mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-01 16:58:59 +01:00
57bb2c40cd
* server : fix logprobs, make it openai-compatible * update docs * add std::log * return pre-sampling p * sort before apply softmax * add comment * fix test * set p for sampled token * update docs * add --multi-token-probs * update docs * add `post_sampling_probs` option * update docs [no ci] * remove --multi-token-probs * "top_probs" with "post_sampling_probs" * resolve review comments * rename struct token_prob to prob_info * correct comment placement * fix setting prob for sampled token
734 lines
26 KiB
C++
734 lines
26 KiB
C++
#pragma once
|
|
|
|
#include "common.h"
|
|
#include "log.h"
|
|
#include "llama.h"
|
|
|
|
#ifndef NDEBUG
|
|
// crash the server in debug mode, otherwise send an http 500 error
|
|
#define CPPHTTPLIB_NO_EXCEPTIONS 1
|
|
#endif
|
|
// increase max payload length to allow use of larger context size
|
|
#define CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 1048576
|
|
#include "httplib.h"
|
|
|
|
// Change JSON_ASSERT from assert() to GGML_ASSERT:
|
|
#define JSON_ASSERT GGML_ASSERT
|
|
#include "json.hpp"
|
|
|
|
#include <random>
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <vector>
|
|
#include <memory>
|
|
|
|
#define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo"
|
|
|
|
using json = nlohmann::ordered_json;
|
|
|
|
#define SLT_INF(slot, fmt, ...) LOG_INF("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__)
|
|
#define SLT_WRN(slot, fmt, ...) LOG_WRN("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__)
|
|
#define SLT_ERR(slot, fmt, ...) LOG_ERR("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__)
|
|
#define SLT_DBG(slot, fmt, ...) LOG_DBG("slot %12.*s: id %2d | task %d | " fmt, 12, __func__, (slot).id, (slot).id_task, __VA_ARGS__)
|
|
|
|
#define SRV_INF(fmt, ...) LOG_INF("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
|
|
#define SRV_WRN(fmt, ...) LOG_WRN("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
|
|
#define SRV_ERR(fmt, ...) LOG_ERR("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
|
|
#define SRV_DBG(fmt, ...) LOG_DBG("srv %12.*s: " fmt, 12, __func__, __VA_ARGS__)
|
|
|
|
#define QUE_INF(fmt, ...) LOG_INF("que %12.*s: " fmt, 12, __func__, __VA_ARGS__)
|
|
#define QUE_WRN(fmt, ...) LOG_WRN("que %12.*s: " fmt, 12, __func__, __VA_ARGS__)
|
|
#define QUE_ERR(fmt, ...) LOG_ERR("que %12.*s: " fmt, 12, __func__, __VA_ARGS__)
|
|
#define QUE_DBG(fmt, ...) LOG_DBG("que %12.*s: " fmt, 12, __func__, __VA_ARGS__)
|
|
|
|
template <typename T>
|
|
static T json_value(const json & body, const std::string & key, const T & default_value) {
|
|
// Fallback null to default value
|
|
if (body.contains(key) && !body.at(key).is_null()) {
|
|
try {
|
|
return body.at(key);
|
|
} catch (NLOHMANN_JSON_NAMESPACE::detail::type_error const &) {
|
|
LOG_WRN("Wrong type supplied for parameter '%s'. Expected '%s', using default value\n", key.c_str(), json(default_value).type_name());
|
|
return default_value;
|
|
}
|
|
} else {
|
|
return default_value;
|
|
}
|
|
}
|
|
|
|
//
|
|
// tokenizer and input processing utils
|
|
//
|
|
|
|
static bool json_is_array_of_numbers(const json & data) {
|
|
if (data.is_array()) {
|
|
for (const auto & e : data) {
|
|
if (!e.is_number_integer()) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// is array having BOTH numbers & strings?
