (!word.empty()) {
|
|
params.antiprompt.push_back(word);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
const auto & samplers = data.find("samplers");
|
|
if (samplers != data.end()) {
|
|
if (samplers->is_array()) {
|
|
std::vector<std::string> sampler_names;
|
|
for (const auto & name : *samplers) {
|
|
if (name.is_string()) {
|
|
sampler_names.emplace_back(name);
|
|
}
|
|
}
|
|
params.sampling.samplers = common_sampler_types_from_names(sampler_names, false);
|
|
} else if (samplers->is_string()){
|
|
std::string sampler_string;
|
|
for (const auto & name : *samplers) {
|
|
sampler_string += name;
|
|
}
|
|
params.sampling.samplers = common_sampler_types_from_chars(sampler_string);
|
|
}
|
|
} else {
|
|
params.sampling.samplers = defaults.sampling.samplers;
|
|
}
|
|
}
|
|
|
|
std::string model_name = params_base.model_alias.empty() ? DEFAULT_OAICOMPAT_MODEL : params_base.model_alias;
|
|
params.oaicompat_model = json_value(data, "model", model_name);
|
|
|
|
return params;
|
|
}
|
|
|
|
// utility function
|
|
static std::unordered_set<int> get_list_id(const std::vector<server_task> & tasks) {
|
|
std::unordered_set<int> ids(tasks.size());
|
|
for (size_t i = 0; i < tasks.size(); i++) {
|
|
ids.insert(tasks[i].id);
|
|
}
|
|
return ids;
|
|
}
|
|
};
|
|
|
|
struct result_timings {
|
|
int32_t prompt_n = -1;
|
|
double prompt_ms;
|
|
double prompt_per_token_ms;
|
|
double prompt_per_second;
|
|
|
|
int32_t predicted_n = -1;
|
|
double predicted_ms;
|
|
double predicted_per_token_ms;
|
|
double predicted_per_second;
|
|
|
|
json to_json() const {
|
|
return {
|
|
{"prompt_n", prompt_n},
|
|
{"prompt_ms", prompt_ms},
|
|
{"prompt_per_token_ms", prompt_per_token_ms},
|
|
{"prompt_per_second", prompt_per_second},
|
|
|
|
{"predicted_n", predicted_n},
|
|
{"predicted_ms", predicted_ms},
|
|
{"predicted_per_token_ms", predicted_per_token_ms},
|
|
{"predicted_per_second", predicted_per_second},
|
|
};
|
|
}
|
|
};
|
|
|
|
struct server_task_result {
|
|
int id = -1;
|
|
int id_slot = -1;
|
|
virtual bool is_error() {
|
|
// only used by server_task_result_error
|
|
return false;
|
|
}
|
|
virtual bool is_stop() {
|
|
// only used by server_task_result_cmpl_*
|
|
return false;
|
|
}
|
|
virtual int get_index() {
|
|
return -1;
|
|
}
|
|
virtual json to_json() = 0;
|
|
virtual ~server_task_result() = default;
|
|
};
|
|
|
|
// using shared_ptr for polymorphism of server_task_result
|
|
using server_task_result_ptr = std::unique_ptr<server_task_result>;
|
|
|
|
inline std::string stop_type_to_str(stop_type type) {
|
|
switch (type) {
|
|
case STOP_TYPE_EOS: return "eos";
|
|
case STOP_TYPE_WORD: return "word";
|
|
case STOP_TYPE_LIMIT: return "limit";
|
|
default: return "none";
|
|
}
|
|
}
|
|
|
|
struct completion_token_output {
|
|
llama_token tok;
|
|
float prob;
|
|
std::string text_to_send;
|
|
struct prob_info {
|
|
llama_token tok;
|
|
std::string txt;
|
|
float prob;
|
|
};
|
|
std::vector<prob_info> probs;
|
|
|
|
json to_json(bool post_sampling_probs) const {
|
|
json probs_for_token = json::array();
|
|
for (const auto & p : probs) {
|
|
std::string txt(p.txt);
|
|
txt.resize(validate_utf8(txt));
|
|
probs_for_token.push_back(json {
|
|
{"id", p.tok},
|
|
{"token", txt},
|
|
{"bytes", str_to_bytes(p.txt)},
|
|
{
|
|
post_sampling_probs ? "prob" : "logprob",
|
|
post_sampling_probs ? p.prob : logarithm(p.prob)
|
|
},
|
|
});
|
|
}
|
|
return probs_for_token;
|
|
}
|
|
|
|
static json probs_vector_to_json(const std::vector<completion_token_output> & probs, bool post_sampling_probs) {
|
|
json out = json::array();
|
|
for (const auto & p : probs) {
|
|
std::string txt(p.text_to_send);
|
|
txt.resize(validate_utf8(txt));
|
|
out.push_back(json {
|
|
{"id", p.tok},
|
|
{"token", txt},
|
|
{"bytes", str_to_bytes(p.text_to_send)},
|
|
{
|
|
post_sampling_probs ? "prob" : "logprob",
|
|
post_sampling_probs ? p.prob : logarithm(p.prob)
|
|
},
|
|
{
|
|
post_sampling_probs ? "top_probs" : "top_logprobs",
|
|
p.to_json(post_sampling_probs)
|
|
},
|
|
});
|
|
}
|
|
return out;
|
|
}
|
|
|
|
static float logarithm(float x) {
|
|
// nlohmann::json converts -inf to null, so we need to prevent that
|
|
return x == 0.0f ? std::numeric_limits<float>::lowest() : std::log(x);
|
|
}
|
|
|
|
static std::vector<unsigned char> str_to_bytes(const std::string & str) {
|
|
std::vector<unsigned char> bytes;
|
|
for (unsigned char c : str) {
|
|
bytes.push_back(c);
|
|
}
|
|
return bytes;
|
|
}
|
|
};
|
|
|
|
struct server_task_result_cmpl_final : server_task_result {
|
|
int index = 0;
|
|
|
|
std::string content;
|
|
llama_tokens tokens;
|
|
|
|
bool stream;
|
|
result_timings timings;
|
|
std::string prompt;
|
|
|
|
bool truncated;
|
|
int32_t n_decoded;
|
|
int32_t n_prompt_tokens;
|
|
int32_t n_tokens_cached;
|
|
bool has_new_line;
|
|
std::string stopping_word;
|
|
stop_type stop = STOP_TYPE_NONE;
|
|
|
|
bool post_sampling_probs;
|
|
std::vector<completion_token_output> probs_output;
|
|
|
|
slot_params generation_params;
|
|
|
|
// OAI-compat fields
|
|
bool verbose = false;
|
|
bool oaicompat = false;
|
|
bool oaicompat_chat = true; // TODO: support oaicompat for non-chat
|
|
std::string oaicompat_model;
|
|
std::string oaicompat_cmpl_id;
|
|
|
|
virtual int get_index() override {
|
|
return index;
|
|
}
|
|
|
|
virtual bool is_stop() override {
|
|
return true; // in stream mode, final responses are considered stop
|
|
}
|
|
|
|
virtual json to_json() override {
|
|
return oaicompat
|
|
? (stream ? to_json_oaicompat_chat_stream() : to_json_oaicompat_chat())
|
|
: to_json_non_oaicompat();
|
|
}
|
|
|
|
json to_json_non_oaicompat() {
|
|
json res = json {
|
|
{"index", index},
|
|
{"content", stream ? "" : content}, // in stream mode, content is already in last partial chunk
|
|
{"tokens", stream ? llama_tokens {} : tokens},
|
|
{"id_slot", id_slot},
|
|
{"stop", true},
|
|
{"model", oaicompat_model},
|
|
{"tokens_predicted", n_decoded},
|
|
{"tokens_evaluated", n_prompt_tokens},
|
|
{"generation_settings", generation_params.to_json()},
|
|
{"prompt", prompt},
|
|
{"has_new_line", has_new_line},
|
|
{"truncated", truncated},
|
|
{"stop_type", stop_type_to_str(stop)},
|
|
{"stopping_word", stopping_word},
|
|
{"tokens_cached", n_tokens_cached},
|
|
{"timings", timings.to_json()},
|
|
};
|
|
if (!stream && !probs_output.empty()) {
|
|
res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
json to_json_oaicompat_chat() {
|
|
std::string finish_reason = "length";
|
|
if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
|
|
finish_reason = "stop";
|
|
}
|
|
|
|
json choice = json{
|
|
{"finish_reason", finish_reason},
|
|
{"index", 0},
|
|
{"message", json {
|
|
{"content", content},
|
|
{"role", "assistant"}
|
|
}
|
|
}};
|
|
|
|
if (!stream && probs_output.size() > 0) {
|
|
choice["logprobs"] = json{
|
|
{"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
|
|
};
|
|
}
|
|
|
|
std::time_t t = std::time(0);
|
|
|
|
json res = json {
|
|
{"choices", json::array({choice})},
|
|
{"created", t},
|
|
{"model", oaicompat_model},
|
|
{"object", "chat.completion"},
|
|
{"usage", json {
|
|
{"completion_tokens", n_decoded},
|
|
{"prompt_tokens", n_prompt_tokens},
|
|
{"total_tokens", n_decoded + n_prompt_tokens}
|
|
}},
|
|
{"id", oaicompat_cmpl_id}
|
|
};
|
|
|
|
// extra fields for debugging purposes
|
|
if (verbose) {
|
|
res["__verbose"] = to_json_non_oaicompat();
|
|
}
|
|
if (timings.prompt_n >= 0) {
|
|
res.push_back({"timings", timings.to_json()});
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
json to_json_oaicompat_chat_stream() {
|
|
std::time_t t = std::time(0);
|
|
std::string finish_reason = "length";
|
|
if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
|
|
finish_reason = "stop";
|
|
}
|
|
|
|
json choice = json{
|
|
{"finish_reason", finish_reason},
|
|
{"index", 0},
|
|
{"delta", json::object()}
|
|
};
|
|
|
|
json ret = json {
|
|
{"choices", json::array({choice})},
|
|
{"created", t},
|
|
{"id", oaicompat_cmpl_id},
|
|
{"model", oaicompat_model},
|
|
{"object", "chat.completion.chunk"},
|
|
{"usage", json {
|
|
{"completion_tokens", n_decoded},
|
|
{"prompt_tokens", n_prompt_tokens},
|
|
{"total_tokens", n_decoded + n_prompt_tokens},
|
|
}},
|
|
};
|
|
|
|
if (timings.prompt_n >= 0) {
|
|
ret.push_back({"timings", timings.to_json()});
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
};
|
|
|
|
struct server_task_result_cmpl_partial : server_task_result {
|
|
int index = 0;
|
|
|
|
std::string content;
|
|
llama_tokens tokens;
|
|
|
|
int32_t n_decoded;
|
|
int32_t n_prompt_tokens;
|
|
|
|
bool post_sampling_probs;
|
|
completion_token_output prob_output;
|
|
result_timings timings;
|
|
|
|
// OAI-compat fields
|
|
bool verbose = false;
|
|
bool oaicompat = false;
|
|
bool oaicompat_chat = true; // TODO: support oaicompat for non-chat
|
|
std::string oaicompat_model;
|
|
std::string oaicompat_cmpl_id;
|
|
|
|
virtual int get_index() override {
|
|
return index;
|
|
}
|
|
|
|
virtual bool is_stop() override {
|
|
return false; // in stream mode, partial responses are not considered stop
|
|
}
|
|
|
|
virtual json to_json() override {
|
|
return oaicompat ? to_json_oaicompat() : to_json_non_oaicompat();
|
|
}
|
|
|
|
json to_json_non_oaicompat() {
|
|
// non-OAI-compat JSON
|
|
json res = json {
|
|
{"index", index},
|
|
{"content", content},
|
|
{"tokens", tokens},
|
|
{"stop", false},
|
|
{"id_slot", id_slot},
|
|
{"tokens_predicted", n_decoded},
|
|
{"tokens_evaluated", n_prompt_tokens},
|
|
};
|
|
// populate the timings object when needed (usually for the last response or with timings_per_token enabled)
|
|
if (timings.prompt_n > 0) {
|
|
res.push_back({"timings", timings.to_json()});
|
|
}
|
|
if (!prob_output.probs.empty()) {
|
|
res["completion_probabilities"] = completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
json to_json_oaicompat() {
|
|
bool first = n_decoded == 0;
|
|
std::time_t t = std::time(0);
|
|
json choices;
|
|
|
|
if (first) {
|
|
if (content.empty()) {
|
|
choices = json::array({json{{"finish_reason", nullptr},
|
|
{"index", 0},
|
|
{"delta", json{{"role", "assistant"}}}}});
|
|
} else {
|
|
// We have to send this as two updates to conform to openai behavior
|
|
json initial_ret = json{{"choices", json::array({json{
|
|
{"finish_reason", nullptr},
|
|
{"index", 0},
|
|
{"delta", json{
|
|
{"role", "assistant"}
|
|
}}}})},
|
|
{"created", t},
|
|
{"id", oaicompat_cmpl_id},
|
|
{"model", oaicompat_model},
|
|
{"object", "chat.completion.chunk"}};
|
|
|
|
json second_ret = json{
|
|
{"choices", json::array({json{{"finish_reason", nullptr},
|
|
{"index", 0},
|
|
{"delta", json {
|
|
{"content", content}}}
|
|
}})},
|
|
{"created", t},
|
|
{"id", oaicompat_cmpl_id},
|
|
{"model", oaicompat_model},
|
|
{"object", "chat.completion.chunk"}};
|
|
|
|
return std::vector<json>({initial_ret, second_ret});
|
|
}
|
|
} else {
|
|
choices = json::array({json{
|
|
{"finish_reason", nullptr},
|
|
{"index", 0},
|
|
{"delta",
|
|
json {
|
|
{"content", content},
|
|
}},
|
|
}});
|
|
}
|
|
|
|
GGML_ASSERT(choices.size() >= 1);
|
|
|
|
if (prob_output.probs.size() > 0) {
|
|
choices[0]["logprobs"] = json{
|
|
{"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
|
|
};
|
|
}
|
|
|
|
json ret = json {
|
|
{"choices", choices},
|
|
{"created", t},
|
|
{"id", oaicompat_cmpl_id},
|
|
{"model", oaicompat_model},
|
|
{"object", "chat.completion.chunk"}
|
|
};
|
|
|
|
if (timings.prompt_n >= 0) {
|
|
ret.push_back({"timings", timings.to_json()});
|
|
}
|
|
|
|
return std::vector<json>({ret});
|
|
}
|
|
};
|
|
|
|
struct server_task_result_embd : server_task_result {
|
|
int index = 0;
|
|
std::vector<std::vector<float>> embedding;
|
|
|
|
int32_t n_tokens;
|
|
|
|
// OAI-compat fields
|
|
bool oaicompat = false;
|
|
|
|
virtual int get_index() override {
|
|
return index;
|
|
}
|
|
|
|
virtual json to_json() override {
|
|
return oaicompat ? to_json_oaicompat() : to_json_non_oaicompat();
|
|
}
|
|
|
|
json to_json_non_oaicompat() {
|
|
return json {
|
|
{"index", index},
|
|
{"embedding", embedding},
|
|
};
|
|
}
|
|
|
|
json to_json_oaicompat() {
|
|
return json {
|
|
{"index", index},
|
|
{"embedding", embedding[0]},
|
|
{"tokens_evaluated", n_tokens},
|
|
};
|
|
}
|
|
};
|
|
|
|
struct server_task_result_rerank : server_task_result {
|
|
int index = 0;
|
|
float score = -1e6;
|
|
|
|
int32_t n_tokens;
|
|
|
|
virtual int get_index() override {
|
|
return index;
|
|
}
|
|
|
|
virtual json to_json() override {
|
|
return json {
|
|
{"index", index},
|
|
{"score", score},
|
|
{"tokens_evaluated", n_tokens},
|
|
};
|
|
}
|
|
};
|
|
|
|
// this function maybe used outside of server_task_result_error
|
|
static json format_error_response(const std::string & message, const enum error_type type) {
|
|
std::string type_str;
|
|
int code = 500;
|
|
switch (type) {
|
|
case ERROR_TYPE_INVALID_REQUEST:
|
|
type_str = "invalid_request_error";
|
|
code = 400;
|
|
break;
|
|
case ERROR_TYPE_AUTHENTICATION:
|
|
type_str = "authentication_error";
|
|
code = 401;
|
|
break;
|
|
case ERROR_TYPE_NOT_FOUND:
|
|
type_str = "not_found_error";
|
|
code = 404;
|
|
break;
|
|
case ERROR_TYPE_SERVER:
|
|
type_str = "server_error";
