mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-27 20:43:07 +01:00
3420909dff
* ggml : automatic selection of best CPU backend * amx : minor opt * add GGML_AVX_VNNI to enable avx-vnni, fix checks
257 lines
12 KiB
C
257 lines
12 KiB
C
#pragma once
|
|
|
|
// ggml-backend internal header
|
|
|
|
#include "ggml-backend.h"
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
#define GGML_BACKEND_API_VERSION 1
|
|
|
|
//
|
|
// Backend buffer type
|
|
//
|
|
|
|
struct ggml_backend_buffer_type_i {
|
|
const char * (*get_name) (ggml_backend_buffer_type_t buft);
|
|
// allocate a buffer of this type
|
|
ggml_backend_buffer_t (*alloc_buffer) (ggml_backend_buffer_type_t buft, size_t size);
|
|
// tensor alignment
|
|
size_t (*get_alignment) (ggml_backend_buffer_type_t buft);
|
|
// (optional) max buffer size that can be allocated (defaults to SIZE_MAX)
|
|
size_t (*get_max_size) (ggml_backend_buffer_type_t buft);
|
|
// (optional) data size needed to allocate the tensor, including padding (defaults to ggml_nbytes)
|
|
size_t (*get_alloc_size)(ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor);
|
|
// (optional) check if tensor data is in host memory and uses standard ggml tensor layout (defaults to false)
|
|
bool (*is_host) (ggml_backend_buffer_type_t buft);
|
|
};
|
|
|
|
struct ggml_backend_buffer_type {
|
|
struct ggml_backend_buffer_type_i iface;
|
|
ggml_backend_dev_t device;
|
|
void * context;
|
|
};
|
|
|
|
//
|
|
// Backend buffer
|
|
//
|
|
|
|
struct ggml_backend_buffer_i {
|
|
// (optional) free the buffer
|
|
void (*free_buffer) (ggml_backend_buffer_t buffer);
|
|
// base address of the buffer
|
|
void * (*get_base) (ggml_backend_buffer_t buffer);
|
|
// (optional) initialize a tensor in the buffer (eg. add tensor extras)
|
|
void (*init_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
|
// tensor data access
|
|
void (*memset_tensor)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size);
|
|
void (*set_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
|
void (*get_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
|
// (optional) tensor copy: dst is in the buffer, src may be in any buffer, including buffers from a different backend (return false if not supported)
|
|
bool (*cpy_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst);
|
|
// clear the entire buffer
|
|
void (*clear) (ggml_backend_buffer_t buffer, uint8_t value);
|
|
// (optional) reset any internal state due to tensor initialization, such as tensor extras
|
|
void (*reset) (ggml_backend_buffer_t buffer);
|
|
};
|
|
|
|
struct ggml_backend_buffer {
|
|
struct ggml_backend_buffer_i iface;
|
|
ggml_backend_buffer_type_t buft;
|
|
void * context;
|
|
size_t size;
|
|
enum ggml_backend_buffer_usage usage;
|
|
};
|
|
|
|
GGML_API ggml_backend_buffer_t ggml_backend_buffer_init(
|
|
ggml_backend_buffer_type_t buft,
|
|
struct ggml_backend_buffer_i iface,
|
|
void * context,
|
|
size_t size);
|
|
|
|
// do not use directly, use ggml_backend_tensor_copy instead
|
|
GGML_API bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst);
|
|
|
|
// multi-buffer
|
|
// buffer that contains a collection of buffers
|
|
GGML_API ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers);
|
|
GGML_API bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer);
|
|
GGML_API void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage);
|
|
|
|
//
|
|
// Backend (stream)
|
|
//
|
|
|
|
struct ggml_backend_i {
|
|
const char * (*get_name)(ggml_backend_t backend);
|
|
|
|
void (*free)(ggml_backend_t backend);
|
|
|
|
// (optional) asynchronous tensor data access
|
|
void (*set_tensor_async)(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
|
void (*get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
|
bool (*cpy_tensor_async)(ggml_backend_t backend_src, ggml_backend_t backend_dst, const struct ggml_tensor * src, struct ggml_tensor * dst);
|
|
|
|
// (optional) complete all pending operations (required if the backend supports async operations)
|
|
void (*synchronize)(ggml_backend_t backend);
|
|
|
|
// (optional) graph plans (not used currently)
|
|
// compute graph with a plan
|
|
ggml_backend_graph_plan_t (*graph_plan_create) (ggml_backend_t backend, const struct ggml_cgraph * cgraph);
|
|
void (*graph_plan_free) (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
|
// update the plan with a new graph - this should be faster than creating a new plan when the graph has the same topology
|
|
void (*graph_plan_update) (ggml_backend_t backend, ggml_backend_graph_plan_t plan, const struct ggml_cgraph * cgraph);
|
|
// compute the graph with the plan
|
|
enum ggml_status (*graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
|
|
|
// compute graph (always async if supported by the backend)
|
|
enum ggml_status (*graph_compute) (ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
|
|
|
// (optional) event synchronization
|
|
// record an event on this stream
|
|
void (*event_record)(ggml_backend_t backend, ggml_backend_event_t event);
|
|
// wait for an event on on a different stream
|
|
void (*event_wait) (ggml_backend_t backend, ggml_backend_event_t event);
|
|
};
|
|
|
|
struct ggml_backend {