|
|
static bool json_is_array_of_mixed_numbers_strings(const json & data) {
|
|
bool seen_string = false;
|
|
bool seen_number = false;
|
|
if (data.is_array()) {
|
|
for (const auto & e : data) {
|
|
seen_string |= e.is_string();
|
|
seen_number |= e.is_number_integer();
|
|
if (seen_number && seen_string) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* this handles 2 cases:
|
|
* - only string, example: "string"
|
|
* - mixed string and tokens, example: [12, 34, "string", 56, 78]
|
|
*/
|
|
static llama_tokens tokenize_mixed(const llama_context * ctx, const json & json_prompt, bool add_special, bool parse_special) {
|
|
// If `add_bos` is true, we only add BOS, when json_prompt is a string,
|
|
// or the first element of the json_prompt array is a string.
|
|
llama_tokens prompt_tokens;
|
|
|
|
if (json_prompt.is_array()) {
|
|
bool first = true;
|
|
for (const auto & p : json_prompt) {
|
|
if (p.is_string()) {
|
|
auto s = p.template get<std::string>();
|
|
|
|
llama_tokens p;
|
|
if (first) {
|
|
p = common_tokenize(ctx, s, add_special, parse_special);
|
|
first = false;
|
|
} else {
|
|
p = common_tokenize(ctx, s, false, parse_special);
|
|
}
|
|
|
|
prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
|
|
} else {
|
|
if (first) {
|
|
first = false;
|
|
}
|
|
|
|
prompt_tokens.push_back(p.template get<llama_token>());
|
|
}
|
|
}
|
|
} else {
|
|
auto s = json_prompt.template get<std::string>();
|
|
prompt_tokens = common_tokenize(ctx, s, add_special, parse_special);
|
|
}
|
|
|
|
return prompt_tokens;
|
|
}
|
|
|
|
/**
|
|
* break the input "prompt" object into multiple prompt if needed, then tokenize them
|
|
* this supports these cases:
|
|
* - "prompt": "string"
|
|
* - "prompt": [12, 34, 56]
|
|
* - "prompt": [12, 34, "string", 56, 78]
|
|
* and multiple prompts (multi-tasks):
|
|
* - "prompt": ["string1", "string2"]
|
|
* - "prompt": ["string1", [12, 34, 56]]
|
|
* - "prompt": [[12, 34, 56], [78, 90, 12]]
|
|
* - "prompt": [[12, 34, "string", 56, 78], [12, 34, 56]]
|
|
*/
|
|
static std::vector<llama_tokens> tokenize_input_prompts(llama_context * ctx, const json & json_prompt, bool add_special, bool parse_special) {
|
|
std::vector<llama_tokens> result;
|
|
if (json_prompt.is_string() || json_is_array_of_mixed_numbers_strings(json_prompt)) {
|
|
// string or mixed
|
|
result.push_back(tokenize_mixed(ctx, json_prompt, add_special, parse_special));
|
|
} else if (json_is_array_of_numbers(json_prompt)) {
|
|
// array of tokens
|
|
result.push_back(json_prompt.get<llama_tokens>());
|
|
} else if (json_prompt.is_array()) {
|
|
// array of prompts
|
|
result.reserve(json_prompt.size());
|
|
for (const auto & p : json_prompt) {
|
|
if (p.is_string() || json_is_array_of_mixed_numbers_strings(p)) {
|
|
result.push_back(tokenize_mixed(ctx, p, add_special, parse_special));
|
|
} else if (json_is_array_of_numbers(p)) {