|
|
code = 500;
|
|
break;
|
|
case ERROR_TYPE_PERMISSION:
|
|
type_str = "permission_error";
|
|
code = 403;
|
|
break;
|
|
case ERROR_TYPE_NOT_SUPPORTED:
|
|
type_str = "not_supported_error";
|
|
code = 501;
|
|
break;
|
|
case ERROR_TYPE_UNAVAILABLE:
|
|
type_str = "unavailable_error";
|
|
code = 503;
|
|
break;
|
|
}
|
|
return json {
|
|
{"code", code},
|
|
{"message", message},
|
|
{"type", type_str},
|
|
};
|
|
}
|
|
|
|
struct server_task_result_error : server_task_result {
|
|
int index = 0;
|
|
error_type err_type = ERROR_TYPE_SERVER;
|
|
std::string err_msg;
|
|
|
|
virtual bool is_error() override {
|
|
return true;
|
|
}
|
|
|
|
virtual json to_json() override {
|
|
return format_error_response(err_msg, err_type);
|
|
}
|
|
};
|
|
|
|
struct server_task_result_metrics : server_task_result {
|
|
int n_idle_slots;
|
|
int n_processing_slots;
|
|
int n_tasks_deferred;
|
|
int64_t t_start;
|
|
|
|
int32_t kv_cache_tokens_count;
|
|
int32_t kv_cache_used_cells;
|
|
|
|
// TODO: somehow reuse server_metrics in the future, instead of duplicating the fields
|
|
uint64_t n_prompt_tokens_processed_total = 0;
|
|
uint64_t t_prompt_processing_total = 0;
|
|
uint64_t n_tokens_predicted_total = 0;
|
|
uint64_t t_tokens_generation_total = 0;
|
|
|
|
uint64_t n_prompt_tokens_processed = 0;
|
|
uint64_t t_prompt_processing = 0;
|
|
|
|
uint64_t n_tokens_predicted = 0;
|
|
uint64_t t_tokens_generation = 0;
|
|
|
|
uint64_t n_decode_total = 0;
|
|
uint64_t n_busy_slots_total = 0;
|
|
|
|
// while we can also use std::vector<server_slot> this requires copying the slot object which can be quite messy
|
|
// therefore, we use json to temporarily store the slot.to_json() result
|
|
json slots_data = json::array();
|
|
|
|
virtual json to_json() override {
|
|
return json {
|
|
{ "idle", n_idle_slots },
|
|
{ "processing", n_processing_slots },
|
|
{ "deferred", n_tasks_deferred },
|
|
{ "t_start", t_start },
|
|
|
|
{ "n_prompt_tokens_processed_total", n_prompt_tokens_processed_total },
|
|
{ "t_tokens_generation_total", t_tokens_generation_total },
|
|
{ "n_tokens_predicted_total", n_tokens_predicted_total },
|
|
{ "t_prompt_processing_total", t_prompt_processing_total },
|
|
|
|
{ "n_prompt_tokens_processed", n_prompt_tokens_processed },
|
|
{ "t_prompt_processing", t_prompt_processing },
|
|
{ "n_tokens_predicted", n_tokens_predicted },
|
|
{ "t_tokens_generation", t_tokens_generation },
|
|
|
|
{ "n_decode_total", n_decode_total },
|
|
{ "n_busy_slots_total", n_busy_slots_total },
|
|
|
|
{ "kv_cache_tokens_count", kv_cache_tokens_count },
|
|
{ "kv_cache_used_cells", kv_cache_used_cells },
|
|
|
|
{ "slots", slots_data },
|
|
};
|
|
}
|
|
};
|
|
|
|
struct server_task_result_slot_save_load : server_task_result {
|
|
std::string filename;
|
|
bool is_save; // true = save, false = load
|
|
|
|
size_t n_tokens;
|
|
size_t n_bytes;
|
|
double t_ms;
|
|
|
|
virtual json to_json() override {
|
|
if (is_save) {
|
|
return json {
|
|
{ "id_slot", id_slot },
|
|
{ "filename", filename },
|
|
{ "n_saved", n_tokens },
|
|
{ "n_written", n_bytes },
|
|
{ "timings", {
|
|
{ "save_ms", t_ms }
|
|
}},
|
|
};
|
|
} else {
|
|
return json {
|
|
{ "id_slot", id_slot },
|
|
{ "filename", filename },
|
|
{ "n_restored", n_tokens },
|
|
{ "n_read", n_bytes },
|
|
{ "timings", {
|
|
{ "restore_ms", t_ms }
|
|
}},
|
|
};
|
|
}
|
|
}
|
|
};
|
|
|
|
struct server_task_result_slot_erase : server_task_result {
|
|
size_t n_erased;
|
|
|
|
virtual json to_json() override {
|
|
return json {
|
|
{ "id_slot", id_slot },
|
|
{ "n_erased", n_erased },
|
|
};
|
|
}
|
|
};
|
|
|
|
struct server_task_result_apply_lora : server_task_result {
|
|
virtual json to_json() override {
|
|
return json {{ "success", true }};
|
|
}
|
|
};
|
|
|
|
struct server_slot {
|
|
int id;
|
|
int id_task = -1;
|
|
|
|
// only used for completion/embedding/infill/rerank
|
|
server_task_type task_type = SERVER_TASK_TYPE_COMPLETION;
|
|
|
|
llama_batch batch_spec = {};
|
|
|
|
llama_context * ctx = nullptr;
|
|
llama_context * ctx_dft = nullptr;
|
|
|
|
common_speculative * spec = nullptr;
|
|
|
|
// the index relative to completion multi-task request
|
|
size_t index = 0;
|
|
|
|
struct slot_params params;
|
|
|
|
slot_state state = SLOT_STATE_IDLE;
|
|
|
|
// used to determine the slot that has been used the longest
|
|
int64_t t_last_used = -1;
|
|
|
|
// generation props
|
|
int32_t n_ctx = 0; // context size per slot
|
|
int32_t n_past = 0;
|
|
int32_t n_decoded = 0;
|
|
int32_t n_remaining = -1;
|
|
int32_t i_batch = -1;
|
|
int32_t n_predict = -1; // TODO: disambiguate from params.n_predict
|
|
|
|
// n_prompt_tokens may not be equal to prompt_tokens.size(), because prompt maybe truncated
|
|
int32_t n_prompt_tokens = 0;
|
|
int32_t n_prompt_tokens_processed = 0;
|
|
|
|
// input prompt tokens
|
|
llama_tokens prompt_tokens;
|
|
|
|
size_t last_nl_pos = 0;
|
|
|
|
std::string generated_text;
|
|
llama_tokens generated_tokens;
|
|
|
|
llama_tokens cache_tokens;
|
|
|
|
std::vector<completion_token_output> generated_token_probs;
|
|
|
|
bool has_next_token = true;
|
|
bool has_new_line = false;
|
|
bool truncated = false;
|
|
stop_type stop;
|
|
|
|
std::string stopping_word;
|
|
|
|
// sampling
|
|
json json_schema;
|
|
|
|
struct common_sampler * smpl = nullptr;
|
|
|
|
llama_token sampled;
|
|
|
|
// stats
|
|
size_t n_sent_text = 0; // number of sent text character
|
|
|
|
int64_t t_start_process_prompt;
|
|
int64_t t_start_generation;
|
|
|
|
double t_prompt_processing; // ms
|
|
double t_token_generation; // ms
|
|
|
|
std::function<void(int)> callback_on_release;
|
|
|
|
void reset() {
|
|
SLT_DBG(*this, "%s", "\n");
|
|
|
|
n_prompt_tokens = 0;
|
|
last_nl_pos = 0;
|
|
generated_text = "";
|
|
has_new_line = false;
|
|
truncated = false;
|
|
stop = STOP_TYPE_NONE;
|
|
stopping_word = "";
|
|
n_past = 0;
|
|
n_sent_text = 0;
|
|
task_type = SERVER_TASK_TYPE_COMPLETION;
|
|
|
|
generated_tokens.clear();
|
|
generated_token_probs.clear();
|
|
}
|
|
|
|
bool is_non_causal() const {
|
|
return task_type == SERVER_TASK_TYPE_EMBEDDING || task_type == SERVER_TASK_TYPE_RERANK;
|
|
}
|
|
|
|
bool has_budget(const common_params & global_params) {
|
|
if (params.n_predict == -1 && global_params.n_predict == -1) {
|
|
return true; // limitless
|
|
}
|
|
|
|
n_remaining = -1;
|
|
|
|
if (params.n_predict != -1) {
|
|
n_remaining = params.n_predict - n_decoded;
|
|
} else if (global_params.n_predict != -1) {
|
|
n_remaining = global_params.n_predict - n_decoded;
|
|
}
|
|
|
|
return n_remaining > 0; // no budget
|
|
}
|
|
|
|
bool is_processing() const {
|
|
return state != SLOT_STATE_IDLE;
|
|
}
|
|
|
|
bool can_speculate() const {
|
|
return ctx_dft && params.speculative.n_max > 0 && params.cache_prompt;
|
|
}
|
|
|
|
void add_token(const completion_token_output & token) {
|
|
if (!is_processing()) {
|
|
SLT_WRN(*this, "%s", "slot is not processing\n");
|
|
return;
|
|
}
|
|
generated_token_probs.push_back(token);
|
|
}
|
|
|
|
void release() {
|
|
if (is_processing()) {
|
|
SLT_INF(*this, "stop processing: n_past = %d, truncated = %d\n", n_past, truncated);
|
|
|
|
t_last_used = ggml_time_us();
|
|
t_token_generation = (ggml_time_us() - t_start_generation) / 1e3;
|
|
state = SLOT_STATE_IDLE;
|
|
callback_on_release(id);
|
|
}
|
|
}
|
|
|
|
result_timings get_timings() const {
|
|
result_timings timings;
|
|
timings.prompt_n = n_prompt_tokens_processed;
|
|
timings.prompt_ms = t_prompt_processing;
|
|
timings.prompt_per_token_ms = t_prompt_processing / n_prompt_tokens_processed;
|
|
timings.prompt_per_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
|
|
|
|
timings.predicted_n = n_decoded;
|
|
timings.predicted_ms = t_token_generation;
|
|
timings.predicted_per_token_ms = t_token_generation / n_decoded;
|
|
timings.predicted_per_second = 1e3 / t_token_generation * n_decoded;
|
|
|
|
return timings;
|
|
}
|
|
|
|
size_t find_stopping_strings(const std::string & text, const size_t last_token_size, bool is_full_stop) {
|
|
size_t stop_pos = std::string::npos;
|
|
|
|
for (const std::string & word : params.antiprompt) {
|
|
size_t pos;
|
|
|
|
if (is_full_stop) {
|
|
const size_t tmp = word.size() + last_token_size;
|
|
const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
|
|
|
|
pos = text.find(word, from_pos);
|
|
} else {
|
|
// otherwise, partial stop
|
|
pos = find_partial_stop_string(word, text);
|
|
}
|
|
|
|
if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) {
|
|
if (is_full_stop) {
|
|
stop = STOP_TYPE_WORD;
|
|
stopping_word = word;
|
|
has_next_token = false;
|
|
}
|
|
stop_pos = pos;
|
|
}
|
|
}
|
|
|
|
return stop_pos;
|
|
}
|
|
|
|
void print_timings() const {
|
|
const double t_prompt = t_prompt_processing / n_prompt_tokens_processed;
|
|
const double n_prompt_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
|
|
|
|
const double t_gen = t_token_generation / n_decoded;
|
|
const double n_gen_second = 1e3 / t_token_generation * n_decoded;
|
|
|
|
SLT_INF(*this,
|
|
"\n"
|
|
"prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
|
|
" eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
|
|
" total time = %10.2f ms / %5d tokens\n",
|
|
t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second,
|
|
t_token_generation, n_decoded, t_gen, n_gen_second,
|
|
t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded);
|
|
}
|
|
|
|
json to_json() const {
|
|
return json {
|
|
{"id", id},
|
|
{"id_task", id_task},
|
|
{"n_ctx", n_ctx},
|
|
{"speculative", can_speculate()},
|
|
{"is_processing", is_processing()},
|
|
{"non_causal", is_non_causal()},
|
|
{"params", params.to_json()},
|
|
{"prompt", common_detokenize(ctx, prompt_tokens)},
|
|
{"next_token",
|
|
{
|
|
{"has_next_token", has_next_token},
|
|
{"has_new_line", has_new_line},
|
|
{"n_remain", n_remaining},
|
|
{"n_decoded", n_decoded},
|
|
{"stopping_word", stopping_word},
|
|
}
|
|
},
|
|
};
|
|
}
|
|
};
|
|
|
|
struct server_metrics {
|
|
int64_t t_start = 0;
|
|
|
|
uint64_t n_prompt_tokens_processed_total = 0;
|
|
uint64_t t_prompt_processing_total = 0;
|
|
uint64_t n_tokens_predicted_total = 0;
|
|
uint64_t t_tokens_generation_total = 0;
|
|
|
|
uint64_t n_prompt_tokens_processed = 0;
|
|
uint64_t t_prompt_processing = 0;
|
|
|
|
uint64_t n_tokens_predicted = 0;
|
|
uint64_t t_tokens_generation = 0;
|
|
|
|
uint64_t n_decode_total = 0;
|
|
uint64_t n_busy_slots_total = 0;
|
|
|
|
void init() {
|
|
t_start = ggml_time_us();
|
|
}
|
|
|
|
void on_prompt_eval(const server_slot & slot) {
|
|
n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
|
|
n_prompt_tokens_processed += slot.n_prompt_tokens_processed;
|
|
t_prompt_processing += slot.t_prompt_processing;
|
|
t_prompt_processing_total += slot.t_prompt_processing;
|
|
}
|
|
|
|
void on_prediction(const server_slot & slot) {
|
|
n_tokens_predicted_total += slot.n_decoded;
|
|
n_tokens_predicted += slot.n_decoded;
|
|
t_tokens_generation += slot.t_token_generation;
|
|
t_tokens_generation_total += slot.t_token_generation;
|
|
}
|
|
|
|
void on_decoded(const std::vector<server_slot> & slots) {
|
|
n_decode_total++;
|
|
for (const auto & slot : slots) {
|
|
if (slot.is_processing()) {
|
|
n_busy_slots_total++;
|
|
}
|
|
}
|
|
}
|
|
|
|
void reset_bucket() {
|
|
n_prompt_tokens_processed = 0;
|
|
t_prompt_processing = 0;
|
|
n_tokens_predicted = 0;
|
|
t_tokens_generation = 0;
|
|
}
|
|
};
|
|
|
|
struct server_queue {
|
|
int id = 0;
|
|
bool running;
|
|
|
|
// queues
|
|
std::deque<server_task> queue_tasks;
|
|
std::deque<server_task> queue_tasks_deferred;
|
|
|
|
std::mutex mutex_tasks;
|
|
std::condition_variable condition_tasks;
|
|
|
|
// callback functions
|
|
std::function<void(server_task)> callback_new_task;
|
|
std::function<void(void)> callback_update_slots;
|
|
|
|
// Add a new task to the end of the queue
|
|
int post(server_task task, bool front = false) {
|
|
std::unique_lock<std::mutex> lock(mutex_tasks);
|
|
GGML_ASSERT(task.id != -1);
|
|
QUE_DBG("new task, id = %d, front = %d\n", task.id, front);
|
|
if (front) {
|
|
queue_tasks.push_front(std::move(task));
|
|
} else {
|
|
queue_tasks.push_back(std::move(task));
|
|
}
|
|
condition_tasks.notify_one();
|
|
return task.id;
|
|
}
|
|
|
|
// multi-task version of post()
|
|
int post(std::vector<server_task> & tasks, bool front = false) {
|
|
std::unique_lock<std::mutex> lock(mutex_tasks);
|
|
for (auto & task : tasks) {
|
|
if (task.id == -1) {
|
|
task.id = id++;
|
|
}
|
|
QUE_DBG("new task, id = %d/%d, front = %d\n", task.id, (int) tasks.size(), front);
|
|
if (front) {
|
|
queue_tasks.push_front(std::move(task));
|
|
} else {
|
|
queue_tasks.push_back(std::move(task));
|
|
}
|
|
}
|
|
condition_tasks.notify_one();
|
|
return 0;
|
|
}
|
|
|
|
// Add a new task, but defer until one slot is available
|
|
void defer(server_task task) {
|
|
std::unique_lock<std::mutex> lock(mutex_tasks);
|
|
QUE_DBG("defer task, id = %d\n", task.id);
|
|
queue_tasks_deferred.push_back(std::move(task));
|
|
condition_tasks.notify_one();
|
|
}
|
|
|
|
// Get the next id for creating a new task
|
|
int get_new_id() {
|
|
std::unique_lock<std::mutex> lock(mutex_tasks);
|
|
int new_id = id++;
|
|