|
|
ggml_guid_t guid;
|
|
struct ggml_backend_i iface;
|
|
ggml_backend_dev_t device;
|
|
void * context;
|
|
};
|
|
|
|
struct ggml_backend_event {
|
|
struct ggml_backend_device * device;
|
|
void * context;
|
|
};
|
|
|
|
//
|
|
// Backend device
|
|
//
|
|
|
|
// Note: if additional properties are needed, we should add a struct with all of them
|
|
// the current functions to obtain the properties can remain, since they are more convenient for often used properties
|
|
struct ggml_backend_device_i {
|
|
// device name: short identifier for this device, such as "CPU" or "CUDA0"
|
|
const char * (*get_name)(ggml_backend_dev_t dev);
|
|
|
|
// device description: short informative description of the device, could be the model name
|
|
const char * (*get_description)(ggml_backend_dev_t dev);
|
|
|
|
// device memory in bytes
|
|
void (*get_memory)(ggml_backend_dev_t dev, size_t * free, size_t * total);
|
|
|
|
// device type
|
|
enum ggml_backend_dev_type (*get_type)(ggml_backend_dev_t dev);
|
|
|
|
// device properties
|
|
void (*get_props)(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props);
|
|
|
|
// backend (stream) initialization
|
|
ggml_backend_t (*init_backend)(ggml_backend_dev_t dev, const char * params);
|
|
|
|
// preferred buffer type
|
|
ggml_backend_buffer_type_t (*get_buffer_type)(ggml_backend_dev_t dev);
|
|
|
|
// (optional) host buffer type (in system memory, typically this is a pinned memory buffer for faster transfers between host and device)
|
|
ggml_backend_buffer_type_t (*get_host_buffer_type)(ggml_backend_dev_t dev);
|
|
|
|
// (optional) buffer from pointer: create a buffer from a host pointer (useful for memory mapped models and importing data from other libraries)
|
|
ggml_backend_buffer_t (*buffer_from_host_ptr)(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size);
|
|
|
|
// check if the backend can compute an operation
|
|
bool (*supports_op)(ggml_backend_dev_t dev, const struct ggml_tensor * op);
|
|
|
|
// check if the backend can use tensors allocated in a buffer type
|
|
bool (*supports_buft)(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft);
|
|
|
|
// (optional) check if the backend wants to run an operation, even if the weights are allocated in an incompatible buffer
|
|
// these should be expensive operations that may benefit from running on this backend instead of the CPU backend
|
|
bool (*offload_op)(ggml_backend_dev_t dev, const struct ggml_tensor * op);
|
|
|
|
// (optional) event synchronization
|
|
ggml_backend_event_t (*event_new) (ggml_backend_dev_t dev);
|
|
void (*event_free) (ggml_backend_dev_t dev, ggml_backend_event_t event);
|
|
void (*event_synchronize) (ggml_backend_dev_t dev, ggml_backend_event_t event);
|
|
};
|
|
|
|
struct ggml_backend_device {
|
|
struct ggml_backend_device_i iface;
|
|
ggml_backend_reg_t reg;
|
|
void * context;
|
|
};
|
|
|
|
//
|
|
// Backend (reg)
|
|
//
|
|
|
|
struct ggml_backend_reg_i {
|
|
const char * (*get_name)(ggml_backend_reg_t reg);
|
|
|
|
// enumerate available devices
|
|
size_t (*get_device_count)(ggml_backend_reg_t reg);
|
|
ggml_backend_dev_t (*get_device)(ggml_backend_reg_t reg, size_t index);
|
|
|
|
// (optional) get a pointer to a function in the backend
|
|
// backends can add custom functions that are not part of the standard ggml-backend interface
|
|
void * (*get_proc_address)(ggml_backend_reg_t reg, const char * name);
|
|
};
|
|
|
|
struct ggml_backend_reg {
|
|
int api_version; // initialize to GGML_BACKEND_API_VERSION
|
|
struct ggml_backend_reg_i iface;
|
|
void * context;
|
|
};
|
|
|
|
// Internal backend registry API
|
|
GGML_API void ggml_backend_register(ggml_backend_reg_t reg);
|
|
GGML_API void ggml_backend_device_register(ggml_backend_dev_t device);
|
|
|
|
// Add backend dynamic loading support to the backend
|
|
|
|
// Initialize the backend
|
|
typedef ggml_backend_reg_t (*ggml_backend_init_t)(void);
|
|
// Optional: obtain a score for the backend based on the system configuration
|
|
// Higher scores are preferred, 0 means the backend is not supported in the current system
|
|
typedef int (*ggml_backend_score_t)(void);
|
|
|
|
#ifdef GGML_BACKEND_DL
|
|
# ifdef __cplusplus
|
|
# define GGML_BACKEND_DL_IMPL(reg_fn) \
|
|
extern "C" { \
|
|
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_init(void); \
|
|
} \
|
|
ggml_backend_reg_t ggml_backend_init(void) { \
|
|
return reg_fn(); \
|
|
}
|
|
# define GGML_BACKEND_DL_SCORE_IMPL(score_fn) \
|
|
extern "C" { \
|
|
GGML_BACKEND_API int ggml_backend_score(void); \
|
|
} \
|
|
int ggml_backend_score(void) { \
|
|
return score_fn(); \
|
|
}
|
|
# else
|
|
# define GGML_BACKEND_DL_IMPL(reg_fn) \
|
|
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_init(void); \
|
|
ggml_backend_reg_t ggml_backend_init(void) { \
|
|
return reg_fn(); \
|
|
}
|
|
# define GGML_BACKEND_DL_SCORE_IMPL(score_fn) \
|
|
GGML_BACKEND_API int ggml_backend_score(void); \
|
|
int ggml_backend_score(void) { \
|
|
return score_fn(); \
|
|
}
|
|
# endif
|
|
#else
|
|
# define GGML_BACKEND_DL_IMPL(reg_fn)
|
|
# define GGML_BACKEND_DL_SCORE_IMPL(score_fn)
|
|
#endif
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|