|
|
// array of tokens
|
|
result.push_back(p.get<llama_tokens>());
|
|
} else {
|
|
throw std::runtime_error("element of \"prompt\" must be a string, an list of tokens, or a list of mixed strings & tokens");
|
|
}
|
|
}
|
|
} else {
|
|
throw std::runtime_error("\"prompt\" must be a string, an list of tokens, a list of mixed strings & tokens, or a list of prompts");
|
|
}
|
|
if (result.empty()) {
|
|
throw std::runtime_error("\"prompt\" must not be empty");
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// return the last index of character that can form a valid string
|
|
// if the last character is potentially cut in half, return the index before the cut
|
|
// if validate_utf8(text) == text.size(), then the whole text is valid utf8
|
|
static size_t validate_utf8(const std::string& text) {
|
|
size_t len = text.size();
|
|
if (len == 0) return 0;
|
|
|
|
// Check the last few bytes to see if a multi-byte character is cut off
|
|
for (size_t i = 1; i <= 4 && i <= len; ++i) {
|
|
unsigned char c = text[len - i];
|
|
// Check for start of a multi-byte sequence from the end
|
|
if ((c & 0xE0) == 0xC0) {
|
|
// 2-byte character start: 110xxxxx
|
|
// Needs at least 2 bytes
|
|
if (i < 2) return len - i;
|
|
} else if ((c & 0xF0) == 0xE0) {
|
|
// 3-byte character start: 1110xxxx
|
|
// Needs at least 3 bytes
|
|
if (i < 3) return len - i;
|
|
} else if ((c & 0xF8) == 0xF0) {
|
|
// 4-byte character start: 11110xxx
|
|
// Needs at least 4 bytes
|
|
if (i < 4) return len - i;
|
|
}
|
|
}
|
|
|
|
// If no cut-off multi-byte character is found, return full length
|
|
return len;
|
|
}
|
|
|
|
//
|
|
// template utils
|
|
//
|
|
|
|
// format rerank task: [BOS]query[EOS][SEP]doc[EOS]
|
|
static llama_tokens format_rerank(const struct llama_model * model, const llama_tokens & query, const llama_tokens & doc) {
|
|
llama_tokens result;
|
|
result.reserve(doc.size() + query.size() + 4);
|
|
result.push_back(llama_token_bos(model));
|
|
result.insert(result.end(), query.begin(), query.end());
|
|
result.push_back(llama_token_eos(model));
|
|
result.push_back(llama_token_sep(model));
|
|
result.insert(result.end(), doc.begin(), doc.end());
|
|
result.push_back(llama_token_eos(model));
|
|
return result;
|
|
}
|
|
|
|
// format infill task
|
|
static llama_tokens format_infill(
|
|
const llama_context * ctx,
|
|
const json & input_prefix,
|
|
const json & input_suffix,
|
|
const json & input_extra,
|
|
const int n_batch,
|
|
const int n_predict,
|
|
const int n_ctx,
|
|
const bool spm_infill,
|
|
const llama_tokens & tokens_prompt
|
|
) {
|
|
// TODO: optimize this block by reducing memory allocations and movement
|
|
|
|
// use FIM repo-level pattern:
|
|
// ref: https://arxiv.org/pdf/2409.12186
|
|
//
|
|
// [FIM_REP]myproject
|
|
// [FIM_SEP]filename0
|
|
// extra chunk 0
|
|
// [FIM_SEP]filename1
|
|
// extra chunk 1
|
|
// ...