return new_id;
|
|
}
|
|
|
|
// Register function to process a new task
|
|
void on_new_task(std::function<void(server_task)> callback) {
|
|
callback_new_task = std::move(callback);
|
|
}
|
|
|
|
// Register the function to be called when all slots data is ready to be processed
|
|
void on_update_slots(std::function<void(void)> callback) {
|
|
callback_update_slots = std::move(callback);
|
|
}
|
|
|
|
// Call when the state of one slot is changed, it will move one task from deferred to main queue
|
|
void pop_deferred_task() {
|
|
std::unique_lock<std::mutex> lock(mutex_tasks);
|
|
if (!queue_tasks_deferred.empty()) {
|
|
queue_tasks.emplace_back(std::move(queue_tasks_deferred.front()));
|
|
queue_tasks_deferred.pop_front();
|
|
}
|
|
condition_tasks.notify_one();
|
|
}
|
|
|
|
// end the start_loop routine
|
|
void terminate() {
|
|
std::unique_lock<std::mutex> lock(mutex_tasks);
|
|
running = false;
|
|
condition_tasks.notify_all();
|
|
}
|
|
|
|
/**
|
|
* Main loop consists of these steps:
|
|
* - Wait until a new task arrives
|
|
* - Process the task (i.e. maybe copy data into slot)
|
|
* - Check if multitask is finished
|
|
* - Update all slots
|
|
*/
|
|
void start_loop() {
|
|
running = true;
|
|
|
|
while (true) {
|
|
QUE_DBG("%s", "processing new tasks\n");
|
|
|
|
while (true) {
|
|
std::unique_lock<std::mutex> lock(mutex_tasks);
|
|
if (queue_tasks.empty()) {
|
|
lock.unlock();
|
|
break;
|
|
}
|
|
server_task task = queue_tasks.front();
|
|
queue_tasks.pop_front();
|
|
lock.unlock();
|
|
|
|
QUE_DBG("processing task, id = %d\n", task.id);
|
|
callback_new_task(std::move(task));
|
|
}
|
|
|
|
// all tasks in the current loop is processed, slots data is now ready
|
|
QUE_DBG("%s", "update slots\n");
|
|
|
|
callback_update_slots();
|
|
|
|
QUE_DBG("%s", "waiting for new tasks\n");
|
|
{
|
|
std::unique_lock<std::mutex> lock(mutex_tasks);
|
|
if (queue_tasks.empty()) {
|
|
if (!running) {
|
|
QUE_DBG("%s", "terminate\n");
|
|
return;
|
|
}
|
|
condition_tasks.wait(lock, [&]{
|
|
return (!queue_tasks.empty() || !running);
|
|
});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
struct server_response {
|
|
// for keeping track of all tasks waiting for the result
|
|
std::unordered_set<int> waiting_task_ids;
|
|
|
|
// the main result queue (using ptr for polymorphism)
|
|
std::vector<server_task_result_ptr> queue_results;
|
|
|
|
std::mutex mutex_results;
|
|
std::condition_variable condition_results;
|
|
|
|
// add the id_task to the list of tasks waiting for response
|
|
void add_waiting_task_id(int id_task) {
|
|
SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", id_task, (int) waiting_task_ids.size());
|
|
|
|
std::unique_lock<std::mutex> lock(mutex_results);
|
|
waiting_task_ids.insert(id_task);
|
|
}
|
|
|
|
void add_waiting_tasks(const std::vector<server_task> & tasks) {
|
|
std::unique_lock<std::mutex> lock(mutex_results);
|
|
|
|
for (const auto & task : tasks) {
|
|
SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", task.id, (int) waiting_task_ids.size());
|
|
waiting_task_ids.insert(task.id);
|
|
}
|
|
}
|
|
|
|
// when the request is finished, we can remove task associated with it
|
|
void remove_waiting_task_id(int id_task) {
|
|
SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
|
|
|
|
std::unique_lock<std::mutex> lock(mutex_results);
|
|
waiting_task_ids.erase(id_task);
|
|
}
|
|
|
|
void remove_waiting_task_ids(const std::unordered_set<int> & id_tasks) {
|
|
std::unique_lock<std::mutex> lock(mutex_results);
|
|
|
|
for (const auto & id_task : id_tasks) {
|
|
SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
|
|
waiting_task_ids.erase(id_task);
|
|
}
|
|
}
|
|
|
|
// This function blocks the thread until there is a response for one of the id_tasks
|
|
server_task_result_ptr recv(const std::unordered_set<int> & id_tasks) {
|
|
while (true) {
|
|
std::unique_lock<std::mutex> lock(mutex_results);
|
|
condition_results.wait(lock, [&]{
|
|
return !queue_results.empty();
|
|
});
|
|
|
|
for (int i = 0; i < (int) queue_results.size(); i++) {
|
|
if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
|
|
server_task_result_ptr res = std::move(queue_results[i]);
|
|
queue_results.erase(queue_results.begin() + i);
|
|
return res;
|
|
}
|
|
}
|
|
}
|
|
|
|
// should never reach here
|
|
}
|
|
|
|
// single-task version of recv()
|
|
server_task_result_ptr recv(int id_task) {
|
|
std::unordered_set<int> id_tasks = {id_task};
|
|
return recv(id_tasks);
|
|
}
|
|
|
|
// Send a new result to a waiting id_task
|
|
void send(server_task_result_ptr && result) {
|
|
SRV_DBG("sending result for task id = %d\n", result->id);
|
|
|
|
std::unique_lock<std::mutex> lock(mutex_results);
|
|
for (const auto & id_task : waiting_task_ids) {
|
|
if (result->id == id_task) {
|
|
SRV_DBG("task id = %d pushed to result queue\n", result->id);
|
|
|
|
queue_results.emplace_back(std::move(result));
|
|
condition_results.notify_all();
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
struct server_context {
|
|
common_params params_base;
|
|
|
|
llama_model * model = nullptr;
|
|
llama_context * ctx = nullptr;
|
|
std::vector<common_lora_adapter_container> loras;
|
|
|
|
llama_model * model_dft = nullptr;
|
|
llama_context_params cparams_dft;
|
|
|
|
llama_batch batch = {};
|
|
|
|
bool clean_kv_cache = true;
|
|
bool add_bos_token = true;
|
|
bool has_eos_token = false;
|
|
|
|
int32_t n_ctx; // total context for all clients / slots
|
|
|
|
// slots / clients
|
|
std::vector<server_slot> slots;
|
|
json default_generation_settings_for_props;
|
|
|
|
server_queue queue_tasks;
|
|
server_response queue_results;
|
|
|
|
server_metrics metrics;
|
|
|
|
// Necessary similarity of prompt for slot selection
|
|
float slot_prompt_similarity = 0.0f;
|
|
|
|
~server_context() {
|
|
if (ctx) {
|
|
llama_free(ctx);
|
|
ctx = nullptr;
|
|
}
|
|
|
|
if (model) {
|
|
llama_free_model(model);
|
|
model = nullptr;
|
|
}
|
|
|
|
if (model_dft) {
|
|
llama_free_model(model_dft);
|
|
model_dft = nullptr;
|
|
}
|
|
|
|
// Clear any sampling context
|
|
for (server_slot & slot : slots) {
|
|
common_sampler_free(slot.smpl);
|
|
slot.smpl = nullptr;
|
|
|
|
llama_free(slot.ctx_dft);
|
|
slot.ctx_dft = nullptr;
|
|
|
|
common_speculative_free(slot.spec);
|
|
slot.spec = nullptr;
|
|
|
|
llama_batch_free(slot.batch_spec);
|
|
}
|
|
|
|
llama_batch_free(batch);
|
|
}
|
|
|
|
bool load_model(const common_params & params) {
|
|
SRV_INF("loading model '%s'\n", params.model.c_str());
|
|
|
|
params_base = params;
|
|
|
|
common_init_result llama_init = common_init_from_params(params_base);
|
|
|
|
model = llama_init.model;
|
|
ctx = llama_init.context;
|
|
loras = llama_init.lora_adapters;
|
|
|
|
if (model == nullptr) {
|
|
SRV_ERR("failed to load model, '%s'\n", params_base.model.c_str());
|
|
return false;
|
|
}
|
|
|
|
n_ctx = llama_n_ctx(ctx);
|
|
|
|
add_bos_token = llama_add_bos_token(model);
|
|
has_eos_token = llama_token_eos(model) != LLAMA_TOKEN_NULL;
|
|
|
|
if (!params_base.speculative.model.empty()) {
|
|
SRV_INF("loading draft model '%s'\n", params_base.speculative.model.c_str());
|
|
|
|
auto params_dft = params_base;
|
|
|
|
params_dft.devices = params_base.speculative.devices;
|
|
params_dft.model = params_base.speculative.model;
|
|
params_dft.n_ctx = params_base.speculative.n_ctx == 0 ? params_base.n_ctx / params_base.n_parallel : params_base.speculative.n_ctx;
|
|
params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
|
|
params_dft.n_parallel = 1;
|
|
|
|
common_init_result llama_init_dft = common_init_from_params(params_dft);
|
|
|
|
model_dft = llama_init_dft.model;
|
|
|
|
if (model_dft == nullptr) {
|
|
SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.c_str());
|
|
return false;
|
|
}
|
|
|
|
if (!common_speculative_are_compatible(ctx, llama_init_dft.context)) {
|
|
SRV_ERR("the draft model '%s' is not compatible with the target model '%s'\n", params_base.speculative.model.c_str(), params_base.model.c_str());
|
|
|
|
llama_free (llama_init_dft.context);
|
|
llama_free_model(llama_init_dft.model);
|
|
|
|
return false;
|
|
}
|
|
|
|
const int n_ctx_dft = llama_n_ctx(llama_init_dft.context);
|
|
|
|
cparams_dft = common_context_params_to_llama(params_dft);
|
|
cparams_dft.n_batch = n_ctx_dft;
|
|
|
|
// force F16 KV cache for the draft model for extra performance
|
|
cparams_dft.type_k = GGML_TYPE_F16;
|
|
cparams_dft.type_v = GGML_TYPE_F16;
|
|
|
|
// the context is not needed - we will create one for each slot
|
|
llama_free(llama_init_dft.context);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool validate_model_chat_template() const {
|
|
std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes
|
|
std::string template_key = "tokenizer.chat_template";
|
|
int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
|
|
if (res >= 0) {
|
|
llama_chat_message chat[] = {{"user", "test"}};
|
|
std::string tmpl = std::string(model_template.data(), model_template.size());
|
|
int32_t chat_res = llama_chat_apply_template(model, tmpl.c_str(), chat, 1, true, nullptr, 0);
|
|
return chat_res > 0;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void init() {
|
|
const int32_t n_ctx_slot = n_ctx / params_base.n_parallel;
|
|
|
|
SRV_INF("initializing slots, n_slots = %d\n", params_base.n_parallel);
|
|
|
|
for (int i = 0; i < params_base.n_parallel; i++) {
|
|
server_slot slot;
|
|
|
|
slot.id = i;
|
|
slot.ctx = ctx;
|
|
slot.n_ctx = n_ctx_slot;
|
|
slot.n_predict = params_base.n_predict;
|
|
|
|
if (model_dft) {
|
|
slot.batch_spec = llama_batch_init(params_base.speculative.n_max + 1, 0, 1);
|
|
|
|
slot.ctx_dft = llama_new_context_with_model(model_dft, cparams_dft);
|
|
if (slot.ctx_dft == nullptr) {
|
|
SRV_ERR("%s", "failed to create draft context\n");
|
|
return;
|
|
}
|
|
|
|
slot.spec = common_speculative_init(slot.ctx_dft);
|
|
if (slot.spec == nullptr) {
|
|
SRV_ERR("%s", "failed to create speculator\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
SLT_INF(slot, "new slot n_ctx_slot = %d\n", slot.n_ctx);
|
|
|
|
slot.params.sampling = params_base.sampling;
|
|
|
|
slot.callback_on_release = [this](int) {
|
|
queue_tasks.pop_deferred_task();
|
|
};
|
|
|
|
slot.reset();
|
|
|
|
slots.push_back(slot);
|
|
}
|
|
|
|
default_generation_settings_for_props = slots[0].to_json();
|
|
|
|
// the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens
|
|
// note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
|
|
{
|
|
const int32_t n_batch = llama_n_batch(ctx);
|
|
|
|
// only a single seq_id per token is needed
|
|
batch = llama_batch_init(std::max(n_batch, params_base.n_parallel), 0, 1);
|
|
}
|
|
|
|
metrics.init();
|
|
}
|
|
|
|
server_slot * get_slot_by_id(int id) {
|
|
for (server_slot & slot : slots) {
|
|
if (slot.id == id) {
|
|
return &slot;
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
server_slot * get_available_slot(const server_task & task) {
|
|
server_slot * ret = nullptr;
|
|
|
|
// find the slot that has at least n% prompt similarity
|
|
if (ret == nullptr && slot_prompt_similarity != 0.0f) {
|
|
int lcs_len = 0;
|
|
float similarity = 0;
|
|
|
|
for (server_slot & slot : slots) {
|
|
// skip the slot if it is not available
|
|
if (slot.is_processing()) {
|
|
continue;
|
|
}
|
|
|
|
// skip the slot if it does not contains cached tokens
|
|
if (slot.cache_tokens.empty()) {
|
|
continue;
|
|
}
|
|
|
|
// length of the Longest Common Subsequence between the current slot's prompt and the input prompt
|
|
int cur_lcs_len = common_lcs(slot.cache_tokens, task.prompt_tokens);
|
|
|
|
// fraction of the common subsequence length compared to the current slot's prompt length
|
|
float cur_similarity = static_cast<float>(cur_lcs_len) / static_cast<int>(slot.cache_tokens.size());
|
|
|
|
// select the current slot if the criteria match
|
|
if (cur_lcs_len > lcs_len && cur_similarity > slot_prompt_similarity) {
|
|
lcs_len = cur_lcs_len;
|
|
similarity = cur_similarity;
|
|
ret = &slot;
|
|
}
|
|
}
|
|
|
|
if (ret != nullptr) {
|
|
SLT_DBG(*ret, "selected slot by lcs similarity, lcs_len = %d, similarity = %f\n", lcs_len, similarity);
|
|
}
|
|
}
|
|
|
|
// find the slot that has been least recently used
|
|
if (ret == nullptr) {
|
|
int64_t t_last = ggml_time_us();
|
|
for (server_slot & slot : slots) {
|
|
// skip the slot if it is not available
|
|
if (slot.is_processing()) {
|
|
continue;
|
|
}
|
|
|
|
// select the current slot if the criteria match
|
|
if (slot.t_last_used < t_last) {
|
|
t_last = slot.t_last_used;
|
|
ret = &slot;
|
|
}
|
|
}
|
|
|
|
if (ret != nullptr) {
|
|
SLT_DBG(*ret, "selected slot by lru, t_last = %" PRId64 "\n", t_last);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
bool launch_slot_with_task(server_slot & slot, const server_task & task) {
|
|
slot.reset();
|
|
slot.id_task = task.id;
|
|
slot.index = task.index;
|
|
slot.task_type = task.type;
|
|
slot.params = std::move(task.params);
|
|
slot.prompt_tokens = std::move(task.prompt_tokens);
|
|
|
|
SLT_DBG(slot, "launching slot : %s\n", safe_json_to_str(slot.to_json()).c_str());
|
|
|
|
if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
|
|
// Might be better to reject the request with a 400 ?
|
|
slot.params.n_predict = slot.n_predict;
|
|
SLT_WRN(slot, "n_predict = %d exceeds server configuration, setting to %d", slot.n_predict, slot.n_predict);
|
|
}
|
|
|
|
if (slot.params.ignore_eos && has_eos_token) {
|
|
slot.params.sampling.logit_bias.push_back({llama_token_eos(model), -INFINITY});
|
|
}
|
|
|
|
{
|
|
if (slot.smpl != nullptr) {
|
|
common_sampler_free(slot.smpl);
|
|
}
|
|
|
|
slot.smpl = common_sampler_init(model, slot.params.sampling);
|
|
if (slot.smpl == nullptr) {
|
|
// for now, the only error that may happen here is invalid grammar
|
|
send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (slot.ctx_dft) {
|
|
llama_batch_free(slot.batch_spec);
|
|
|
|
slot.batch_spec = llama_batch_init(slot.params.speculative.n_max + 1, 0, 1);
|
|
}
|
|
|
|
slot.state = SLOT_STATE_STARTED;
|
|
|
|
SLT_INF(slot, "%s", "processing task\n");
|
|
|
|
return true;
|
|
}
|
|
|
|
void kv_cache_clear() {
|
|
SRV_DBG("%s", "clearing KV cache\n");
|
|
|
|
// clear the entire KV cache
|
|
llama_kv_cache_clear(ctx);
|
|
clean_kv_cache = false;
|
|
}
|
|
|
|
bool process_token(completion_token_output & result, server_slot & slot) {
|
|
// remember which tokens were sampled - used for repetition penalties during sampling
|
|
const std::string token_str = result.text_to_send;
|
|
slot.sampled = result.tok;
|
|
|
|
slot.generated_text += token_str;
|
|
if (slot.params.return_tokens) {
|
|
slot.generated_tokens.push_back(result.tok);
|
|
}
|
|
slot.has_next_token = true;
|
|
|
|
// check if there is incomplete UTF-8 character at the end
|
|
bool incomplete = validate_utf8(slot.generated_text) < slot.generated_text.size();
|
|
|
|
// search stop word and delete it
|
|
if (!incomplete) {
|
|
size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
|
|
|
|
const std::string str_test = slot.generated_text.substr(pos);
|
|
bool send_text = true;
|
|
|
|
size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), true);
|
|
if (stop_pos != std::string::npos) {
|
|
slot.generated_text.erase(
|
|
slot.generated_text.begin() + pos + stop_pos,
|
|
slot.generated_text.end());
|
|
pos = std::min(slot.n_sent_text, slot.generated_text.size());
|
|
} else if (slot.has_next_token) {
|
|
stop_pos = slot.find_stopping_strings(str_test, token_str.size(), false);
|
|
send_text = stop_pos == std::string::npos;
|
|
}
|
|
|
|
// check if there is any token to predict
|
|
if (send_text) {
|
|
// no send the stop word in the response
|
|
result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
|
|
slot.n_sent_text += result.text_to_send.size();
|
|
// add the token to slot queue and cache
|
|
}
|
|
|
|
slot.add_token(result);
|
|
if (slot.params.stream) {
|
|
send_partial_response(slot, result);
|
|
}
|
|
}
|
|
|
|
if (incomplete) {
|
|
slot.has_next_token = true;
|
|
}
|
|
|
|
// check the limits
|
|
if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params_base)) {
|
|
slot.stop = STOP_TYPE_LIMIT;
|
|
slot.has_next_token = false;
|
|
|
|
SLT_DBG(slot, "stopped by limit, n_decoded = %d, n_predict = %d\n", slot.n_decoded, slot.params.n_predict);
|
|
}
|
|
|
|
if (slot.has_new_line) {
|
|
// if we have already seen a new line, we stop after a certain time limit
|
|
if (slot.params.t_max_predict_ms > 0 && (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.params.t_max_predict_ms)) {
|
|
slot.stop = STOP_TYPE_LIMIT;
|
|
slot.has_next_token = false;
|
|
|
|
SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.params.t_max_predict_ms);
|
|
}
|
|
|
|
// require that each new line has a whitespace prefix (i.e. indentation) of at least slot.params.n_indent
|
|
if (slot.params.n_indent > 0) {
|
|
// check the current indentation
|
|
// TODO: improve by not doing it more than once for each new line
|
|
if (slot.last_nl_pos > 0) {
|
|
size_t pos = slot.last_nl_pos;
|
|
|
|
int n_indent = 0;
|
|
while (pos < slot.generated_text.size() && (slot.generated_text[pos] == ' ' || slot.generated_text[pos] == '\t')) {
|
|
n_indent++;
|
|
pos++;
|
|
}
|
|
|
|
if (pos < slot.generated_text.size() && n_indent < slot.params.n_indent) {
|
|
slot.stop = STOP_TYPE_LIMIT;
|
|
slot.has_next_token = false;
|
|
|
|
// cut the last line
|
|
slot.generated_text.erase(pos, std::string::npos);
|
|
|
|
SLT_DBG(slot, "stopped by indentation limit, n_decoded = %d, n_indent = %d\n", slot.n_decoded, n_indent);
|
|
}
|
|
}
|
|
|
|
// find the next new line
|
|
{
|
|
const size_t pos = slot.generated_text.find('\n', slot.last_nl_pos);
|
|
|
|
if (pos != std::string::npos) {
|
|
slot.last_nl_pos = pos + 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// check if there is a new line in the generated text
|
|
if (result.text_to_send.find('\n') != std::string::npos) {
|
|
slot.has_new_line = true;
|
|
}
|
|
|
|
// if context shift is disabled, we stop when it reaches the context limit
|
|
if (slot.n_past >= slot.n_ctx) {
|
|
slot.truncated = true;
|
|
slot.stop = STOP_TYPE_LIMIT;
|
|
slot.has_next_token = false;
|
|
|
|
SLT_DBG(slot, "stopped due to running out of context capacity, n_past = %d, n_prompt_tokens = %d, n_decoded = %d, n_ctx = %d\n",
|
|
slot.n_decoded, slot.n_prompt_tokens, slot.n_past, slot.n_ctx);
|
|
}
|
|
|
|
if (llama_token_is_eog(model, result.tok)) {
|
|
slot.stop = STOP_TYPE_EOS;
|
|
slot.has_next_token = false;
|
|
|
|
SLT_DBG(slot, "%s", "stopped by EOS\n");
|
|
}
|
|
|
|
const auto n_ctx_train = llama_n_ctx_train(model);
|
|
|
|
if (slot.params.n_predict < 1 && slot.n_predict < 1 && slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) {
|
|
slot.truncated = true;
|
|
slot.stop = STOP_TYPE_LIMIT;
|
|
slot.has_next_token = false; // stop prediction
|
|
|
|
SLT_WRN(slot,
|
|
"n_predict (%d) is set for infinite generation. "
|
|
"Limiting generated tokens to n_ctx_train (%d) to avoid EOS-less generation infinite loop\n",
|
|
slot.params.n_predict, n_ctx_train);
|
|
}
|
|
|
|
SLT_DBG(slot, "n_decoded = %d, n_remaining = %d, next token: %5d '%s'\n", slot.n_decoded, slot.n_remaining, result.tok, token_str.c_str());
|
|
|
|
return slot.has_next_token; // continue
|
|
}
|
|
|
|
void populate_token_probs(const server_slot & slot, completion_token_output & result, bool post_sampling, bool special, int idx) {
|
|
size_t n_probs = slot.params.sampling.n_probs;
|
|
size_t n_vocab = llama_n_vocab(llama_get_model(ctx));
|
|
if (post_sampling) {
|
|
const auto * cur_p = common_sampler_get_candidates(slot.smpl);
|
|
const size_t max_probs = cur_p->size;
|
|
|
|
// set probability for sampled token
|
|
for (size_t i = 0; i < max_probs; i++) {
|
|
if (cur_p->data[i].id == result.tok) {
|
|
result.prob = cur_p->data[i].p;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// set probability for top n_probs tokens
|
|
result.probs.reserve(max_probs);
|
|
for (size_t i = 0; i < std::min(max_probs, n_probs); i++) {
|
|
result.probs.push_back({
|
|
cur_p->data[i].id,
|
|
common_detokenize(ctx, {cur_p->data[i].id}, special),
|
|
cur_p->data[i].p
|
|
});
|
|
}
|
|
} else {
|
|
// TODO: optimize this with min-p optimization
|
|
std::vector<llama_token_data> cur = get_token_probabilities(ctx, idx);
|
|
|
|
// set probability for sampled token
|
|
for (size_t i = 0; i < n_vocab; i++) {
|
|
// set probability for sampled token
|
|
if (cur[i].id == result.tok) {
|
|
result.prob = cur[i].p;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// set probability for top n_probs tokens
|
|
result.probs.reserve(n_probs);
|
|
for (size_t i = 0; i < std::min(n_vocab, n_probs); i++) {
|
|
result.probs.push_back({
|
|
cur[i].id,
|
|
common_detokenize(ctx, {cur[i].id}, special),
|
|
cur[i].p
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
|
|
send_error(task.id, error, type);
|
|
}
|
|
|
|
void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
|
|
send_error(slot.id_task, error, type);
|
|
}
|
|
|
|
void send_error(const int id_task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
|
|
SRV_ERR("task id = %d, error: %s\n", id_task, error.c_str());
|
|
|
|
auto res = std::make_unique<server_task_result_error>();
|
|
res->id = id_task;
|
|
res->err_type = type;
|
|
res->err_msg = error;
|
|
|
|
queue_results.send(std::move(res));
|
|
}
|
|
|
|
void send_partial_response(server_slot & slot, const completion_token_output & tkn) {
|
|
auto res = std::make_unique<server_task_result_cmpl_partial>();
|
|
|
|
res->id = slot.id_task;
|
|
res->index = slot.index;
|
|
res->content = tkn.text_to_send;
|
|
res->tokens = { tkn.tok };
|
|
|
|
res->n_decoded = slot.n_decoded;
|
|
res->n_prompt_tokens = slot.n_prompt_tokens;
|
|
res->post_sampling_probs = slot.params.post_sampling_probs;
|
|
|
|
res->verbose = slot.params.verbose;
|
|
res->oaicompat = slot.params.oaicompat;
|
|
res->oaicompat_chat = slot.params.oaicompat_chat;
|
|
res->oaicompat_model = slot.params.oaicompat_model;
|
|
res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
|
|
|
|
// populate res.probs_output
|
|
if (slot.params.sampling.n_probs > 0) {
|
|
res->prob_output = tkn; // copy the token probs
|
|
}
|
|
|
|
// populate timings if this is final response or timings_per_token is enabled
|
|
if (slot.stop != STOP_TYPE_NONE || slot.params.timings_per_token) {
|
|
res->timings = slot.get_timings();
|
|
}
|
|
|
|
queue_results.send(std::move(res));
|
|
}
|
|
|
|
void send_final_response(server_slot & slot) {
|
|
auto res = std::make_unique<server_task_result_cmpl_final>();
|
|
res->id = slot.id_task;
|
|
res->id_slot = slot.id;
|
|
|
|
res->index = slot.index;
|
|
res->content = slot.generated_text;
|
|
res->tokens = slot.generated_tokens;
|
|
res->timings = slot.get_timings();
|
|
res->prompt = common_detokenize(ctx, slot.prompt_tokens, true);
|
|
|
|
res->truncated = slot.truncated;
|
|
res->n_decoded = slot.n_decoded;
|
|
res->n_prompt_tokens = slot.n_prompt_tokens;
|
|
res->n_tokens_cached = slot.n_past;
|
|
res->has_new_line = slot.has_new_line;
|
|
res->stopping_word = slot.stopping_word;
|
|
res->stop = slot.stop;
|
|
res->post_sampling_probs = slot.params.post_sampling_probs;
|
|
|
|
res->verbose = slot.params.verbose;
|
|
res->stream = slot.params.stream;
|
|
res->oaicompat = slot.params.oaicompat;
|
|
res->oaicompat_chat = slot.params.oaicompat_chat;
|
|
res->oaicompat_model = slot.params.oaicompat_model;
|
|
res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
|
|
|
|
// populate res.probs_output
|
|
if (slot.params.sampling.n_probs > 0) {
|
|
if (!slot.params.stream && slot.stop == STOP_TYPE_WORD) {
|
|
const llama_tokens stop_word_toks = common_tokenize(ctx, slot.stopping_word, false);
|
|
|
|
size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size());
|
|
res->probs_output = std::vector<completion_token_output>(
|
|
slot.generated_token_probs.begin(),
|
|
slot.generated_token_probs.end() - safe_offset);
|
|
} else {
|
|
res->probs_output = std::vector<completion_token_output>(
|
|
slot.generated_token_probs.begin(),
|
|
slot.generated_token_probs.end());
|
|
}
|
|
}
|
|
|
|
res->generation_params = slot.params; // copy the parameters
|
|
|
|
queue_results.send(std::move(res));
|
|
}
|
|
|
|
void send_embedding(const server_slot & slot, const llama_batch & batch) {
|
|
auto res = std::make_unique<server_task_result_embd>();
|
|
res->id = slot.id_task;
|
|
res->index = slot.index;
|
|
res->n_tokens = slot.n_prompt_tokens;
|
|
res->oaicompat = slot.params.oaicompat;
|
|
|
|
const int n_embd = llama_n_embd(model);
|
|
|
|
std::vector<float> embd_res(n_embd, 0.0f);
|
|
|
|
for (int i = 0; i < batch.n_tokens; ++i) {
|
|
if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
|
|
continue;
|
|
}
|
|
|
|
const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
|
|
if (embd == NULL) {
|
|
embd = llama_get_embeddings_ith(ctx, i);
|
|
}
|
|
|
|
if (embd == NULL) {
|
|
SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
|
|
|
|
res->embedding.push_back(std::vector<float>(n_embd, 0.0f));
|
|
continue;
|
|
}
|
|
|
|
// normalize only when there is pooling
|
|
// TODO: configurable
|
|
if (llama_pooling_type(slot.ctx) != LLAMA_POOLING_TYPE_NONE) {
|
|
common_embd_normalize(embd, embd_res.data(), n_embd, 2);
|
|
res->embedding.push_back(embd_res);
|
|
} else {
|
|
res->embedding.push_back({ embd, embd + n_embd });
|
|
}
|
|
}
|
|
|
|
SLT_DBG(slot, "%s", "sending embeddings\n");
|
|
|
|
queue_results.send(std::move(res));
|
|
}
|
|
|
|
void send_rerank(const server_slot & slot, const llama_batch & batch) {
|
|
auto res = std::make_unique<server_task_result_rerank>();
|
|
res->id = slot.id_task;
|
|
res->index = slot.index;
|
|
res->n_tokens = slot.n_prompt_tokens;
|
|
|
|
for (int i = 0; i < batch.n_tokens; ++i) {
|
|
if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
|
|
continue;
|
|
}
|
|
|
|
const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
|
|
if (embd == NULL) {
|
|
embd = llama_get_embeddings_ith(ctx, i);
|
|
}
|
|
|
|
if (embd == NULL) {
|
|
SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
|
|
|
|
res->score = -1e6;
|
|
continue;
|
|
}
|
|
|
|
res->score = embd[0];
|
|
}
|
|
|
|
SLT_DBG(slot, "sending rerank result, res.score = %f\n", res->score);
|
|
|
|
queue_results.send(std::move(res));
|
|
}
|
|
|
|
//
|
|
// Functions to create new task(s) and receive result(s)
|
|
//
|
|
|
|
void cancel_tasks(const std::unordered_set<int> & id_tasks) {
|
|
std::vector<server_task> cancel_tasks;
|
|
cancel_tasks.reserve(id_tasks.size());
|
|
for (const auto & id_task : id_tasks) {
|
|
SRV_WRN("cancel task, id_task = %d\n", id_task);
|
|
|
|
server_task task(SERVER_TASK_TYPE_CANCEL);
|
|
task.id_target = id_task;
|
|
cancel_tasks.push_back(task);
|
|
queue_results.remove_waiting_task_id(id_task);
|
|
}
|
|
// push to beginning of the queue, so it has highest priority
|
|
queue_tasks.post(cancel_tasks, true);
|
|
}
|
|
|
|
// receive the results from task(s)
|
|
void receive_multi_results(
|
|
const std::unordered_set<int> & id_tasks,
|
|
const std::function<void(std::vector<server_task_result_ptr>&)> & result_handler,
|
|
const std::function<void(json)> & error_handler) {
|
|
std::vector<server_task_result_ptr> results(id_tasks.size());
|
|
for (size_t i = 0; i < id_tasks.size(); i++) {
|
|
server_task_result_ptr result = queue_results.recv(id_tasks);
|
|
|
|
if (result->is_error()) {
|
|
error_handler(result->to_json());
|
|
cancel_tasks(id_tasks);
|
|
return;
|
|
}
|
|
|
|
GGML_ASSERT(
|
|
dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
|
|
|| dynamic_cast<server_task_result_embd*>(result.get()) != nullptr
|
|
|| dynamic_cast<server_task_result_rerank*>(result.get()) != nullptr
|
|
);
|
|
const size_t idx = result->get_index();
|
|
GGML_ASSERT(idx < results.size() && "index out of range");
|
|
results[idx] = std::move(result);
|
|
}
|
|
result_handler(results);
|
|
}
|
|
|
|
// receive the results from task(s), in stream mode
|
|
void receive_cmpl_results_stream(
|
|
const std::unordered_set<int> & id_tasks,
|
|
const std::function<bool(server_task_result_ptr&)> & result_handler,
|
|
const std::function<void(json)> & error_handler) {
|
|
size_t n_finished = 0;
|
|
while (true) {
|
|
server_task_result_ptr result = queue_results.recv(id_tasks);
|
|
|
|
if (result->is_error()) {
|
|
error_handler(result->to_json());
|
|
cancel_tasks(id_tasks);
|
|
return;
|
|
}