|
|
// [FIM_SEP]filename
|
|
// [FIM_PRE]prefix[FIM_SUF]suffix[FIM_MID]prompt
|
|
//
|
|
llama_tokens extra_tokens;
|
|
extra_tokens.reserve(n_ctx);
|
|
|
|
auto model = llama_get_model(ctx);
|
|
auto tokens_prefix = tokenize_mixed(ctx, input_prefix, false, false);
|
|
auto tokens_suffix = tokenize_mixed(ctx, input_suffix, false, false);
|
|
|
|
if (llama_token_fim_rep(model) != LLAMA_TOKEN_NULL) {
|
|
// TODO: make project name an input
|
|
static const auto k_fim_repo = common_tokenize(ctx, "myproject\n", false, false);
|
|
|
|
extra_tokens.push_back(llama_token_fim_rep(model));
|
|
extra_tokens.insert(extra_tokens.end(), k_fim_repo.begin(), k_fim_repo.end());
|
|
}
|
|
for (const auto & chunk : input_extra) {
|
|
// { "text": string, "filename": string }
|
|
const std::string text = json_value(chunk, "text", std::string());
|
|
const std::string filename = json_value(chunk, "filename", std::string("tmp"));
|
|
|
|
if (llama_token_fim_sep(model) != LLAMA_TOKEN_NULL) {
|
|
const auto k_fim_file = common_tokenize(ctx, filename + "\n", false, false);
|
|
|
|
extra_tokens.insert(extra_tokens.end(), llama_token_fim_sep(model));
|
|
extra_tokens.insert(extra_tokens.end(), k_fim_file.begin(), k_fim_file.end());
|
|
} else {
|
|
// chunk separator in binary form to avoid confusing the AI
|
|
static const char k_chunk_prefix_str[] = {0x0a, 0x0a, 0x2d, 0x2d, 0x2d, 0x20, 0x73, 0x6e, 0x69, 0x70, 0x70, 0x65, 0x74, 0x20, 0x2d, 0x2d, 0x2d, 0x0a, 0x0a, 0x00};
|
|
static const auto k_chunk_prefix_tokens = common_tokenize(ctx, k_chunk_prefix_str, false, false);
|
|
|
|
extra_tokens.insert(extra_tokens.end(), k_chunk_prefix_tokens.begin(), k_chunk_prefix_tokens.end());
|
|
}
|
|
|
|
const auto chunk_tokens = common_tokenize(ctx, text, false, false);
|
|
extra_tokens.insert(extra_tokens.end(), chunk_tokens.begin(), chunk_tokens.end());
|
|
}
|
|
|
|
if (llama_token_fim_sep(model) != LLAMA_TOKEN_NULL) {
|
|
// TODO: current filename
|
|
static const auto k_fim_file = common_tokenize(ctx, "filename\n", false, false);
|
|
|
|
extra_tokens.insert(extra_tokens.end(), llama_token_fim_sep(model));
|
|
extra_tokens.insert(extra_tokens.end(), k_fim_file.begin(), k_fim_file.end());
|
|
}
|
|
|
|
// for now pick FIM context to fit in a batch (ratio prefix:suffix = 3:1, TODO: configurable?)
|
|
const int n_prefix_take = std::min<int>(tokens_prefix.size(), 3*(n_batch/4));
|
|
const int n_suffix_take = std::min<int>(tokens_suffix.size(), std::max<int>(0, (n_batch/4) - (2 + tokens_prompt.size())));
|
|
|
|
SRV_DBG("n_prefix_take = %d, n_suffix_take = %d, total = %d\n", n_prefix_take, n_suffix_take, (n_prefix_take + n_suffix_take));
|
|
|
|
// fill the rest of the context with extra chunks
|
|
const int n_extra_take = std::min<int>(std::max<int>(0, n_ctx - (n_batch) - 2*n_predict), extra_tokens.size());
|
|
|
|
tokens_prefix.erase(tokens_prefix.begin(), tokens_prefix.begin() + tokens_prefix.size() - n_prefix_take);
|
|
tokens_suffix.resize(n_suffix_take);
|
|
|
|
tokens_prefix.insert(tokens_prefix.begin(), llama_token_fim_pre(model));
|
|
tokens_prefix.insert(tokens_prefix.end(), tokens_prompt.begin(), tokens_prompt.end());
|
|
tokens_suffix.insert(tokens_suffix.begin(), llama_token_fim_suf(model));
|
|
|
|
auto embd_inp = spm_infill ? tokens_suffix : tokens_prefix;
|
|