|
|
|
|
GGML_ASSERT(
|
|
dynamic_cast<server_task_result_cmpl_partial*>(result.get()) != nullptr
|
|
|| dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
|
|
);
|
|
if (!result_handler(result)) {
|
|
cancel_tasks(id_tasks);
|
|
break;
|
|
}
|
|
|
|
if (result->is_stop()) {
|
|
if (++n_finished == id_tasks.size()) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// Functions to process the task
|
|
//
|
|
|
|
void process_single_task(server_task task) {
|
|
switch (task.type) {
|
|
case SERVER_TASK_TYPE_COMPLETION:
|
|
case SERVER_TASK_TYPE_INFILL:
|
|
case SERVER_TASK_TYPE_EMBEDDING:
|
|
case SERVER_TASK_TYPE_RERANK:
|
|
{
|
|
const int id_slot = task.id_selected_slot;
|
|
|
|
server_slot * slot = id_slot != -1 ? get_slot_by_id(id_slot) : get_available_slot(task);
|
|
|
|
if (slot == nullptr) {
|
|
// if no slot is available, we defer this task for processing later
|
|
SRV_DBG("no slot is available, defer task, id_task = %d\n", task.id);
|
|
queue_tasks.defer(task);
|
|
break;
|
|
}
|
|
if (slot->is_processing()) {
|
|
// if requested slot is unavailable, we defer this task for processing later
|
|
SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
|
|
queue_tasks.defer(task);
|
|
break;
|
|
}
|
|
|
|
if (!launch_slot_with_task(*slot, task)) {
|
|
SRV_ERR("failed to launch slot with task, id_task = %d\n", task.id);
|
|
break;
|
|
}
|
|
} break;
|
|
case SERVER_TASK_TYPE_CANCEL:
|
|
{
|
|
// release slot linked with the task id
|
|
for (auto & slot : slots) {
|
|
if (slot.id_task == task.id_target) {
|
|
slot.release();
|
|
break;
|
|
}
|
|
}
|
|
} break;
|
|
case SERVER_TASK_TYPE_NEXT_RESPONSE:
|
|
{
|
|
// do nothing
|
|
} break;
|
|
case SERVER_TASK_TYPE_METRICS:
|
|
{
|
|
json slots_data = json::array();
|
|
|
|
int n_idle_slots = 0;
|
|
int n_processing_slots = 0;
|
|
|
|
for (server_slot & slot : slots) {
|
|
json slot_data = slot.to_json();
|
|
|
|
if (slot.is_processing()) {
|
|
n_processing_slots++;
|
|
} else {
|
|
n_idle_slots++;
|
|
}
|
|
|
|
slots_data.push_back(slot_data);
|
|
}
|
|
SRV_DBG("n_idle_slots = %d, n_processing_slots = %d\n", n_idle_slots, n_processing_slots);
|
|
|
|
auto res = std::make_unique<server_task_result_metrics>();
|
|
res->id = task.id;
|
|
res->slots_data = std::move(slots_data);
|
|
res->n_idle_slots = n_idle_slots;
|
|
res->n_processing_slots = n_processing_slots;
|
|
res->n_tasks_deferred = queue_tasks.queue_tasks_deferred.size();
|
|
res->t_start = metrics.t_start;
|
|
|
|
res->kv_cache_tokens_count = llama_get_kv_cache_token_count(ctx);
|
|
res->kv_cache_used_cells = llama_get_kv_cache_used_cells(ctx);
|
|
|
|
res->n_prompt_tokens_processed_total = metrics.n_prompt_tokens_processed_total;
|
|
res->t_prompt_processing_total = metrics.t_prompt_processing_total;
|
|
res->n_tokens_predicted_total = metrics.n_tokens_predicted_total;
|
|
res->t_tokens_generation_total = metrics.t_tokens_generation_total;
|
|
|
|
res->n_prompt_tokens_processed = metrics.n_prompt_tokens_processed;
|
|
res->t_prompt_processing = metrics.t_prompt_processing;
|
|
res->n_tokens_predicted = metrics.n_tokens_predicted;
|
|
res->t_tokens_generation = metrics.t_tokens_generation;
|
|
|
|
res->n_decode_total = metrics.n_decode_total;
|
|
res->n_busy_slots_total = metrics.n_busy_slots_total;
|
|
|
|
if (task.metrics_reset_bucket) {
|
|
metrics.reset_bucket();
|
|
}
|
|
queue_results.send(std::move(res));
|
|
} break;
|
|
case SERVER_TASK_TYPE_SLOT_SAVE:
|
|
{
|
|
int id_slot = task.slot_action.slot_id;
|
|
server_slot * slot = get_slot_by_id(id_slot);
|
|
if (slot == nullptr) {
|
|
send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
|
|
break;
|
|
}
|
|
if (slot->is_processing()) {
|
|
// if requested slot is unavailable, we defer this task for processing later
|
|
SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
|
|
queue_tasks.defer(task);
|
|
break;
|
|
}
|
|
|
|
const size_t token_count = slot->cache_tokens.size();
|
|
const int64_t t_start = ggml_time_us();
|
|
|
|
std::string filename = task.slot_action.filename;
|
|
std::string filepath = task.slot_action.filepath;
|
|
|
|
const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), token_count);
|
|
|
|
const int64_t t_end = ggml_time_us();
|
|
const double t_save_ms = (t_end - t_start) / 1000.0;
|
|
|
|
auto res = std::make_unique<server_task_result_slot_save_load>();
|
|
res->id = task.id;
|
|
res->id_slot = id_slot;
|
|
res->filename = filename;
|
|
res->is_save = true;
|
|
res->n_tokens = token_count;
|
|
res->n_bytes = nwrite;
|
|
res->t_ms = t_save_ms;
|
|
queue_results.send(std::move(res));
|
|
} break;
|
|
case SERVER_TASK_TYPE_SLOT_RESTORE:
|
|
{
|
|
int id_slot = task.slot_action.slot_id;
|
|
server_slot * slot = get_slot_by_id(id_slot);
|
|
if (slot == nullptr) {
|
|
send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
|
|
break;
|
|
}
|
|
if (slot->is_processing()) {
|
|
// if requested slot is unavailable, we defer this task for processing later
|
|
SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
|
|
queue_tasks.defer(task);
|
|
break;
|
|
}
|
|
|
|
const int64_t t_start = ggml_time_us();
|
|
|
|
std::string filename = task.slot_action.filename;
|
|
std::string filepath = task.slot_action.filepath;
|
|
|
|
slot->cache_tokens.resize(slot->n_ctx);
|
|
size_t token_count = 0;
|
|
size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id, slot->cache_tokens.data(), slot->cache_tokens.size(), &token_count);
|
|
if (nread == 0) {
|
|
slot->cache_tokens.resize(0);
|
|
send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST);
|
|
break;
|
|
}
|
|
slot->cache_tokens.resize(token_count);
|
|
|
|
const int64_t t_end = ggml_time_us();
|
|
const double t_restore_ms = (t_end - t_start) / 1000.0;
|
|
|
|
auto res = std::make_unique<server_task_result_slot_save_load>();
|
|
res->id = task.id;
|
|
res->id_slot = id_slot;
|
|
res->filename = filename;
|
|
res->is_save = false;
|
|
res->n_tokens = token_count;
|
|
res->n_bytes = nread;
|
|
res->t_ms = t_restore_ms;
|
|
queue_results.send(std::move(res));
|
|
} break;
|
|
case SERVER_TASK_TYPE_SLOT_ERASE:
|
|
{
|
|
int id_slot = task.slot_action.slot_id;
|
|
server_slot * slot = get_slot_by_id(id_slot);
|
|
if (slot == nullptr) {
|
|
send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
|
|
break;
|
|
}
|
|
if (slot->is_processing()) {
|
|
// if requested slot is unavailable, we defer this task for processing later
|
|
SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
|
|
queue_tasks.defer(task);
|
|
break;
|
|
}
|
|
|
|
// Erase token cache
|
|
const size_t n_erased = slot->cache_tokens.size();
|
|
llama_kv_cache_seq_rm(ctx, slot->id, -1, -1);
|
|
slot->cache_tokens.clear();
|
|
|
|
auto res = std::make_unique<server_task_result_slot_erase>();
|
|
res->id = task.id;
|
|
res->id_slot = id_slot;
|
|
res->n_erased = n_erased;
|
|
queue_results.send(std::move(res));
|
|
} break;
|
|
case SERVER_TASK_TYPE_SET_LORA:
|
|
{
|
|
common_lora_adapters_apply(ctx, loras);
|
|
auto res = std::make_unique<server_task_result_apply_lora>();
|
|
res->id = task.id;
|
|
queue_results.send(std::move(res));
|
|
} break;
|
|
}
|
|
}
|
|
|
|
void update_slots() {
|
|
// check if all slots are idle
|
|
{
|
|
bool all_idle = true;
|
|
|
|
for (auto & slot : slots) {
|
|
if (slot.is_processing()) {
|
|
all_idle = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (all_idle) {
|
|
SRV_INF("%s", "all slots are idle\n");
|
|
if (clean_kv_cache) {
|
|
kv_cache_clear();
|
|
}
|
|
|
|
return;
|
|
}
|
|
}
|
|
|
|
{
|
|
SRV_DBG("%s", "posting NEXT_RESPONSE\n");
|
|
|
|
server_task task(SERVER_TASK_TYPE_NEXT_RESPONSE);
|
|
task.id = queue_tasks.get_new_id();
|
|
queue_tasks.post(task);
|
|
}
|
|
|
|
// apply context-shift if needed
|
|
// TODO: simplify and improve
|
|
for (server_slot & slot : slots) {
|
|
if (slot.is_processing() && slot.n_past + 1 >= slot.n_ctx) {
|
|
if (!params_base.ctx_shift) {
|
|
// this check is redundant (for good)
|
|
// we should never get here, because generation should already stopped in process_token()
|
|
slot.release();
|
|
send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER);
|
|
continue;
|
|
}
|
|
|
|
// Shift context
|
|
const int n_keep = slot.params.n_keep + add_bos_token;
|
|
const int n_left = slot.n_past - n_keep;
|
|
const int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);
|
|
|
|
SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard);
|
|
|
|
llama_kv_cache_seq_rm (ctx, slot.id, n_keep , n_keep + n_discard);
|
|
llama_kv_cache_seq_add(ctx, slot.id, n_keep + n_discard, slot.n_past, -n_discard);
|
|
|
|
if (slot.params.cache_prompt) {
|
|
for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++) {
|
|
slot.cache_tokens[i - n_discard] = slot.cache_tokens[i];
|
|
}
|
|
|
|
slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard);
|
|
}
|
|
|
|
slot.n_past -= n_discard;
|
|
|
|
slot.truncated = true;
|
|
}
|
|
}
|
|
|
|
// start populating the batch for this iteration
|
|
common_batch_clear(batch);
|
|
|
|
// frist, add sampled tokens from any ongoing sequences
|
|
for (auto & slot : slots) {
|
|
if (slot.state != SLOT_STATE_GENERATING) {
|
|
continue;
|
|
}
|
|
|
|
slot.i_batch = batch.n_tokens;
|
|
|
|
common_batch_add(batch, slot.sampled, slot.n_past, { slot.id }, true);
|
|
|
|
slot.n_past += 1;
|
|
|
|
if (slot.params.cache_prompt) {
|
|
slot.cache_tokens.push_back(slot.sampled);
|
|
}
|
|
|
|
SLT_DBG(slot, "slot decode token, n_ctx = %d, n_past = %d, n_cache_tokens = %d, truncated = %d\n",
|
|
slot.n_ctx, slot.n_past, (int) slot.cache_tokens.size(), slot.truncated);
|
|
}
|
|
|
|
// process in chunks of params.n_batch
|
|
int32_t n_batch = llama_n_batch(ctx);
|
|
int32_t n_ubatch = llama_n_ubatch(ctx);
|
|
|
|
// track if this is an embedding or non-embedding batch
|
|
// if we've added sampled tokens above, we are in non-embedding mode
|
|
// -1: none, 0: non-embedding, 1: embedding
|
|
// TODO: make enum
|
|
int32_t batch_type = batch.n_tokens > 0 ? 0 : -1;
|
|
|
|
// next, batch any pending prompts without exceeding n_batch
|
|
if (params_base.cont_batching || batch.n_tokens == 0) {
|
|
for (auto & slot : slots) {
|
|
// this slot still has a prompt to be processed
|
|
if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_STARTED) {
|
|
auto & prompt_tokens = slot.prompt_tokens;
|
|
|
|
// TODO: maybe move branch to outside of this loop in the future
|
|
if (slot.state == SLOT_STATE_STARTED) {
|
|
slot.t_start_process_prompt = ggml_time_us();
|
|
slot.t_start_generation = 0;
|
|
|
|
slot.n_past = 0;
|
|
slot.n_prompt_tokens = prompt_tokens.size();
|
|
slot.state = SLOT_STATE_PROCESSING_PROMPT;
|
|
|
|
SLT_INF(slot, "new prompt, n_ctx_slot = %d, n_keep = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, slot.n_prompt_tokens);
|
|
|
|
// print prompt tokens (for debugging)
|
|
if (1) {
|
|
// first 16 tokens (avoid flooding logs)
|
|
for (int i = 0; i < std::min<int>(16, prompt_tokens.size()); i++) {
|
|
SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
|
|
}
|
|
} else {
|
|
// all
|
|
for (int i = 0; i < (int) prompt_tokens.size(); i++) {
|
|
SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
|
|
}
|
|
}
|
|
|
|
// empty prompt passed -> release the slot and send empty response
|
|
if (prompt_tokens.empty()) {
|
|
SLT_WRN(slot, "%s", "empty prompt - releasing slot\n");
|
|
|
|
slot.release();
|
|
slot.print_timings();
|
|
send_final_response(slot);
|
|
continue;
|
|
}
|
|
|
|
if (slot.is_non_causal()) {
|
|
if (slot.n_prompt_tokens > n_ubatch) {
|
|
slot.release();
|
|
send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER);
|
|
continue;
|
|
}
|
|
|
|
if (slot.n_prompt_tokens > slot.n_ctx) {
|
|
slot.release();
|
|
send_error(slot, "input is larger than the max context size. skipping", ERROR_TYPE_SERVER);
|
|
continue;
|
|
}
|
|
} else {
|
|
if (!params_base.ctx_shift) {
|
|
// if context shift is disabled, we make sure prompt size is smaller than KV size
|
|
// TODO: there should be a separate parameter that control prompt truncation
|
|
// context shift should be applied only during the generation phase
|
|
if (slot.n_prompt_tokens >= slot.n_ctx) {
|
|
slot.release();
|
|
send_error(slot, "the request exceeds the available context size. try increasing the context size or enable context shift", ERROR_TYPE_INVALID_REQUEST);
|
|
continue;
|
|
}
|
|
}
|
|
if (slot.params.n_keep < 0) {
|
|
slot.params.n_keep = slot.n_prompt_tokens;
|
|
}
|
|
slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
|
|
|
|
// if input prompt is too big, truncate it
|
|
if (slot.n_prompt_tokens >= slot.n_ctx) {
|
|
const int n_left = slot.n_ctx - slot.params.n_keep;
|
|
|
|
const int n_block_size = n_left / 2;
|
|
const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
|
|
|
|
llama_tokens new_tokens(
|
|
prompt_tokens.begin(),
|
|
prompt_tokens.begin() + slot.params.n_keep);
|
|
|
|
new_tokens.insert(
|
|
new_tokens.end(),
|
|
prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size,
|
|
prompt_tokens.end());
|
|
|
|
prompt_tokens = std::move(new_tokens);
|
|
|
|
slot.truncated = true;
|
|
slot.n_prompt_tokens = prompt_tokens.size();
|
|
|
|
SLT_WRN(slot, "input truncated, n_ctx = %d, n_keep = %d, n_left = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, n_left, slot.n_prompt_tokens);
|
|
|
|
GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
|
|
}
|
|
|
|
if (slot.params.cache_prompt) {
|
|
// reuse any previously computed tokens that are common with the new prompt
|
|
slot.n_past = common_lcp(slot.cache_tokens, prompt_tokens);
|
|
|
|
// reuse chunks from the cached prompt by shifting their KV cache in the new position
|
|
if (params_base.n_cache_reuse > 0) {
|
|
size_t head_c = slot.n_past; // cache
|
|
size_t head_p = slot.n_past; // current prompt
|
|
|
|
SLT_DBG(slot, "trying to reuse chunks with size > %d, slot.n_past = %d\n", params_base.n_cache_reuse, slot.n_past);
|
|
|
|
while (head_c < slot.cache_tokens.size() &&
|
|
head_p < prompt_tokens.size()) {
|
|
|
|
size_t n_match = 0;
|
|
while (head_c + n_match < slot.cache_tokens.size() &&
|
|
head_p + n_match < prompt_tokens.size() &&
|
|
slot.cache_tokens[head_c + n_match] == prompt_tokens[head_p + n_match]) {
|
|
|
|
n_match++;
|
|
}
|
|
|
|
if (n_match >= (size_t) params_base.n_cache_reuse) {
|
|
SLT_INF(slot, "reusing chunk with size %zu, shifting KV cache [%zu, %zu) -> [%zu, %zu)\n", n_match, head_c, head_c + n_match, head_p, head_p + n_match);
|
|
//for (size_t i = head_p; i < head_p + n_match; i++) {
|
|
// SLT_DBG(slot, "cache token %3zu: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
|
|
//}
|
|
|
|
const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c;
|
|
|
|
llama_kv_cache_seq_rm (ctx, slot.id, head_p, head_c);
|
|
llama_kv_cache_seq_add(ctx, slot.id, head_c, -1, kv_shift);
|
|
|
|
for (size_t i = 0; i < n_match; i++) {
|
|
slot.cache_tokens[head_p + i] = slot.cache_tokens[head_c + i];
|
|
slot.n_past++;
|
|
}
|
|
|
|
head_c += n_match;
|
|
head_p += n_match;
|
|
} else {
|
|
head_c += 1;
|
|
}
|
|
}
|
|
|
|
SLT_DBG(slot, "after context reuse, new slot.n_past = %d\n", slot.n_past);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0) {
|
|
// we have to evaluate at least 1 token to generate logits.
|
|
SLT_WRN(slot, "need to evaluate at least 1 token to generate logits, n_past = %d, n_prompt_tokens = %d\n", slot.n_past, slot.n_prompt_tokens);
|
|
|
|
slot.n_past--;
|
|
}
|
|
|
|
slot.n_prompt_tokens_processed = 0;
|
|
}
|
|
|
|
// non-causal tasks require to fit the entire prompt in the physical batch
|
|
if (slot.is_non_causal()) {
|
|
// cannot fit the prompt in the current batch - will try next iter
|
|
if (batch.n_tokens + slot.n_prompt_tokens > n_batch) {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// check that we are in the right batch_type, if not defer the slot
|
|
int slot_type = slot.is_non_causal();
|
|
if (batch_type == -1) {
|
|
batch_type = slot_type;
|
|
} else if (batch_type != slot_type) {
|
|
continue;
|
|
}
|
|
|
|
// keep only the common part
|
|
if (!llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1)) {
|
|
// could not partially delete (likely using a non-Transformer model)
|
|
llama_kv_cache_seq_rm(ctx, slot.id, -1, -1);
|
|
|
|
// there is no common part left
|
|
slot.n_past = 0;
|
|
}
|
|
|
|
SLT_INF(slot, "kv cache rm [%d, end)\n", slot.n_past);
|
|
|
|
// remove the non-common part from the cache
|
|
slot.cache_tokens.resize(slot.n_past);
|
|
|
|
// add prompt tokens for processing in the current batch
|
|
while (slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch) {
|
|
// without pooling, we want to output the embeddings for all the tokens in the batch
|
|
const bool need_embd = slot.task_type == SERVER_TASK_TYPE_EMBEDDING && llama_pooling_type(slot.ctx) == LLAMA_POOLING_TYPE_NONE;
|
|
|
|
common_batch_add(batch, prompt_tokens[slot.n_past], slot.n_past, { slot.id }, need_embd);
|
|
|
|
if (slot.params.cache_prompt) {
|
|
slot.cache_tokens.push_back(prompt_tokens[slot.n_past]);
|
|
}
|
|
|
|
slot.n_prompt_tokens_processed++;
|
|
slot.n_past++;
|
|
}
|
|
|
|
SLT_INF(slot, "prompt processing progress, n_past = %d, n_tokens = %d, progress = %f\n", slot.n_past, batch.n_tokens, (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens);
|
|
|
|
// entire prompt has been processed
|
|
if (slot.n_past == slot.n_prompt_tokens) {
|
|
slot.state = SLOT_STATE_DONE_PROMPT;
|
|
|
|
GGML_ASSERT(batch.n_tokens > 0);
|
|
|
|
common_sampler_reset(slot.smpl);
|
|
|
|
// Process all prompt tokens through sampler system
|
|
for (int i = 0; i < slot.n_prompt_tokens; ++i) {
|
|
common_sampler_accept(slot.smpl, prompt_tokens[i], false);
|
|
}
|
|
|
|
// extract the logits only for the last token
|
|
batch.logits[batch.n_tokens - 1] = true;
|
|
|
|
slot.n_decoded = 0;
|
|
slot.i_batch = batch.n_tokens - 1;
|
|
|
|
SLT_INF(slot, "prompt done, n_past = %d, n_tokens = %d\n", slot.n_past, batch.n_tokens);
|
|
}
|
|
}
|
|
|
|
if (batch.n_tokens >= n_batch) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (batch.n_tokens == 0) {
|
|
SRV_WRN("%s", "no tokens to decode\n");
|
|
return;
|
|
}
|
|
|
|
SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens);
|
|
|
|
// make sure we're in the right embedding mode
|
|
llama_set_embeddings(ctx, batch_type == 1);
|
|
|
|
// process the created batch of tokens
|
|
for (int32_t i = 0; i < batch.n_tokens; i += n_batch) {
|
|
const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
|
|
|
|
llama_batch batch_view = {
|
|
n_tokens,
|
|
batch.token + i,
|
|
nullptr,
|
|
batch.pos + i,
|
|
batch.n_seq_id + i,
|
|
batch.seq_id + i,
|
|
batch.logits + i,
|
|
};
|
|
|
|
const int ret = llama_decode(ctx, batch_view);
|
|
metrics.on_decoded(slots);
|
|
|
|
if (ret != 0) {
|
|
if (n_batch == 1 || ret < 0) {
|
|
// if you get here, it means the KV cache is full - try increasing it via the context size
|
|
SRV_ERR("failed to decode the batch: KV cache is full - try increasing it via the context size, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
|
|
for (auto & slot : slots) {
|
|
slot.release();
|
|
send_error(slot, "Input prompt is too big compared to KV size. Please try increasing KV size.");
|
|
}
|
|
break; // break loop of n_batch
|
|
}
|
|
|
|
// retry with half the batch size to try to find a free slot in the KV cache
|
|
n_batch /= 2;
|
|
i -= n_batch;
|
|
|
|
SRV_WRN("failed to find free space in the KV cache, retrying with smaller batch size - try increasing it via the context size or enable defragmentation, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
|
|
|
|
continue; // continue loop of n_batch
|
|
}
|
|
|
|
for (auto & slot : slots) {
|
|
if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
|
|
continue; // continue loop of slots
|
|
}
|
|
|
|
if (slot.state == SLOT_STATE_DONE_PROMPT) {
|
|
if (slot.task_type == SERVER_TASK_TYPE_EMBEDDING) {
|
|
// prompt evaluated for embedding
|
|
send_embedding(slot, batch_view);
|
|
slot.release();
|
|
slot.i_batch = -1;
|
|
continue; // continue loop of slots
|
|
}
|
|
|
|
if (slot.task_type == SERVER_TASK_TYPE_RERANK) {
|
|
send_rerank(slot, batch_view);
|
|
slot.release();
|
|
slot.i_batch = -1;
|
|
continue; // continue loop of slots
|
|
}
|
|
|
|
// prompt evaluated for next-token prediction
|
|
slot.state = SLOT_STATE_GENERATING;
|
|
} else if (slot.state != SLOT_STATE_GENERATING) {
|
|
continue; // continue loop of slots
|
|
}
|
|
|
|
const int tok_idx = slot.i_batch - i;
|
|
|
|
llama_token id = common_sampler_sample(slot.smpl, ctx, tok_idx);
|
|
|
|
slot.i_batch = -1;
|
|
|
|
common_sampler_accept(slot.smpl, id, true);
|
|
|
|
slot.n_decoded += 1;
|
|
|
|
const int64_t t_current = ggml_time_us();
|
|
|
|
if (slot.n_decoded == 1) {
|
|
slot.t_start_generation = t_current;
|
|
slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3;
|
|
metrics.on_prompt_eval(slot);
|
|
}
|
|
|
|
slot.t_token_generation = (t_current - slot.t_start_generation) / 1e3;
|
|
|
|
completion_token_output result;
|
|
result.tok = id;
|
|
result.text_to_send = common_token_to_piece(ctx, result.tok, params_base.special);
|
|
result.prob = 1.0f; // TODO: set it here instead of doing inside populate_token_probs
|
|
|
|
if (slot.params.sampling.n_probs > 0) {
|
|
populate_token_probs(slot, result, slot.params.post_sampling_probs, params_base.special, tok_idx);
|
|
}
|
|
|
|
if (!process_token(result, slot)) {
|
|
// release slot because of stop condition
|
|
slot.release();
|
|
slot.print_timings();
|
|
send_final_response(slot);
|
|
metrics.on_prediction(slot);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// do speculative decoding
|
|
for (auto & slot : slots) {
|
|
if (!slot.is_processing() || !slot.can_speculate()) {
|
|
continue;
|
|
}
|
|
|
|
if (slot.state != SLOT_STATE_GENERATING) {
|
|
continue;
|
|
}
|
|
|
|
// determine the max draft that fits the current slot state
|
|
int n_draft_max = slot.params.speculative.n_max;
|
|
|
|
// note: n_past is not yet increased for the `id` token sampled above
|
|
// also, need to leave space for 1 extra token to allow context shifts
|
|
n_draft_max = std::min(n_draft_max, slot.n_ctx - slot.n_past - 2);
|
|
|
|
if (slot.n_remaining > 0) {
|
|
n_draft_max = std::min(n_draft_max, slot.n_remaining - 1);
|
|
}
|
|
|
|
SLT_DBG(slot, "max possible draft: %d\n", n_draft_max);
|
|
|
|
if (n_draft_max < slot.params.speculative.n_min) {
|
|
SLT_DBG(slot, "the max possible draft is too small: %d < %d - skipping speculative decoding\n", n_draft_max, slot.params.speculative.n_min);
|
|
|
|
continue;
|
|
}
|
|
|
|
llama_token id = slot.sampled;
|
|
|
|
struct common_speculative_params params_spec;
|
|
params_spec.n_draft = n_draft_max;
|
|
params_spec.n_reuse = llama_n_ctx(slot.ctx_dft) - slot.params.speculative.n_max;
|
|
params_spec.p_min = slot.params.speculative.p_min;
|
|
|
|
llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, slot.cache_tokens, id);
|
|
|
|
// ignore small drafts
|
|
if (slot.params.speculative.n_min > (int) draft.size()) {
|
|
SLT_DBG(slot, "ignoring small draft: %d < %d\n", (int) draft.size(), slot.params.speculative.n_min);
|
|
|
|
continue;
|
|
}
|
|
|
|
// construct the speculation batch
|
|
common_batch_clear(slot.batch_spec);
|
|
common_batch_add (slot.batch_spec, id, slot.n_past, { slot.id }, true);
|
|
|
|
for (size_t i = 0; i < draft.size(); ++i) {
|
|
common_batch_add(slot.batch_spec, draft[i], slot.n_past + 1 + i, { slot.id }, true);
|
|
}
|
|
|
|
SLT_DBG(slot, "decoding speculative batch, size = %d\n", slot.batch_spec.n_tokens);
|
|
|
|
llama_decode(ctx, slot.batch_spec);
|
|
|
|
// the accepted tokens from the speculation
|
|
const auto ids = common_sampler_sample_and_accept_n(slot.smpl, ctx, draft);
|
|
|
|
slot.n_past += ids.size();
|
|
slot.n_decoded += ids.size();
|
|
|
|
slot.cache_tokens.push_back(id);
|
|
slot.cache_tokens.insert(slot.cache_tokens.end(), ids.begin(), ids.end() - 1);
|
|
|
|
llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1);
|
|
|
|
for (size_t i = 0; i < ids.size(); ++i) {
|
|
completion_token_output result;
|
|
|
|
result.tok = ids[i];
|
|
result.text_to_send = common_token_to_piece(ctx, result.tok, params_base.special);
|
|
result.prob = 1.0f; // set later
|
|
|
|
// TODO: set result.probs
|
|
|
|
if (!process_token(result, slot)) {
|
|
// release slot because of stop condition
|
|
slot.release();
|
|
slot.print_timings();
|
|
send_final_response(slot);
|
|
metrics.on_prediction(slot);
|
|
break;
|
|
}
|
|
}
|
|
|
|
SLT_DBG(slot, "accepted %d/%d draft tokens, new n_past = %d\n", (int) ids.size() - 1, (int) draft.size(), slot.n_past);
|
|
}
|
|
}
|
|
|
|
SRV_DBG("%s", "run slots completed\n");
|
|
}
|
|
|
|
json model_meta() const {
|
|
return json {
|
|
{"vocab_type", llama_vocab_type (model)},
|
|
{"n_vocab", llama_n_vocab (model)},
|
|
{"n_ctx_train", llama_n_ctx_train (model)},
|
|
{"n_embd", llama_n_embd (model)},
|
|
{"n_params", llama_model_n_params(model)},
|
|
{"size", llama_model_size (model)},
|
|
};
|
|
}
|
|
};
|
|
|
|
static void log_server_request(const httplib::Request & req, const httplib::Response & res) {
|
|
// skip GH copilot requests when using default port
|
|
if (req.path == "/v1/health" || req.path == "/v1/completions") {
|
|
return;
|
|
}
|
|
|
|
LOG_INF("request: %s %s %s %d\n", req.method.c_str(), req.path.c_str(), req.remote_addr.c_str(), res.status);
|
|
|
|
LOG_DBG("request: %s\n", req.body.c_str());
|
|
LOG_DBG("response: %s\n", res.body.c_str());
|
|
}
|
|
|
|
std::function<void(int)> shutdown_handler;
|
|
std::atomic_flag is_terminating = ATOMIC_FLAG_INIT;
|
|
|
|
inline void signal_handler(int signal) {
|
|
if (is_terminating.test_and_set()) {
|
|
// in case it hangs, we can force terminate the server by hitting Ctrl+C twice
|
|
// this is for better developer experience, we can remove when the server is stable enough
|
|
fprintf(stderr, "Received second interrupt, terminating immediately.\n");
|
|
exit(1);
|
|
}
|
|
|
|
shutdown_handler(signal);
|
|
}
|
|
|
|
int main(int argc, char ** argv) {
|
|
// own arguments required by this example
|
|
common_params params;
|
|
|
|
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SERVER)) {
|
|
return 1;
|
|
}
|
|
|
|
common_init();
|
|
|
|
// struct that contains llama context and inference
|
|
server_context ctx_server;
|
|
|
|
llama_backend_init();
|
|
llama_numa_init(params.numa);
|
|
|
|
LOG_INF("system info: n_threads = %d, n_threads_batch = %d, total_threads = %d\n", params.cpuparams.n_threads, params.cpuparams_batch.n_threads, std::thread::hardware_concurrency());
|
|
LOG_INF("\n");
|
|
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
|
|
LOG_INF("\n");
|
|
|
|
std::unique_ptr<httplib::Server> svr;
|
|
#ifdef CPPHTTPLIB_OPENSSL_SUPPORT
|
|
if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
|
|
LOG_INF("Running with SSL: key = %s, cert = %s\n", params.ssl_file_key.c_str(), params.ssl_file_cert.c_str());
|
|
svr.reset(
|
|
new httplib::SSLServer(params.ssl_file_cert.c_str(), params.ssl_file_key.c_str())
|
|
);
|
|
} else {
|
|
LOG_INF("Running without SSL\n");
|
|
svr.reset(new httplib::Server());
|
|
}
|
|
#else
|
|
if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
|
|
LOG_ERR("Server is built without SSL support\n");
|
|
return 1;
|
|
}
|
|
svr.reset(new httplib::Server());
|
|
#endif
|
|
|
|
std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
|
|
|
|
svr->set_default_headers({{"Server", "llama.cpp"}});
|
|
svr->set_logger(log_server_request);
|
|
|
|
auto res_error = [](httplib::Response & res, const json & error_data) {
|
|
json final_response {{"error", error_data}};
|
|
res.set_content(safe_json_to_str(final_response), MIMETYPE_JSON);
|
|
res.status = json_value(error_data, "code", 500);
|
|
};
|
|
|
|
auto res_ok = [](httplib::Response & res, const json & data) {
|
|
res.set_content(safe_json_to_str(data), MIMETYPE_JSON);
|
|
res.status = 200;
|
|
};
|
|
|
|
svr->set_exception_handler([&res_error](const httplib::Request &, httplib::Response & res, const std::exception_ptr & ep) {
|
|
std::string message;
|
|
try {
|
|
std::rethrow_exception(ep);
|
|
} catch (const std::exception & e) {
|
|
message = e.what();
|
|
} catch (...) {
|
|
message = "Unknown Exception";
|
|
}
|
|
|
|
json formatted_error = format_error_response(message, ERROR_TYPE_SERVER);
|
|
LOG_WRN("got exception: %s\n", formatted_error.dump().c_str());
|
|
res_error(res, formatted_error);
|
|
});
|
|
|
|
svr->set_error_handler([&res_error](const httplib::Request &, httplib::Response & res) {
|
|
if (res.status == 404) {
|
|
res_error(res, format_error_response("File Not Found", ERROR_TYPE_NOT_FOUND));
|
|
}
|
|
// for other error codes, we skip processing here because it's already done by res_error()
|
|
});
|
|
|
|
// set timeouts and change hostname and port
|
|
svr->set_read_timeout (params.timeout_read);
|
|
svr->set_write_timeout(params.timeout_write);
|
|
|
|
std::unordered_map<std::string, std::string> log_data;
|
|
|
|
log_data["hostname"] = params.hostname;
|
|
log_data["port"] = std::to_string(params.port);
|
|
|
|
if (params.api_keys.size() == 1) {
|
|
auto key = params.api_keys[0];
|
|
log_data["api_key"] = "api_key: ****" + key.substr(std::max((int)(key.length() - 4), 0));
|
|
} else if (params.api_keys.size() > 1) {
|
|
log_data["api_key"] = "api_key: " + std::to_string(params.api_keys.size()) + " keys loaded";
|
|
}
|
|
|
|
// Necessary similarity of prompt for slot selection
|
|
ctx_server.slot_prompt_similarity = params.slot_prompt_similarity;
|
|
|
|
//
|
|
// Middlewares
|
|
//
|
|
|
|
auto middleware_validate_api_key = [¶ms, &res_error](const httplib::Request & req, httplib::Response & res) {
|
|
static const std::unordered_set<std::string> public_endpoints = {
|
|
"/health",
|
|
"/models",
|
|
"/v1/models",
|
|
};
|
|
|
|
// If API key is not set, skip validation
|
|
if (params.api_keys.empty()) {
|
|
return true;
|
|
}
|
|
|
|
// If path is public or is static file, skip validation
|
|
if (public_endpoints.find(req.path) != public_endpoints.end() || req.path == "/") {
|
|
return true;
|
|
}
|
|
|
|
// Check for API key in the header
|
|
auto auth_header = req.get_header_value("Authorization");
|
|
|
|
std::string prefix = "Bearer ";
|
|
if (auth_header.substr(0, prefix.size()) == prefix) {
|
|
std::string received_api_key = auth_header.substr(prefix.size());
|
|
if (std::find(params.api_keys.begin(), params.api_keys.end(), received_api_key) != params.api_keys.end()) {
|
|
return true; // API key is valid
|
|
}
|
|
}
|
|
|
|
// API key is invalid or not provided
|
|
res_error(res, format_error_response("Invalid API Key", ERROR_TYPE_AUTHENTICATION));
|
|
|
|
LOG_WRN("Unauthorized: Invalid API Key\n");
|
|
|
|
return false;
|
|
};
|
|
|
|
auto middleware_server_state = [&res_error, &state](const httplib::Request & req, httplib::Response & res) {
|
|
server_state current_state = state.load();
|
|
if (current_state == SERVER_STATE_LOADING_MODEL) {
|
|
auto tmp = string_split<std::string>(req.path, '.');
|
|
if (req.path == "/" || tmp.back() == "html") {
|
|
res.set_content(reinterpret_cast<const char*>(loading_html), loading_html_len, "text/html; charset=utf-8");
|
|
res.status = 503;
|
|
} else {
|
|
res_error(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE));
|
|
}
|
|
return false;
|
|
}
|
|
return true;
|
|
};
|
|
|
|
// register server middlewares
|
|
svr->set_pre_routing_handler([&middleware_validate_api_key, &middleware_server_state](const httplib::Request & req, httplib::Response & res) {
|
|
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
|
// If this is OPTIONS request, skip validation because browsers don't include Authorization header
|
|
if (req.method == "OPTIONS") {
|
|
res.set_header("Access-Control-Allow-Credentials", "true");
|
|
res.set_header("Access-Control-Allow-Methods", "GET, POST");
|
|