auto embd_end = spm_infill ? tokens_prefix : tokens_suffix;
|
|
|
|
if (llama_add_bos_token(model)) {
|
|
embd_inp.insert(embd_inp.begin(), llama_token_bos(model));
|
|
}
|
|
|
|
SRV_DBG("extra: n_ctx = %d, n_extra_take = %d, n_extra = %d\n", n_ctx, n_extra_take, (int) extra_tokens.size());
|
|
|
|
// put the extra context before the FIM prefix
|
|
embd_inp.insert(embd_inp.begin(), extra_tokens.end() - n_extra_take, extra_tokens.end());
|
|
|
|
embd_inp.insert(embd_inp.end(), embd_end.begin(), embd_end.end());
|
|
embd_inp.push_back(llama_token_fim_mid(model));
|
|
|
|
return embd_inp;
|
|
}
|
|
|
|
// Format given chat. If tmpl is empty, we take the template from model metadata
|
|
inline std::string format_chat(const struct llama_model * model, const std::string & tmpl, const std::vector<json> & messages) {
|
|
std::vector<common_chat_msg> chat;
|
|
|
|
for (size_t i = 0; i < messages.size(); ++i) {
|
|
const auto & curr_msg = messages[i];
|
|
|
|
std::string role = json_value(curr_msg, "role", std::string(""));
|
|
|
|
std::string content;
|
|
if (curr_msg.contains("content")) {
|
|
if (curr_msg["content"].is_string()) {
|
|
content = curr_msg["content"].get<std::string>();
|
|
} else if (curr_msg["content"].is_array()) {
|
|
for (const auto & part : curr_msg["content"]) {
|
|
if (part.contains("text")) {
|
|
content += "\n" + part["text"].get<std::string>();
|
|
}
|
|
}
|
|
} else {
|
|
throw std::runtime_error("Invalid 'content' type (ref: https://github.com/ggerganov/llama.cpp/issues/8367)");
|
|
}
|
|
} else {
|
|
throw std::runtime_error("Missing 'content' (ref: https://github.com/ggerganov/llama.cpp/issues/8367)");
|
|
}
|
|
|
|
chat.push_back({role, content});
|
|
}
|
|
|
|
const auto formatted_chat = common_chat_apply_template(model, tmpl, chat, true);
|
|
LOG_DBG("formatted_chat: '%s'\n", formatted_chat.c_str());
|
|
|
|
return formatted_chat;
|
|
}
|
|
|
|
static std::string llama_get_chat_template(const struct llama_model * model) {
|
|
std::string template_key = "tokenizer.chat_template";
|
|
// call with NULL buffer to get the total size of the string
|
|
int32_t res = llama_model_meta_val_str(model, template_key.c_str(), NULL, 0);
|
|
if (res < 2) {
|
|
return "";
|
|
} else {
|
|
std::vector<char> model_template(res + 1, 0);
|
|
llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
|
|
return std::string(model_template.data(), model_template.size() - 1);
|
|
}
|
|
}
|
|
|
|
//
|
|
// base64 utils (TODO: move to common in the future)
|
|
//
|
|
|
|
static const std::string base64_chars =
|
|
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
|
|
"abcdefghijklmnopqrstuvwxyz"
|
|
"0123456789+/";
|
|
|
|
static inline bool is_base64(uint8_t c) {
|
|
return (isalnum(c) || (c == '+') || (c == '/'));
|
|
}
|
|
|
|
static inline std::vector<uint8_t> base64_decode(const std::string & encoded_string) {
|
|
int i = 0;
|
|
int j = 0;
|
|
int in_ = 0;
|
|
|
|
int in_len = encoded_string.size();
|
|
|
|
uint8_t char_array_4[4];
|
|
uint8_t char_array_3[3];
|
|
|
|
std::vector<uint8_t> ret;
|
|
|
|
while (in_len-- && (encoded_string[in_] != '=') && is_base64(encoded_string[in_])) {
|
|
char_array_4[i++] = encoded_string[in_]; in_++;
|
|
if (i == 4) {
|
|
for (i = 0; i < 4; i++) {
|
|
char_array_4[i] = base64_chars.find(char_array_4[i]);
|
|
}
|
|
|
|
char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4);
|
|
char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
|
|
char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
|
|
|
|
for (i = 0; (i < 3); i++) {
|
|
ret.push_back(char_array_3[i]);
|
|
}
|
|
|
|
i = 0;
|
|
}
|
|
}
|
|
|
|
if (i) {
|
|
for (j = i; j < 4; j++) {
|
|
char_array_4[j] = 0;
|
|
}
|
|
|
|
for (j = 0; j < 4; j++) {
|
|
char_array_4[j] = base64_chars.find(char_array_4[j]);
|
|
}
|
|
|
|
char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4);
|
|
char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
|
|
char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
|
|
|
|
for (j = 0; j < i - 1; j++) {
|
|
ret.push_back(char_array_3[j]);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
//
|
|
// random string / id
|
|
//
|
|
|
|
static std::string random_string() {
|
|
static const std::string str("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz");
|
|
|
|
std::random_device rd;
|
|
std::mt19937 generator(rd());
|
|
|
|
std::string result(32, ' ');
|
|
|
|
for (int i = 0; i < 32; ++i) {
|
|
result[i] = str[generator() % str.size()];
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static std::string gen_chatcmplid() {
|
|
return "chatcmpl-" + random_string();
|
|
}
|
|
|
|
//
|
|
// other common utils
|
|
//
|
|
|
|
static bool ends_with(const std::string & str, const std::string & suffix) {
|
|
return str.size() >= suffix.size() && 0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix);
|
|
}
|
|
|
|
static size_t find_partial_stop_string(const std::string &stop, const std::string &text) {
|
|
if (!text.empty() && !stop.empty()) {
|
|
const char text_last_char = text.back();
|
|
for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--) {
|
|
if (stop[char_index] == text_last_char) {
|
|
const std::string current_partial = stop.substr(0, char_index + 1);
|
|
if (ends_with(text, current_partial)) {
|
|
return text.size() - char_index - 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return std::string::npos;
|
|
}
|
|
|
|
// TODO: reuse llama_detokenize
|
|
template <class Iter>
|
|
static std::string tokens_to_str(llama_context * ctx, Iter begin, Iter end) {
|
|
std::string ret;
|
|
for (; begin != end; ++begin) {
|
|
ret += common_token_to_piece(ctx, *begin);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
// format incomplete utf-8 multibyte character for output
|
|
static std::string tokens_to_output_formatted_string(const llama_context * ctx, const llama_token token) {
|
|
std::string out = token == -1 ? "" : common_token_to_piece(ctx, token);
|
|
|
|
// if the size is 1 and first bit is 1, meaning it's a partial character
|
|
// (size > 1 meaning it's already a known token)
|
|
if (out.size() == 1 && (out[0] & 0x80) == 0x80) {
|
|
std::stringstream ss;
|
|
ss << std::hex << (out[0] & 0xff);
|
|
std::string res(ss.str());
|
|
out = "byte: \\x" + res;
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
static bool server_sent_event(httplib::DataSink & sink, const char * event, const json & data) {
|
|
const std::string str =
|
|
std::string(event) + ": " +
|
|
data.dump(-1, ' ', false, json::error_handler_t::replace) +
|
|
"\n\n"; // required by RFC 8895 - A message is terminated by a blank line (two line terminators in a row).