res.set_header("Access-Control-Allow-Headers", "*");
|
|
res.set_content("", "text/html"); // blank response, no data
|
|
return httplib::Server::HandlerResponse::Handled; // skip further processing
|
|
}
|
|
if (!middleware_server_state(req, res)) {
|
|
return httplib::Server::HandlerResponse::Handled;
|
|
}
|
|
if (!middleware_validate_api_key(req, res)) {
|
|
return httplib::Server::HandlerResponse::Handled;
|
|
}
|
|
return httplib::Server::HandlerResponse::Unhandled;
|
|
});
|
|
|
|
//
|
|
// Route handlers (or controllers)
|
|
//
|
|
|
|
const auto handle_health = [&](const httplib::Request &, httplib::Response & res) {
|
|
// error and loading states are handled by middleware
|
|
json health = {{"status", "ok"}};
|
|
res_ok(res, health);
|
|
};
|
|
|
|
const auto handle_slots = [&](const httplib::Request & req, httplib::Response & res) {
|
|
if (!params.endpoint_slots) {
|
|
res_error(res, format_error_response("This server does not support slots endpoint. Start it with `--slots`", ERROR_TYPE_NOT_SUPPORTED));
|
|
return;
|
|
}
|
|
|
|
// request slots data using task queue
|
|
server_task task(SERVER_TASK_TYPE_METRICS);
|
|
task.id = ctx_server.queue_tasks.get_new_id();
|
|
ctx_server.queue_results.add_waiting_task_id(task.id);
|
|
ctx_server.queue_tasks.post(task, true); // high-priority task
|
|
|
|
// get the result
|
|
server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
|
|
ctx_server.queue_results.remove_waiting_task_id(task.id);
|
|
|
|
if (result->is_error()) {
|
|
res_error(res, result->to_json());
|
|
return;
|
|
}
|
|
|
|
// TODO: get rid of this dynamic_cast
|
|
auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
|
|
GGML_ASSERT(res_metrics != nullptr);
|
|
|
|
// optionally return "fail_on_no_slot" error
|
|
if (req.has_param("fail_on_no_slot")) {
|
|
if (res_metrics->n_idle_slots == 0) {
|
|
res_error(res, format_error_response("no slot available", ERROR_TYPE_UNAVAILABLE));
|
|
return;
|
|
}
|
|
}
|
|
|
|
res_ok(res, res_metrics->slots_data);
|
|
};
|
|
|
|
const auto handle_metrics = [&](const httplib::Request &, httplib::Response & res) {
|
|
if (!params.endpoint_metrics) {
|
|
res_error(res, format_error_response("This server does not support metrics endpoint. Start it with `--metrics`", ERROR_TYPE_NOT_SUPPORTED));
|
|
return;
|
|
}
|
|
|
|
// request slots data using task queue
|
|
server_task task(SERVER_TASK_TYPE_METRICS);
|
|
task.id = ctx_server.queue_tasks.get_new_id();
|
|
task.metrics_reset_bucket = true;
|
|
|
|
ctx_server.queue_results.add_waiting_task_id(task.id);
|
|
ctx_server.queue_tasks.post(task, true); // high-priority task
|
|
|
|
// get the result
|
|
server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
|
|
ctx_server.queue_results.remove_waiting_task_id(task.id);
|
|
|
|
if (result->is_error()) {
|
|
res_error(res, result->to_json());
|
|
return;
|
|
}
|
|
|
|
// TODO: get rid of this dynamic_cast
|
|
auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
|
|
GGML_ASSERT(res_metrics != nullptr);
|
|
|
|
// metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
|
|
json all_metrics_def = json {
|
|
{"counter", {{
|
|
{"name", "prompt_tokens_total"},
|
|
{"help", "Number of prompt tokens processed."},
|
|
{"value", (uint64_t) res_metrics->n_prompt_tokens_processed_total}
|
|
}, {
|
|
{"name", "prompt_seconds_total"},
|
|
{"help", "Prompt process time"},
|
|
{"value", (uint64_t) res_metrics->t_prompt_processing_total / 1.e3}
|
|
}, {
|
|
{"name", "tokens_predicted_total"},
|
|
{"help", "Number of generation tokens processed."},
|
|
{"value", (uint64_t) res_metrics->n_tokens_predicted_total}
|
|
}, {
|
|
{"name", "tokens_predicted_seconds_total"},
|
|
{"help", "Predict process time"},
|
|
{"value", (uint64_t) res_metrics->t_tokens_generation_total / 1.e3}
|
|
}, {
|
|
{"name", "n_decode_total"},
|
|
{"help", "Total number of llama_decode() calls"},
|
|
{"value", res_metrics->n_decode_total}
|
|
}, {
|
|
{"name", "n_busy_slots_per_decode"},
|
|
{"help", "Average number of busy slots per llama_decode() call"},
|
|
{"value", (float) res_metrics->n_busy_slots_total / (float) res_metrics->n_decode_total}
|
|
}}},
|
|
{"gauge", {{
|
|
{"name", "prompt_tokens_seconds"},
|
|
{"help", "Average prompt throughput in tokens/s."},
|
|
{"value", res_metrics->n_prompt_tokens_processed ? 1.e3 / res_metrics->t_prompt_processing * res_metrics->n_prompt_tokens_processed : 0.}
|
|
},{
|
|
{"name", "predicted_tokens_seconds"},
|
|
{"help", "Average generation throughput in tokens/s."},
|
|
{"value", res_metrics->n_tokens_predicted ? 1.e3 / res_metrics->t_tokens_generation * res_metrics->n_tokens_predicted : 0.}
|
|
},{
|
|
{"name", "kv_cache_usage_ratio"},
|
|
{"help", "KV-cache usage. 1 means 100 percent usage."},
|
|
{"value", 1. * res_metrics->kv_cache_used_cells / params.n_ctx}
|
|
},{
|
|
{"name", "kv_cache_tokens"},
|
|
{"help", "KV-cache tokens."},
|
|
{"value", (uint64_t) res_metrics->kv_cache_tokens_count}
|
|
},{
|
|
{"name", "requests_processing"},
|
|
{"help", "Number of request processing."},
|
|
{"value", (uint64_t) res_metrics->n_processing_slots}
|
|
},{
|
|
{"name", "requests_deferred"},
|
|
{"help", "Number of request deferred."},
|
|
{"value", (uint64_t) res_metrics->n_tasks_deferred}
|
|
}}}
|
|
};
|
|
|
|
std::stringstream prometheus;
|
|
|
|
for (const auto & el : all_metrics_def.items()) {
|
|
const auto & type = el.key();
|
|
const auto & metrics_def = el.value();
|
|
|
|
for (const auto & metric_def : metrics_def) {
|
|
const std::string name = metric_def.at("name");
|
|
const std::string help = metric_def.at("help");
|
|
|
|
auto value = json_value(metric_def, "value", 0.);
|
|
prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
|
|
<< "# TYPE llamacpp:" << name << " " << type << "\n"
|
|
<< "llamacpp:" << name << " " << value << "\n";
|
|
}
|
|
}
|
|
|
|
res.set_header("Process-Start-Time-Unix", std::to_string(res_metrics->t_start));
|
|
|
|
res.set_content(prometheus.str(), "text/plain; version=0.0.4");
|
|
res.status = 200; // HTTP OK
|
|
};
|
|
|
|
const auto handle_slots_save = [&ctx_server, &res_error, &res_ok, ¶ms](const httplib::Request & req, httplib::Response & res, int id_slot) {
|
|
json request_data = json::parse(req.body);
|
|
std::string filename = request_data.at("filename");
|
|
if (!fs_validate_filename(filename)) {
|
|
res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
|
|
return;
|
|
}
|
|
std::string filepath = params.slot_save_path + filename;
|
|
|
|
server_task task(SERVER_TASK_TYPE_SLOT_SAVE);
|
|
task.id = ctx_server.queue_tasks.get_new_id();
|
|
task.slot_action.slot_id = id_slot;
|
|
task.slot_action.filename = filename;
|
|
task.slot_action.filepath = filepath;
|
|
|
|
ctx_server.queue_results.add_waiting_task_id(task.id);
|
|
ctx_server.queue_tasks.post(task);
|
|
|
|
server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
|
|
ctx_server.queue_results.remove_waiting_task_id(task.id);
|
|
|
|
if (result->is_error()) {
|
|
res_error(res, result->to_json());
|
|
return;
|
|
}
|
|
|
|
res_ok(res, result->to_json());
|
|
};
|
|
|
|
const auto handle_slots_restore = [&ctx_server, &res_error, &res_ok, ¶ms](const httplib::Request & req, httplib::Response & res, int id_slot) {
|
|
json request_data = json::parse(req.body);
|
|
std::string filename = request_data.at("filename");
|
|
if (!fs_validate_filename(filename)) {
|
|
res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
|
|
return;
|
|
}
|
|
std::string filepath = params.slot_save_path + filename;
|
|
|
|
server_task task(SERVER_TASK_TYPE_SLOT_RESTORE);
|
|
task.id = ctx_server.queue_tasks.get_new_id();
|
|
task.slot_action.slot_id = id_slot;
|
|
task.slot_action.filename = filename;
|
|
task.slot_action.filepath = filepath;
|
|
|
|
ctx_server.queue_results.add_waiting_task_id(task.id);
|
|
ctx_server.queue_tasks.post(task);
|
|
|
|
server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
|
|
ctx_server.queue_results.remove_waiting_task_id(task.id);
|
|
|
|
if (result->is_error()) {
|
|
res_error(res, result->to_json());
|
|
return;
|
|
}
|
|
|
|
GGML_ASSERT(dynamic_cast<server_task_result_slot_save_load*>(result.get()) != nullptr);
|
|
res_ok(res, result->to_json());
|
|
};
|
|
|
|
const auto handle_slots_erase = [&ctx_server, &res_error, &res_ok](const httplib::Request & /* req */, httplib::Response & res, int id_slot) {
|
|
server_task task(SERVER_TASK_TYPE_SLOT_ERASE);
|
|
task.id = ctx_server.queue_tasks.get_new_id();
|
|
task.slot_action.slot_id = id_slot;
|
|
|
|
ctx_server.queue_results.add_waiting_task_id(task.id);
|
|
ctx_server.queue_tasks.post(task);
|
|
|
|
server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
|
|
ctx_server.queue_results.remove_waiting_task_id(task.id);
|
|
|
|
if (result->is_error()) {
|
|
res_error(res, result->to_json());
|
|
return;
|
|
}
|
|
|
|
GGML_ASSERT(dynamic_cast<server_task_result_slot_erase*>(result.get()) != nullptr);
|
|
res_ok(res, result->to_json());
|
|
};
|
|
|
|
const auto handle_slots_action = [¶ms, &res_error, &handle_slots_save, &handle_slots_restore, &handle_slots_erase](const httplib::Request & req, httplib::Response & res) {
|
|
if (params.slot_save_path.empty()) {
|
|
res_error(res, format_error_response("This server does not support slots action. Start it with `--slot-save-path`", ERROR_TYPE_NOT_SUPPORTED));
|
|
return;
|
|
}
|
|
|
|
std::string id_slot_str = req.path_params.at("id_slot");
|
|
int id_slot;
|
|
|
|
try {
|
|
id_slot = std::stoi(id_slot_str);
|
|
} catch (const std::exception &) {
|
|
res_error(res, format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST));
|
|
return;
|
|
}
|
|
|
|
std::string action = req.get_param_value("action");
|
|
|
|
if (action == "save") {
|
|
handle_slots_save(req, res, id_slot);
|
|
} else if (action == "restore") {
|
|
handle_slots_restore(req, res, id_slot);
|
|
} else if (action == "erase") {
|
|
handle_slots_erase(req, res, id_slot);
|
|
} else {
|
|
res_error(res, format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST));
|
|
}
|
|
};
|
|
|
|
const auto handle_props = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
|
|
// this endpoint is publicly available, please only return what is safe to be exposed
|
|
json data = {
|
|
{ "default_generation_settings", ctx_server.default_generation_settings_for_props },
|
|
{ "total_slots", ctx_server.params_base.n_parallel },
|
|
{ "model_path", ctx_server.params_base.model },
|
|
{ "chat_template", llama_get_chat_template(ctx_server.model) },
|
|
};
|
|
|
|
res_ok(res, data);
|
|
};
|
|
|
|
const auto handle_props_change = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
|
|
if (!ctx_server.params_base.endpoint_props) {
|
|
res_error(res, format_error_response("This server does not support changing global properties. Start it with `--props`", ERROR_TYPE_NOT_SUPPORTED));
|
|
return;
|
|
}
|
|
|
|
json data = json::parse(req.body);
|
|
|
|
// update any props here
|
|
|
|
res_ok(res, {{ "success", true }});
|
|
};
|
|
|
|
// handle completion-like requests (completion, chat, infill)
|
|
// we can optionally provide a custom format for partial results and final results
|
|
const auto handle_completions_generic = [&ctx_server, &res_error, &res_ok](
|
|
server_task_type type,
|
|
json & data,
|
|
httplib::Response & res,
|
|
bool oaicompat = false,
|
|
bool oaicompat_chat = false) {
|
|
GGML_ASSERT(type == SERVER_TASK_TYPE_COMPLETION || type == SERVER_TASK_TYPE_INFILL);
|
|
|
|
if (ctx_server.params_base.embedding) {
|
|
res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
|
|
return;
|
|
}
|
|
|
|
auto completion_id = gen_chatcmplid();
|
|
std::vector<server_task> tasks;
|
|
|
|
try {
|
|
std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.ctx, data.at("prompt"), true, true);
|
|
tasks.reserve(tokenized_prompts.size());
|
|
for (size_t i = 0; i < tokenized_prompts.size(); i++) {
|
|
server_task task = server_task(type);
|
|
|
|
task.id = ctx_server.queue_tasks.get_new_id();
|
|
task.index = i;
|
|
|
|
task.prompt_tokens = std::move(tokenized_prompts[i]);
|
|
task.params = server_task::params_from_json_cmpl(ctx_server.model, ctx_server.ctx, ctx_server.params_base, data);
|
|
task.id_selected_slot = json_value(data, "id_slot", -1);
|
|
|
|
// OAI-compat
|
|
task.params.oaicompat = oaicompat;
|
|
task.params.oaicompat_chat = oaicompat_chat;
|
|
task.params.oaicompat_cmpl_id = completion_id;
|
|
// oaicompat_model is already populated by params_from_json_cmpl
|
|
|
|
tasks.push_back(task);
|
|
}
|
|
} catch (const std::exception & e) {
|
|
res_error(res, format_error_response(e.what(), ERROR_TYPE_INVALID_REQUEST));
|
|
return;
|
|
}
|
|
|
|
ctx_server.queue_results.add_waiting_tasks(tasks);
|
|
ctx_server.queue_tasks.post(tasks);
|
|
|
|
bool stream = json_value(data, "stream", false);
|
|
const auto task_ids = server_task::get_list_id(tasks);
|
|
|
|
if (!stream) {
|
|
ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
|
|
if (results.size() == 1) {
|
|
// single result
|
|
res_ok(res, results[0]->to_json());
|
|
} else {
|
|
// multiple results (multitask)
|
|
json arr = json::array();
|
|
for (auto & res : results) {
|
|
arr.push_back(res->to_json());
|
|
}
|
|
res_ok(res, arr);
|
|
}
|
|
}, [&](const json & error_data) {
|
|
res_error(res, error_data);
|
|
});
|
|
|
|
ctx_server.queue_results.remove_waiting_task_ids(task_ids);
|
|
} else {
|
|
const auto chunked_content_provider = [task_ids, &ctx_server, oaicompat](size_t, httplib::DataSink & sink) {
|
|
ctx_server.receive_cmpl_results_stream(task_ids, [&](server_task_result_ptr & result) -> bool {
|
|
json res_json = result->to_json();
|
|
if (res_json.is_array()) {
|
|
for (const auto & res : res_json) {
|
|
if (!server_sent_event(sink, "data", res)) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
} else {
|
|
return server_sent_event(sink, "data", res_json);
|
|
}
|
|
}, [&](const json & error_data) {
|
|
server_sent_event(sink, "error", error_data);
|
|
});
|
|
if (oaicompat) {
|
|
static const std::string ev_done = "data: [DONE]\n\n";
|
|
sink.write(ev_done.data(), ev_done.size());
|
|
}
|
|
sink.done();
|
|
return false;
|
|
};
|
|
|
|
auto on_complete = [task_ids, &ctx_server] (bool) {
|
|
ctx_server.queue_results.remove_waiting_task_ids(task_ids);
|
|
};
|
|
|
|
res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
|
|
}
|
|
};
|
|
|
|
const auto handle_completions = [&handle_completions_generic](const httplib::Request & req, httplib::Response & res) {
|
|
json data = json::parse(req.body);
|
|
return handle_completions_generic(
|
|
SERVER_TASK_TYPE_COMPLETION,
|
|
data,
|
|
res,
|
|
/* oaicompat */ false,
|
|
/* oaicompat_chat */ false);
|
|
};
|
|
|
|
const auto handle_infill = [&ctx_server, &res_error, &handle_completions_generic](const httplib::Request & req, httplib::Response & res) {
|
|
// check model compatibility
|
|
std::string err;
|
|
if (llama_token_fim_pre(ctx_server.model) == LLAMA_TOKEN_NULL) {
|
|
err += "prefix token is missing. ";
|
|
}
|
|
if (llama_token_fim_suf(ctx_server.model) == LLAMA_TOKEN_NULL) {
|
|
err += "suffix token is missing. ";
|
|
}
|
|
if (llama_token_fim_mid(ctx_server.model) == LLAMA_TOKEN_NULL) {
|
|
err += "middle token is missing. ";
|
|
}
|
|
if (!err.empty()) {
|
|
res_error(res, format_error_response(string_format("Infill is not supported by this model: %s", err.c_str()), ERROR_TYPE_NOT_SUPPORTED));
|
|
return;
|
|
}
|
|
|
|
json data = json::parse(req.body);
|
|
|
|
// validate input
|
|
if (data.contains("prompt") && !data.at("prompt").is_string()) {
|
|
// prompt is optional
|
|
res_error(res, format_error_response("\"prompt\" must be a string", ERROR_TYPE_INVALID_REQUEST));
|
|
}
|
|
|
|
if (!data.contains("input_prefix")) {
|
|
res_error(res, format_error_response("\"input_prefix\" is required", ERROR_TYPE_INVALID_REQUEST));
|
|
}
|
|
|
|
if (!data.contains("input_suffix")) {
|
|
res_error(res, format_error_response("\"input_suffix\" is required", ERROR_TYPE_INVALID_REQUEST));
|
|
}
|
|
|
|
if (data.contains("input_extra") && !data.at("input_extra").is_array()) {
|
|
// input_extra is optional
|
|
res_error(res, format_error_response("\"input_extra\" must be an array of {\"filename\": string, \"text\": string}", ERROR_TYPE_INVALID_REQUEST));
|
|
return;
|
|
}
|
|
|
|
json input_extra = json_value(data, "input_extra", json::array());
|
|
for (const auto & chunk : input_extra) {
|
|
// { "text": string, "filename": string }
|
|
if (!chunk.contains("text") || !chunk.at("text").is_string()) {
|
|
res_error(res, format_error_response("extra_context chunk must contain a \"text\" field with a string value", ERROR_TYPE_INVALID_REQUEST));