|
|
|
|
LOG_DBG("data stream, to_send: %s", str.c_str());
|
|
|
|
return sink.write(str.c_str(), str.size());
|
|
}
|
|
|
|
//
|
|
// OAI utils
|
|
//
|
|
|
|
static json oaicompat_completion_params_parse(
|
|
const struct llama_model * model,
|
|
const json & body, /* openai api json semantics */
|
|
const std::string & chat_template) {
|
|
json llama_params;
|
|
|
|
// Apply chat template to the list of messages
|
|
llama_params["prompt"] = format_chat(model, chat_template, body.at("messages"));
|
|
|
|
// Handle "stop" field
|
|
if (body.contains("stop") && body.at("stop").is_string()) {
|
|
llama_params["stop"] = json::array({body.at("stop").get<std::string>()});
|
|
} else {
|
|
llama_params["stop"] = json_value(body, "stop", json::array());
|
|
}
|
|
|
|
// Handle "response_format" field
|
|
if (body.contains("response_format")) {
|
|
json response_format = json_value(body, "response_format", json::object());
|
|
std::string response_type = json_value(response_format, "type", std::string());
|
|
if (response_type == "json_object") {
|
|
llama_params["json_schema"] = json_value(response_format, "schema", json::object());
|
|
} else if (response_type == "json_schema") {
|
|
json json_schema = json_value(response_format, "json_schema", json::object());
|
|
llama_params["json_schema"] = json_value(json_schema, "schema", json::object());
|
|
} else if (!response_type.empty() && response_type != "text") {
|
|
throw std::runtime_error("response_format type must be one of \"text\" or \"json_object\", but got: " + response_type);
|
|
}
|
|
}
|
|
|
|
// Handle "n" field
|
|
int n_choices = json_value(body, "n", 1);
|
|
if (n_choices != 1) {
|
|
throw std::runtime_error("Only one completion choice is allowed");
|
|
}
|
|
|
|
// Handle "logprobs" field
|
|
// TODO: The response format of this option is not yet OAI-compatible, but seems like no one really using it; We may need to fix it in the future
|
|
if (json_value(body, "logprobs", false)) {
|
|
llama_params["n_probs"] = json_value(body, "top_logprobs", 20);
|
|
} else if (body.contains("top_logprobs") && !body.at("top_logprobs").is_null()) {
|
|
throw std::runtime_error("top_logprobs requires logprobs to be set to true");
|
|
}
|
|
|
|
// Params supported by OAI but unsupported by llama.cpp
|
|
static const std::vector<std::string> unsupported_params { "tools", "tool_choice" };
|
|
for (const auto & param : unsupported_params) {
|
|
if (body.contains(param)) {
|
|
throw std::runtime_error("Unsupported param: " + param);
|
|
}
|
|
}
|
|
|
|
// Copy remaining properties to llama_params
|
|
// This allows user to use llama.cpp-specific params like "mirostat", ... via OAI endpoint.
|
|
// See "launch_slot_with_task()" for a complete list of params supported by llama.cpp
|
|
for (const auto & item : body.items()) {
|
|
// Exception: if "n_predict" is present, we overwrite the value specified earlier by "max_tokens"
|
|
if (!llama_params.contains(item.key()) || item.key() == "n_predict") {
|
|
llama_params[item.key()] = item.value();
|
|
}
|
|
}
|
|
|
|
return llama_params;
|
|
}
|
|
|
|
static json format_embeddings_response_oaicompat(const json & request, const json & embeddings) {
|
|
json data = json::array();
|
|
int32_t n_tokens = 0;
|
|
int i = 0;
|
|
for (const auto & elem : embeddings) {
|
|
data.push_back(json{
|
|
{"embedding", json_value(elem, "embedding", json::array())},
|
|
{"index", i++},
|
|
{"object", "embedding"}
|
|
});
|
|
|
|
n_tokens += json_value(elem, "tokens_evaluated", 0);
|
|
}
|
|
|
|
json res = json {
|
|
{"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
|
|
{"object", "list"},
|
|
{"usage", json {
|
|
{"prompt_tokens", n_tokens},
|
|
{"total_tokens", n_tokens}
|
|
}},
|
|
{"data", data}
|
|
};
|
|
|
|
return res;
|
|
}
|
|
|
|
static json format_response_rerank(const json & request, const json & ranks) {
|
|
json data = json::array();
|
|
int32_t n_tokens = 0;
|
|
int i = 0;
|
|
for (const auto & rank : ranks) {
|
|
data.push_back(json{
|
|
{"index", i++},
|
|
{"relevance_score", json_value(rank, "score", 0.0)},
|
|
});
|
|
|
|
n_tokens += json_value(rank, "tokens_evaluated", 0);
|
|
}
|
|
|
|
json res = json {
|
|
{"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
|
|
{"object", "list"},
|
|
{"usage", json {
|
|
{"prompt_tokens", n_tokens},
|
|
{"total_tokens", n_tokens}
|
|
}},
|
|
{"results", data}
|
|
};
|
|
|
|
return res;
|
|
}
|
|
|
|
static bool is_valid_utf8(const std::string & str) {
|
|
const unsigned char* bytes = reinterpret_cast<const unsigned char*>(str.data());
|
|
const unsigned char* end = bytes + str.length();
|
|
|
|
while (bytes < end) {
|
|
if (*bytes <= 0x7F) {
|
|
// 1-byte sequence (0xxxxxxx)
|
|
bytes++;
|
|
} else if ((*bytes & 0xE0) == 0xC0) {
|
|
// 2-byte sequence (110xxxxx 10xxxxxx)
|
|
if (end - bytes < 2 || (bytes[1] & 0xC0) != 0x80)
|
|
return false;
|
|
bytes += 2;
|
|
} else if ((*bytes & 0xF0) == 0xE0) {
|
|
// 3-byte sequence (1110xxxx 10xxxxxx 10xxxxxx)
|
|
if (end - bytes < 3 || (bytes[1] & 0xC0) != 0x80 || (bytes[2] & 0xC0) != 0x80)
|
|
return false;
|
|
bytes += 3;
|
|
} else if ((*bytes & 0xF8) == 0xF0) {
|
|
// 4-byte sequence (11110xxx 10xxxxxx 10xxxxxx 10xxxxxx)
|
|
if (end - bytes < 4 || (bytes[1] & 0xC0) != 0x80 ||
|
|
(bytes[2] & 0xC0) != 0x80 || (bytes[3] & 0xC0) != 0x80)
|
|
return false;
|
|
bytes += 4;
|
|
} else {
|
|
// Invalid UTF-8 lead byte
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static json format_tokenizer_response(const json & tokens) {
|
|
return json {
|
|
{"tokens", tokens}
|
|
};
|
|
}
|
|
|
|
static json format_detokenized_response(const std::string & content) {
|
|
return json {
|
|
{"content", content}
|
|
};
|
|
}
|
|
|
|
static json format_logit_bias(const std::vector<llama_logit_bias> & logit_bias) {
|
|
json data = json::array();
|
|
for (const auto & lb : logit_bias) {
|
|
data.push_back(json{
|
|
{"bias", lb.bias},
|
|
{"token", lb.token},
|
|
});
|
|
}
|
|
return data;
|
|
}
|
|
|
|
static std::string safe_json_to_str(json data) {
|
|
return data.dump(-1, ' ', false, json::error_handler_t::replace);
|
|
}
|
|
|
|
static std::vector<llama_token_data> get_token_probabilities(llama_context * ctx, int idx) {
|
|
std::vector<llama_token_data> cur;
|
|
const auto * logits = llama_get_logits_ith(ctx, idx);
|
|
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
|
|
|
cur.resize(n_vocab);
|
|
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
|
cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f};
|
|
}
|
|
|
|
// sort tokens by logits
|
|
std::sort(cur.begin(), cur.end(), [](const llama_token_data & a, const llama_token_data & b) {
|
|
return a.logit > b.logit;
|
|
});
|
|
|
|
// apply softmax
|
|
float max_l = cur[0].logit;
|
|
float cum_sum = 0.0f;
|
|
for (size_t i = 0; i < cur.size(); ++i) {
|
|
float p = expf(cur[i].logit - max_l);
|
|
cur[i].p = p;
|
|
cum_sum += p;
|
|
}
|
|
for (size_t i = 0; i < cur.size(); ++i) {
|
|
cur[i].p /= cum_sum;
|
|
}
|
|
|
|
return cur;
|
|
}
|