|
|
return;
|
|
}
|
|
// filename is optional
|
|
if (chunk.contains("filename") && !chunk.at("filename").is_string()) {
|
|
res_error(res, format_error_response("extra_context chunk's \"filename\" field must be a string", ERROR_TYPE_INVALID_REQUEST));
|
|
return;
|
|
}
|
|
}
|
|
data["input_extra"] = input_extra; // default to empty array if it's not exist
|
|
|
|
std::string prompt = json_value(data, "prompt", std::string());
|
|
std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.ctx, prompt, true, true);
|
|
SRV_DBG("creating infill tasks, n_prompts = %d\n", (int) tokenized_prompts.size());
|
|
data["prompt"] = format_infill(
|
|
ctx_server.ctx,
|
|
data.at("input_prefix"),
|
|
data.at("input_suffix"),
|
|
data.at("input_extra"),
|
|
ctx_server.params_base.n_batch,
|
|
ctx_server.params_base.n_predict,
|
|
ctx_server.slots[0].n_ctx, // TODO: there should be a better way
|
|
ctx_server.params_base.spm_infill,
|
|
tokenized_prompts[0]
|
|
);
|
|
|
|
return handle_completions_generic(SERVER_TASK_TYPE_INFILL, data, res);
|
|
};
|
|
|
|
const auto handle_chat_completions = [&ctx_server, ¶ms, &res_error, &handle_completions_generic](const httplib::Request & req, httplib::Response & res) {
|
|
if (ctx_server.params_base.embedding) {
|
|
res_error(res, format_error_response("This server does not support completions. Start it without `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
|
|
return;
|
|
}
|
|
|
|
json data = oaicompat_completion_params_parse(ctx_server.model, json::parse(req.body), params.chat_template);
|
|
return handle_completions_generic(
|
|
SERVER_TASK_TYPE_COMPLETION,
|
|
data,
|
|
res,
|
|
/* oaicompat */ true,
|
|
/* oaicompat_chat */ true);
|
|
};
|
|
|
|
const auto handle_models = [¶ms, &ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
|
|
json models = {
|
|
{"object", "list"},
|
|
{"data", {
|
|
{
|
|
{"id", params.model_alias},
|
|
{"object", "model"},
|
|
{"created", std::time(0)},
|
|
{"owned_by", "llamacpp"},
|
|
{"meta", ctx_server.model_meta()}
|
|
},
|
|
}}
|
|
};
|
|
|
|
res_ok(res, models);
|
|
};
|
|
|
|
const auto handle_tokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
|
|
const json body = json::parse(req.body);
|
|
|
|
json tokens_response = json::array();
|
|
if (body.count("content") != 0) {
|
|
const bool add_special = json_value(body, "add_special", false);
|
|
const bool with_pieces = json_value(body, "with_pieces", false);
|
|
|
|
llama_tokens tokens = tokenize_mixed(ctx_server.ctx, body.at("content"), add_special, true);
|
|
|
|
if (with_pieces) {
|
|
for (const auto& token : tokens) {
|
|
std::string piece = common_token_to_piece(ctx_server.ctx, token);
|
|
json piece_json;
|
|
|
|
// Check if the piece is valid UTF-8
|
|
if (is_valid_utf8(piece)) {
|
|
piece_json = piece;
|
|
} else {
|
|
// If not valid UTF-8, store as array of byte values
|
|
piece_json = json::array();
|
|
for (unsigned char c : piece) {
|
|
piece_json.push_back(static_cast<int>(c));
|
|
}
|
|
}
|
|
|
|
tokens_response.push_back({
|
|
{"id", token},
|
|
{"piece", piece_json}
|
|
});
|
|
}
|
|
} else {
|
|
tokens_response = tokens;
|
|
}
|
|
}
|
|
|
|
const json data = format_tokenizer_response(tokens_response);
|
|
res_ok(res, data);
|
|
};
|
|
|
|
const auto handle_detokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
|
|
const json body = json::parse(req.body);
|
|
|
|
std::string content;
|
|
if (body.count("tokens") != 0) {
|
|
const llama_tokens tokens = body.at("tokens");
|
|
content = tokens_to_str(ctx_server.ctx, tokens.cbegin(), tokens.cend());
|
|
}
|
|
|
|
const json data = format_detokenized_response(content);
|
|
res_ok(res, data);
|
|
};
|
|
|
|
const auto handle_embeddings_impl = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res, bool oaicompat) {
|
|
const json body = json::parse(req.body);
|
|
|
|
if (oaicompat && llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) {
|
|
res_error(res, format_error_response("Pooling type 'none' is not OAI compatible. Please use a different pooling type", ERROR_TYPE_INVALID_REQUEST));
|
|
return;
|
|
}
|
|
|
|
// for the shape of input/content, see tokenize_input_prompts()
|
|
json prompt;
|
|
if (body.count("input") != 0) {
|
|
prompt = body.at("input");
|
|
} else if (body.contains("content")) {
|
|
oaicompat = false;
|
|
prompt = body.at("content");
|
|
} else {
|
|
res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
|
|
return;
|
|
}
|
|
|
|
std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.ctx, prompt, true, true);
|
|
for (const auto & tokens : tokenized_prompts) {
|
|
// this check is necessary for models that do not add BOS token to the input
|
|
if (tokens.empty()) {
|
|
res_error(res, format_error_response("Input content cannot be empty", ERROR_TYPE_INVALID_REQUEST));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// create and queue the task
|
|
json responses = json::array();
|
|
bool error = false;
|
|
{
|
|
std::vector<server_task> tasks;
|
|
for (size_t i = 0; i < tokenized_prompts.size(); i++) {
|
|
server_task task = server_task(SERVER_TASK_TYPE_EMBEDDING);
|
|
|
|
task.id = ctx_server.queue_tasks.get_new_id();
|
|
task.index = i;
|
|
task.prompt_tokens = std::move(tokenized_prompts[i]);
|
|
|
|
// OAI-compat
|
|
task.params.oaicompat = oaicompat;
|
|
|
|
tasks.push_back(task);
|
|
}
|
|
|
|
ctx_server.queue_results.add_waiting_tasks(tasks);
|
|
ctx_server.queue_tasks.post(tasks);
|
|
|
|
// get the result
|
|
std::unordered_set<int> task_ids = server_task::get_list_id(tasks);
|
|
|
|
ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
|
|
for (auto & res : results) {
|
|
GGML_ASSERT(dynamic_cast<server_task_result_embd*>(res.get()) != nullptr);
|
|
responses.push_back(res->to_json());
|
|
}
|
|
}, [&](const json & error_data) {
|
|
res_error(res, error_data);
|
|
error = true;
|
|
});
|
|
|
|
ctx_server.queue_results.remove_waiting_task_ids(task_ids);
|
|
}
|
|
|
|
if (error) {
|
|
return;
|
|
}
|
|
|
|
// write JSON response
|
|
json root = oaicompat ? format_embeddings_response_oaicompat(body, responses) : json(responses);
|
|
res_ok(res, root);
|
|
};
|
|
|
|
const auto handle_embeddings = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
|
|
handle_embeddings_impl(req, res, false);
|
|
};
|
|
|
|
const auto handle_embeddings_oai = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
|
|
handle_embeddings_impl(req, res, true);
|
|
};
|
|
|
|
const auto handle_rerank = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
|
|
if (!ctx_server.params_base.reranking || ctx_server.params_base.embedding) {
|
|
res_error(res, format_error_response("This server does not support reranking. Start it with `--reranking` and without `--embedding`", ERROR_TYPE_NOT_SUPPORTED));
|
|
return;
|
|
}
|
|
|
|
const json body = json::parse(req.body);
|
|
|
|
// TODO: implement
|
|
//int top_n = 1;
|
|
//if (body.count("top_n") != 1) {
|
|
// top_n = body.at("top_n");
|
|
//} else {
|
|
// res_error(res, format_error_response("\"top_n\" must be provided", ERROR_TYPE_INVALID_REQUEST));
|
|
// return;
|
|
//}
|
|
|
|
json query;
|
|
if (body.count("query") == 1) {
|
|
query = body.at("query");
|
|
if (!query.is_string()) {
|
|
res_error(res, format_error_response("\"query\" must be a string", ERROR_TYPE_INVALID_REQUEST));
|
|
return;
|
|
}
|
|
} else {
|
|
res_error(res, format_error_response("\"query\" must be provided", ERROR_TYPE_INVALID_REQUEST));
|
|
return;
|
|
}
|
|
|
|
std::vector<std::string> documents = json_value(body, "documents", std::vector<std::string>());
|
|
if (documents.empty()) {
|
|
res_error(res, format_error_response("\"documents\" must be a non-empty string array", ERROR_TYPE_INVALID_REQUEST));
|
|
return;
|
|
}
|
|
|
|
llama_tokens tokenized_query = tokenize_input_prompts(ctx_server.ctx, query, /* add_special */ false, true)[0];
|
|
|
|
// create and queue the task
|
|
json responses = json::array();
|
|
bool error = false;
|
|
{
|
|
std::vector<server_task> tasks;
|
|
std::vector<llama_tokens> tokenized_docs = tokenize_input_prompts(ctx_server.ctx, documents, /* add_special */ false, true);
|
|
tasks.reserve(tokenized_docs.size());
|
|
for (size_t i = 0; i < tokenized_docs.size(); i++) {
|
|
server_task task = server_task(SERVER_TASK_TYPE_RERANK);
|
|
task.id = ctx_server.queue_tasks.get_new_id();
|
|
task.index = i;
|
|
task.prompt_tokens = format_rerank(ctx_server.model, tokenized_query, tokenized_docs[i]);
|
|
tasks.push_back(task);
|
|
}
|
|
|
|
ctx_server.queue_results.add_waiting_tasks(tasks);
|
|
ctx_server.queue_tasks.post(tasks);
|
|
|
|
// get the result
|
|
std::unordered_set<int> task_ids = server_task::get_list_id(tasks);
|
|
|
|
ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
|
|
for (auto & res : results) {
|
|
GGML_ASSERT(dynamic_cast<server_task_result_rerank*>(res.get()) != nullptr);
|
|
responses.push_back(res->to_json());
|
|
}
|
|
}, [&](const json & error_data) {
|
|
res_error(res, error_data);
|
|
error = true;
|
|
});
|
|
}
|
|
|
|
if (error) {
|
|
return;
|
|
}
|
|
|
|
// write JSON response
|
|
json root = format_response_rerank(body, responses);
|
|
res_ok(res, root);
|
|
};
|
|
|
|
const auto handle_lora_adapters_list = [&](const httplib::Request &, httplib::Response & res) {
|
|
json result = json::array();
|
|
for (size_t i = 0; i < ctx_server.loras.size(); ++i) {
|
|
auto & lora = ctx_server.loras[i];
|
|
result.push_back({
|
|
{"id", i},
|
|
{"path", lora.path},
|
|
{"scale", lora.scale},
|
|
});
|
|
}
|
|
res_ok(res, result);
|
|
res.status = 200; // HTTP OK
|
|
};
|
|
|
|
const auto handle_lora_adapters_apply = [&](const httplib::Request & req, httplib::Response & res) {
|
|
const std::vector<json> body = json::parse(req.body);
|
|
int max_idx = ctx_server.loras.size();
|
|
|
|
// clear existing value
|
|
for (auto & lora : ctx_server.loras) {
|
|
lora.scale = 0.0f;
|
|
}
|
|
|
|
// set value
|
|
for (auto entry : body) {
|
|
int id = entry.at("id");
|
|
float scale = entry.at("scale");
|
|
if (0 <= id && id < max_idx) {
|
|
ctx_server.loras[id].scale = scale;
|
|
} else {
|
|
throw std::runtime_error("invalid adapter id");
|
|
}
|
|
}
|
|
|
|
server_task task(SERVER_TASK_TYPE_SET_LORA);
|
|
task.id = ctx_server.queue_tasks.get_new_id();
|
|
ctx_server.queue_results.add_waiting_task_id(task.id);
|
|
ctx_server.queue_tasks.post(task);
|
|
|
|
server_task_result_ptr result = ctx_server.queue_results.recv(task.id);
|
|
ctx_server.queue_results.remove_waiting_task_id(task.id);
|
|
|
|
if (result->is_error()) {
|
|
res_error(res, result->to_json());
|
|
return;
|
|
}
|
|
|
|
GGML_ASSERT(dynamic_cast<server_task_result_apply_lora*>(result.get()) != nullptr);
|
|
res_ok(res, result->to_json());
|
|
};
|
|
|
|
//
|
|
// Router
|
|
//
|
|
|
|
if (!params.webui) {
|
|
LOG_INF("Web UI is disabled\n");
|
|
} else {
|
|
// register static assets routes
|
|
if (!params.public_path.empty()) {
|
|
// Set the base directory for serving static files
|
|
bool is_found = svr->set_mount_point("/", params.public_path);
|
|
if (!is_found) {
|
|
LOG_ERR("%s: static assets path not found: %s\n", __func__, params.public_path.c_str());
|
|
return 1;
|
|
}
|
|
} else {
|
|
// using embedded static index.html
|
|
svr->Get("/", [](const httplib::Request & req, httplib::Response & res) {
|
|
if (req.get_header_value("Accept-Encoding").find("gzip") == std::string::npos) {
|
|
res.set_content("Error: gzip is not supported by this browser", "text/plain");
|
|
} else {
|
|
res.set_header("Content-Encoding", "gzip");
|
|
res.set_content(reinterpret_cast<const char*>(index_html_gz), index_html_gz_len, "text/html; charset=utf-8");
|
|
}
|
|
return false;
|
|
});
|
|
}
|
|
}
|
|
|
|
// register API routes
|
|
svr->Get ("/health", handle_health); // public endpoint (no API key check)
|
|
svr->Get ("/metrics", handle_metrics);
|
|
svr->Get ("/props", handle_props);
|
|
svr->Post("/props", handle_props_change);
|
|
svr->Get ("/models", handle_models); // public endpoint (no API key check)
|
|
svr->Get ("/v1/models", handle_models); // public endpoint (no API key check)
|
|
svr->Post("/completion", handle_completions); // legacy
|
|
svr->Post("/completions", handle_completions);
|
|
svr->Post("/v1/completions", handle_completions);
|
|
svr->Post("/chat/completions", handle_chat_completions);
|
|
svr->Post("/v1/chat/completions", handle_chat_completions);
|
|
svr->Post("/infill", handle_infill);
|
|
svr->Post("/embedding", handle_embeddings); // legacy
|
|
svr->Post("/embeddings", handle_embeddings);
|
|
svr->Post("/v1/embeddings", handle_embeddings_oai);
|
|
svr->Post("/rerank", handle_rerank);
|
|
svr->Post("/reranking", handle_rerank);
|
|
svr->Post("/v1/rerank", handle_rerank);
|
|
svr->Post("/v1/reranking", handle_rerank);
|
|
svr->Post("/tokenize", handle_tokenize);
|
|
svr->Post("/detokenize", handle_detokenize);
|
|
// LoRA adapters hotswap
|
|
svr->Get ("/lora-adapters", handle_lora_adapters_list);
|
|
svr->Post("/lora-adapters", handle_lora_adapters_apply);
|
|
// Save & load slots
|
|
svr->Get ("/slots", handle_slots);
|
|
svr->Post("/slots/:id_slot", handle_slots_action);
|
|
|
|
//
|
|
// Start the server
|
|
//
|
|
if (params.n_threads_http < 1) {
|
|
// +2 threads for monitoring endpoints
|
|
params.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
|
|
}
|
|
log_data["n_threads_http"] = std::to_string(params.n_threads_http);
|
|
svr->new_task_queue = [¶ms] { return new httplib::ThreadPool(params.n_threads_http); };
|
|
|
|
// clean up function, to be called before exit
|
|
auto clean_up = [&svr]() {
|
|
svr->stop();
|
|
llama_backend_free();
|
|
};
|
|
|
|
// bind HTTP listen port
|
|
bool was_bound = false;
|
|
if (params.port == 0) {
|
|
int bound_port = svr->bind_to_any_port(params.hostname);
|
|
if ((was_bound = (bound_port >= 0))) {
|
|
params.port = bound_port;
|
|
}
|
|
} else {
|
|
was_bound = svr->bind_to_port(params.hostname, params.port);
|
|
}
|
|
|
|
if (!was_bound) {
|
|
//LOG_ERROR("couldn't bind HTTP server socket", {
|
|
// {"hostname", params.hostname},
|
|
// {"port", params.port},
|
|
//});
|
|
LOG_ERR("%s: couldn't bind HTTP server socket, hostname: %s, port: %d\n", __func__, params.hostname.c_str(), params.port);
|
|
clean_up();
|
|
return 1;
|
|
}
|
|
|
|
// run the HTTP server in a thread
|
|
std::thread t([&]() { svr->listen_after_bind(); });
|
|
svr->wait_until_ready();
|
|
|
|
LOG_INF("%s: HTTP server is listening, hostname: %s, port: %d, http threads: %d\n", __func__, params.hostname.c_str(), params.port, params.n_threads_http);
|
|
|
|
// load the model
|
|
LOG_INF("%s: loading model\n", __func__);
|
|
|
|
if (!ctx_server.load_model(params)) {
|
|
clean_up();
|
|
t.join();
|
|
LOG_ERR("%s: exiting due to model loading error\n", __func__);
|
|
return 1;
|
|
}
|
|
|
|
ctx_server.init();
|
|
state.store(SERVER_STATE_READY);
|
|
|
|
LOG_INF("%s: model loaded\n", __func__);
|
|
|
|
// if a custom chat template is not supplied, we will use the one that comes with the model (if any)
|
|
if (params.chat_template.empty()) {
|
|
if (!ctx_server.validate_model_chat_template()) {
|
|
LOG_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
|
|
params.chat_template = "chatml";
|
|
}
|
|
}
|
|
|
|
// print sample chat example to make it clear which template is used
|
|
LOG_INF("%s: chat template, built_in: %d, chat_example: '%s'\n", __func__, params.chat_template.empty(), common_chat_format_example(ctx_server.model, params.chat_template).c_str());
|
|
|
|
ctx_server.queue_tasks.on_new_task(std::bind(
|
|
&server_context::process_single_task, &ctx_server, std::placeholders::_1));
|
|
|
|
ctx_server.queue_tasks.on_update_slots(std::bind(
|
|
&server_context::update_slots, &ctx_server));
|
|
|
|
shutdown_handler = [&](int) {
|
|
ctx_server.queue_tasks.terminate();
|
|
};
|
|
|
|
LOG_INF("%s: server is listening on http://%s:%d - starting the main loop\n", __func__, params.hostname.c_str(), params.port);
|
|
|
|
ctx_server.queue_tasks.start_loop();
|
|
|
|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
|
|
struct sigaction sigint_action;
|
|
sigint_action.sa_handler = signal_handler;
|
|
sigemptyset (&sigint_action.sa_mask);
|
|
sigint_action.sa_flags = 0;
|
|
sigaction(SIGINT, &sigint_action, NULL);
|
|
sigaction(SIGTERM, &sigint_action, NULL);
|
|
#elif defined (_WIN32)
|
|
auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
|
|
return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
|
|
};
|
|
SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
|
|
#endif
|
|
|
|
clean_up();
|
|
t.join();
|
|
|
|
return 0;
|
|
}
|